51
|
Gao Y, Li L, Li T, Ma L, Yuan M, Sun W, Cheng HL, Niu L, Du Z, Quan Z, Fan Y, Fan J, Luo C, Wu X. Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1. Int J Oncol 2019; 54:2054-2068. [PMID: 31081050 PMCID: PMC6521936 DOI: 10.3892/ijo.2019.4774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
The failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC. For this purpose, tissue and serum samples from patients with primary prostate cancer and CRPC were analyzed using immunohistochemistry and enzyme‑linked immunosorbent assay, which revealed that Cav‑1 was overexpressed in CRPC. Furthermore, Kaplan‑Meier survival analysis and univariate Cox proportional hazards regression analysis demonstrated that Cav‑1 expression in tumors was an independent risk factor for the occurrence of CRPC and was associated with a shorter recurrence‑free survival time in patients with CRPC. Receiver operating characteristic curves suggested that serum Cav‑1 could be used as a diagnostic biomarker for CRPC (area under the curve, 0.876) using a cut‑off value of 0.68 ng/ml (with a sensitivity of 82.1% and specificity of 80%). In addition, it was determined that Cav‑1 induced the invasion and migration of CRPC cells by the activation of the H‑Ras/phosphoinositide‑specific phospholipase Cε signaling cascade in the cell membrane caveolae. Importantly, simvastatin was able to augment the anticancer effects of androgen receptor antagonists by downregulating the expression of Cav‑1. Collectively, the findings of this study provide evidence that Cav‑1 is a promising predictive biomarker for CRPC and that lowering cholesterol levels with simvastatin or interfering with the expression of Cav‑1 may prove to be a useful strategy with which to prevent and/or treat CRPC.
Collapse
Affiliation(s)
- Yingying Gao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Luo Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Ting Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lei Ma
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Hong Lin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lingfang Niu
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Yanru Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Jiaxin Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| |
Collapse
|
52
|
Pu W, Nassar ZD, Khabbazi S, Xie N, McMahon KA, Parton RG, Riggins GJ, Harris JM, Parat MO. Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1. J Neurooncol 2019; 143:207-220. [PMID: 30949900 DOI: 10.1007/s11060-019-03161-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain cancer. The average survival time for the majority of patients is approximately 15 months after diagnosis. A major feature of GBM that contributes to its poor prognosis is its high invasiveness. Caveolae are plasma membrane subdomains that participate in numerous biological functions. Caveolin-1 and Caveolae Associated Protein 1 (CAVIN1), formerly termed Polymerase I and Transcript Release Factor, are both necessary for caveola formation. We hypothesized that high expression of caveola-forming proteins in GBM promotes invasiveness via modulation of the production of matrix-degrading enzymes. METHODS The mRNA expression of caveola-forming proteins and matrix proteases in GBM samples, and survival after stratifying patients according to caveolin-1 or CAVIN1 expression, were analyzed from TCGA and REMBRANDT databases. The proteolytic profile of cell lines expressing or devoid of caveola-forming proteins was investigated using zymography and real-time qPCR. Invasion through basement membrane-like protein was investigated in vitro. RESULTS Expression of both caveolin-1 and CAVIN1 was increased in GBM compared to normal samples and correlated with expression of urokinase plasminogen activator (uPA) and gelatinases. High expression of caveola-forming proteins was associated with shorter survival time. GBM cell lines capable of forming caveolae expressed more uPA and matrix metalloproteinase-2 (MMP-2) and/or -9 (MMP-9) and were more invasive than GBM cells devoid of caveola-forming proteins. Experimental manipulation of caveolin-1 or CAVIN1 expression in GBM cells recapitulated some, but not all of these features. Caveolae modulate GBM cell invasion in part via matrix protease expression.
