51
|
Punnia-Moorthy G, Hersey P, Emran AA, Tiffen J. Lysine Demethylases: Promising Drug Targets in Melanoma and Other Cancers. Front Genet 2021; 12:680633. [PMID: 34220955 PMCID: PMC8242339 DOI: 10.3389/fgene.2021.680633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been implicated in a variety of pathological processes including carcinogenesis. A major group of enzymes that influence epigenetic modifications are lysine demethylases (KDMs) also known as "erasers" which remove methyl groups on lysine (K) amino acids of histones. Numerous studies have implicated aberrant lysine demethylase activity in a variety of cancers, including melanoma. This review will focus on the structure, classification and functions of KDMs in normal biology and the current knowledge of how KDMs are deregulated in cancer pathogenesis, emphasizing our interest in melanoma. We highlight the current knowledge gaps of KDMs in melanoma pathobiology and describe opportunities to increases our understanding of their importance in this disease. We summarize the progress of several pre-clinical compounds that inhibit KDMs and represent promising candidates for further investigation in oncology.
Collapse
Affiliation(s)
- Gaya Punnia-Moorthy
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Jessamy Tiffen
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
52
|
Kim D, Kim KI, Baek SH. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases. J Biomed Sci 2021; 28:41. [PMID: 34082769 PMCID: PMC8175190 DOI: 10.1186/s12929-021-00737-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
53
|
Jin N, George TL, Otterson GA, Verschraegen C, Wen H, Carbone D, Herman J, Bertino EM, He K. Advances in epigenetic therapeutics with focus on solid tumors. Clin Epigenetics 2021; 13:83. [PMID: 33879235 PMCID: PMC8056722 DOI: 10.1186/s13148-021-01069-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic ("above genetics") modifications can alter the gene expression without altering the DNA sequence. Aberrant epigenetic regulations in cancer include DNA methylation, histone methylation, histone acetylation, non-coding RNA, and mRNA methylation. Epigenetic-targeted agents have demonstrated clinical activities in hematological malignancies and therapeutic potential in solid tumors. In this review, we describe mechanisms of various epigenetic modifications, discuss the Food and Drug Administration-approved epigenetic agents, and focus on the current clinical investigations of novel epigenetic monotherapies and combination therapies in solid tumors.
Collapse
Affiliation(s)
- Ning Jin
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Tiffany L George
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Gregory A Otterson
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Claire Verschraegen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Haitao Wen
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - David Carbone
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - James Herman
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| | - Kai He
- The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
54
|
Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy. Cancers (Basel) 2021; 13:cancers13071746. [PMID: 33917538 PMCID: PMC8038780 DOI: 10.3390/cancers13071746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The genome is stored in the limited space of the nucleus in a highly condensed form. The regulation of this packaging contributes to determining the accessibility of genes and is important for cell function. Genes affecting the genome’s packaging are frequently mutated in bone marrow cells that give rise to the different types of blood cells. Here, we first discuss the molecular functions of these genes and their role in blood generation under healthy conditions. Then, we describe how their mutations relate to a subset of diseases including blood cancers. Finally, we provide an overview of the current efforts of using and developing drugs targeting these and related genes. Abstract Mutations in genes encoding chromatin regulators are early events contributing to developing asymptomatic clonal hematopoiesis of indeterminate potential and its frequent progression to myeloid diseases with increasing severity. We focus on the subset of myeloid diseases encompassing myelodysplastic syndromes and their transformation to secondary acute myeloid leukemia. We introduce the major concepts of chromatin regulation that provide the basis of epigenetic regulation. In greater detail, we discuss those chromatin regulators that are frequently mutated in myelodysplastic syndromes. We discuss their role in the epigenetic regulation of normal hematopoiesis and the consequence of their mutation. Finally, we provide an update on the drugs interfering with chromatin regulation approved or in development for myelodysplastic syndromes and acute myeloid leukemia.
Collapse
|
55
|
The EMT modulator SNAI1 contributes to AML pathogenesis via its interaction with LSD1. Blood 2021; 136:957-973. [PMID: 32369597 DOI: 10.1182/blood.2019002548] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.
Collapse
|
56
|
Kim HS, Son BK, Kwon MJ, Kim DH, Min KW. High KDM1A Expression Associated with Decreased CD8+T Cells Reduces the Breast Cancer Survival Rate in Patients with Breast Cancer. J Clin Med 2021; 10:jcm10051112. [PMID: 33799951 PMCID: PMC7961911 DOI: 10.3390/jcm10051112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Lysine-specific demethylase 1A (KDM1A) plays an important role in epigenetic regulation in malignant tumors and promotes cancer invasion and metastasis by blocking the immune response and suppressing cancer surveillance activities. The aim of this study was to analyze survival, genetic interaction networks and anticancer immune responses in breast cancer patients with high KDM1A expression and to explore candidate target drugs. Methods: We investigated clinicopathologic parameters, specific gene sets, immunologic relevance, pathway-based networks and in vitro drug response according to KDM1A expression in 456 and 789 breast cancer patients from the Hanyang university Guri Hospital (HYGH) and The Cancer Genome Atlas, respectively. Results: High KDM1A expression was associated with a low survival rate in patients with breast cancer. In analyses of immunologic gene sets, high KDM1A expression correlated with low immune responses. In silico flow cytometry results revealed low abundances of CD8+T cells and high programmed death-ligand 1 (PD-L1) expression in those with high KDM1A expression. High KDM1A expression was associated with a decrease in the anticancer immune response in breast cancer. In pathway-based networks, KDM1A was linked directly to pathways related to the androgen receptor signaling pathway and indirectly to the immune pathway and cell cycle. We found that alisertib effectively inhibited breast cancer cell lines with high KDM1A expression. Conclusions: Strategies utilizing KDM1A may contribute to better clinical management/research for patients with breast cancer.
Collapse
Affiliation(s)
- Hyung Suk Kim
- Department of Surgery, Division of Breast Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea;
| | - Byoung Kwan Son
- Department of Internal Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul 03181, Korea;
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea;
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
- Correspondence: (D.-H.K.); (K.-W.M.); Tel.: +82-2-2001-2392 (D.-H.K.); +82-31-560-2346 (K.-W.M.); Fax: +82-2-2001-2398 (D.-H.K.); Fax: +82-2-31-560-2402 (K.-W.M.)
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
- Correspondence: (D.-H.K.); (K.-W.M.); Tel.: +82-2-2001-2392 (D.-H.K.); +82-31-560-2346 (K.-W.M.); Fax: +82-2-2001-2398 (D.-H.K.); Fax: +82-2-31-560-2402 (K.-W.M.)
| |
Collapse
|
57
|
Abstract
Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease-along with the relative paucity of recurrent somatic mutations-reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| |
Collapse
|
58
|
Feng S, De Carvalho DD. Clinical advances in targeting epigenetics for cancer therapy. FEBS J 2021; 289:1214-1239. [PMID: 33545740 DOI: 10.1111/febs.15750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Shengrui Feng
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
- Department of Medical Biophysics University of Toronto ON Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
- Department of Medical Biophysics University of Toronto ON Canada
| |
Collapse
|
59
|
Wang M, Liu X, Chen Z, Zhang L, Weng X. Downregulation of lysine-specific demethylase 1 enhances the sensitivity of hormone-sensitive prostate cancer cells to androgen deprivation therapy. Oncol Lett 2021; 21:93. [PMID: 33376526 PMCID: PMC7751335 DOI: 10.3892/ol.2020.12354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/16/2020] [Indexed: 11/06/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) plays an important role in androgen receptor (AR) signaling, and LSD1 levels are associated with prostate cancer (PCa) progression. The present study investigated the association between the downregulation of LSD1 and the proliferation and invasiveness of PCa cells, as well as the effect of LSD1 on the androgen deprivation therapy (ADT)-induced apoptosis of PCa cells. The effect of the inhibition of LSD1 combined with ADT on PCa cell apoptosis was characterized. Furthermore, the mechanisms underlying LSD1-mediated apoptosis induced by ADT in PCa cells were investigated. Downregulation of LSD1 impaired the proliferation and invasiveness of PCa cells. Moreover, downregulation of LSD1 enhanced the apoptosis of PCa cells induced by bicalutamide in vitro. Downregulation of LSD1 decreased PSA expression, increased caspase 3 and Bax expression, decreased Bcl-2 expression and consequently enhanced castration-induced PCa cell apoptosis in vivo. These findings indicated that downregulation of LSD1 could effectively enhance the efficacy of ADT for hormone- sensitive PCa, demonstrating that this could be a promising adjunctive therapy with ADT for this disease.
