51
|
Gupta S, Singh V, Varadwaj PK, Chakravartty N, Katta AVSKM, Lekkala SP, Thomas G, Narasimhan S, Reddy AR, Reddy Lachagari VB. Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins. J Biomol Struct Dyn 2022; 40:2264-2283. [PMID: 33107812 PMCID: PMC7605658 DOI: 10.1080/07391102.2020.1837679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the current global pandemic that has caused a death toll of >1.12 million worldwide and number continues to climb in several countries. Currently, there are neither specific antiviral drugs nor vaccines for the treatment and prevention of COVID-19. We screened in silico, a group of natural spice and herbal secondary metabolites (SMs) for their inhibition efficacy against multiple target proteins of SARS-CoV-2 as well as the human angiotensin-converting enzyme 2 protein. Docking and simulation results indicated that epicatechin, embelin, hesperidin, cafestol, murrayanine and murrayaquinone-A have higher inhibition efficacy over at least one of the known antiviral drugs such as Hydroxychloroquine, Remdesivir and Ribavirin. Combination of these potentially effective SMs from their respective plant sources was analysed, and its absorption and acute oral toxicity were examined in Wistar rats and classified as category 5 as per the Globally Harmonized System. The identified SMs may be useful in the development of preventive nutraceuticals, food supplements and antiviral drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | | | | | | | | | | | - Arjula R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
52
|
Zhang C, Ren H, Yao X, Wang K, Chang J. Comparative Transcriptome Analysis Reveals Differential Regulation of Flavonoids Biosynthesis Between Kernels of Two Pecan Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:804968. [PMID: 35283902 PMCID: PMC8914201 DOI: 10.3389/fpls.2022.804968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids influence the flavor and nutritional value of pecan nuts. However, limited information is available regarding the molecular mechanisms underlying pecan flavonoid biosynthesis. Here, we used a high ("YLC28") and a low ("Oconee") flavonoid content cultivar as the research objects. The changes in flavonoid content and the gene transcription patterns during kernel development were identified. Different accumulation patterns of total flavonoids (TF) and condensed tannins (CT) were observed between the two cultivars. The contents of TF and CT in "YLC28" were 1.76- and 2.67-fold higher levels than that of "Oconee" on 150 days after full bloom of female flowers, respectively. In total, 30 RNA-Seq libraries were constructed and sequenced. The upregulated genes in "YLC28" were highly enriched in flavonoid-related pathways. Thirty-three structural genes were identified, and the expression of two phenylalanine ammonia lyases, one chalcone synthase, one flavonoid 3',5'-hydroxylase, and one flavonol synthase exhibited high correlation (r ≥ 0.7, p < 0.01) with the condensed tannin content in "YLC28." A putative MYB transcription factor, CIL1093S0100, might act as a flavonoid biosynthesis repressor during kernel development. Altogether, these results will be useful for uncovering the molecular mechanisms of flavonoid biosynthesis and subsequently accelerating quality pecan breeding.
Collapse
|
53
|
Benrazzouk K, Ait Laaradia M, Ait Sidi Brahim M, Ouhaddou S, Ouhammou A, Chait A, Bekkouche K, Markouk M, Larhsini M. In vivo evaluation of antivenom activity of Adenocarpus anagyrifolius methanolic extract against Hottentotta gentili scorpion venom. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2033778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Karima Benrazzouk
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources; Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mehdi Ait Laaradia
- Faculty of Sciences Semlalia, Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| | - Malika Ait Sidi Brahim
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources; Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Soukaina Ouhaddou
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources; Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Ahmed Ouhammou
- Faculty of Sciences Semlalia, Laboratory of Microbial, Biotechnology, Agrosciences and Environment, Cadi Ayyad University, Marrakech, Morocco
| | - Abderrahman Chait
- Faculty of Sciences Semlalia, Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| | - Khalid Bekkouche
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources; Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohammed Markouk
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources; Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mustapha Larhsini
- Laboratory of Agri-Food, Biotechnology, and Valorization of Plant Resources; Phytochemistry and Pharmacology of Medicinal Plants Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
54
|
Dash MK, Joshi N, Dubey VS, Dwivedi KN, Gautam DNS. Screening of anti-cancerous potential of classical Raudra rasa and modified Raudra rasa modified with hiraka bhasma (nanodiamond) through FTIR & LC-MS analysis. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:669-682. [PMID: 35106982 DOI: 10.1515/jcim-2021-0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Raudra rasa is an ayurvedic medicine explicitly prescribed for the treatment of arbuda (cancer), whereas hiraka bhasma has the potential to promote cancer healing properties. Together, these two medicines provide multifunction benefits. This paper analyses the functional groups of Raudra rasa modified with hiraka bhasma and compares it with the classically prepared raudra rasa. To identify the functional group, organic ligands, and active compounds present in samples of raudra rasa (CRR) and modified raudra rasa with hiraka bhasma (MRR) contributing to cancer alleviation by using Fourier transform infrared spectroscopy (FTIR) & LC-MS analysis. METHODS Classical raudra rasa (CRR), its ingredients, shadguna kajjali (SK); decoction of Piper betel Linn. (PBD); Amaranthus spinosus Linn. (ASD); Boerhaavia diffusa Linn. (BDD); Piper longum Linn. (PLD); cow urine (GM), & similarly modified raudra rasa (MRR), its ingredients, hiraka bhasma (HB); shadguna rasasindura (SHR); water-soluble extract of Piper betel Linn. (PBE); Amaranthus spinosus Linn. (ASE); Boerhaavia diffusa Linn. (BDE); cow urine ark (GA); Piper Longum Linn. (PLE) were subjected to FTIR and LC-MS analysis. RESULTS Among all 15 samples studied, maximum numbers of peaks (21) were seen in MRR indicating a greater number of functional groups. Further, in MRR, a maximum peak in the double bond region is suggestive of its higher stability compared to CRR. Both the compound is preliminarily a mixture of the number of functional groups like; fluoro, methyl, amino, hydroxy, nitro, methylamino, carbonyl, and iodo groups, having known anti-proliferative activities. By the FT-IR analysis, the biologically active compounds in aqueous and methanol extract of CRR & MRR were identified that have anti-cancerous compounds. In the present study, a total of 40 major compounds like alkaloids, amino acid, carboxylic acid, Flavonoids, Nucleoside, Nucleotide, phenylpropanoid, Sphingosine, stilbenoid, sugar, phosphate, terpenoids, vitamin from aqueous & methanol extract of CRR & MRR were identified by LC-MS. CONCLUSIONS This research paper highlights the presence of different functional groups and bioactive compounds known to have anti-cancer activities. Thus, this review suggests future recommendations for the design and development of improved anticancer drugs with higher efficacy.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Namrata Joshi
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Vd Sushil Dubey
- Department of Kriya Sarira, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | | | | |
Collapse
|
55
|
Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022; 410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
Collapse
Affiliation(s)
- Giuseppe Angelini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
56
|
Chen Q, Wang Y, Zhang Z, Liu X, Li C, Ma F. Arginine Increases Tolerance to Nitrogen Deficiency in Malus hupehensis via Alterations in Photosynthetic Capacity and Amino Acids Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:772086. [PMID: 35095951 PMCID: PMC8795616 DOI: 10.3389/fpls.2021.772086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
Arginine plays an important role in the nitrogen (N) cycle because it has the highest ratio of N to carbon among amino acids. In recent years, there has been increased research interest in improving the N use of plants, reducing the use of N fertilizer, and enhancing the tolerance of plants to N deficiency. Here, the function of arginine in the growth of apple (Malus hupehensis) under N deficiency was explored. The application of 100 μmol L-1 arginine was effective for alleviating N-deficiency stress. Exogenous arginine promoted the absorption and use of N, phosphorus (P), and potassium (K) under low N stress. The net photosynthetic rate, maximal photochemical efficiency of photosystem II, and chlorophyll content were higher in treated plants than in control plants. Exogenous arginine affected the content of many metabolites, and the content of many amino acids with important functions was significantly increased, such as glutamate and ornithine, which play an important role in the urea cycle. Half of the metabolites were annotated to specialized metabolic pathways, including the synthesis of phenolic substances, flavonoids, and other substances with antioxidant activity. Our results indicate that arginine promotes the plant photosynthetic capacity and alters amino acid metabolism and some antioxidants including phenolic substances and flavonoids to improve the tolerance of apple to N deficiency, possibly through the improvement of arginine content, and the absorption of mineral.
Collapse
Affiliation(s)
| | | | | | | | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
57
|
Ahmad SR, Ghosh P. A systematic investigation on flavonoids, catechin, β-sitosterol and lignin glycosides from Saraca asoca (ashoka) having anti-cancer & antioxidant properties with no side effect. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
58
|
da Silva LC, Viganó J, de Souza Mesquita LM, Dias ALB, de Souza MC, Sanches VL, Chaves JO, Pizani RS, Contieri LS, Rostagno MA. Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. FOOD CHEMISTRY-X 2021; 12:100133. [PMID: 34632369 PMCID: PMC8493574 DOI: 10.1016/j.fochx.2021.100133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Apple by-products are a source of phenolic compounds associated with bioactivities. Apple processing industries generate by-products that could be better used. This work provides an up-to-date literature overview on extraction techniques. Gaps and future trends related to apple by-products are critically presented.
Apple is one of the most consumed fruits worldwide and has recognized nutritional properties. Besides being consumed fresh, it is the raw material for several food products, whose production chain generates a considerable amount of by-products that currently have an underestimated use. These by-products are a rich source of chemical compounds with several potential applications. Therefore, new ambitious platforms focused on reusing are needed, targeting a process chain that achieves well-defined products and mitigates waste generation. This review covers an essential part of the apple by-products reuse chain. The apple composition regarding phenolic compounds subclasses is addressed and related to biological activities. The extraction processes to recover apple biocompounds have been revised, and an up-to-date overview of the scientific literature on conventional and emerging extraction techniques adopted over the past decade is reported. Finally, gaps and future trends related to the management of apple by-products are critically presented.