Collapse
Affiliation(s)
- Wenjun Pu
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Zeyad D Nassar
- School of Medicine and Freemasons Foundation Centre for Men's Health, South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Samira Khabbazi
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Nan Xie
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
| | - Jonathan M Harris
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Marie-Odile Parat
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
53
|
S. Wood R, S. Greenstein R, M. Hildebrandt I, S. George Parsons K. The Apoptotic Effects of Methylparaben and Ultraviolet B Light on M624 Human Melanoma Cells. Med Chem 2019. [DOI: 10.5772/intechopen.78575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Jafari N, Drury J, Morris AJ, Onono FO, Stevens PD, Gao T, Liu J, Wang C, Lee EY, Weiss HL, Evers BM, Zaytseva YY. De Novo Fatty Acid Synthesis-Driven Sphingolipid Metabolism Promotes Metastatic Potential of Colorectal Cancer. Mol Cancer Res 2019; 17:140-152. [PMID: 30154249 PMCID: PMC6318071 DOI: 10.1158/1541-7786.mcr-18-0199] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/01/2018] [Accepted: 08/17/2018] [Indexed: 01/28/2023]
Abstract
Metastasis is the most common cause of death in colorectal cancer patients. Fatty acid synthase (FASN) and sphingosine kinase-1 and -2 (SPHK1 and 2) are overexpressed in many cancers, including colorectal cancer. However, the contribution of FASN-mediated upregulation of sphingolipid metabolism to colorectal cancer metastasis and the potential of these pathways as targets for therapeutic intervention remain unknown. This study determined that sphingosine kinases (SPHK) are overexpressed in colorectal cancer as compared with normal mucosa. FASN expression significantly correlated with SPHK2 expression in data sets from The Cancer Genome Atlas (TCGA) and a colorectal cancer tumor microarray. FASN, SPHK1, and SPHK2 colocalized within invadopodia of primary colorectal cancer cells. Moreover, FASN inhibition decreased SPHK2 expression and the levels of dihydrosphingosine 1-phosphate (DH-S1P) and sphingosine 1-phosphate (S1P) in colorectal cancer cells and tumor tissues. Inhibition of FASN using TVB-3664 and sphingolipid metabolism using FTY-720 significantly inhibited the ability of primary colorectal cancer cells to proliferate, migrate, form focal adhesions, and degrade gelatin. Inhibition of the FASN/SPHK/S1P axis was accompanied by decreased activation of p-MET, p-FAK, and p-PAX. S1P treatment rescued FASN-mediated inhibition of these proteins, suggesting that FASN promotes metastatic properties of colorectal cancer cells, in part, through an increased sphingolipid metabolism. These data demonstrate that upregulation of the FASN/SPHK/S1P axis promotes colorectal cancer progression by enhancing proliferation, adhesion, and migration. IMPLICATIONS: This study provides a strong rationale for further investigation of the interconnection of de novo lipogenesis and sphingolipid metabolism that could potentially lead to the identification of new therapeutic targets and strategies for colorectal cancer.
Collapse
Affiliation(s)
- Naser Jafari
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - James Drury
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew J. Morris
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA,Division of Cardiovascular Medicine and The Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Fredrick O. Onono
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA,Division of Cardiovascular Medicine and The Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Payton D. Stevens
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Eun Y. Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
55
|
Marcink TC, Simoncic JA, An B, Knapinska AM, Fulcher YG, Akkaladevi N, Fields GB, Van Doren SR. MT1-MMP Binds Membranes by Opposite Tips of Its β Propeller to Position It for Pericellular Proteolysis. Structure 2018; 27:281-292.e6. [PMID: 30471921 DOI: 10.1016/j.str.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/08/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Critical to migration of tumor cells and endothelial cells is the proteolytic attack of membrane type 1 matrix metalloproteinase (MT1-MMP) upon collagen, growth factors, and receptors at cell surfaces. Lipid bilayer interactions of the substrate-binding hemopexin-like (HPX) domain of MT1-MMP were investigated by paramagnetic nuclear magnetic resonance relaxation enhancements (PREs), fluorescence, and mutagenesis. The HPX domain binds bilayers by blades II and IV on opposite sides of its β propeller fold. The EPGYPK sequence protruding from both blades inserts among phospholipid head groups in PRE-restrained molecular dynamics simulations. Bilayer binding to either blade II or IV exposes the CD44 binding site in blade I. Bilayer association with blade IV allows the collagen triple helix to bind without obstruction. Indeed, vesicles enhance proteolysis of collagen triple-helical substrates by the ectodomain of MT1-MMP. Hypothesized side-by-side MT1-MMP homodimerization would allow binding of bilayers, collagen, CD44, and head-to-tail oligomerization.
Collapse
Affiliation(s)
- Tara C Marcink
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Jayce A Simoncic
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Bo An
- Departments of Biomedical Engineering and Chemistry, Tufts University, Medford, MA 02155, USA
| | - Anna M Knapinska
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA
| | - Yan G Fulcher
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Narahari Akkaladevi
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL 33458, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
56
|
Planchon D, Rios Morris E, Genest M, Comunale F, Vacher S, Bièche I, Denisov EV, Tashireva LA, Perelmuter VM, Linder S, Chavrier P, Bodin S, Gauthier-Rouvière C. MT1-MMP targeting to endolysosomes is mediated by upregulation of flotillins. J Cell Sci 2018; 131:jcs.218925. [PMID: 30111578 DOI: 10.1242/jcs.218925] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022] Open
Abstract
Tumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated. Flotillin-1 and -2 are upregulated in many invasive cancers. Here, we show that flotillin upregulation triggers a general mechanism, common to carcinoma and sarcoma, which promotes RAB5-dependent MT1-MMP endocytosis and its delivery to RAB7-positive endolysosomal reservoirs. Conversely, flotillin knockdown in invasive cancer cells greatly reduces MT1-MMP accumulation in endolysosomes, its subsequent exocytosis at invadopodia, ECM degradation and cell invasion. Our results demonstrate that flotillin upregulation is necessary and sufficient to promote epithelial and mesenchymal cancer cell invasion and ECM degradation by controlling MT1-MMP endocytosis and delivery to the endolysosomal recycling compartment.