Collapse
Affiliation(s)
- Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
60
|
Egan G, Khan DH, Lee JB, Mirali S, Zhang L, Schimmer AD. Mitochondrial and Metabolic Pathways Regulate Nuclear Gene Expression to Control Differentiation, Stem Cell Function, and Immune Response in Leukemia. Cancer Discov 2021; 11:1052-1066. [PMID: 33504581 DOI: 10.1158/2159-8290.cd-20-1227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
Mitochondria are involved in many biological processes including cellular homeostasis, energy generation, and apoptosis. Moreover, mitochondrial and metabolic pathways are interconnected with gene expression to regulate cellular functions such as cell growth, survival, differentiation, and immune recognition. Metabolites and mitochondrial enzymes regulate chromatin-modifying enzymes, chromatin remodeling, and transcription regulators. Deregulation of mitochondrial pathways and metabolism leads to alterations in gene expression that promote cancer development, progression, and evasion of the immune system. This review highlights how mitochondrial and metabolic pathways function as a central mediator to control gene expression, specifically on stem cell functions, differentiation, and immune response in leukemia. SIGNIFICANCE: Emerging evidence demonstrates that mitochondrial and metabolic pathways influence gene expression to promote tumor development, progression, and immune evasion. These data highlight new areas of cancer biology and potential new therapeutic strategies.
Collapse
Affiliation(s)
- Grace Egan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Dilshad H Khan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Sara Mirali
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Li Zhang
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Dai XJ, Liu Y, Xiong XP, Xue LP, Zheng YC, Liu HM. Tranylcypromine Based Lysine-Specific Demethylase 1 Inhibitor: Summary and Perspective. J Med Chem 2020; 63:14197-14215. [PMID: 32931269 DOI: 10.1021/acs.jmedchem.0c00919] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) has become an important and promising anticancer target since it was first identified in 2004 and specially demethylates lysine residues of histone H3K4me1/2 and H3K9me1/2. LSD1 is ubiquitously overexpressed in diverse cancers, and abrogation of LSD1 results in inhibition of proliferation, invasion, and migration in cancer cells. Over the past decade, a number of biologically active small-molecule LSD1 inhibitors have been developed. To date, six trans-2-phenylcyclopropylamine (TCP)-based LSD1 inhibitors (including TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, and ORY-2001) that covalently bind to the flavin adenine dinucleotide (FAD) within the LSD1 catalytic cavity have already entered into clinical trials. Here, we provide an overview about the structures, activities, and structure-activity relationship (SAR) of TCP-based LSD1 inhibitors that mainly covers the literature from 2008 to date. The opportunities, challenges, and future research directions in this emerging and promising field are also discussed.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Peng Xiong
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei-Peng Xue
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| |
Collapse
|
62
|
Pan Y, Fang Y, Xie M, Liu Y, Yu T, Wu X, Xu T, Ma P, Shu Y. LINC00675 Suppresses Cell Proliferation and Migration via Downregulating the H3K4me2 Level at the SPRY4 Promoter in Gastric Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:766-778. [PMID: 33230474 PMCID: PMC7595884 DOI: 10.1016/j.omtn.2020.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are dysregulated in diverse tumors and take a pivotal role in modulating biological processes. In our study, a decreased expression level of LINC00675 in gastric cancer (GC) was first determined by data from The Cancer Genome Atlas (TCGA) and was identified using specimens from GC patients. Then, in vitro and in vivo functional experiments elaborated that LINC00675 could suppress cell proliferation and migration in GC. Multiple differentially expressed genes (DEGs) in LINC00675-overexpressing cells were identified through RNA sequencing analysis. An RNA-binding protein immunoprecipitation (RIP) assay was conducted to reveal that LINC00675 competitively bound with lysine-specific demethylase 1 (LSD1). A coimmunoprecipitation (coIP) assay indicated that LINC00675 overexpression may strengthen the binding of LSD1 and H3K4me2, whereas the chromatin immunoprecipitation (ChIP) assay results verified lower expression of H3K4me2 at the sprouty homolog 4 (SPRY4) promoter region. Together, our research identified that LINC00675 was remarkably downregulated in GC tissues and cells relative to nontumor tissues and cells. LINC00675 could repress GC tumorigenesis and metastasis via competitively binding with LSD1 and intensifying the binding of LSD1 and its target H3K4me2. Importantly, this contributed to attenuated binding of H3K4me2 at the promoter region of oncogene SPRY4 and suppressed SPRY4 transcription, thus suppressing GC cell proliferation and migration.
Collapse
Affiliation(s)
- Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yu Liu
- Department of the Orthopaedics, RWTH Aachen University Clinic, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of Oncology, Affiliated Sir Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
63
|
Hung FY, Chen C, Yen MR, Hsieh JWA, Li C, Shih YH, Chen FF, Chen PY, Cui Y, Wu K. The expression of long non-coding RNAs is associated with H3Ac and H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex in Arabidopsis. NAR Genom Bioinform 2020; 2:lqaa066. [PMID: 33575615 PMCID: PMC7671367 DOI: 10.1093/nargab/lqaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
In recent years, eukaryotic long non-coding RNAs (lncRNAs) have been identified as important factors involved in a wide variety of biological processes, including histone modification, alternative splicing and transcription enhancement. The expression of lncRNAs is highly tissue-specific and is regulated by environmental stresses. Recently, a large number of plant lncRNAs have been identified, but very few of them have been studied in detail. Furthermore, the mechanism of lncRNA expression regulation remains largely unknown. Arabidopsis HISTONE DEACETYLASE 6 (HDA6) and LSD1-LIKE 1/2 (LDL1/2) can repress gene expression synergistically by regulating H3Ac/H3K4me. In this research, we performed RNA-seq and ChIP-seq analyses to further clarify the function of HDA6-LDL1/2. Our results indicated that the global expression of lncRNAs is increased in hda6/ldl1/2 and that this increased lncRNA expression is particularly associated with H3Ac/H3K4me2 changes. In addition, we found that HDA6-LDL1/2 is important for repressing lncRNAs that are non-expressed or show low-expression, which may be strongly associated with plant development. GO-enrichment analysis also revealed that the neighboring genes of the lncRNAs that are upregulated in hda6/ldl1/2 are associated with various developmental processes. Collectively, our results revealed that the expression of lncRNAs is associated with H3Ac/H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex.
Collapse
Affiliation(s)
- Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Chenlong Li
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Yuan-Hsin Shih
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Fang-Fang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| |
Collapse
|
64
|
Epigenetic Regulation of the Non-Coding Genome: Opportunities for Immuno-Oncology. EPIGENOMES 2020; 4:epigenomes4030022. [PMID: 34968293 PMCID: PMC8594693 DOI: 10.3390/epigenomes4030022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The contribution of the non-coding genome to disease and its therapeutic potential have been largely unexplored. Recently, several epigenetic drugs developed for cancer treatment have been described to mediate therapeutic effects through the reactivation of the expression of transposable elements in cancer cells. This event activates innate immunity-related pathways and promotes the generation of neoantigens in tumor cells, improving the efficacy of immunotherapeutic treatments. This review focuses on the regulation of transposable elements by epigenetic inhibitors and its implications for immuno-oncology.
Collapse
|
65
|
Gu F, Lin Y, Wang Z, Wu X, Ye Z, Wang Y, Lan H. Biological roles of LSD1 beyond its demethylase activity. Cell Mol Life Sci 2020; 77:3341-3350. [PMID: 32193608 PMCID: PMC11105033 DOI: 10.1007/s00018-020-03489-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
It is well-established that Lysine-specific demethylase 1 (LSD1, also known as KDM1A) roles as a lysine demethylase canonically acting on H3K4me1/2 and H3K9me1/2 for regulating gene expression. Though the discovery of non-histone substrates methylated by LSD1 has largely expanded the functions of LSD1 as a typical demethylase, recent groundbreaking studies unveiled its non-catalytic functions as a second life for this demethylase. We and others found that LSD1 is implicated in the interaction with a line of proteins to exhibit additional non-canonical functions in a demethylase-independent manner. Here, we present an integrated overview of these recent literatures charging LSD1 with unforeseen functions to re-evaluate and summarize its non-catalytic biological roles beyond the current understanding of its demethylase activity. Given LSD1 is reported to be ubiquitously overexpressed in a variety of tumors, it has been generally considered as an innovative target for cancer therapy. We anticipate that these non-canonical functions of LSD1 will arouse the consideration that extending the LSD1-based drug discovery to targeting LSD1 protein interactions non-catalytically, not only its demethylase activity, may be a novel strategy for cancer prevention.