Collapse
Affiliation(s)
- Laise C da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Arthur L Baião Dias
- Laboratory of High Pressure in Food Engineering, School of Food Engineering (FEA), University of Campinas (UNICAMP), Rua Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil
| | - Mariana C de Souza
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Jaisa O Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Rodrigo S Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Leticia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350 Limeira, SP, Brazil
| |
Collapse
|
59
|
Elarabi NI, Abdelhadi AA, Sief-Eldein AGM, Ismail IA, Abdallah NA. Overexpression of chalcone isomerase A gene in Astragalus trigonus for stimulating apigenin. Sci Rep 2021; 11:24176. [PMID: 34921216 PMCID: PMC8683443 DOI: 10.1038/s41598-021-03704-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
Apigenin is one of the most studied flavonoids and is widely distributed in the plant kingdom. Apigenin exerts important antioxidant, antibacterial, antifungal, antitumor activities, and anti-inflammatory effects in neurological or cardiovascular disease. Chalcone isomerase A (chiA) is an important enzyme of the flavonoid biosynthesis pathway. In order to enhance the apigenin production, the petunia chi A gene was transformed for Astragalus trigonus. Bialaphos survived plants were screened by PCR, dot blot hybridization and RT-PCR analysis. Also, jasmonic acid, salicylic acid, chitosan and yeast extract were tested to evaluate their capacity to work as elicitors for apigenin. Results showed that yeast extract was the best elicitor for induction of apigenin with an increase of 3.458 and 3.9 fold of the control for calli and cell suspension culture, respectively. Transformed cell suspension showed high apigenin content with a 20.17 fold increase compared to the control and 6.88 fold more than the yeast extract treatment. While, transformed T1 calli derived expressing chiA gene produced apigenin 4.2 fold more than the yeast extract treatment. It can be concluded that the highest accumulation of apigenin was obtained with chiA transgenic cell suspension system and it can be utilized to enhancement apigenin production in Astragalus trigonus.
Collapse
Affiliation(s)
- Nagwa I Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- National Biotechnology Network of Expertise, Cairo, Egypt
| | - Abdelhadi A Abdelhadi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- National Biotechnology Network of Expertise, Cairo, Egypt
| | - Ahmed G M Sief-Eldein
- Tissue Culture Unit, Ecology and Dry Land Agriculture Division, Desert Research Center (DRC), 11753 El-matarya, Cairo, Egypt
| | - Ismail A Ismail
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Naglaa A Abdallah
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
- National Biotechnology Network of Expertise, Cairo, Egypt.
| |
Collapse
|
60
|
Zilani MNH, Islam MA, Biswas P, Anisuzzman M, Hossain H, Shilpi JA, Hasan MN, Hossain MG. Metabolite profiling, anti-inflammatory, analgesic potentials of edible herb Colocasia gigantea and molecular docking study against COX-II enzyme. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114577. [PMID: 34464698 DOI: 10.1016/j.jep.2021.114577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Consumable herbs play a basic part in sustenance and human health. Traditionally, Colocasia gigantea Hook (Araceae) is used to treat fever, infection, wounds healing, drowsiness, tuberculosis, stomach problems etc. AIM OF THE STUDY: The study aspired to identify bioactive compounds, to evaluate anti-inflammatory and analgesic potentials of edible herb C. gigantea, and to molecular docking study against anti-inflammatory enzyme Cyclooxygenase-2 (COX-2). MATERIALS AND METHODS Chemical components of C. gigantea were discerned by HPLC and GCMS assays. In vitro anti-inflammatory activity was appraised by heat-induced, hypotonicity, and hydrogen peroxide-induced hemolysis assays and in vivo by formalin-induced paw edema assay. In vivo analgesic activity was evaluated by acetic acid-induced pain modulation assay. Also, molecular docking of the identified compounds was explored against the anti-inflammatory enzyme cyclooxygenase-2. RESULTS HPLC-DAD analysis divulged the presence of trans-cinnamic acid along with (-)-epicatechin as a prime component. Also, 9, 12-Octadecadienoic acid (37.86%) and n-Hexadecanoic acid (25.89%) as the major as well as 24 other compounds were confirmed through GCMS in the extract. In in vitro anti-inflammatory study, C. gigantea extract indicated prominent erythrocyte membrane stabilization activity with good percentage aegis in all experimental assays. In addition to, formalin-induced in vivo anti-inflammatory assay revealed the maximum (42.37% and 48.72%) suppression of edema at the fourth hour at 250 and 500 mg/kg body weight, respectively. Moreover, an in-vivo pain modulation assay exposed significant (p < 0.05) activity at experimental doses. Furthermore, in the docking study, (-)-epicatechin was more active rather than other identified compounds with strong binding affinity to COX-2 protein. CONCLUSIONS The extract evinced remarkable anti-inflammatory and analgesic activities. Identified bioactive components along with other components of the extract might play a pivotal role in the observed bioactivity and the results vindicate the use of edible herb C. gigantea in ancestral medicine.
Collapse
Affiliation(s)
- Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Aminul Islam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Anisuzzman
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh; Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Hemayet Hossain
- BCSIR Laboratories & IFST, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Md Golam Hossain
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh.
| |
Collapse
|
61
|
Kobylinska N. SIMULTANEOUS IDENTIFICATION, QUANTIFICATION, AND ANALYSIS OF MAIN COMPONENTS OF “HAIRY” ROOT EXTRACTS OF Artemisia annua AND Artemisia tilesii PLANTS. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. The profiles of polyphenolic phytochemicals in extracts of “hairy” roots of Artemisia tilesii Ledeb. and Artemisia annua L. were studied. Analytical separation and quantification of main components in extracts were evaluated. Methods. “hairy” roots were grown in vitro on Murashige and Skoog medium. High-performance chromatography coupled with different types of detection (photo diode array detection (DAD) and electrospray ionization with ultra-high resolution Qq-Time-of-Flight mass spectrometry) was used to identify and quantify the main biologically active components in ethanol extracts of “hairy” roots. Results. The amount of flavonoids was 94.71–144.33 mg RE/g DW and 33.52–78.00 mg RE/g DW in “hairy” roots of A. annua and A. tilesii, respectively. In most samples of “hairy” roots, the amount of flavonoids was higher than the content in the control plant roots. The presence of Apigenin (0.168 ± 0.003 mg/L and 0.178 ± 0.006 mg/L), Quercetin (0.282 ± 0.005 mg/L and 0.174 ± 0.005 mg/L) in the extracts of A. annua and A. tilesii was shown by reverse-phase HPLC-DAD method. Chlorogenic acid, Kaempferol, and other flavonoids were detected. Conclusions. The developed HPLC-DAD method demonstrated the high percentage of recovery, low limit of detection and quantification (9,11 ng/ml ≤ LOQ ≤16,51 ng/ml), accuracy and correctness. Thus, the method is suitable for the simultaneous quantification of phenolic acids and flavonoids in various plant extracts with short time and high efficiency.
Collapse
|
62
|
Azadnasab R, Kalantar H, Khorsandi L, Kalantari H, Khodayar MJ. Epicatechin ameliorative effects on methotrexate-induced hepatotoxicity in mice. Hum Exp Toxicol 2021; 40:S603-S610. [PMID: 34802285 DOI: 10.1177/09603271211047924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Due to the fact that methotrexate is widely used both as an immunosuppressive drug and as a chemotherapy agent, many studies are needed to reduce the side effects of this drug on non-target organs. PURPOSE This study was designed to investigate the effects of epicatechin (Epi) on MTX (methotrexate)-induced hepatotoxicity in mice. RESEARCH DESIGN After 1 week for adaptation, we randomly divided 42 male Naval Medical Research Institute mice into six groups: (I) control; (II) Epi (100 mg/kg, po); (III) MTX (20 mg/kg, i.p.) on the fifth day; and (IV, V, and VI) Epi (25, 50, and 100 mg/kg, po) + MTX (20 mg/kg, i.p.) on the fifth day. At day 10, the mice were sacrificed and serum factors, oxidative stress markers, and inflammatory cytokines were measured. RESULTS MTX increased activity level of serum enzymes (alanine aminotransferase and aspartate aminotransferase), lipid peroxidation marker (malondialdehyde), and inflammatory factors including interleukin-1 beta, tumor necrosis factor-alpha, and nitric oxide. Furthermore, MTX decreased glutathione level and activity level of catalase, superoxide dismutase, and glutathione peroxidase. Epi was able to reduce the destructive effects of oxidative/antioxidant system imbalance and inflammatory reactions and also histopathological damage in MTX intoxicated mice. Epi pretreatment reduced liver dysfunction by improving the antioxidant defense system, anti-inflammatory effects, and alleviation of histopathological damage in MTX hepatotoxicity. CONCLUSIONS Accordingly, Epi can be used as a therapeutic agent in hepatotoxicity associated with MTX chemotherapy.
Collapse
Affiliation(s)
- Reza Azadnasab
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, 48407Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
63
|
Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int J Mol Sci 2021; 22:12455. [PMID: 34830339 PMCID: PMC8621356 DOI: 10.3390/ijms222212455] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is, globally, one of the main causes of death. Even though various therapies are available, they are still painful because of their adverse side effects. Available treatments frequently fail due to unpromising responses, resistance to classical anticancer drugs, radiation therapy, chemotherapy, and low accessibility to tumor tissues. Developing novel strategies to minimize adverse side effects, improve chemotherapy sensitivity, and control cancer progression is needed. Many studies have suggested small dietary molecules as complementary treatments for cancer patients. Different components of herbal/edible plants, known as flavonoids, have recently garnered attention due to their broad biological properties (e.g., antioxidant, antiviral, antimicrobial, anti-inflammatory, anti-mutagenic, anticancer, hepatoprotective, and cardioprotective). These flavonoids have shown anticancer activity by affecting different signaling cascades. This article summarizes the key progress made in this area and discusses the role of flavonoids by specifically inhibiting the PI3K/Akt/mTOR pathway in various cancers.