Collapse
Affiliation(s)
- Damien Planchon
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Eduardo Rios Morris
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Mallory Genest
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Franck Comunale
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, 75005 Paris, France
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Tomsk State University, Tomsk 634050, Russia
| | - Lubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Philippe Chavrier
- Cell Dynamics and Compartmentalization Unit, Institut Curie, 75005 Paris, France
| | - Stéphane Bodin
- CRBM, Univ Montpellier, CNRS, France, 1919 Route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
57
|
Wang Y, Song Y, Che X, Zhang L, Wang Q, Zhang X, Qu J, Li Z, Xu L, Zhang Y, Fan Y, Hou K, Liu Y, Qu X. Caveolin‑1 enhances RANKL‑induced gastric cancer cell migration. Oncol Rep 2018; 40:1287-1296. [PMID: 30015970 PMCID: PMC6072394 DOI: 10.3892/or.2018.6550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022] Open
Abstract
The classical pathway involving receptor activator of nuclear factor‑κB (RANK) and its ligand (RANKL) induces the activation of osteoclasts and the migration of a variety of tumor cells, including breast and lung cancer. In our previous study, the expression of RANK was identified on the surface of gastric cancer cells, however, whether the RANKL/RANK pathway is involved in the regulation of gastric cancer cell migration remains to be fully elucidated. Lipid rafts represent a major platform for the regulation of cancer signaling; however, their involvement in RANKL‑induced migration remains to be elucidated. To investigate the potential roles and mechanism of RANKL/RANK in gastric cancer migration and metastasis, the present study examined the expression of RANK by western blot analysis and the expression of caveolin‑1 (Cav‑1) in gastric cancer tissues by immunohistochemistry, in addition to cell migration which is measured by Transwell migration assay. The aggregation of lipid reft was observed by fluorescence microscopy and western blotting was used to measure signaling changes in associated pathways. The results showed that RANKL induced gastric cancer cell migration, accompanied by the activation of Cav‑1 and aggregation of lipid rafts. Nystatin, a lipid raft inhibitor, inhibited the activation of Cav‑1 and markedly reversed RANKL‑induced gastric cancer cell migration. The RANKL‑induced activation of Cav‑1 has been shown to occur with the activation of proto‑oncogene tyrosine‑protein kinase Src (c‑Src). The c‑Src inhibitor, PP2, inhibited the activation of Cav‑1 and lipid raft aggregation, and reversed RANKL‑induced gastric cancer cell migration. Furthermore, it was demonstrated that Cav‑1 was involved in RANKL‑induced cell migration in lung, renal and breast cancer cells. These results suggested that RANKL induced gastric cancer cell migration, likely through mechanisms involving the c‑Src/Cav‑1 pathway and lipid raft aggregation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongxi Song
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qian Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaomeng Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jinglei Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ye Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
58
|
Wittkowski KM, Dadurian C, Seybold MP, Kim HS, Hoshino A, Lyden D. Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. PLoS One 2018; 13:e0199012. [PMID: 29965997 PMCID: PMC6028090 DOI: 10.1371/journal.pone.0199012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
Collapse
Affiliation(s)
- Knut M. Wittkowski
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Christina Dadurian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Martin P. Seybold
- Institut für Formale Methoden der Informatik, Universität Stuttgart, Stuttgart, Germany
| | - Han Sang Kim
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ayuko Hoshino
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - David Lyden
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
59
|
Harper K, R. Lavoie R, Charbonneau M, Brochu-Gaudreau K, Dubois CM. The Hypoxic Tumor Microenvironment Promotes Invadopodia Formation and Metastasis through LPA1 Receptor and EGFR Cooperation. Mol Cancer Res 2018; 16:1601-1613. [DOI: 10.1158/1541-7786.mcr-17-0649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/03/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
|
60
|
Chatterjee AD, Roy D, Guevara P, Pal R, Naryan M, Roychowdhury S, Das S. Arachidonic Acid Induces the Migration of MDA-MB-231 Cells by Activating Raft-associated Leukotriene B4 Receptors. CLINICAL CANCER DRUGS 2018; 5:28-41. [PMID: 30443489 PMCID: PMC6233886 DOI: 10.2174/2212697x05666180418145601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The migration of tumor cells is critical in spreading cancers through the lymphatic nodes and circulatory systems. Although arachidonic acid (AA) and its soluble metabolites have been shown to induce the migration of breast and colon cancer cells, the mechanism by which it induces such migration has not been fully understood. OBJECTIVE The effect of AA on migratory responses of the MDA-MB-231 cell line (a triple-negative breast cancer cell) was examined and compared with MCF-7 (estrogen-receptor positive) breast cancer cells to elucidate the mechanism of AA-induced migration. METHODS Migrations of breast cancer cells were examined with the help of wound-healing assays. AA-induced eicosanoid synthesis was monitored by RP-HPLC. Cellular localizations of lipoxygenase and lipid rafts were assessed by immunoblot and confocal microscopy. RESULTS AA treatment stimulated the synthesis of leukotriene B4 (LTB4) and HETE-8, but lowered the levels of prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and HETE-5 in MDA-MB-231 cells. Further analysis indicated that AA increased the expression of 5-lipoxygenase (5-LOX) in this cell line and inhibiting its expression by small molecule inhibitors lowered the production of LTB4 and reduced migration. In contrast, MCF-7 cells did not show any appreciable changes in eicosanoid synthesis, 5-LOX expression, or cellular migration. CONCLUSION Our results suggest that AA treatment activates the BLT1 receptor (present in membrane microdomains) and stimulates the synthesis of LTB4 production, which is likely to be associated with the migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Atasi De Chatterjee
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Debarshi Roy
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Priscilla Guevara
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Rituraj Pal
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Mahesh Naryan
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Sukla Roychowdhury
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Siddhartha Das
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
61
|
Yamamoto Y, Tomiyama A, Sasaki N, Yamaguchi H, Shirakihara T, Nakashima K, Kumagai K, Takeuchi S, Toyooka T, Otani N, Wada K, Narita Y, Ichimura K, Sakai R, Namba H, Mori K. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft. Biochem Biophys Res Commun 2017; 495:1292-1299. [PMID: 29162448 DOI: 10.1016/j.bbrc.2017.11.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/18/2017] [Indexed: 01/29/2023]
Abstract
Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism.