Collapse
Affiliation(s)
- Feiying Gu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuxin Lin
- Department of Oncology, Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China
| | - Zhun Wang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenyue Ye
- Department of Respiratory Diseases, Hwa Mei Hospital, University of Chinese Academy Sciences, Ningbo, China
| | - Yuezhen Wang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Huiyin Lan
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
66
|
Ma L, Wang H, You Y, Ma C, Liu Y, Yang F, Zheng Y, Liu H. Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors. Acta Pharm Sin B 2020; 10:1658-1668. [PMID: 33088686 PMCID: PMC7563019 DOI: 10.1016/j.apsb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has become a potential therapeutic target for the treatment of cancer. Discovery and develop novel and potent LSD1 inhibitors is a challenge, although several of them have already entered into clinical trials. Herein, for the first time, we reported the discovery of a series of 5-cyano-6-phenylpyrimidine derivatives as LSD1 inhibitors using flavin adenine dinucleotide (FAD) similarity-based designing strategy, of which compound 14q was finally identified to repress LSD1 with IC50 = 183 nmol/L. Docking analysis suggested that compound 14q fitted well into the FAD-binding pocket. Further mechanism studies showed that compound 14q may inhibit LSD1 activity competitively by occupying the FAD binding sites of LSD1 and inhibit cell migration and invasion by reversing epithelial to mesenchymal transition (EMT). Overall, these findings showed that compound 14q is a suitable candidate for further development of novel FAD similarity-based LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- Anticancer
- EMT, epithelial to mesenchymal transition
- ESI, electrospray ionization
- FAD, flavin adenine dinucleotide
- FBS, fetal bovine serum
- Flavin adenine dinucleotide (FAD)
- Gastric cancer
- HRMS, high resolution mass spectra
- IC50, half maximal inhibitory concentration
- LSD1 inhibitors
- LSD1, histone lysine specific demethylase 1
- MOE, molecular operating environment
- PAINS, pan assay interference compounds
- PDB, the Protein Data Bank
- Pyrimidine
- RLU, relative light units
- SARs, structure–activity relationship studies
- TCP, tranylcypromine
- VDW, van der Waals
Collapse
Affiliation(s)
| | | | - Yinghua You
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chaoya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuejiao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
67
|
Theisen ER, Selich-Anderson J, Miller KR, Tanner JM, Taslim C, Pishas KI, Sharma S, Lessnick SL. Chromatin profiling reveals relocalization of lysine-specific demethylase 1 by an oncogenic fusion protein. Epigenetics 2020; 16:405-424. [PMID: 32842875 PMCID: PMC7993145 DOI: 10.1080/15592294.2020.1805678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Paediatric cancers commonly harbour quiet mutational landscapes and are instead characterized by single driver events such as the mutation of critical chromatin regulators, expression of oncohistones, or expression of oncogenic fusion proteins. These events ultimately promote malignancy through disruption of normal gene regulation and development. The driver protein in Ewing sarcoma, EWS/FLI, is an oncogenic fusion and transcription factor that reshapes the enhancer landscape, resulting in widespread transcriptional dysregulation. Lysine-specific demethylase 1 (LSD1) is a critical functional partner for EWS/FLI as inhibition of LSD1 reverses the transcriptional activity of EWS/FLI. However, how LSD1 participates in fusion-directed epigenomic regulation and aberrant gene activation is unknown. We now show EWS/FLI causes dynamic rearrangement of LSD1 and we uncover a role for LSD1 in gene activation through colocalization at EWS/FLI binding sites throughout the genome. LSD1 is integral to the establishment of Ewing sarcoma super-enhancers at GGAA-microsatellites, which ubiquitously overlap non-microsatellite loci bound by EWS/FLI. Together, we show that EWS/FLI induces widespread changes to LSD1 distribution in a process that impacts the enhancer landscape throughout the genome.
Collapse
Affiliation(s)
- Emily R Theisen
- Center for Childhood Cancer and Blood Diseases, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Julia Selich-Anderson
- Center for Childhood Cancer and Blood Diseases, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kyle R Miller
- Center for Childhood Cancer and Blood Diseases, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jason M Tanner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cenny Taslim
- Center for Childhood Cancer and Blood Diseases, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen I Pishas
- Center for Childhood Cancer and Blood Diseases, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Cancer Genomics and Genetics, Peter MacCallum Cancer Centre, Melbourne, VIC, USA
| | - Sunil Sharma
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute (Tgen), Phoenix, AX, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
68
|
Soldi R, Ghosh Halder T, Weston A, Thode T, Drenner K, Lewis R, Kaadige MR, Srivastava S, Daniel Ampanattu S, Rodriguez del Villar R, Lang J, Vankayalapati H, Weissman B, Trent JM, Hendricks WPD, Sharma S. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS One 2020; 15:e0235705. [PMID: 32649682 PMCID: PMC7351179 DOI: 10.1371/journal.pone.0235705] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023] Open
Abstract
Mutations of the SWI/SNF chromatin remodeling complex occur in 20% of all human cancers, including ovarian cancer. Approximately half of ovarian clear cell carcinomas (OCCC) carry mutations in the SWI/SNF subunit ARID1A, while small cell carcinoma of the ovary hypercalcemic type (SCCOHT) presents with inactivating mutations of the SWI/SNF ATPase SMARCA4 alongside epigenetic silencing of the ATPase SMARCA2. Loss of these ATPases disrupts SWI/SNF chromatin remodeling activity and may also interfere with the function of other histone-modifying enzymes that associate with or are dependent on SWI/SNF activity. One such enzyme is lysine-specific histone demethylase 1 (LSD1/KDM1A), which regulates the chromatin landscape and gene expression by demethylating proteins such as histone H3. Cross-cancer analysis of the TCGA database shows that LSD1 is highly expressed in SWI/SNF-mutated tumors. SCCOHT and OCCC cell lines have shown sensitivity to the reversible LSD1 inhibitor SP-2577 (Seclidemstat), suggesting that SWI/SNF-deficient ovarian cancers are dependent on LSD1 activity. Moreover, it has been shown that inhibition of LSD1 stimulates interferon (IFN)-dependent anti-tumor immunity through induction of endogenous retroviral elements and may thereby overcome resistance to checkpoint blockade. In this study, we investigated the ability of SP-2577 to promote anti-tumor immunity and T-cell infiltration in SCCOHT and OCCC cell lines. We found that SP-2577 stimulated IFN-dependent anti-tumor immunity in SCCOHT and promoted the expression of PD-L1 in both SCCOHT and OCCC. Together, these findings suggest that the combination therapy of SP-2577 with checkpoint inhibitors may induce or augment immunogenic responses of SWI/SNF-mutated ovarian cancers and warrants further investigation.