Collapse
Affiliation(s)
- Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
64
|
Monroy-García IN, Carranza-Torres IE, Carranza-Rosales P, Oyón-Ardoiz M, García-Estévez I, Ayala-Zavala JF, Morán-Martínez J, Viveros-Valdez E. Phenolic Profiles and Biological Activities of Extracts from Edible Wild Fruits Ehretia tinifolia and Sideroxylon lanuginosum. Foods 2021; 10:2710. [PMID: 34828991 PMCID: PMC8624189 DOI: 10.3390/foods10112710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Ehretia tinifolia Linnaeus (Boraginacea) and Sideroxylon lanuginosum Michaux (Sapotaceae) are wild fruits consumed in North America and are appreciated for their pleasant flavor and sweet taste. However, details regarding their composition and biological properties in the available literature are scarce. This study reports the phenolic composition, antioxidant, antiproliferative activities, and digestive enzymatic inhibition of amberlite-retained methanolic extracts from both fruits. Results revealed that these wild fruit extracts are rich in antioxidants. S. lanuginosum had lower phenolic but higher flavonoid contents (21.4 ± 1.5 mg GAE/100 g FW and 6.42 ± 0.9 mg CE/100 g FW) than E. tinifolia (64.7 ± 2.6 mg GAE/100 g FW and 5.1 ± 0.4 mg CE/100 g FW). HPLC-DAD-MS/MS analysis showed rosmarinic acid as a major polyphenol in E. tinifolia and quercetin glucoside in S. lanuginosum. Polyphenols content in E. tinifolia was related to a significant free radical scavenging ability: DPPH (EC50 = 0.32 ± 0.03 mg/mL), TEAC (4134 ± 9.7 μM TE/g dry extract), and hemolysis inhibition (IC50 = 58.55 ± 2.4 μg/mL). Both extracts were capable of inhibiting α-glucosidase, partially inhibiting α-amylase, and showed no inhibition against lipase, while showing antiproliferative activity against HeLa, HT-29 and MCF-7 cancer cell lines. Our study revealed that these wild fruit extracts are rich in health-beneficial phytochemicals and hold significant potential for elaborating functional foods.
Collapse
Affiliation(s)
- Imelda N. Monroy-García
- Deparatmento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (I.N.M.-G.); (I.E.C.-T.)
| | - Irma Edith Carranza-Torres
- Deparatmento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (I.N.M.-G.); (I.E.C.-T.)
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Jesús Dionisio González #501, Col. Independencia, Monterrey 64720, Nuevo León, Mexico;
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Jesús Dionisio González #501, Col. Independencia, Monterrey 64720, Nuevo León, Mexico;
| | - María Oyón-Ardoiz
- Grupo de Investigación en Polifenoles, Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, E37007 Salamanca, Spain; (M.O.-A.); (I.G.-E.)
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles, Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, E37007 Salamanca, Spain; (M.O.-A.); (I.G.-E.)
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo 83304, Sonora, Mexico;
| | - Javier Morán-Martínez
- Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198, Torreón 27000, Coahuila, Mexico;
| | - Ezequiel Viveros-Valdez
- Deparatmento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico; (I.N.M.-G.); (I.E.C.-T.)
| |
Collapse
|
65
|
Vongthip W, Sillapachaiyaporn C, Kim KW, Sukprasansap M, Tencomnao T. Thunbergia laurifolia Leaf Extract Inhibits Glutamate-Induced Neurotoxicity and Cell Death through Mitophagy Signaling. Antioxidants (Basel) 2021; 10:antiox10111678. [PMID: 34829549 PMCID: PMC8614718 DOI: 10.3390/antiox10111678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress plays a crucial role in neurodegeneration. Therefore, reducing oxidative stress in the brain is an important strategy to prevent neurodegenerative disorders. Thunbergia laurifolia (Rang-jued) is well known as an herbal tea in Thailand. Here, we aimed to determine the protective effects of T. laurifolia leaf extract (TLE) on glutamate-induced oxidative stress toxicity and mitophagy-mediated cell death in mouse hippocampal cells (HT-22). Our results reveal that TLE possesses a high level of bioactive antioxidants by LC–MS technique. We found that the pre-treatment of cells with TLE prevented glutamate-induced neuronal death in a concentration-dependent manner. TLE reduced the intracellular ROS and maintained the mitochondrial membrane potential caused by glutamate. Moreover, TLE upregulated the gene expression of antioxidant enzymes (SOD1, SOD2, CAT, and GPx). Interestingly, glutamate also induced the activation of the mitophagy process. However, TLE could reverse this activity by inhibiting autophagic protein (LC3B-II/LC3B-I) activation and increasing a specific mitochondrial protein (TOM20). Our results suggest that excessive glutamate can cause neuronal death through mitophagy-mediated cell death signaling in HT-22 cells. Our findings indicate that TLE protects cells from neuronal death by stimulating the endogenous antioxidant enzymes and inhibiting glutamate-induced oxidative toxicity via the mitophagy–autophagy pathway. TLE might have potential as an alternative or therapeutic approach in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wudtipong Vongthip
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.V.); (C.S.)
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.V.); (C.S.)
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, Korea;
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-2-800-2380 (M.S.); +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-2-800-2380 (M.S.); +66-2-218-1533 (T.T.)
| |
Collapse
|
66
|
Pawlak A, Henklewska M, Hernández-Suárez B, Siepka M, Gładkowski W, Wawrzeńczyk C, Motykiewicz-Pers K, Obmińska-Mrukowicz B. Methoxy-Substituted γ-Oxa-ε-Lactones Derived from Flavanones-Comparison of Their Anti-Tumor Activity In Vitro. Molecules 2021; 26:molecules26206295. [PMID: 34684875 PMCID: PMC8538229 DOI: 10.3390/molecules26206295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: The study investigated four flavanone-derived γ-oxa-ε-lactones: a parent unsubstituted compound and its three derivatives with the methoxy group in positions 2′, 4′ and 8. Our objective was to find out if the introduction of the methoxy group into the aromatic ring affects in vitro anti-tumor potency of the investigated lactones. Methods: Cytotoxic and pro-apoptotic effects were assessed with cytometric tests with propidium iodide, annexin V, and Western blot techniques. We also investigated potential synergistic potency of the tested lactones and glucocorticoids in canine lymphoma/leukemia cell lines. Results: The tested flavanone-derived lactones showed anti-cancer activity in vitro. Depending on its location, the methoxy group either increased or decreased cytotoxicity of the derivatives as compared with the parent compound. The most potent lactone was the one with the methoxy group at position 4′ of the B ring (compound 3), and the weakest activity was observed when the group was located at C-8 in the A ring. A combination of the lactones with glucocorticoids confirmed their synergy in anti-tumor activity in vitro. Conclusions: Methoxy-substituted flavanone-derived lactones effectively kill canine lymphoma/leukemia cells in vitro and, thanks to their synergistic action with glucocorticoids, may potentially be applied in the treatment of hematopoietic cancers.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
- Correspondence:
| | - Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Monika Siepka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Karolina Motykiewicz-Pers
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| |
Collapse
|
67
|
Gravandi MM, Fakhri S, Zarneshan SN, Yarmohammadi A, Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 2021; 36:1501-1521. [PMID: 33988807 DOI: 10.1007/s11011-021-00750-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 01/29/2023]
Abstract
As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
68
|
Configural learning memory can be transformed from intermediate-term to long-term in pond snail Lymnaea stagnalis. Physiol Behav 2021; 239:113509. [PMID: 34175362 DOI: 10.1016/j.physbeh.2021.113509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 01/28/2023]
Abstract
A lab bred W-strain of Lymnaea stagnalis exhibits configural learning (CL). CL is a form of higher order associative learning wherein when snails experience two contrasting stimuli together such as predatory odour (CE: crayfish effluent) and food odour (C: carrot odour) they learn and associate risk with food. The memory for CL has been shown to last 3 h. Here, we show that when only a single CL-training session is given only a 3 h memory is formed. Memory is not present 24 h after the training session. However, memory can be enhanced and snails show long term memory (24 h memory) when trained for a second time within a 7-day time period after the first CL-training. We further hypothesised that Green tea exposure will enhance memory persistence as catechins in green tea are shown to be cognitive enhancers. We thus subjected snails to CL training followed by green tea exposure which resulted in enhanced memory persistence and it occurred during memory consolidation phase. Thus, we show for the first time that CL intermediate-term memory can be transformed to long-term memory by green tea and multiple trainings in a lab bred strain of Lymnaea.
Collapse
|
69
|
Zhang LL, He Y, Sheng F, Hu YF, Song Y, Li W, Chen J, Zhang J, Zou L. Towards a better understanding of Fagopyrum dibotrys: a systematic review. Chin Med 2021; 16:89. [PMID: 34530893 PMCID: PMC8447528 DOI: 10.1186/s13020-021-00498-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023] Open
Abstract
Fagopyrum dibotrys (F. dibotrys) (D.Don) H.Hara is a well-known edible herbal medicine in Asian countries. It has been widely used for the treatment of lung diseases, swelling, etc., and is also an important part of many Chinese medicine prescriptions. At present, more than 100 compounds have been isolated and identified from F. dibotrys, and these compounds can be primarily divided into flavonoids, phenols, terpenes, steroids, and fatty acids. Flavonoids and phenolic compounds are considered to be the main active ingredients of F. dibotrys. Previous pharmacological studies have shown that F. dibotrys possesses anti-inflammatory, anti-cancer, anti-oxidant, anti-bacterial, and anti-diabetic activities. Additional studies on functional genes have led to a better understanding of the metabolic pathways and regulatory factors related with the flavonoid active ingredients in F. dibotrys. In this paper, we systemically reviewed the research advances on the phytochemistry and pharmacology of F. dibotrys, as well as the functional genes related to the synthesis of active ingredients, aiming to promote the development and utilization of F. dibotrys.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China.
| | - Ying-Fan Hu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Jiarong Chen
- Affiliated Hospital of Chengdu University, Chengdu, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| |
Collapse
|
70
|
Phytochemicals from Rhizophora mucronata Propagules, Its In Vitro Anti-Cancer and In Silico Drug-Likeness Potential. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This is the first report to identify the presence of 3-O-caffeoyl quinic acid (1), 4-O-caffeoyl quinic acid (2), 5-O-caffeoyl quinic acid (3), epi-catechin (4), and procyanidin B2 (5) in the young propagules of Rhizophora mucronata. Compounds 2–5 were purified and then treated against breast, colorectal, and ovarian cancer cell lines for 72 h and the results of the Sulphorhodomine-B (SRB) assay were evaluated for percent cell viability and IC50 values. Epi-catechin, 4-O-caffeoyl quinic acid, 5-O-caffeoyl quinic acid and procyanidin B2 showed strong to moderate inhibitory effects when treated on breast (T47D), colorectal (HT29), and ovarian (A2780, SKOV3) cancer cell lines with IC50 values ranging from 16.77 ± 0.58 to 28.28 ± 0.89 μg/mL. In silico evaluation was performed to evaluate the drug-likeness and toxicological effects of these compounds using Molinspiration calculation and OSIRIS program. It was found that compounds 2, 3, and 4 have the potential to be orally active and have a low risk in exerting the mutagenic, tumorigenic, irritant, and reproductive effects.