Collapse
Affiliation(s)
- Yutaro Yamamoto
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan; Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Arata Tomiyama
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan; Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Nobuyoshi Sasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Neurosurgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hideki Yamaguchi
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, 2-2 Surugadai, Kanda, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Shirakihara
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Katsuhiko Nakashima
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Kosuke Kumagai
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Naoki Otani
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Ryuichi Sakai
- Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kentaro Mori
- Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
62
|
Fang X, Li X, Yin Z, Xia L, Quan X, Zhao Y, Zhou B. Genetic variation at the microRNA binding site of CAV1 gene is associated with lung cancer susceptibility. Oncotarget 2017; 8:92943-92954. [PMID: 29190968 PMCID: PMC5696234 DOI: 10.18632/oncotarget.21687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Single nucleotide polymorphism (SNP) may influence the genesis and development of cancer in a variety of ways depending on their location. Here we conducted a study in Chinese female non-smokers to investigate the relationship between rs1049337, rs926198 and the risk or survival of lung cancer. Further, we explored whether rs1049337 could alter the binding affinity between the mRNA of CAV1 and the corresponding microRNAs. Finally, we evaluated the relationship between expression level of CAV1 and prognosis of lung cancer. The results showed that the rs1049337-C allele and rs926198-C allele were the protective alleles of lung cancer risk. Haplotype analysis indicated that the C-C haplotype (constructed by rs1049337 and rs926198) was a protective haplotype for lung cancer risk. The result of luciferase reporter assay showed that rs1049337 can affect the binding affinity of CAV1 mRNA to the corresponding microRNAs both in A549 cell line and H1299 cell line. Compared with C allele, T allele had a relatively decreased luciferase activity. Compared with paired normal adjacent tissue or normal lung tissue, lung cancer tissue showed a relatively low level of CAV1. Refer to those patients at early stage of lung cancer, the expression level of CAV1 in patients at late stage of lung cancer was relatively low. In conclusion, the results indicated that rs1049337, it's a SNP located at 3′UTR region of CAV1 may affect lung cancer risk by altering the binding affinity between the mRNA of CAV1 and the corresponding microRNAs.
Collapse
Affiliation(s)
- Xue Fang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China.,Department of Epidemiology, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Lingzi Xia
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| | - Yuxia Zhao
- Department of Radiotherapy, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning, China
| |
Collapse
|
63
|
Gavgiotaki E, Filippidis G, Markomanolaki H, Kenanakis G, Agelaki S, Georgoulias V, Athanassakis I. Distinction between breast cancer cell subtypes using third harmonic generation microscopy. JOURNAL OF BIOPHOTONICS 2017; 10:1152-1162. [PMID: 27753229 DOI: 10.1002/jbio.201600173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/10/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Third Harmonic Generation (THG) microscopy as a non-invasive, label free imaging methodology, allows linkage of lipid profiles with various breast cancer cells. The collected THG signal arise mostly from the lipid droplets and the membrane lipid bilayer. Quantification of THG signal can accurately distinguish HER2-positive cells. Further analysis using Fourier transform infrared (FTIR) spectra reveals cancer-specific profiles, correlating lipid raft-corresponding spectra to THG signal, associating thus THG to chemical information. THG imaging of a cancer cell.