Collapse
Affiliation(s)
- Raffaella Soldi
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Tithi Ghosh Halder
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Alexis Weston
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Trason Thode
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Kevin Drenner
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Rhonda Lewis
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Mohan R. Kaadige
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Shreyesi Srivastava
- HonorHealth Clinical Research Institute, Scottsdale, Arizona, United States of America
| | - Sherin Daniel Ampanattu
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Ryan Rodriguez del Villar
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Jessica Lang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | | | - Bernard Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffrey M. Trent
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - William P. D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
| | - Sunil Sharma
- Applied Cancer Research and Drug Discovery Division, Translational Genomics Research Institute (TGen) of City of Hope, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
69
|
Wu K, Woo SM, Kwon TK. The Histone Lysine-specific Demethylase 1 Inhibitor, SP2509 Exerts Cytotoxic Effects against Renal Cancer Cells through Downregulation of Bcl-2 and Mcl-1. J Cancer Prev 2020; 25:79-86. [PMID: 32647649 PMCID: PMC7337004 DOI: 10.15430/jcp.2020.25.2.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/14/2023] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1), also known as KDM1A, can remove the
methyl group from lysine 4 and 9 at histone H3, which regulates transcriptional
suppression and activation. Recently, high expression of LSD1 in tumors has been
shown to be involved in cancer cell proliferation, metastasis, and poor
prognosis. We found that SP2509, a potent and reversible inhibitor of LSD1,
induced apoptosis in human renal carcinoma (Caki and ACHN) and glioma (U87MG)
cells. Pharmacological inhibition and siRNA-mediated silencing of LSD1
expression effectively downregulated anti-apoptotic proteins such as Bcl-2 and
Mcl-1. Ectopic expression of these proteins markedly attenuated SP2509-induced
apoptosis. At a mechanistic level, we found that inhibition of LSD1
downregulated Bcl-2 at a transcriptional level. Interestingly, protein
expression of Mcl-1 was modulated at a post-translation level. Our results
reveal that LSD1 could induce apoptotic cell death in renal carcinoma cells
through downregulation of Bcl-2 and Mcl-1.
Collapse
Affiliation(s)
- Kaixin Wu
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea
| |
Collapse
|
70
|
Arifuzzaman S, Khatun MR, Khatun R. Emerging of lysine demethylases (KDMs): From pathophysiological insights to novel therapeutic opportunities. Biomed Pharmacother 2020; 129:110392. [PMID: 32574968 DOI: 10.1016/j.biopha.2020.110392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, there have been remarkable scientific advancements in the understanding of lysine demethylases (KDMs) because of their demethylation of diverse substrates, including nucleic acids and proteins. Novel structural architectures, physiological roles in the gene expression regulation, and ability to modify protein functions made KDMs the topic of interest in biomedical research. These structural diversities allow them to exert their function either alone or in complex with numerous other bio-macromolecules. Impressive number of studies have demonstrated that KDMs are localized dynamically across the cellular and tissue microenvironment. Their dysregulation is often associated with human diseases, such as cancer, immune disorders, neurological disorders, and developmental abnormalities. Advancements in the knowledge of the underlying biochemistry and disease associations have led to the development of a series of modulators and technical compounds. Given the distinct biophysical and biochemical properties of KDMs, in this review we have focused on advances related to the structure, function, disease association, and therapeutic targeting of KDMs highlighting improvements in both the specificity and efficacy of KDM modulation.
Collapse
Affiliation(s)
- Sarder Arifuzzaman
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh; Everest Pharmaceuticals Ltd., Dhaka-1208, Bangladesh.
| | - Mst Reshma Khatun
- Department of Pharmacy, Jahangirnagar University, Dhaka-1342, Bangladesh
| | - Rabeya Khatun
- Department of Pediatrics, TMSS Medical College and Rafatullah Community Hospital, Gokul, Bogura, 5800, Bangladesh
| |
Collapse
|
71
|
Wass M, Göllner S, Besenbeck B, Schlenk RF, Mundmann P, Göthert JR, Noppeney R, Schliemann C, Mikesch JH, Lenz G, Dugas M, Wermke M, Röllig C, Bornhäuser M, Serve H, Platzbecker U, Foerster KI, Burhenne J, Haefeli WE, Müller LP, Binder M, Pabst C, Müller-Tidow C. A proof of concept phase I/II pilot trial of LSD1 inhibition by tranylcypromine combined with ATRA in refractory/relapsed AML patients not eligible for intensive therapy. Leukemia 2020; 35:701-711. [PMID: 32561840 PMCID: PMC7303943 DOI: 10.1038/s41375-020-0892-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/16/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022]
Abstract
All-trans-retinoic acid (ATRA) is highly active in acute promyelocytic leukemia but not in other types of acute myeloid leukemia (AML). Previously, we showed that ATRA in combination with Lysine-specific demethylase 1 (LSD1) inhibition by tranylcypromine (TCP) can induce myeloid differentiation in AML blasts. This phase I/II clinical trial investigated the safety and efficacy of TCP/ATRA treatment as salvage therapy for relapsed/refractory (r/r) AML. The combination was evaluated in 18 patients, ineligible for intensive treatment. The overall response rate was 20%, including two complete remissions without hematological recovery and one partial response. We also observed myeloid differentiation upon TCP/ATRA treatment in patients who did not reach clinical remission. Median overall survival (OS) was 3.3 months, and one-year OS 22%. One patient developed an ATRA-induced differentiation syndrome. The most frequently reported adverse events were vertigo and hypotension. TCP plasma levels correlated with intracellular TCP concentration. Increased H3K4me1 and H3k4me2 levels were observed in AML blasts and white blood cells from some TCP/ATRA treated patients. Combined TCP/ATRA treatment can induce differentiation of AML blasts and lead to clinical response in heavily pretreated patients with r/r AML with acceptable toxicity. These findings emphasize the potential of LSD1 inhibition combined with ATRA for AML treatment.
Collapse
Affiliation(s)
- Maxi Wass
- Department of Hematology and Oncology, University Hospital Halle, Halle (Saale), Germany.
| | - Stefanie Göllner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Birgit Besenbeck
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Richard F Schlenk
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Petra Mundmann
- Department of Hematology and Oncology, Paracelsus-Klinik, Osnabrück, Germany
| | | | - Richard Noppeney
- Department of Hematology, University Hospital Essen, Essen, Germany
| | | | | | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Martin Dugas
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Martin Wermke
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Christoph Röllig
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Martin Bornhäuser
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Uwe Platzbecker
- Department of Medicine I, Hematology, Cellular Therapy, Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lutz P Müller
- Department of Hematology and Oncology, University Hospital Halle, Halle (Saale), Germany
| | - Mascha Binder
- Department of Hematology and Oncology, University Hospital Halle, Halle (Saale), Germany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | |
Collapse
|
72
|
Ohta Y, Kawaguchi M, Ieda N, Nakagawa H. Synthesis of artificial substrate based on inhibitor for detecting LSD1 activity. J Clin Biochem Nutr 2020; 67:153-158. [PMID: 33041512 PMCID: PMC7533851 DOI: 10.3164/jcbn.20-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Lysine methylation is one of the most important modification, which is regulated by histone lysine methyltransferases and histone lysine demethylases. Lysine-specific demethylase 1 (LSD1) specifically demethylates mono- and dimethyl-lysine on histone H3 (H3K4Me/Me2, H3K9Me/Me2) to control chromatin structure, resulting in transcriptional repression or activation of target genes. Furthermore, LSD1 is overexpressed in various cancers. Therefore, LSD1 inhibitors would be not only potential therapeutic agents for cancers but also chemical tools to research biological significance of LSD1 in physiological and pathological events. However, known assay methods to date have some inherent drawbacks. The development of simple method in detecting LSD1 activity has been indispensable to identify useful inhibitors. In this study, we designed and synthesized artificial substrates based on inhibitors of LSD1 to examine LSD1 activity by an absorption increment.
Collapse
Affiliation(s)
- Yuhei Ohta
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
73
|
Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics 2020; 12:725-742. [PMID: 32396394 DOI: 10.2217/epi-2019-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, Clermont-Ferrand 63011, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| |
Collapse
|
74
|
N-Myc-induced metabolic rewiring creates novel therapeutic vulnerabilities in neuroblastoma. Sci Rep 2020; 10:7157. [PMID: 32346009 PMCID: PMC7188804 DOI: 10.1038/s41598-020-64040-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
N-Myc is a transcription factor that is aberrantly expressed in many tumor types and is often correlated with poor patient prognosis. Recently, several lines of evidence pointed to the fact that oncogenic activation of Myc family proteins is concomitant with reprogramming of tumor cells to cope with an enhanced need for metabolites during cell growth. These adaptions are driven by the ability of Myc proteins to act as transcriptional amplifiers in a tissue-of-origin specific manner. Here, we describe the effects of N-Myc overexpression on metabolic reprogramming in neuroblastoma cells. Ectopic expression of N-Myc induced a glycolytic switch that was concomitant with enhanced sensitivity towards 2-deoxyglucose, an inhibitor of glycolysis. Moreover, global metabolic profiling revealed extensive alterations in the cellular metabolome resulting from overexpression of N-Myc. Limited supply with either of the two main carbon sources, glucose or glutamine, resulted in distinct shifts in steady-state metabolite levels and significant changes in glutathione metabolism. Interestingly, interference with glutamine-glutamate conversion preferentially blocked proliferation of N-Myc overexpressing cells, when glutamine levels were reduced. Thus, our study uncovered N-Myc induction and nutrient levels as important metabolic master switches in neuroblastoma cells and identified critical nodes that restrict tumor cell proliferation.