Collapse
|
71
|
Velichkova S, Foubert K, Pieters L. Natural Products as a Source of Inspiration for Novel Inhibitors of Advanced Glycation Endproducts (AGEs) Formation. PLANTA MEDICA 2021; 87:780-801. [PMID: 34341977 DOI: 10.1055/a-1527-7611] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein glycation, a post-translational modification found in biological systems, is often associated with a core defect in glucose metabolism. In particular, advanced glycation endproducts are complex heterogeneous sugar-derived protein modifications implicated in the progression of pathological conditions such as atherosclerosis, diabetic complications, skin diseases, rheumatism, hypertension, and neurodegenerative diseases. Undoubtedly, there is the need to expand the knowledge about antiglycation agents that can offer a therapeutic approach in preventing and treating health issues of high social and economic importance. Although various compounds have been under consideration, little data from clinical trials are available, and there is a lack of approved and registered antiglycation agents. Next to the search for novel synthetic advanced glycation endproduct inhibitors, more and more the efforts of scientists are focusing on researching antiglycation compounds from natural origin. The main purpose of this review is to provide a thorough overview of the state of scientific knowledge in the field of natural products from plant origin (e.g., extracts and pure compounds) as inhibitors of advanced glycation endproduct formation in the period between 1990 and 2019. Moreover, the objectives of the summary also include basic chemistry of AGEs formation and classification, pathophysiological significance of AGEs, mechanisms for inhibiting AGEs formation, and examples of several synthetic anti-AGEs drugs.
Collapse
Affiliation(s)
- Stefaniya Velichkova
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
72
|
Bartiromo L, Schimberni M, Villanacci R, Ottolina J, Dolci C, Salmeri N, Viganò P, Candiani M. Endometriosis and Phytoestrogens: Friends or Foes? A Systematic Review. Nutrients 2021; 13:2532. [PMID: 34444692 PMCID: PMC8398277 DOI: 10.3390/nu13082532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this systematic review was to provide comprehensive and available data on the possible role of phytoestrogens (PE) for the treatment of endometriosis. We conducted an advanced, systematic search of online medical databases PubMed and Medline. Only full-length manuscripts written in English up to September 2020 were considered. A total of 60 studies were included in the systematic review. According to in vitro findings, 19 out of 22 studies reported the ability of PE in inducing anti-proliferative, anti-inflammatory and proapoptotic effects on cultured cells. Various mechanisms have been proposed to explain this in vitro action including the alteration of cell cycle proteins, the activation/inactivation of regulatory pathways, and modification of radical oxidative species levels. Thirty-eight articles on the effects of phytoestrogens on the development of endometriotic lesions in in vivo experimental animal models of endometriosis have been included. In line with in vitro findings, results also derived from animal models of endometriosis generally supported a beneficial effect of the compounds in reducing lesion growth and development. Finally, only seven studies investigated the effects of phytoestrogens intake on endometriosis in humans. The huge amount of in vitro and in vivo animal findings did not correspond to a consistent literature in the women affected. Therefore, whether the experimental findings can be translated in women is currently unknown.
Collapse
Affiliation(s)
- Ludovica Bartiromo
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (M.S.); (R.V.); (J.O.); (C.D.); (N.S.); (M.C.)
| | - Matteo Schimberni
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (M.S.); (R.V.); (J.O.); (C.D.); (N.S.); (M.C.)
| | - Roberta Villanacci
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (M.S.); (R.V.); (J.O.); (C.D.); (N.S.); (M.C.)
| | - Jessica Ottolina
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (M.S.); (R.V.); (J.O.); (C.D.); (N.S.); (M.C.)
| | - Carolina Dolci
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (M.S.); (R.V.); (J.O.); (C.D.); (N.S.); (M.C.)
| | - Noemi Salmeri
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (M.S.); (R.V.); (J.O.); (C.D.); (N.S.); (M.C.)
| | - Paola Viganò
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Candiani
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (M.S.); (R.V.); (J.O.); (C.D.); (N.S.); (M.C.)
| |
Collapse
|
73
|
Ndifor AR, Stanislaus NN, Fru CG, Talontsi F, Tabopda TK, Menkem EZ, Tchaleu NB, Owusu YS. Two new sphingolipids from the stem bark of Synsepalum msolo (Sapotaceae). Biochem Biophys Rep 2021; 27:101014. [PMID: 34159261 PMCID: PMC8202346 DOI: 10.1016/j.bbrep.2021.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 10/29/2022] Open
Abstract
Synsepalum msolo commonly known as Bang Bali in Bali-Nguemba, Cameroon is used in traditional medicine against various diseases. The leaves and stem bark extracts were subjected to silica gel and Sephadex LH20 column chromatography to yield pure compounds. The structures of the compounds were determined by detail analysis of NMR and Mass spectroscopic data and by comparison with data reported in the literature. Amongst the isolates, were two new sphingolipids: synsepaloside B (1), synsepaloside C (2), and five known compounds: (+)-catechin (3), (-)-epicatechin (4), myricitrin (5), triacontanol (6), and aurantiamide acetate (7). Compounds 1-5 were screened for their antibacterial and anti-yeast activities on several microorganisms. All the tested compounds exhibited weak antibacterial (MIC ≥ 200 μg/mL) and anti-yeast (MIC > 200 μg/mL) activities as compared to standard: ciprofloxacin 0.468 < MIC >0.234 μg/mL and fluconazole MIC = 0.05 μg/mL, respectively.
Collapse
Affiliation(s)
- Ache Roland Ndifor
- Higher Technical Teacher Training College, University of Bamenda, Cameroon
| | | | - Chi Godloves Fru
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, Cameroon
| | - Ferdinand Talontsi
- Institute of Environmental Research (INFU), Faculty of Chemistry, TU Dortmund, Otto-Hahn-Str, 644221, Dortmund, Germany
| | | | | | | | | |
Collapse
|
74
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
75
|
Tlili H, Macovei A, Buonocore D, Lanzafame M, Najjaa H, Lombardi A, Pagano A, Dossena M, Verri M, Arfa AB, Neffati M, Doria E. The polyphenol/saponin-rich Rhus tripartita extract has an apoptotic effect on THP-1 cells through the PI3K/AKT/mTOR signaling pathway. BMC Complement Med Ther 2021; 21:153. [PMID: 34044827 PMCID: PMC8161611 DOI: 10.1186/s12906-021-03328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background Hyperactivation of mechanistic target of rapamycin (mTOR) signaling pathway is involved in the regulation of cellular growth, proliferation, and more in general, is a common phenomenon in most types of cancers. Thus, natural substances targeting this pathway can be of great therapeutic potential in supporting the treatment of tumor patients. Rhus tripartita (Ucria) Grande is a plant growing in desertic areas which is traditionally used for the treatment of several diseases in Tunisia. In the present work, the biochemical profile of the main compounds present in the plant leaf extract was determined and the anti-leukemic potential of the plant extracts against acute monocytic leukaemia (AML) THP-1 cells was investigated. Methods After HPLC identification of some phenolic compounds present in the plant extract and the quantification of saponin content, the cytotoxic effect of Rhus tripartita extracts on THP-1 cell culture was evaluated using the colorimetric MTT assay for cell viability. THP-1 cells were incubated with medium containing the relative IC50 concentrations of total plant extract, saponin extract and some standard compounds (rutin (R); kaempferol (K); mixture of catechin, epicatechin, and epicatechin-gallate (CEEG); ellagic acid (EA). Finally, qRT-PCR and western blotting analysis were used to evaluate the effect of some flavonoids present in a crude extract of polyphenols and the total extract of saponins on cell survival and apoptosis. Results Analysis of expression level of some gene (PIK3CA, PTEN, AKT1, mTOR, EIF4E, RPS6KB1, and TSC1) involved in the mTOR pathway and the phosphorylation of S6 and AKT proteins allowed to observe that a total Rhus tripartita extract and some of the compounds found in the extract controls THP-1 cell proliferation and apoptosis via regulation of the PI3K-Akt-mTOR signaling pathway. Conclusion Rhus tripartita-induced inhibition of cell cycle and induction of apoptosis may involve the mTOR pathway. Therefore, Rhus tripartita extract may be a useful candidate as a natural anti-cancer drug to support the treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03328-9.