Collapse
Affiliation(s)
- Evangelia Gavgiotaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, 71110, Crete, Greece
- Medical School, University of Crete, Heraklion, 71003, Crete, Greece
| | - George Filippidis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, 71110, Crete, Greece
| | | | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, 71110, Crete, Greece
| | - Sofia Agelaki
- Medical School, University of Crete, Heraklion, 71003, Crete, Greece
| | | | - Irene Athanassakis
- Department of Biology, University of Crete, Heraklion, 71409, Crete, Greece
| |
Collapse
|
64
|
Cho Z, Konishi E, Kanemaru M, Isohisa T, Arita T, Kawai M, Tsutsumi M, Mizutani H, Takenaka H, Ozawa T, Tsuruta D, Katoh N, Asai J. Podoplanin expression in peritumoral keratinocytes predicts aggressive behavior in extramammary Paget's disease. J Dermatol Sci 2017; 87:29-35. [PMID: 28381343 DOI: 10.1016/j.jdermsci.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent studies have demonstrated podoplanin expression in several tumors, which has been associated with lymph node metastasis and poor prognosis. Podoplanin expression in peritumoral cells such as cancer-associated fibroblasts also correlates with tumor progression in several cancers. However, podoplanin expression and its association with extramammary Paget's disease (EMPD) remain unclear. OBJECTIVE In this study, we examined whether the presence of podoplanin expression in tumor cells or peritumoral basal keratinocytes correlated with aggressive behavior in patients with EMPD and investigated the mechanisms of podoplanin-mediated tumor invasion in this disorder. METHODS Skin samples of 37 patients with EMPD were investigated by immunohistochemical analysis. The functions of podoplanin in keratinocytes were examined in vitro by RT-PCR and with invadopodia gelatin-degradation assays using HaCaT cells. RESULTS Podoplanin was not identified in tumor cells in all cases. Podoplanin expression in peritumoral basal keratinocytes was observed in 25 patients (67.6%). In in situ EMPD, 50% of cases (9 in 18) exhibited podoplanin-positive keratinocytes, whereas 84.2% (16 in 19) demonstrated positive staining in invasive EMPD (P<0.05). Podoplanin expression in peritumoral keratinocytes was also associated with tumor thickness (P<0.005). By immunohistochemical analysis, podoplanin-positive peritumoral keratinocytes were found to be negative for E-cadherin, one of the major adhesion molecules of keratinocytes, which might contribute to tumor invasion into the dermis through a crack in the basal cell layer induced by down-regulation of cell adhesion therein. We further found that podoplanin-positive keratinocytes exhibited invadopodia, which are thought to function in the migration of cancer cells through tissue barriers, indicating that podoplanin-positive peritumoral basal keratinocytes might assist tumor invasion by degrading the extracellular matrix. CONCLUSION The presence of podoplanin expression in peritumoral keratinocytes correlates with aggressive behavior in EMPD and might therefore serve as a useful prognostic marker for patients with EMPD.
Collapse
Affiliation(s)
- Zaigen Cho
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mai Kanemaru
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taro Isohisa
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Arita
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Minako Kawai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Miho Tsutsumi
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiromi Mizutani
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideya Takenaka
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norito Katoh
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Asai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
65
|
Li Y, Shan F, Chen J. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1. World J Surg Oncol 2017; 15:69. [PMID: 28327197 PMCID: PMC5361711 DOI: 10.1186/s12957-017-1120-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/14/2017] [Indexed: 02/01/2023] Open
Abstract
Background The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. Methods To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3’-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. Results AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1’s ability to bind Flotillin-1. Conclusions miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100048, China
| | - Fei Shan
- Department of Cardiac Surgery, Affiliated Hospital of Medical College of Yan'an University, Yan'an, Shanxi, 716000, China
| | - Jinglong Chen
- Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
66
|
Fu P, Chen F, Pan Q, Zhao X, Zhao C, Cho WCS, Chen H. The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma. Onco Targets Ther 2017; 10:819-835. [PMID: 28243118 PMCID: PMC5317307 DOI: 10.2147/ott.s123912] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Caveolin-1 (Cav-1), a major structural protein of caveolae, is an integral membrane protein which plays an important role in the progression of carcinoma. However, whether Cav-1 acts as a tumor promoter or a tumor suppressor still remains controversial. For example, the tumor-promoting function of Cav-1 has been found in renal cancer, prostate cancer, tongue squamous cell carcinoma (SCC), lung SCC and bladder SCC. In contrast, Cav-1 also plays an inhibitory role in esophagus adenocarcinoma, lung adenocarcinoma and cutaneous SCC. The role of Cav-1 is still controversial in thyroid cancer, hepatocellular carcinoma, gastric adenocarcinoma, colon adenocarcinoma, breast cancer, pancreas cancer, oral SCC, laryngeal SCC, head and neck SCC, esophageal SCC and cervical SCC. Besides, it has been reported that the loss of stromal Cav-1 might predict poor prognosis in breast cancer, gastric cancer, pancreas cancer, prostate cancer, oral SCC and esophageal SCC. However, the accumulation of stromal Cav-1 has been found to be promoted by the progression of tongue SCC. Taken together, Cav-1 seems playing a different role in different cancer subtypes even of the same organ, as well as acting differently in the same cancer subtype of different organs. Thus, we hereby explore the functions of Cav-1 in human adenocarcinoma and SCC from the perspective of clinical significances and pathogenesis. We envision that novel targets may come with the further investigation of Cav-1 in carcinogenesis.