Collapse
|
75
|
Design, synthesis and biological evaluation of novel dual-acting modulators targeting both estrogen receptor α (ERα) and lysine-specific demethylase 1 (LSD1) for treatment of breast cancer. Eur J Med Chem 2020; 195:112281. [PMID: 32283297 DOI: 10.1016/j.ejmech.2020.112281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 02/01/2023]
Abstract
Breast cancer is a multi-factor disease, thus more and more drug combination therapies are applied in the treatment. However, there are undeniable disadvantages in drug combination therapy. Therefore, the development of new dual-targeting drugs has become a new strategy. In this study, we have developed a series of dual-acting agents targeting both estrogen receptor α (ERα) and histone demethylase based on a privileged OBHS pharmacophore scaffold developed previously by our laboratory. These novel OBHS-LSD1i conjugates showed excellent ERα binding affinity and selectivity, and exhibited potent inhibitory activity against lysine specific demethylase 1 (LSD1). Several conjugates showed higher antiproliferative efficacy in MCF-7 breast cancer cell line compared to 4-hydroxytamoxifen in vitro. Among them, the best compound 11g displayed potent inhibitory activity against LSD1 and MCF-7 cells with IC50 values of 1.55 μM and 8.79 μM, respectively. Flow cytometry analysis of apoptosis of 11g suggested that the effect of this type compounds on MCF-7 cells is partly caused by inducing apoptosis. Moreover, the molecular docking of 11g with ERα and the active site of LSD1/CoREST complex provides practical way for understanding the dual mechanism actions of this kind of compounds with the targets. As such, these compounds have shown potential to become promising leads for the development of highly efficient dual-acting modulators for breast cancer therapies.
Collapse
|
76
|
He X, Gao Y, Hui Z, Shen G, Wang S, Xie T, Ye XY. 4-Hydroxy-3-methylbenzofuran-2-carbohydrazones as novel LSD1 inhibitors. Bioorg Med Chem Lett 2020; 30:127109. [PMID: 32201021 DOI: 10.1016/j.bmcl.2020.127109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Histone lysine specific demethylase 1 (LSD1 or KDM1A) is a potential therapeutic target in oncology due to its overexpression in various human tumors. We report herein a new class of benzofuran acylhydrazones as potent LSD1 inhibitors. Among the 31 compounds prepared, 14 compounds exhibited excellent LSD1 inhibitory activity with IC50 values ranging from 7.2 to 68.8 nM. In cellular assays, several compounds inhibited the proliferations of various cancer cell lines, including PC-3, MCG-803, U87 MG, PANC-1, HT-29 and MCF-7. This opens up the opportunity for further optimization and investigation of this class compounds for potential cancer treatment.
Collapse
Affiliation(s)
- Xingrui He
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China; School of Pharmacy, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Yuan Gao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510000, PR China
| | - Zi Hui
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China
| | - Guodong Shen
- School of Pharmacy, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shuo Wang
- School of Pharmacy, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| | - Xiang-Yang Ye
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, PR China; Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, PR China; Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| |
Collapse
|
77
|
Fioravanti R, Romanelli A, Mautone N, Di Bello E, Rovere A, Corinti D, Zwergel C, Valente S, Rotili D, Botrugno OA, Dessanti P, Vultaggio S, Vianello P, Cappa A, Binda C, Mattevi A, Minucci S, Mercurio C, Varasi M, Mai A. Tranylcypromine-Based LSD1 Inhibitors: Structure-Activity Relationships, Antiproliferative Effects in Leukemia, and Gene Target Modulation. ChemMedChem 2020; 15:643-658. [PMID: 32003940 DOI: 10.1002/cmdc.201900730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Indexed: 01/07/2023]
Abstract
LSD1 is a lysine demethylase highly involved in initiation and development of cancer. To design highly effective covalent inhibitors, a strategy is to fill its large catalytic cleft by designing tranylcypromine (TCP) analogs decorated with long, hindered substituents. We prepared three series of TCP analogs, carrying aroyl- and arylacetylamino (1 a-h), Z-amino acylamino (2 a-o), or double-substituted benzamide (3 a-n) residues at the C4 or C3 position of the phenyl ring. Further fragments obtained by chemical manipulation applied on the TCP scaffold (compounds 4 a-i) were also prepared. When tested against LSD1, most of 1 and 3 exhibited IC50 values in the low nanomolar range, with 1 e and 3 a,d,f,g being also the most selective respect to monoamine oxidases. In MV4-11 AML and NB4 APL cells compounds 3 were the most potent, displaying up to sub-micromolar cell growth inhibition against both cell lines (3 a) or against NB4 cells (3 c). The most potent compounds in cellular assays were also able to induce the expression of LSD1 target genes, such as GFI-1b, ITGAM, and KCTD12, as functional read-out for LSD1 inhibition. Mouse and human intrinsic clearance data highlighted the high metabolic stability of compounds 3 a, 3 d and 3 g. Further studies will be performed on the new compounds 3 a and 3 c to assess their anticancer potential in different cancer contexts.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Nicola Mautone
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Annarita Rovere
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy.,Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Oronza A Botrugno
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Via Olgettina Milano, 58, 20132, Milan, Italy
| | - Paola Dessanti
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Oryzon Genomics S.A., Sant Ferran, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Stefania Vultaggio
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy
| | - Paola Vianello
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy
| | - Anna Cappa
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Experimental Therapeutics Program, IFOM-FIRC Institute of Molecular Oncology Foundation, via Adamello 16, 20139, Milan, Italy
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Department of Biosciences, University of Milan, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Ciro Mercurio
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Experimental Therapeutics Program, IFOM-FIRC Institute of Molecular Oncology Foundation, via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Experimental Therapeutics Program, IFOM-FIRC Institute of Molecular Oncology Foundation, via Adamello 16, 20139, Milan, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
78
|
Xu Y, He Z, Liu H, Chen Y, Gao Y, Zhang S, Wang M, Lu X, Wang C, Zhao Z, Liu Y, Zhao J, Yu Y, Yang M. 3D-QSAR, molecular docking, and molecular dynamics simulation study of thieno[3,2- b]pyrrole-5-carboxamide derivatives as LSD1 inhibitors. RSC Adv 2020; 10:6927-6943. [PMID: 35493862 PMCID: PMC9049714 DOI: 10.1039/c9ra10085g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
Histone Lysine Specific Demethylase 1 (LSD1) is overexpressed in many cancers and becomes a new target for anticancer drugs. In recent years, small molecule inhibitors with various structures targeting LSD1 have been reported. Here we report the binding interaction modes of a series of thieno[3,2-b]pyrrole-5-carboxamide LSD1 inhibitors using molecular docking, and three-dimensional quantitative structure-activity relationships (3D-QSAR). Comparative molecular field analysis (CoMFA q 2 = 0.783, r 2 = 0.944, r pred 2 = 0.851) and comparative molecular similarity indices analysis (CoMSIA q 2 = 0.728, r 2 = 0.982, r pred 2 = 0.814) were used to establish 3D-QSAR models, which had good verification and prediction capabilities. Based on the contour maps and the information of molecular docking, 8 novel small molecules were designed in silico, among which compounds D4, D5 and D8 with high predictive activity were subjected to further molecular dynamics simulations (MD), and their possible binding modes were explored. It was found that Asn535 plays a crucial role in stabilizing the inhibitors. Furthermore, ADME and bioavailability prediction for D4, D5 and D8 were carried out. The results would provide valuable guidance for designing new reversible LSD1 inhibitors in the future.