Collapse
Affiliation(s)
- Hajer Tlili
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | | | - Hanen Najjaa
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | | | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Abdelkarim Ben Arfa
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | - Mohamed Neffati
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | - Enrico Doria
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
76
|
Man Kadayat T, Eun Kim D, Bong Lee S, Jung K, Eun Park S, Hong JY, Kim J, Shrestha A, Kim DS, An H, Kim N, Lee SJ, Kwon S, Kim S, Yeon Hwang J, Kim S, Hahn D, Choi H, Nam SJ, Hyun Jeon Y, Jin Hwang J, Jin Cho S, Chin J. Antioxidative and anti-inflammatory activity of psiguadial B and its halogenated analogues as potential neuroprotective agents. Bioorg Chem 2021; 113:105027. [PMID: 34098398 DOI: 10.1016/j.bioorg.2021.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Psiguadial B (8), and its fluoro- (8a), chloro- (8b), and bromo- (8c) derivatives were synthesized using a sodium acetate-catalyzed single step coupling of three components: β-caryophyllene (5), diformylphloroglucinol (11), and benzaldehyde (12). These compounds efficiently and dose-dependently decreased H2O2-induced cell death, a quantitative marker of cell death, in primary cultures of mouse cortical neurons. Psiguadial B also decreased neuronal death and accumulation of ROS induced by FeCl2 in cortical cultures. The in vitro effects of these compounds in lipopolysaccharide (LPS)-induced expression of nitric oxide (NO), and TNF-α and IL-6 by suppressing the NF-κB pathway in immune cells demonstrated their antioxidative and anti-inflammatory activity. The present findings warrant further research on the development of psiguadial B-based neuroprotective agents for the treatment of neurodegenerative diseases, acute brain injuries and immunological disorders.
Collapse
Affiliation(s)
- Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dong Eun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sang Bong Lee
- Vaccine Commercialization Center, Gyeongbuk Institute for Bio Industry, Andong 33618, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sang Eun Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Ji-Ye Hong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dong-Su Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 34114 Daejeon, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Nayeon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sugyeong Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Suhui Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jun Yeon Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Shinae Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongyup Hahn
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Sung Jin Cho
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
77
|
Wu Q, Li W, Zhao J, Sun W, Yang Q, Chen C, Xia P, Zhu J, Zhou Y, Huang G, Yong C, Zheng M, Zhou E, Gao K. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother 2021; 137:111308. [PMID: 33556877 DOI: 10.1016/j.biopha.2021.111308] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin (DOX) is an anthracycline antitumor antibiotic widely utilized in treating various tumors. Nevertheless, the toxicity of DOX toward normal cells limits its applicability, with nephrotoxicity considered a major dose-limiting adverse effect. Apigenin (APG), a flavonoid widely distributed in natural plants, has been reported to have antioxidant, anti-inflammatory, and mild tumor-suppressive properties. In this study, we investigated the role of APG in DOX-induced nephrotoxicity and chemotherapeutic efficacy. METHODS Male BALB/c mice were administered DOX (11.5 mg/kg) via the tail vein to establish the DOX nephropathy model. After treatment with or without APG (125, 250, and 500 mg/kg) for two weeks, urine, serum, and tissue samples were collected to evaluate proteinuria, serum albumin, serum creatinine (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD) activity, malondialdehyde (MDA), glutathione (GSH), and pathological changes. Rat renal tubular epithelial cells (NRK52E), murine podocyte cells (MPC5), and murine breast cancer cells (4T1) were utilized to verify the effect of APG on DOX-induced cell injury. An MTT assay was employed to analyze cell viability. Apoptosis was evaluated using a colorimetric TUNEL staining and cleaved caspase-3 protein analysis by western blotting. A reactive oxygen species (ROS)/superoxide (O2-) fluorescence probe was employed to determine oxidative injury. Western blotting was used to analyze nephrin, α-smooth muscle actin (α-SMA), collagen I (Col1), fibronectin (FN), and SOD2 expression. The mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18), IL-6, NACHT, LRR, PYD domain-containing protein 3 (NLRP3), caspase-1, and IL-1β were tested by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS APG ameliorated DOX-elicited renal injuries in both the glomeruli and tubules. The DOX + APG groups had much lower tissue MDA, IL-6, TNF-α, NLRP3, caspase-1, and IL-1β levels and generation of intracellular ROS, but significantly higher SOD activity and GSH levels compared to those of the DOX group. Additionally, APG attenuated DOX-induced morphological changes, loss of cellular viability, and apoptosis in NRK-52E and MPC-5 cells, but not in 4T1 cells. CONCLUSION APG has a protective role against DOX-induced nephrotoxicity, without weakening DOX cytotoxicity in malignant tumors. Thus, APG may serve as a potential protective agent against renal injury and inflammatory diseases and may be a promising candidate to attenuate renal toxicity in cancer patients treated with DOX.
Collapse
Affiliation(s)
- Qijing Wu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Zhao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| | - Qianqian Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chong Chen
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ping Xia
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jingjing Zhu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiceng Zhou
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu Province, China
| | - Guoshun Huang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Chen Yong
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Min Zheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
78
|
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021; 26:2029. [PMID: 33918290 PMCID: PMC8038160 DOI: 10.3390/molecules26072029] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.
Collapse
Affiliation(s)
- Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
- Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| |
Collapse
|
79
|
Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment. Crit Rev Oncol Hematol 2021; 160:103285. [DOI: 10.1016/j.critrevonc.2021.103285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
|
80
|
Budziak-Wieczorek I, Maciołek U. Synthesis and Characterization of a (-)-Epicatechin and Barbituric Acid Cocrystal: Single-Crystal X-ray Diffraction and Vibrational Spectroscopic Studies. ACS OMEGA 2021; 6:8199-8209. [PMID: 33817479 PMCID: PMC8014927 DOI: 10.1021/acsomega.0c06239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 05/27/2023]
Abstract
The paper presents the contribution of the cocrystallization method in the physicochemical modification of catechins that exhibit low oral bioavailability. This was done to obtain cocrystals for two naturally occurring polyphenolic diastereoisomers (+)-catechin and (-)-epicatechin with commonly used coformers. Due to distinct crystallization behavior, only the (-)-epicatechin cocrystal with barbituric acid in a 1:1 stoichiometry was obtained. The cocrystal of (-)-epicatechin (EC) with barbituric acid (BTA) was prepared by the slow solvent-evaporation technique. The structure and intermolecular interactions were determined by X-ray crystallographic techniques. The analysis of packing and interactions in the crystal lattice revealed that molecules in the target cocrystal were packed into tapes, formed by the O-H···O type contacts between the (-)-epicatechin and coformer molecules. The EC molecules interact with the carboxyl group in the BTA coformer mainly by -OH groups from the benzene ring A. The cocrystalline phase constituents were also investigated in terms of Hirshfeld surfaces. The application of Raman spectroscopy confirmed the involvement of the C=O group in the formation of hydrogen bonds between the (-)-epicatechin and barbituric acid molecules. Additionally, the solubility studies of pure EC and the EC-BTA cocrystal exhibited minor enhancement of EC solubility in the buffer solution, and pH measurements confirmed a stable level of solubility for EC and its cocrystal.
Collapse
Affiliation(s)
- Iwona Budziak-Wieczorek
- Department
of Chemistry, University of Life Sciences
in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Urszula Maciołek
- Analytical
Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. M. Curie-Skłodowskiej
3, 20-031 Lublin, Poland
| |
Collapse
|
81
|
Qureshi MY, Patterson MC, Clark V, Johnson JN, Moutvic MA, Driscoll SW, Kemppainen JL, Huston J, Anderson JR, Badley AD, Tebben PJ, Wackel P, Oglesbee D, Glockner J, Schreiner G, Dugar S, Touchette JC, Gavrilova RH. Safety and efficacy of (+)-epicatechin in subjects with Friedreich's ataxia: A phase II, open-label, prospective study. J Inherit Metab Dis 2021; 44:502-514. [PMID: 32677106 DOI: 10.1002/jimd.12285] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND (+)-Epicatechin (EPI) induces mitochondrial biogenesis and antioxidant metabolism in muscle fibers and neurons. We aimed to evaluate safety and efficacy of (+)-EPI in pediatric subjects with Friedreich's ataxia (FRDA). METHODS This was a phase II, open-label, baseline-controlled single-center trial including 10 participants ages 10 to 22 with confirmed FA diagnosis. (+)-EPI was administered orally at 75 mg/d for 24 weeks, with escalation to 150 mg/d at 12 weeks for subjects not showing improvement of neuromuscular, neurological or cardiac endpoints. Neurological endpoints were change from baseline in Friedreich's Ataxia Rating Scale (FARS) and 8-m timed walk. Cardiac endpoints were changes from baseline in left ventricular (LV) structure and function by cardiac magnetic resonance imaging (MRI) and echocardiogram, changes in cardiac electrophysiology, and changes in biomarkers for heart failure and hypertrophy. RESULTS Mean FARS/modified (m)FARS scores showed nonstatistically significant improvement by both group and individual analysis. FARS/mFARS scores improved in 5/9 subjects (56%), 8-m walk in 3/9 (33%), 9-peg hole test in 6/10 (60%). LV mass index by cardiac MRI was significantly reduced at 12 weeks (P = .045), and was improved in 7/10 (70%) subjects at 24 weeks. Mean LV ejection fraction was increased at 24 weeks (P = .008) compared to baseline. Mean maximal septal thickness by echocardiography was increased at 24 weeks (P = .031). There were no serious adverse events. CONCLUSION (+)-EPI was well tolerated over 24 weeks at up to 150 mg/d. Improvement was observed in cardiac structure and function in subset of subjects with FRDA without statistically significant improvement in primary neurological outcomes. SYNOPSIS A (+)-epicatechin showed improvement of cardiac function, nonsignificant reduction of FARS/mFARS scores, and sustained significant upregulation of muscle-regeneration biomarker follistatin.