Collapse
Affiliation(s)
- Pin Fu
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Fuchun Chen
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Qi Pan
- Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | - Chen Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan
| | | | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan; Department of Pathology, Maternal and Child Health Hospital of Hubei, Wuhan, People's Republic of China
| |
Collapse
|
67
|
Xiong N, Li S, Tang K, Bai H, Peng Y, Yang H, Wu C, Liu Y. Involvement of caveolin-1 in low shear stress-induced breast cancer cell motility and adhesion: Roles of FAK/Src and ROCK/p-MLC pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:12-22. [PMID: 27773611 DOI: 10.1016/j.bbamcr.2016.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/07/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
Abstract
Tumor cells translocating to distant sites are subjected to hemodynamic shear forces during their passage in the blood vessels. Low shear stress (LSS) plays a critical role in the regulation of various aspects of tumor cells functions, including motility and adhesion. Beyond its structural role, caveolin-1 (Cav-1), the important component of caveolae, represents a modulator of several cancer-associated functions as tumor progression and metastasis. However, the role of Cav-1 in regulating tumor cells response to shear stress remains poorly explored. Here, we characterized the role of LSS and Cav-1 in mediating cell motility and adhesion on human breast carcinoma MDA-MB-231 cells. We first showed that LSS exposure promoted cell polarity and focal adhesion (FA) dynamics, thus indicating elevated cell migration. Silencing of Cav-1 leaded to a significantly lower formation of stress fibers. However, LSS exposure was able to rescue it via the alteration of actin-associated proteins expression, including ROCK, p-MLC, cofilin and filamin A. Time-lapse migration assay indicated that Cav-1 expression fostered MDA-MB-231 cells motility and LSS triggered cells to rapidly generate new lamellipodia. Furthermore, Cav-1 and LSS significantly influenced cell adhesion. Taken together, our findings provide insights into mechanisms underlying LSS triggered events mediated by downstream Cav-1, including FAK/Src and ROCK/p-MLC pathways, involved in the reorganization of the cytoskeleton, cell motility, FA dynamics and breast cancer cell adhesion.
Collapse
Affiliation(s)
- Niya Xiong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Kai Tang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hongxia Bai
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China.
| |
Collapse
|
68
|
Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu Rev Cell Dev Biol 2016; 32:555-576. [PMID: 27501444 DOI: 10.1146/annurev-cellbio-111315-125227] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1-matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.
Collapse
Affiliation(s)
| | | | - Pedro Monteiro
- Barts Cancer Institute, University of London John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | - Catalina Lodillinsky
- Instituto de Oncologia Ángel H. Roffo, Research Area, Buenos Aires, C1417DTB, Argentina
| | - Carine Rossé
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248 France; .,PSL Research University, Paris, F-75005 France.,CNRS, UMR 144, Paris, F-75248 France
| |
Collapse
|
69
|
Mrkonjic S, Destaing O, Albiges-Rizo C. Mechanotransduction pulls the strings of matrix degradation at invadosome. Matrix Biol 2016; 57-58:190-203. [PMID: 27392543 DOI: 10.1016/j.matbio.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023]
Abstract
Degradation of the extracellular matrix is a critical step of tumor cell invasion. Both protease-dependent and -independent mechanisms have been described as alternate processes in cancer cell motility. Interestingly, some effectors of protease-dependent degradation are focalized at invadosomes and are directly coupled with contractile and adhesive machineries composed of multiple mechanosensitive proteins. This review presents recent findings in protease-dependent mechanisms elucidating the ways the force affects extracellular matrix degradation by targeting protease expression and activity at invadosome. The aim is to highlight mechanosensing and mechanotransduction processes to direct the degradative activity at invadosomes, with the focus on membrane tension, proteases and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Sanela Mrkonjic
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France
| | - Olivier Destaing
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble F-38042, France; Université Grenoble Alpes, Institut Albert Bonniot, F-38042 Grenoble, France; CNRS UMR 5309, F-38042 Grenoble, France.
| |
Collapse
|
70
|
Hastie EL, Sherwood DR. A new front in cell invasion: The invadopodial membrane. Eur J Cell Biol 2016; 95:441-448. [PMID: 27402208 DOI: 10.1016/j.ejcb.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
Invadopodia are F-actin-rich membrane protrusions that breach basement membrane barriers during cell invasion. Since their discovery more than 30 years ago, invadopodia have been extensively investigated in cancer cells in vitro, where great advances in understanding their composition, formation, cytoskeletal regulation, and control of the matrix metalloproteinase MT1-MMP trafficking have been made. In contrast, few studies examining invadopodia have been conducted in vivo, leaving their physiological regulation unclear. Recent live-cell imaging and gene perturbation studies in C. elegans have revealed that invadopodia are formed with a unique invadopodial membrane, defined by its specialized lipid and associated protein composition, which is rapidly recycled through the endolysosome. Here, we provide evidence that the invadopodial membrane is conserved and discuss its possible functions in traversing basement membrane barriers. Discovery and examination of the invadopodial membrane has important implications in understanding the regulation, assembly, and function of invadopodia in both normal and disease settings.