Collapse
Affiliation(s)
- Yongtao Xu
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| | - Zihao He
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| | - Hongyi Liu
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| | - Yifan Chen
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| | - Yunlong Gao
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| | - Songjie Zhang
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| | - Meiting Wang
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| | - Xiaoyuan Lu
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
| | - Chang Wang
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
| | - Zongya Zhao
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
| | - Yan Liu
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
| | - Junqiang Zhao
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
| | - Yi Yu
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
| | - Min Yang
- School of Biomedical Engineering, Xinxiang Medical University Xinxiang Henan 453003 China
- Xinxiang Key Laboratory of Biomedical Information Research Xinxiang Henan 453003 China
- Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data Xinxiang Henan 453003 China
| |
Collapse
|
79
|
Itoh Y. Drug Discovery Researches on Modulators of Lysine-Modifying Enzymes Based on Strategic Chemistry Approaches. Chem Pharm Bull (Tokyo) 2020; 68:34-45. [DOI: 10.1248/cpb.c19-00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
80
|
Lin Y, Han C, Xu Q, Wang W, Li L, Zhu D, Luo J, Kong L. Integrative countercurrent chromatography for the target isolation of lysine-specific demethylase 1 inhibitors from the roots of Salvia miltiorrhiza. Talanta 2020; 206:120195. [PMID: 31514831 DOI: 10.1016/j.talanta.2019.120195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
Abstract
The ability to separate bioactive compounds from herbal medicines, which contain abundant components, is crucial for drug discovery. Conventional Countercurrent chromatography (CCC) methods for separating bioactive compounds are labor intensive and show low efficiency. Here, we present a novel integrative CCC method for separating lysine-specific demethylase 1 (LSD1) inhibitors from the roots of Salvia miltiorrhiza (RSM). The methanol extracts of RSM were separated into hydrosoluble and liposoluble fractions, which were online stored in coils. Subsequently, the targeting LSD1 constituents were isolated using isocratic, gradient, or recycling elution mode. All separation processes could be accomplished using one CCC apparatus. Using our separation strategy, two phenylpropanoids and four tanshinones were isolated, which were determined to be new classes of natural LSD1 inhibitors. Salvianolic acid B, which showed the most potent inhibitory activity with an IC50 of 0.11 μM, exhibiting a considerable potential as an anticancer agent. Promisingly, the integrative CCC could be a crucial tool for the target separation of enzyme inhibitors from herbal medicines.
Collapse
Affiliation(s)
- Yaolan Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Qiqi Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Wenli Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Lingnan Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Dongrong Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| |
Collapse
|
81
|
Zhang W, Cheng J, Diao P, Wang D, Zhang W, Jiang H, Wang Y. Therapeutically targeting head and neck squamous cell carcinoma through synergistic inhibition of LSD1 and JMJD3 by TCP and GSK-J1. Br J Cancer 2019; 122:528-538. [PMID: 31848446 PMCID: PMC7028736 DOI: 10.1038/s41416-019-0680-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The histone demethylase LSD1 is a key mediator driving tumorigenesis, which holds potential as a promising therapeutic target. However, treatment with LSD1 inhibitors alone failed to result in complete cancer regression. METHODS The synergistic effects of TCP (a LSD1 inhibitor) and GSK-J1 (a JMJD3 inhibitor) against HNSCC were determined in vitro and in preclinical animal models. Genes modulated by chemical agents or siRNAs in HNSCC cells were identified by RNA-seq and further functionally interrogated by bioinformatics approach. Integrative siRNA-mediated gene knockdown, rescue experiment and ChIP-qPCR assays were utilised to characterise the mediators underlying the therapeutic effects conferred by TCP and GSK-J1. RESULTS Treatment with TCP and GSK-J1 impaired cell proliferation, induced apoptosis and senescence in vitro, which were largely recapitulated by simultaneous LSD1 and JMJD3 knockdown. Combinational treatment inhibited tumour growth and progression in vivo. Differentially expressed genes modulated by TCP and GSK-J1 were significantly enriched in cell proliferation, apoptosis and cancer-related pathways. SPP1 was identified as the mediator of synergy underlying the pro-apoptosis effects conferred by TCP and GSK-J1. Co-upregulation of LSD1 and JMJD3 associated with worse prognosis in patients with HNSCC. CONCLUSIONS Our findings revealed a novel therapeutic strategy of simultaneous LSD1 and JMJD3 inhibition against HNSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China.
| |
Collapse
|
82
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 673] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12:129. [PMID: 31801559 PMCID: PMC6894138 DOI: 10.1186/s13045-019-0811-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
84
|
Kim S, Bolatkan A, Kaneko S, Ikawa N, Asada K, Komatsu M, Hayami S, Ojima H, Abe N, Yamaue H, Hamamoto R. Deregulation of the Histone Lysine-Specific Demethylase 1 Is Involved in Human Hepatocellular Carcinoma. Biomolecules 2019; 9:810. [PMID: 31805626 PMCID: PMC6995592 DOI: 10.3390/biom9120810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Given that the standard-of-care for advanced liver cancer is limited, there is an urgent need to develop a novel molecular targeted therapy to improve therapeutic outcomes for HCC. In order to tackle this issue, we conducted functional analysis of the histone lysine-specific demethylase (LSD1) to explore the possibility that this enzyme acts as a therapeutic target in HCC. According to immunohistochemical analysis, 232 of 303 (77%) HCC cases showed positive staining of LSD1 protein, and its expression was correlated with several clinicopathological characteristics, such as female gender, AFP (alpha-fetoprotein) levels, and HCV (hepatitis C virus) infectious. The survival curves for HCC using the Kaplan-Meier method and the log-rank test indicate that positive LSD1 protein expression was significantly associated with decreased rates of overall survival (OS) and disease-free survival (DFS); the multivariate analysis indicates that LSD1 expression was an independent prognostic factor for both OS and DFS in patients with HCC. In addition, knockout of LSD1 using the CRISPR/Cas9 system showed a significantly lower number of colony formation units (CFUs) and growth rate in both SNU-423 and SNU-475 HCC cell lines compared to the corresponding control cells. Moreover, LSD1 knockout decreased cells in S phase of SNU-423 and SNU-475 cells with increased levels of H3K4me1/2 and H3K9me1/2. Finally, we identified the signaling pathways regulated by LSD1 in HCC, including the retinoic acid (RA) pathway. Our findings imply that deregulation of LSD1 can be involved in HCC; further studies may explore the usefulness of LSD1 as a therapeutic target of HCC.
Collapse
Affiliation(s)
- Sangchul Kim
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Noriko Ikawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Nobutsugu Abe
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
85
|
Design, synthesis and biological evaluation of curcumin analogues as novel LSD1 inhibitors. Bioorg Med Chem Lett 2019; 29:126683. [DOI: 10.1016/j.bmcl.2019.126683] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
|
86
|
LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target. Cancers (Basel) 2019; 11:cancers11121821. [PMID: 31756917 PMCID: PMC6966601 DOI: 10.3390/cancers11121821] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the translational implications for putative epigenetic therapies targeted against them. Accumulating evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self-renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well-established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has been documented in a variety of cancers, where the enzyme is, usually, associated with the more aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the literature on LSD1's role in normal and cancer stem cells, highlighting the analogies of its mode of action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 inhibitors, as well as their future perspectives.
Collapse
|
87
|
Ocker M, Bitar SA, Monteiro AC, Gali-Muhtasib H, Schneider-Stock R. Epigenetic Regulation of p21 cip1/waf1 in Human Cancer. Cancers (Basel) 2019; 11:1343. [PMID: 31514410 PMCID: PMC6769618 DOI: 10.3390/cancers11091343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
p21cip1/waf1 is a central regulator of cell cycle control and survival. While mutations are rare, it is commonly dysregulated in several human cancers due to epigenetic mechanisms influencing its transcriptional control. These mechanisms include promoter hypermethylation as well as additional pathways such as histone acetylation or methylation. The epigenetic regulators include writers, such as DNA methyltransferases (DNMTs); histone acetyltransferases (HATs) and histone lysine methyltransferases; erasers, such as histone deacetylases (HDACs); histone lysine demethylases [e.g., the Lysine Demethylase (KDM) family]; DNA hydroxylases; readers, such as the methyl-CpG-binding proteins (MBPs); and bromodomain-containing proteins, including the bromo- and extraterminal domain (BET) family. We further discuss the roles that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play in the epigenetic control of p21cip1/waf1 expression and its function in human cancers.