Collapse
Affiliation(s)
- Muhammad Yasir Qureshi
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marc C Patterson
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicki Clark
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan N Johnson
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret A Moutvic
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Sherilyn W Driscoll
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeff R Anderson
- Office of Translation to Practice, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J Tebben
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip Wackel
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Devin Oglesbee
- Department of Pathology and Laboratory Medicine, Rochester, Minnesota, USA
| | - James Glockner
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Ralitza H Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
82
|
Yan F, Zhao Q, Gao H, Wang X, Xu K, Wang Y, Han F, Liu Q, Shi Y. Exploring the mechanism of (-)-Epicatechin on premature ovarian insufficiency based on network pharmacology and experimental evaluation. Biosci Rep 2021; 41:BSR20203955. [PMID: 33521822 PMCID: PMC7881164 DOI: 10.1042/bsr20203955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
METHODS Relevant potential targets for EC were obtained based on Traditional Chinese Medicine System Pharmacology Database (TCMSP), a bioinformatics analysis tool for molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) and STITCH databases. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were utilized to screen the known POI-related targets, while Cytoscape software was used for network construction and visualization. Then, the Gene Ontology (GO) and pathway enrichment analysis were carried out by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Furthermore, KGN cells were performed to validate the predicted results in oxidative stress (OS) model, and antioxidant effect was examined. RESULTS A total of 70 potential common targets for EC in the treatment of POI were obtained through network pharmacology. Metabolic process, response to stimulus and antioxidant activity occupied a leading position of Gene Ontology (GO) enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that PI3K/protein kinase B (AKT), TNF, estrogen, VEGF and MAPK signaling pathways were significantly enriched. In addition, cell experiments showed that EC exhibited antioxidant effects in an H2O2-mediated OS model in ovarian granulosa cells by regulating the expression of PI3K/AKT/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and multiple downstream antioxidant enzymes. CONCLUSION EC could regulate multiple signaling pathways and several biological processes (BPs). EC had the ability to down-regulate elevated OS level through the PI3K/AKT/Nrf2 signaling pathway and represented a potential novel treatment for POI.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huanpeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yishu Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
83
|
Karin KN, Poklis JL, Peace MR. Evaluation of extraction methods for pharmacologically active compounds from anticonvulsant traditional Chinese medicines: Gou Teng, Tian Ma, Jiang Can using DART-TOF-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:884-893. [PMID: 33459310 PMCID: PMC8323813 DOI: 10.1039/d0ay02015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Chinese herbal medicines (CHMs) are classified as dietary supplements. Interactions with western medications, the presence of contaminants or adulterants, or a mis-labeled or mis-used CHM may lead to toxicological emergencies that can be undetected in death investigations. Laboratories must be able to efficiently analyze cases in which CHMs are suspected. Five extractions were evaluated for their ability to extract pharmacologically active compounds from herbal matrices: water, ethanol, microwave-assisted (MAE), ethanol : chloroform, and acid-wash. Anticonvulsive and other pharmacologically active compounds in Gou Teng, Tian Ma, and Jiang Can purchased from Beijing, China and New York were compared in the powder and the extracts using Direct Analysis in Real Time-Mass Spectrometry (DART-MS). Approximately 0.25 g of macerated herb was used per extraction. The water and ethanol extractions were simple liquid extractions. For the MAE, powdered herb was soaked in 65% ethanol, microwaved, and concentrated. The ethanol : chloroform extraction involved soaking in 1 : 1 ethanol : chloroform, sonication, and concentration. In the acid-wash extraction, powdered herb was soaked in acetic acid, followed by addition of sodium hydroxide, hexane extraction, and reconstitution in ethyl acetate. The powdered herbs and extracts were analyzed using a Jeol JMS T100LC AccuTOF DART-MS in positive and negative mode. Of the evaluated methods, no single extraction worked for all active compounds from the three CHMs. The MAE extract contained the most pharmacologically active compounds, while the acid-wash contained the least for the three products. Gou Teng purchased from different sources did exhibit a difference in pharmacologically active compounds, potentially from different species.
Collapse
Affiliation(s)
- Kimberly N. Karin
- Department of Forensic Science, Virginia Commonwealth University RichmondVAUSA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University RichmondVAUSA
| | - Michelle R. Peace
- Department of Forensic Science, Virginia Commonwealth University RichmondVAUSA
| |
Collapse
|
84
|
Nguyen QTN, Fang M, Zhang M, Do NQ, Kim M, Zheng SD, Hwang E, Yi TH. Crataegus laevigata Suppresses LPS-Induced Oxidative Stress during Inflammatory Response in Human Keratinocytes by Regulating the MAPKs/AP-1, NFκB, and NFAT Signaling Pathways. Molecules 2021; 26:869. [PMID: 33562140 PMCID: PMC7914440 DOI: 10.3390/molecules26040869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Crataegus laevigata belongs to the family Rosaceae, which has been widely investigated for pharmacological effects on the circulatory and digestive systems. However, there is limited understanding about its anti-oxidative stress and anti-inflammatory effects on skin. In this study, 70% ethanol C. laevigata berry extract (CLE) was investigated on lipopolysaccharide (LPS)-stimulated keratinocytes. The LPS-induced overproduction of reactive oxygen species (ROS) was suppressed by the treatment with CLE. In response to ROS induction, the overexpression of inflammatory regulating signaling molecules including mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), and nuclear factor of activated T-cells (NFAT) were reduced in CLE-treated human keratinocytes. Consequently, CLE significantly suppressed the mRNA levels of pro-inflammatory chemokines and interleukins in LPS-stimulated cells. Our results indicated that CLE has protective effects against LPS-induced injury in an in vitro model and is a potential alternative agent for inflammatory treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eunson Hwang
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; (Q.T.N.N.); (M.F.); (M.Z.); (N.Q.D.); (M.K.); (S.D.Z.)
| | - Tae Hoo Yi
- College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; (Q.T.N.N.); (M.F.); (M.Z.); (N.Q.D.); (M.K.); (S.D.Z.)
| |
Collapse
|
85
|
Evaluation of Dimer of Epicatechin from an Endophytic Fungus Curvularia australiensis FC2AP on Acute Toxicity Levels, Anti-Inflammatory and Anti-Cervical Cancer Activity in Animal Models. Molecules 2021; 26:molecules26030654. [PMID: 33513835 PMCID: PMC7866062 DOI: 10.3390/molecules26030654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer, as the most frequent cancer in women globally and accounts almost 14% in India. It can be prevented or treated with vaccines, radiation, chemotherapy, and brachytherapy. The chemotherapeutic agents cause adverse post effects by the destruction of the neighboring normal cells or altering the properties of the cells. In order to reduce the severity of the side effects caused by the chemically synthesized therapeutic agents, the current research developed an anti-cancer agent dimer of epicatechin (DoE), a natural bioactive secondary metabolite (BSM) mediated from an endophytic fungus Curvularia australiensis FC2AP. The investigation has initiated with the evaluation of inhibiting the angiogenesis which is a main activity in metastasis, and it was assessed through Hen’s Egg Test on Chorio Allantoic Membrane (HET-CAM) test; the BSM inhibited the growth of blood vessels in the developing chick embryo. Further the DoE was evaluated for its acute toxicity levels in albino mice, whereas the survival dose was found to be 1250 mg/kg and the lethal dose was 1500 mg/kg body weight of albino mice; hematological, biochemical, and histopathological analyses were assessed. The anti-inflammatory responses of the DoE were evaluated in carrageenan induced Wistar rats and the reduction of inflammation occurred in a dose-dependent manner. By fixing the effective dose for anti-inflammation analysis, the DoE was taken for the anti-cervical cancer analysis in benzo (a) pyrene induced female Sprague-Dawley rats for 60 days trial. After the stipulated days, the rats were taken for hematological antioxidants, lipid peroxidation (LPO), member bound enzymes, cervical histopathological and carcinogenic markers analyses. The results specified that the DoE has the capability of reducing the tumor in an efficient way. This is the first report of flavonoid-DoE production from an endophytic fungus C. australiensis has the anticancer potentiality and it can be stated as anti-cancer drug.
Collapse
|
86
|
Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr Top Med Chem 2021; 20:1169-1194. [PMID: 32297582 DOI: 10.2174/1568026620666200416085330] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Flavonoids, a group of natural dietary polyphenols, are known for their beneficial effects on human health. By virtue of their various pharmacological effects, like anti-oxidative, antiinflammatory, anti-carcinogenic and neuroprotective effects, flavonoids have now become an important component of herbal supplements, pharmaceuticals, medicinals and cosmetics. There has been enormous literature supporting neuroprotective effect of flavonoids. Recently their efficacy in various neurodegenerative diseases, like Alzheimer's disease and Parkinson diseases, has received particular attention. OBJECTIVE The mechanism of flavanoids neuroprotection might include antioxidant, antiapoptotic, antineuroinflammatory and modulation of various cellular and intracellular targets. In in-vivo systems, before reaching to brain, they have to cross barriers like extensive first pass metabolism, intestinal barrier and ultimately blood brain barrier. Different flavonoids have varied pharmacokinetic characteristics, which affect their pharmacodynamic profile. Therefore, brain accessibility of flavonoids is still debatable. METHODS This review emphasized on current trends of research and development on flavonoids, especially in neurodegenerative diseases, possible challenges and strategies to encounter using novel drug delivery system. RESULTS Various flavonoids have elicited their therapeutic potential against neurodegenerative diseases, however by using nanotechnology and novel drug delivery systems, the bioavailability of favonoids could be enhanced. CONCLUSION This study bridges a significant opinion on medicinal chemistry, ethanopharmacology and new drug delivery research regarding use of flavonoids in management of neurodegeneration.