Collapse
Affiliation(s)
- Eric L Hastie
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, 124 Science Drive, Box 90388, Durham, NC 27708, USA.
| |
Collapse
|
71
|
TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol (Dordr) 2016; 39:353-63. [PMID: 27042827 PMCID: PMC4972855 DOI: 10.1007/s13402-016-0280-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Purpose Tumor progression is associated with cell migration, invasion and metastasis. These processes are accompanied by the activation of specific proteases that are either linked to cellular membranes or are secreted into extracellular spaces. TNF-α is known to play an important role in various aspects of tumor progression. The aim of this work was to assess the effect of TNF-α on the migration of breast cancer cells and, in addition, to assess its association with the location of membrane-associated proteases in lipid rafts. Methods Wound scratch healing and Transwell migration assays were used to study the effect of TNF-α on the migration of both hormone-dependent and hormone-independent breast cancer-derived cells, i.e., MCF7 and MDA-MB-231, respectively. The expression and secretion of three matrix metalloproteases, MMP9, MMP2 and MT1-MMP, and two dipeptidyl peptidases, CD26 and FAP-α, was investigated using RT-PCR, Western blotting and gelatin zymography. In addition, activation of the MAPK/ERK signaling pathway was investigated by Western blotting. Results We found that a TNF-α-induced enhancement of breast cancer cell migration was accompanied by an increased secretion of MMP9, but not MMP2, into the culture media. We also found that TNF-α upregulated the expression of the dipeptidyl peptidases CD26 and FAP-α in a dose-dependent manner and, in addition, enhanced the concentration of all five proteases in lipid rafts in the breast cancer-derived cells tested, regardless of cell type. Furthermore, we found that TNF-α activated the MAPK/ERK signaling pathway by increasing the ERK1/2 phosphorylation level. Application of the MEK/ERK1/2 inhibitor U-0126 resulted in down-regulation of TNF-α-induced MMP9 secretion and abrogation of the enhanced concentration of proteases in the lipid rafts. Conclusions From our results we conclude that TNF-α-induced activation of the MAPK/ERK signaling pathway may promote breast cancer cell migration via both upregulation of MMP9, CD26 and FAP-α and concentration of these proteases, as also MT1-MMP and MMP2, in the lipid rafts. TNF-α may serve as a potential therapeutic target in breast cancers susceptible to TNF-α stimulation.
Collapse
|
72
|
Yang H, Guan L, Li S, Jiang Y, Xiong N, Li L, Wu C, Zeng H, Liu Y. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget 2016; 7:16227-47. [PMID: 26919102 PMCID: PMC4941310 DOI: 10.18632/oncotarget.7583] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/05/2016] [Indexed: 01/27/2023] Open
Abstract
Cancer cells are subjected to fluid shear stress during passage through the venous and lymphatic system. Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its mechanobiological roles under low shear stress (LSS) conditions remain largely unknown. Here, we identified Cav-1 is mechanosensitive to LSS exposure, and its activation-induced PI3K/Akt/mTOR signaling promotes motility, invadopodia formation and metastasis of breast carcinoma MDA-MB-231 cells. Application of LSS (1.8 and 4.0 dynes/cm2) to MDA-MB-231 cells significantly increased the cell motility, invadopodia formation, MT1-MMP expression, ECM degradation, and also induced a sustained activation of Cav-1 and PI3K/Akt/mTOR signaling cascades. Methyl-β-cyclodextrin-caused caveolae destruction markedly decreased LSS-induced activation of both Cav-1 and PI3K/Akt/mTOR, leading to suppress MT1-MMP expression, inhibit invadopodia formation and ECM degradation, suggesting that caveolae integrity also involved in metastasis. Immunocytochemical assay showed that LSS induces the Cav-1 clustering in lipid rafts and co-localization of Cav-1 and MT1-MMP on invadopodia. Immunofluorescence confocal analysis demonstrated that Cav-1 activation were required for the acquisition of a polarized phenotype in MDA-MB-231 cells. Finally, Cav-1 knockdown significantly suppressed tumor colonization in the lungs and distant metastases in animal models. Our findings highlight the importance of Cav-1 in hematogenous metastasis, and provide new insights into the underlying mechanisms of mechanotransduction induced by LSS.
Collapse
Affiliation(s)
- Hong Yang
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Liuyuan Guan
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Niya Xiong
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Hongjuan Zeng
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R. China
| |
Collapse
|
73
|
Shi Y, Tan SH, Ng S, Zhou J, Yang ND, Koo GB, McMahon KA, Parton RG, Hill MM, Del Pozo MA, Kim YS, Shen HM. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy 2016; 11:769-84. [PMID: 25945613 DOI: 10.1080/15548627.2015.1034411] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy.