Collapse
Affiliation(s)
- Matthias Ocker
- Bayer AG, Translational Medicine Oncology, 13353 Berlin, Germany
- Department of Gastroenterology, CBF, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 110236, Lebanon
| | - Ana Carolina Monteiro
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 110236, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut 110236, Lebanon
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany.
- Experimental Tumor Pathology, FAU Erlangen-Nuremberg, Universitaetsstrasse 22, 91054 Erlangen, Germany.
| |
Collapse
|
88
|
Li Z, Ding L, Li Z, Wang Z, Suo F, Shen D, Zhao T, Sun X, Wang J, Liu Y, Ma L, Zhao B, Geng P, Yu B, Zheng Y, Liu H. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharm Sin B 2019; 9:794-808. [PMID: 31384539 PMCID: PMC6663923 DOI: 10.1016/j.apsb.2019.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has been recognized as an important modulator in post-translational process in epigenetics. Dysregulation of LSD1 has been implicated in the development of various cancers. Herein, we report the discovery of the hit compound 8a (IC50 = 3.93 μmol/L) and further medicinal chemistry efforts, leading to the generation of compound 15u (IC50 = 49 nmol/L, and K i = 16 nmol/L), which inhibited LSD1 reversibly and competitively with H3K4me2, and was selective to LSD1 over MAO-A/B. Docking studies were performed to rationalize the potency of compound 15u. Compound 15u also showed strong antiproliferative activity against four leukemia cell lines (OCL-AML3, K562, THP-1 and U937) as well as the lymphoma cell line Raji with the IC50 values of 1.79, 1.30, 0.45, 1.22 and 1.40 μmol/L, respectively. In THP-1 cell line, 15u significantly inhibited colony formation and caused remarkable morphological changes. Compound 15u induced expression of CD86 and CD11b in THP-1 cells, confirming its cellular activity and ability of inducing differentiation. The findings further indicate that targeting LSD1 is a promising strategy for AML treatment, the triazole-fused pyrimidine derivatives are new scaffolds for the development of LSD1/KDM1A inhibitors.
Collapse
Key Words
- AML treatment
- AML, acute myeloid leukemia
- ATRA, all-trans retinoic acid
- Antiproliferative ability
- BTK, Bruton׳s tyrosine kinase
- CDK, cyclin-dependent kinase
- CuAAC, copper-catalyzed azide-alkyne cycloadditions
- DABCO, triethylenediamine
- DCM, dichloromethane
- DIPEA, N,N-diisopropylethylamine
- DNMTs, DNA methyltransferases
- EA, ethyl acetate
- Epigenetic regulation
- EtOH, ethanol
- FAD, flavin adenine dinucleotide
- GSCs, glioma stem cells
- Histone demethylase
- LSD1
- LSD1, histone lysine specific demethylase 1
- MAO, monoamine oxidase
- MeOH, methanol
- Mercapto heterocycles
- PAINS, pan-assay interference compound
- Pyrimidine-triazole
- Rt, room temperature
- SAR, structure—activity relationship
- Structure–activity relationships (SARs)
- TCP, tranylcypromine
- TEA, triethylamine
- THF, terahydrofuran
- TLC, thin layer chromatography.
Collapse
Affiliation(s)
- Zhonghua Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Lina Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Zhongrui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Zhizheng Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Fengzhi Suo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Dandan Shen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Taoqian Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Xudong Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Junwei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Liying Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Bing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Pengfei Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Yichao Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Co-Innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China
| |
Collapse
|
89
|
Zhang J, Zhao D, Li Q, Du X, Liu Y, Dai X, Hong L. Upregulation of LSD1 promotes migration and invasion in gastric cancer through facilitating EMT. Cancer Manag Res 2019; 11:4481-4491. [PMID: 31191010 PMCID: PMC6526921 DOI: 10.2147/cmar.s186649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Gastric cancer (GC) is a common malignant tumor of the digestive system. In addition, GC metastasis is an extremely complicated process. A previous study has found that lysine-specific demethylase 1 (LSD1) is abnormal expression in a variety of cancers and its overexpression correlates with aggressive disease and poor outcome. Methods qRT-PCR and Western blot assays were used to assess the expression of LSD1 in GC tissue samples and cell lines. Colony formation assay, CCK-8 assay, scratch-wound assay and transwell invasion, were performed to determine the effect of LSD1 on cell proliferation and migration as well as invasion in GC. Results Our results show that LSD1 was up-regulated in GC tumor tissues and cell lines, and high expression level of LSD1 was found to be positively correlated with tumor size, lymph node metastasis and pathological grade. Moreover, LSD1 promoted cell proliferation, migration and invasion of GC. In addition, LSD1 regulated E-cadherin expression through demethylating H3K4me2, thereby promoting EMT in GC. Conclusion Our work indicated that LSD1 may be used as a potential target of gastric cancer.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Donghui Zhao
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Qingjun Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China
| | - Xiuluan Du
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Yanxiang Liu
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Xin Dai
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, P.R. China,
| | - Lianqing Hong
- Department of Pathology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, P.R. China,
| |
Collapse
|
90
|
Liu HM, Suo FZ, Li XB, You YH, Lv CT, Zheng CX, Zhang GC, Liu YJ, Kang WT, Zheng YC, Xu HW. Discovery and synthesis of novel indole derivatives-containing 3-methylenedihydrofuran-2(3H)-one as irreversible LSD1 inhibitors. Eur J Med Chem 2019; 175:357-372. [PMID: 31096156 DOI: 10.1016/j.ejmech.2019.04.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1), demethylase against mono- and di - methylated histone3 lysine 4, has emerged as a promising target in oncology. More specifically, it has been demonstrated as a key promoter in acute myeloid leukemia (AML), and several LSD1 inhibitors have already entered into clinical trials for the treatment of AML. In this paper, a series of new indole derivatives were designed and synthesized based on a lead compound obtained by a high-throughput screening with our in-house compound library. Among the synthetic compounds, 9e was characterized as a potent LSD1 inhibitor with an IC50 of 1.230 μM and can inhibit the proliferation of THP-1 cells effectively. And most importantly, this is the first irreversible LSD1 inhibitor that is not derived from monoamine oxidase inhibitors. Hence, the discovery of 9e may serve as a proof of concept work for AML treatment.
Collapse
Affiliation(s)
- Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Feng-Zhi Suo
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Xiao-Bo Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Ying-Hua You
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Chun-Tao Lv
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Chen-Xing Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Guo-Chen Zhang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yue-Jiao Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wen-Ting Kang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China; National Center for International Research of Micro-nano Molding Technology of Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Hai-Wei Xu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, School of Pharmaceutical Science, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
91
|
Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis. Blood 2019; 133:2455-2459. [PMID: 30992270 DOI: 10.1182/blood.2018892737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
92
|
Kores K, Lešnik S, Bren U, Janežič D, Konc J. Discovery of Novel Potential Human Targets of Resveratrol by Inverse Molecular Docking. J Chem Inf Model 2019; 59:2467-2478. [PMID: 30883115 DOI: 10.1021/acs.jcim.8b00981] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol known for its antioxidant and anti-inflammatory properties, which support its use as a treatment for variety of diseases. There are already known connections of resveratrol to chemoprevention of cancer because of its ability to prevent tumor initiation and inhibit tumor promotion and progression. Resveratrol is also believed to be important in cardiovascular diseases and neurological disorders, such as Alzheimer's disease. Using an inverse molecular docking approach, we sought to find new potential targets of resveratrol. Docking of resveratrol into each ProBiS predicted binding site of >38 000 protein structures from the Protein Data Bank was examined, and a number of novel potential targets into which resveratrol was docked successfully were found. These explain known actions or predict new effects of resveratrol. The results included three human proteins that are already known to bind resveratrol. A majority of proteins discovered however have no already described connections with resveratrol. We report new potential target human proteins and proteins connected with different organisms into which resveratrol can dock. Our results reveal previously unknown potential target human proteins, whose connection with cardiovascular and neurological disorders could lead to new potential treatments for variety of diseases. We believe that our research could help in future experimental studies on revestratol bioactivity in humans.