Collapse
Affiliation(s)
- Gagandeep Maan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Biplab Sikdar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Ashish Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| |
Collapse
|
87
|
Jeon H, Yang D, Lee NH, Ahn M, Kim G. Inhibitory Effect of Black Radish ( Raphanus sativus L. var. niger) Extracts on Lipopolysaccharide-Induced Inflammatory Response in the Mouse Monocyte/Macrophage-Like Cell Line RAW 264.7. Prev Nutr Food Sci 2020; 25:408-421. [PMID: 33505935 PMCID: PMC7813598 DOI: 10.3746/pnf.2020.25.4.408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Black radish (Raphanus sativus L. var. niger), which is cultivated worldwide, is used in traditional medicine as it aids liver function, gastric secretion, gallbladder function, and gallstone mitigation. In this study, we examined the anti-inflammatory effects of black radish extract (BRE) on the lipopolysaccharide (LPS)- and interleukin (IL)-6-mediated inflammatory responses in the RAW 264.7 cell lines. Our findings show that BRE significantly ameliorated LPS-induced nitric oxide (NO) release and production of pro-inflammatory cytokines, such as IL-1β, IL-6, tumor necrosis factor (TNF)-α, and prostaglandin E2. The levels of cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in LPS-stimulated RAW 264.7 cells were found to be suppressed by BRE. Further, BRE significantly suppressed the LPS-induced expression of mRNAs encoding COX-2, iNOS, IL-1β, IL-6, and TNF-α in a concentration-dependent manner. BRE treatment significantly inhibited Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in IL-6- and LPS-treated RAW 264.7 cells. In addition, BRE decreased the levels of phosphorylated extracellular signal-regulated protein kinases and c-Jun N-terminal kinase under the same conditions. Moreover, BRE induced high nuclear factor erythroid 2-related factor 2 (NRF2) levels and its target gene heme oxygenase 1 (HO-1) in the absence of LPS. These data demonstrate that BRE may be beneficial for treating inflammation through selective immunomodulatory effects, which may be mediated by inhibition of the STAT3/JAK2 and activation of the NRF2/HO-1 signal transduction pathways.
Collapse
Affiliation(s)
- Hyungsik Jeon
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| | - Dawun Yang
- Research Team, Creation & Innovation Research Institute, IT'S HANBUL Co., Ltd., Seoul 06101, Korea
| | - Nam Ho Lee
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Gangwon 26339, Korea
| | - Giok Kim
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| |
Collapse
|
88
|
Green Tea Catechins Induce Inhibition of PTP1B Phosphatase in Breast Cancer Cells with Potent Anti-Cancer Properties: In Vitro Assay, Molecular Docking, and Dynamics Studies. Antioxidants (Basel) 2020; 9:antiox9121208. [PMID: 33266280 PMCID: PMC7761018 DOI: 10.3390/antiox9121208] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
The catechins derived from green tea possess antioxidant activity and may have a potentially anticancer effect. PTP1B is tyrosine phosphatase that is oxidative stress regulated and is involved with prooncogenic pathways leading to the formation of a.o. breast cancer. Here, we present the effect of selected green tea catechins on enzymatic activity of PTP1B phosphatase and viability of MCF-7 breast cancer cells. We showed also the computational analysis of the most effective catechin binding with a PTP1B molecule. We observed that epigallocatechin, epigallocatechin gallate, epicatechin, and epicatechin gallate may decrease enzymatic activity of PTP1B phosphatase and viability of MCF-7 cells. Conclusions: From the tested compounds, epigallocatechin and epigallocatechin gallate were the most effective inhibitors of the MCF-7 cell viability. Moreover, epigallocatechin was also the strongest inhibitor of PTP1B activity. Computational analysis allows us also to conclude that epigallocatechin is able to interact and bind to PTP1B. Our results suggest also the most predicted binding site to epigallocatechin binding to PTP1B.
Collapse
|
89
|
Torrens-Mas M, Roca P. Phytoestrogens for Cancer Prevention and Treatment. BIOLOGY 2020; 9:E427. [PMID: 33261116 PMCID: PMC7759898 DOI: 10.3390/biology9120427] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are a large group of natural compounds found in more than 300 plants. They have a close structural similarity to estrogens, which allow them to bind to both estrogen receptors (ER), ERα and ERβ, presenting a weak estrogenic activity. Phytoestrogens have been described as antioxidant, anti-inflammatory, anti-thrombotic, anti-allergic, and anti-tumoral agents. Their role in cancer prevention has been well documented, although their impact on treatment efficiency is controversial. Several reports suggest that phytoestrogens may interfere with the effect of anti-cancer drugs through the regulation of oxidative stress and other mechanisms. Furthermore, some phytoestrogens could exert a protective effect on healthy cells, thus reducing the secondary effects of cancer treatment. In this review, we have studied the recent research in this area to find evidence for the role of phytoestrogens in cancer prevention and therapy efficacy.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
90
|
Albasher G, Alwahaibi M, Abdel-Daim MM, Alkahtani S, Almeer R. Protective effects of Artemisia judaica extract compared to metformin against hepatorenal injury in high-fat diet/streptozotocine-induced diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40525-40536. [PMID: 32666453 DOI: 10.1007/s11356-020-09997-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/02/2020] [Indexed: 05/06/2023]
Abstract
Diabetes mellitus (DM) is one of the most dangerous incurable diseases that affects a large number of people worldwide. Artemisia species have various protective activities and are widely used for the control of diabetes in folkloric medicine. Therefore, the current study was designed to illustrate the protective effect of oral administration of Artemisia judaica extract (AjE) against hepatorenal damage in a high-fat diet/streptozotocin (HFD/STZ) rat model of hyperlipidemia and hyperglycemia. Animals were divided into five groups-control, AjE, HFD/STZ, HFD/STZ-AjE (300 mg/kg), and HFD/STZ-MET (100 mg/kg)-and treated daily for 28 days. The results revealed that STZ-injected rats showed marked hyperglycemia and hypoinsulinemia in addition to high levels of cholesterol, triglycerides, and low- and high-density lipoproteins compared to control rats. Significant elevations in hepatic (AST and ALT) and renal (urea, uric acid, and creatinine) function markers were observed in the serum of diabetic rats. Additionally, STZ injection caused remarkable elevations in lipid peroxidation and nitric oxide levels as well as suppression of antioxidant markers (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione). Marked elevations in TNF-α and Bax levels with a decline in Bcl-2 levels were detected after STZ injection. Furthermore, TGF-β1 expression levels were significantly upregulated in the liver and kidney tissues. Rats that received AjE or MET showed significant improvement in most of the aforementioned parameters, and the protective efficacy was higher for AjE than for MET. Histopathological screening confirmed the biochemical findings. Conclusively, our results illustrated the antihyperglycemic, antihyperlipidemic, antioxidant, anti-inflammatory, and antiapoptotic activities of AjE against hepatorenal injury in HFD/STZ-induced diabetes.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mona Alwahaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
91
|
PXR is a target of (-)-epicatechin in skeletal muscle. Heliyon 2020; 6:e05357. [PMID: 33163657 PMCID: PMC7610271 DOI: 10.1016/j.heliyon.2020.e05357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
(-)-Epicatechin (EC) is a flavanol that has shown numerous biological effects such as: decrease risk of cardiovascular dysfunction, metabolism regulation, skeletal muscle (SkM) performance improvement and SkM cells differentiation induction, among others. The described EC acceptor/receptor molecules do not explain the EC's effect on SkM. We hypothesize that the pregnane X receptor (PXR) can fulfill those characteristics, based on structural similitude between EC and steroidal backbone and that PXR activation leads to similar effects as those induced by EC. In order to demonstrate our hypothesis, we: 1) analyzed the possible EC and mouse PXR interaction through in silico strategies, 2) developed an EC's affinity column to isolate PXR, 3) evaluated, in mouse myoblast (C2C12 cells) the inhibition of EC-induced PXR's nucleus translocation by ketoconazole, a specific blocker of PXR and 4) analyzed the effect of EC as an activator of mouse PXR, evaluating the expression modulation of cytochrome 3a11 (Cyp3a11) gen and myogenin protein. (-)-Epicatechin interacts and activates PXR, promoting this protein translocation to the nucleus, increasing the expression of Cyp3a11, and promoting C2C12 cell differentiation through increasing myogenin expression. These results can be the base of further studies to analyze the possible participation of PXR in the skeletal muscle effects shown by EC.
Collapse
|
92
|
Pereira EDS, Vinholes JR, Camargo TM, Nora FR, Crizel RL, Chaves F, Nora L, Vizzotto M. Characterization of araçá fruits (Psidium cattleianum Sabine): Phenolic composition, antioxidant activity and inhibition of α-amylase and α-glucosidase. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
93
|
Ridzwan N, Jumli MN, Baig AA, Rohin MAK. Pomegranate-derived anthocyanin regulates MORs-cAMP/CREB-BDNF pathways in opioid-dependent models and improves cognitive impairments. J Ayurveda Integr Med 2020; 11:478-488. [PMID: 32430240 PMCID: PMC7772514 DOI: 10.1016/j.jaim.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/21/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pomegranate (Punica granatum) is one of the oldest known edible fruit. Recently, there has been an increased interest in this fruit as a functional food for health benefits due to its use in disease prevention and promotion of overall health wellness. OBJECTIVE This study aims to investigate the effects of pomegranate extract for the development of non-opioid substitution therapy for in-vitro and in-vivo studies. MATERIALS AND METHODS Anthocyanin contents consisting of cyanidin 3-glucoside, diglucoside, and pelargonidin 3-glucoside, diglucoside were detected and quantified in pomegranate extract using high-performance liquid chromatography. The optimum dosage of the extract was determined based on the regulation of MORs and cAMP proteins in U-87 cells. Co-treatment of the extract with morphine was performed to evaluate its potency in reducing the concentration levels of MORs and cAMP. For animal studies, rats were divided into two major groups representing both acute and chronic morphine-induced treatments and the Morris water maze (MWM) study was employed after treatment for each rat. The rats were sacrificed after the treatments and serum samples were collected to evaluate the levels of CREB and BDNF. RESULTS The results indicated that each of the anthocyanin content tested in the study was present in the pomegranate extract. Additionally, in-vitro studies using pomegranate extract treatment showed that the extract was effective in decreasing the MORs and cAMP protein levels in U-87 cells at a concentration of 0.125 mg/mL. The memory impairment based on the MWM study in rats was also subsequently improved after treatment with pomegranate extract as compared to treatment with morphine. The blood serum derived from the rats treated with pomegranate extract also showed a significant decrease in CREB level and an increase in BDNF as compared to rats treated with morphine. CONCLUSION In conclusion, this study substantiates the potency of pomegranate extract as a non-opioid substitution therapy for in-vitro and in-vivo studies.