Collapse
Affiliation(s)
- Katarina Kores
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Urban Bren
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia.,National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Dušanka Janežič
- University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| |
Collapse
|
93
|
Majello B, Gorini F, Saccà CD, Amente S. Expanding the Role of the Histone Lysine-Specific Demethylase LSD1 in Cancer. Cancers (Basel) 2019; 11:cancers11030324. [PMID: 30866496 PMCID: PMC6468368 DOI: 10.3390/cancers11030324] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Studies of alterations in histone methylation in cancer have led to the identification of histone methyltransferases and demethylases as novel targets for therapy. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), demethylates H3K4me1/2, or H3K9me1/2 in a context-dependent manner. In addition to the well-studied role of LSD1 in the epigenetic regulation of histone methylation changes, LSD1 regulates the methylation dynamic of several non-histone proteins and participates in the assembly of different long noncoding RNA (lncRNA_ complexes. LSD1 is highly expressed in various cancers, playing a pivotal role in different cancer-related processes. Here, we summarized recent findings on the role of LSD1 in the regulation of different biological processes in cancer cells through dynamic methylation of non-histone proteins and physical association with dedicated lncRNA.
Collapse
Affiliation(s)
- Barbara Majello
- Department of Biology, University of Naples 'Federico II', 80126 Naples, Italy.
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', 80131 Naples, Italy.
| | | | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples, 'Federico II', 80131 Naples, Italy.
| |
Collapse
|
94
|
Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, Mason CE. Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity. Front Genet 2019; 10:133. [PMID: 30881380 PMCID: PMC6405641 DOI: 10.3389/fgene.2019.00133] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/08/2019] [Indexed: 01/09/2023] Open
Abstract
Leukemia, specifically acute myeloid leukemia (AML), is a common malignancy that can be differentiated into multiple subtypes based on leukemogenic history and etiology. Although genetic aberrations, particularly cytogenetic abnormalities and mutations in known oncogenes, play an integral role in AML development, epigenetic processes have been shown as a significant and sometimes independent dynamic in AML pathophysiology. Here, we summarize how tumors evolve and describe AML through an epigenetic lens, including discussions on recent discoveries that include prognostics from epialleles, changes in RNA function for hematopoietic stem cells and the epitranscriptome, and novel epigenetic treatment options. We further describe the limitations of treatment in the context of the high degree of heterogeneity that characterizes acute myeloid leukemia.
Collapse
Affiliation(s)
- Samantha L Goldman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,University of Maryland, College Park, MD, United States
| | - Ciaran Hassan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Mihir Khunte
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Arielle Soldatenko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Yunji Jong
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
95
|
Engel M, Gee YS, Cross D, Maccarone A, Heng B, Hulme A, Smith G, Guillemin GJ, Stringer BW, Hyland CJT, Ooi L. Novel dual-action prodrug triggers apoptosis in glioblastoma cells by releasing a glutathione quencher and lysine-specific histone demethylase 1A inhibitor. J Neurochem 2019; 149:535-550. [PMID: 30592774 PMCID: PMC6590141 DOI: 10.1111/jnc.14655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023]
Abstract
Targeting epigenetic mechanisms has shown promise against several cancers but has so far been unsuccessful against glioblastoma (GBM). Altered histone 3 lysine 4 methylation and increased lysine‐specific histone demethylase 1A (LSD1) expression in GBM tumours nonetheless suggest that epigenetic mechanisms are involved in GBM. We engineered a dual‐action prodrug, which is activated by the high hydrogen peroxide levels associated with GBM cells. This quinone methide phenylaminecyclopropane prodrug releases the LSD1 inhibitor 2‐phenylcyclopropylamine with the glutathione scavenger para‐quinone methide to trigger apoptosis in GBM cells. Quinone methide phenylaminocyclopropane impaired GBM cell behaviours in two‐dimensional and three‐dimensional assays, and triggered cell apoptosis in several primary and immortal GBM cell cultures. These results support our double‐hit hypothesis of potentially targeting LSD1 and quenching glutathione, in order to impair and kill GBM cells but not healthy astrocytes. Our data suggest this strategy is effective at selectively targeting GBM and potentially other types of cancers. Open science badges
This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. ![]()
Collapse
Affiliation(s)
- Martin Engel
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yi Sing Gee
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dale Cross
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Alan Maccarone
- Mass Spectrometry User Resource and Research Facility, School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - Benjamin Heng
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Amy Hulme
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Grady Smith
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Gilles J Guillemin
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
96
|
Li L, Li R, Wang Y. Identification of selective and reversible LSD1 inhibitors with anti-metastasis activity by high-throughput docking. Bioorg Med Chem Lett 2019; 29:544-548. [PMID: 30611617 DOI: 10.1016/j.bmcl.2018.12.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
The overexpression of lysine specific demethylase 1 (LSD1) has been reported in various human tumors. There is increasing interest in targeting LSD1 with small molecules for cancer treatment. A released structure of an LSD1 kinase domain in complex with FAD was used to set up a low-cost high-throughput docking protocol for quick identification of LSD1 inhibitors. The most promising hit L05 was confirmed to be a potent, selective and reversible LSD1 inhibitor and displayed marked inhibition of colorectal cells migration without significant cytotoxicity.
Collapse
Affiliation(s)
- Lijun Li
- Department of General Surgery, Taizhou People's Hospital, Taizhou 225300, PR China.
| | - Ruizhe Li
- Department of Sport and Health Science, Nanjing Sport Institute, Nanjing 210000, PR China
| | - Yumei Wang
- Department of Emergency Internal Medicine, Taizhou People's Hospital, Taizhou 225300, PR China
| |
Collapse
|
97
|
Nemoto T, Qin R, Takayanagi S, Kondo Y, Li J, Shiga N, Nakajima M, Shinohara KI, Yoda N, Suzuki T, Kaneda A. Synthesis of LSD1 Inhibitor-Pyrrole-Imidazole Polyamide Conjugates for Region-Specific Alterations of Histone Modification. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
98
|
Xu X, Peng W, Liu C, Li S, Lei J, Wang Z, Kong L, Han C. Flavone-based natural product agents as new lysine-specific demethylase 1 inhibitors exhibiting cytotoxicity against breast cancer cells in vitro. Bioorg Med Chem 2019; 27:370-374. [DOI: 10.1016/j.bmc.2018.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 11/29/2022]
|
99
|
Li J, Tao X, Shen J, Liu L, Zhao Q, Ma Y, Tao Z, Zhang Y, Ding B, Xiao Z. The molecular landscape of histone lysine methyltransferases and demethylases in non-small cell lung cancer. Int J Med Sci 2019; 16:922-930. [PMID: 31341405 PMCID: PMC6643118 DOI: 10.7150/ijms.34322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Lung cancer is one of the most common malignant tumors. Histone methylation was reported to regulate the expression of a variety of genes in cancer. However, comprehensive understanding of the expression profiles of histone methyltransferases and demethylases in lung cancer is still lacking. Methods: We analyzed the expression profile of methyltransferases and demethylases in non-small cell lung cancer (NSCLC) using TCGA and cBioportal databases. The mutation, expression level, association with survival and clinical parameters of histone methyltransferases and demethylases were determined. Results: We found overall upregulation of histone regulators in NSCLC. Mutation and copy number alteration of histone methylation related genes both exist in NSCLC. The expression of certain histone methylation related genes were significantly associated with overall survival and clinical attributes. Conclusions: Our result suggests that alteration of histone methylation is strongly involved in NSCLC. Some histone methylation related genes might serve as potential prognosis predictor or therapeutic target for NSCLC. The significance of some histone methylation related genes was contrary to the literature and awaits further validation.
Collapse
Affiliation(s)
- Jiaping Li
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Xinlu Tao
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Linling Liu
- The People's Hospital of Weiyuan, Neijiang, Sichuan, PR China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Yongshun Ma
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Zheng Tao
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Yan Zhang
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Boying Ding
- Department of Cardiothoracic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.,South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
100
|
Nie Z, Shi L, Lai C, Severin C, Xu J, Del Rosario JR, Stansfield RK, Cho RW, Kanouni T, Veal JM, Stafford JA, Chen YK. Structure-based design and discovery of potent and selective lysine-specific demethylase 1 (LSD1) inhibitors. Bioorg Med Chem Lett 2019; 29:103-106. [DOI: 10.1016/j.bmcl.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
|