Collapse
Affiliation(s)
- Norhaslinda Ridzwan
- School of Nutrition and Dietetic, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia
| | - Mimie Noratiqah Jumli
- School of Nutrition and Dietetic, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia
| | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Medical Campus, 20400, Kuala Terengganu, Terengganu, Malaysia
| | - Mohd Adzim Khalili Rohin
- School of Nutrition and Dietetic, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
94
|
Abd Ghafar SZ, Mediani A, Maulidiani M, Rudiyanto R, Mohd Ghazali H, Ramli NS, Abas F. Complementary NMR- and MS-based metabolomics approaches reveal the correlations of phytochemicals and biological activities in Phyllanthus acidus leaf extracts. Food Res Int 2020; 136:109312. [DOI: 10.1016/j.foodres.2020.109312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
|
95
|
Nanostructured Thin Coatings Containing Anthriscus sylvestris Extract with Dual Bioactivity. Molecules 2020; 25:molecules25173866. [PMID: 32854362 PMCID: PMC7504079 DOI: 10.3390/molecules25173866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/19/2023] Open
Abstract
Plant extracts are highly valuable pharmaceutical complexes recognized for their biological properties, including antibacterial, antifungal, antiviral, antioxidant, anticancer, and anti-inflammatory properties. However, their use is limited by their low water solubility and physicochemical stability. In order to overcome these limitations, we aimed to develop nanostructured carriers as delivery systems for plant extracts; in particular, we selected the extract of Anthriscus sylvestris (AN) on the basis of its antimicrobial effect and antitumor activity. In this study, AN-extract-functionalized magnetite (Fe3O4@AN) nanoparticles (NPs) were prepared by the co-precipitation method. The purpose of this study was to synthesize and investigate the physicochemical and biological features of composite coatings based on Fe3O4@AN NPs obtained by matrix-assisted pulsed laser evaporation technique. In this respect, laser fluence and drop-casting studies on coatings were performed. The physical and chemical properties of laser-synthesized coatings were investigated by scanning electron microscopy, while Fourier transform infrared spectroscopy comparative analysis was used for determining the chemical structure and functional integrity. Relevant data regarding the presence of magnetic nanoparticles as the only crystalline phase and the size of nanoparticles were obtained by transmission electron microscopy. The in vitro toxicity assessment of the Fe3O4@AN showed significant cytotoxic activity against human adenocarcinoma HT-29 cells after prolonged exposure. Antimicrobial results demonstrated that Fe3O4@AN coatings inhibit microbial colonization and biofilm formation in clinically relevant bacteria species and yeasts. Such coatings are useful, natural, and multifunctional solutions for the development of tailored medical devices and surfaces.
Collapse
|
96
|
New players in the relationship between diet and microbiota: the role of macromolecular antioxidant polyphenols. Eur J Nutr 2020; 60:1403-1413. [PMID: 32719985 DOI: 10.1007/s00394-020-02339-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Solid evidence has emerged supporting the role of polyphenols and fibers as gut microbiota modulators. These studies have been limited to the data available in food composition databases, which did not include the food content of non-extractable polyphenols (NEPP). The main objective of this work is to quantify the intake of the different types of dietary polyphenols including NEPP and to evaluate their impact on the composition and activity of the intestinal microbiota. METHODS Cross-sectional descriptive study conducted on a sample of 147 adults with no declared pathologies. Dietary intake has been registered by a semi-quantitative Food Frequency Questionnaire (FFQ) and transformed into extractable (EPP) and NEPP, and dietary fibers based on available databases. Major phylogenetic types of the intestinal microbiota were determined by qPCR and fecal SCFA quantification was performed by gas chromatography. RESULTS NEPP account for two-thirds of the total polyphenols intake. A combined analysis by stepwise regression model including all dietary fiber and (poly)phenols has identified hydrolysable (poly)phenol (HPP) intake, as the best predictor of Bacteroides-Prevotella-Porphyromonas group and Bifidobacterium levels in feces. Also, HPPs were positively associated with butyric acid, while insoluble fiber was identified as a predictor of propionic acid in feces. CONCLUSION The intake of macromolecular (poly)phenols could contribute to modulate the gut microbiota by increasing the levels of certain intestinal microorganisms with proven health benefits.
Collapse
|
97
|
Ahmed T, Zulfiqar A, Arguelles S, Rasekhian M, Nabavi SF, Silva AS, Nabavi SM. Map kinase signaling as therapeutic target for neurodegeneration. Pharmacol Res 2020; 160:105090. [PMID: 32707231 DOI: 10.1016/j.phrs.2020.105090] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Aging is known to be one of the major risk factors in many neurodegenerative diseases (ND) whose prevalence is estimated to rise in the coming years due to the increase in life expectancy. Examples of neurodegenerative diseases include Huntington's, Parkinson's, and Alzheimer's diseases, along with Amyotrophic Lateral Sclerosis, Spinocerebellar ataxias and Frontotemporal Dementia. Given that so far these ND do not have effective pharmacological therapies, a better understanding of the molecular and cellular mechanisms can contribute to development of effective treatments. During the previous decade, the data indicated that dysregulation of MAP kinases [which included c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1 and 2 (ERK1/2), and p38] are associated with several stages of the inflammatory process which in turn contributes to age-related neurodegenerative diseases. This evidence suggests that control of inflammation through regulation of MAP kinase could be a worthwhile approach against neurodegenerative diseases. In this review we summarize the pathways of MAP kinase signal transduction and different pharmacological inhibitors that can be used in its modulation against ND.
Collapse
Affiliation(s)
- Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Abida Zulfiqar
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sandro Arguelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Vila Do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
98
|
Albasher G, Aljarba N, Al Sultan N, Alqahtani WS, Alkahtani S. Evaluation of the neuro-protective effect of Artemisia judaica extract in a murine diabetic model. J Food Biochem 2020; 44:e13337. [PMID: 32588466 DOI: 10.1111/jfbc.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
Chronic hyperglycemia is associated with several negative outcomes including neuronal injury. Medicinal plants supplementation has been widely applied to treat or decrease diabetic complications. Here, the possible neuroprotective effect of Artemisia judaica extract (AjE. 300 mg kg-1 day-1 ) against neuronal deficits in diabetes model induced by high-fat diet (HFD) administration and streptozotocin (STZ, 30 mg/Kg) injection in rats was investigated. Diabetic rats showed a disturbance in the neuronal redox homeostasis as confirmed by the elevated lipoperoxidation and nitric oxide formation along with the decreased antioxidant molecules. In addition, a state of neuroinflammation and apoptosis were recorded in the brain tissue in diabetic rats. Furthermore, HFD/STZ provoked neurochemical alterations. However, AjE administration was found to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, antiapoptotic, and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients. PRACTICAL APPLICATIONS: Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose level comes from the dysregulation of insulin production and/or its action. The persisted hyperglycemia is correlated with the progression of several physical complications including renal, hepatic, vascular, retinal, and neuronal dysfunction. Artemisia is used in the nutritional and medicinal proposes due to the enriched bioactive molecules such as essential oil, flavonoids, phenolics, sesquiterpenoids, triterpenoids, and artemisinin. And we found that Artemisia judaica extract (AjE) administration was able to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, anti-apoptotic and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada Aljarba
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Al Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
99
|
Sánchez-Valdeolívar CA, Alvarez-Fitz P, Zacapala-Gómez AE, Acevedo-Quiroz M, Cayetano-Salazar L, Olea-Flores M, Castillo-Reyes JU, Navarro-Tito N, Ortuño-Pineda C, Leyva-Vázquez MA, Ortíz-Ortíz J, Castro-Coronel Y, Mendoza-Catalán MA. Phytochemical profile and antiproliferative effect of Ficus crocata extracts on triple-negative breast cancer cells. BMC Complement Med Ther 2020; 20:191. [PMID: 32571387 PMCID: PMC7309984 DOI: 10.1186/s12906-020-02993-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background Some species of the Ficus genus show pharmacological activity, including antiproliferative activity, in cell lines of several cancer Types. ficus crocata is distributed in Mexico and used in traditional medicine, as it is believed to possess anti-inflammatory, analgesic, and antioxidant properties. However, as of yet, there are no scientific reports on its biological activity. This study aims to evaluate the phytochemical profile of F. crocata leaf extracts and their effects on breast cancer MDA-MB-231 cells proliferation. Moreover, the study aims to unearth possible mechanisms involved in the decrease of cell proliferation. Methods The extracts were obtained by the maceration of leaves with the solvents hexane, dichloromethane, and acetone. The phytochemical profile of the extracts was determined using gas chromatography coupled with mass analysis. Cell proliferation, apoptosis, and cell cycle analysis in MDA-MB-231 cells were determined using a Crystal violet assay, MTT assay, and Annexin-V/PI assay using flow cytometry. The data were analyzed using ANOVA and Dunnett’s test. Results The hexane (Hex-EFc), dichloromethane (Dic-EFc), and acetone (Ace-EFc) extracts of F. crocata decreased the proliferation of MDA-MB-231 cells, with Dic-EFc having the strongest effect. Dic-EFc was fractioned and its antiproliferative activity was potentiated, which enhanced its ability to induce apoptosis in MDA-MB-231 cells, as well as increased p53, procaspase-8, and procaspase-3 expression. Conclusions This study provides information on the biological activity of F. crocata extracts and suggests their potential use against triple-negative breast cancer.
Collapse
Affiliation(s)
- Carlos A Sánchez-Valdeolívar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | | | - Ana E Zacapala-Gómez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Macdiel Acevedo-Quiroz
- Tecnológico Nacional de México, Instituto Tecnológico de Zacatepec, Calzada Tecnológico 27, Centro, 62780, Zacatepec, Morelos, Mexico
| | - Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Jhonathan U Castillo-Reyes
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Napoleón Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Carlos Ortuño-Pineda
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Marco A Leyva-Vázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Julio Ortíz-Ortíz
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Yaneth Castro-Coronel
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico
| | - Miguel A Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas, Ciudad Universitaria, 39090, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
100
|
MOHAMMED FS, GÜNAL S, PEHLİVAN M, DOĞAN M, SEVİNDİK M, AKGÜL H. Phenolic Content, Antioxidant and Antimicrobial Potential of Endemic Ferulago platycarpa. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.707555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|