Collapse
Key Words
- ATP6V0D1, ATPase H+ transporting lysosomal 38kDa, V0 subunit d1
- Baf, bafilomycin A1
- CAV1, caveolin 1
- CHO, water-soluble cholesterol
- CQ, choloroquine
- CTSL, cathepsin L
- CTxB, cholera toxin subunit B
- DRF, detergent-resistant fraction
- DSF, detergent-soluble fraction
- EGF, epidermal growth factor
- KO, knockout
- LAMP1, lysosomal-associated membrane protein 1
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MBCD, methyl-β-cyclodextrin
- MEF, mouse embryonic fibroblasts
- MTOR, mechanistic target of rapamycin
- PBS, phosphate-buffered saline
- PI, propidium iodide
- PLA, proximity ligation assay
- PTRF, polymerase I and transcript release factor
- TFRC, transferrin receptor
- TSC, tuberous sclerosis complex
- WT, wild type.
- autophagy
- breast cancer
- caveolin 1
- lipid rafts
- lysosome
- tfLC3B, mRFP-GFP tandem fluorescent-tagged LC3B
Collapse
Affiliation(s)
- Yin Shi
- a Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore ; Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Milone MR, Pucci B, Bifulco K, Iannelli F, Lombardi R, Ciardiello C, Bruzzese F, Carriero MV, Budillon A. Proteomic analysis of zoledronic-acid resistant prostate cancer cells unveils novel pathways characterizing an invasive phenotype. Oncotarget 2016; 6:5324-41. [PMID: 25481874 PMCID: PMC4467152 DOI: 10.18632/oncotarget.2694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022] Open
Abstract
Proteomic analysis identified differentially expressed proteins between zoledronic acid-resistant and aggressive DU145R80 prostate cancer (PCa) cells and their parental DU145 cells. Ingenuity Pathway Analysis (IPA) showed a strong relationship between the identified proteins within a network associated with cancer and with homogeneous cellular functions prevalently related with regulation of cell organization, movement and consistent with the smaller and reduced cell-cell contact morphology of DU145R80 cells. The identified proteins correlated in publically available human PCa genomic data with increased tumor expression and aggressiveness. DU145R80 exhibit also a clear increase of alpha-v-(αv) integrin, and of urokinase receptor (uPAR), both included within the same network of the identified proteins. Interestingly, the actin-rich structures localized at the cell periphery of DU145R80 cells are rich of Filamin A, one of the identified proteins and uPAR which, in turn, co-localizes with αv-integrin, in podosomes and/or invadopodia. Notably, the invasive feature of DU145R80 may be prevented by blocking anti-αv antibody. Overall, we unveil a signaling network that physically links the interior of the nucleus via the cytoskeleton to the extracellular matrix and that could dictate PCa aggressiveness suggesting novel potential prognostic markers and therapeutic targets for PCa patients.
Collapse
Affiliation(s)
- Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Katia Bifulco
- Neoplastic Progression Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Federica Iannelli
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Maria Vincenza Carriero
- Neoplastic Progression Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.,Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| |
Collapse
|
75
|
Lohmer LL, Clay MR, Naegeli KM, Chi Q, Ziel JW, Hagedorn EJ, Park JE, Jayadev R, Sherwood DR. A Sensitized Screen for Genes Promoting Invadopodia Function In Vivo: CDC-42 and Rab GDI-1 Direct Distinct Aspects of Invadopodia Formation. PLoS Genet 2016; 12:e1005786. [PMID: 26765257 PMCID: PMC4713207 DOI: 10.1371/journal.pgen.1005786] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/12/2015] [Indexed: 12/12/2022] Open
Abstract
Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue. During animal development specialized cells acquire the ability move and invade into other tissues to form complex organs and structures. Understanding this cellular behavior is important medically, as cancer cells can hijack the developmental program of invasion to metastasize throughout the body. One of the most formidable barriers invasive cells face is basement membrane–-a thin, dense, sheet-like assembly of proteins and carbohydrates that surrounds most tissues. Cells deploy small, protrusive, membrane associated structures called invadopodia (invasive feet) to breach basement membranes. How invadopodia are formed and controlled during invasion has been challenging to understand, as it is difficult to examine these dynamic structures in live animals. Using the nematode worm Caenorhabditis elegans, we have conducted the first large-scale screen to isolate genes that control invadopodia in live animals. Our screen isolated 13 genes and we confirmed two are key invadopodia regulators: the Rho GTPase CDC-42 that promotes F-actin polymerization at invadopodia to generate the force to breach basement membranes, and the Rab GDI-1 that promotes membrane addition at invadopodia that may allow invadopodia to extend through basement membranes. This work provides new insights into invadopodia construction and identifies potential novel targets for anti-metastasis therapies.
Collapse
Affiliation(s)
- Lauren L. Lohmer
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Matthew R. Clay
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Kaleb M. Naegeli
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Joshua W. Ziel
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Elliott J. Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jieun E. Park
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ranjay Jayadev
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
76
|
Koh M, Yong HY, Kim ES, Son H, Jeon YR, Hwang JS, Kim MO, Cha Y, Choi WS, Noh DY, Lee KM, Kim KB, Lee JS, Kim HJ, Kim H, Kim HH, Kim EJ, Park SY, Kim HS, Moon WK, Choi Kim HR, Moon A. A novel role for flotillin-1 in H-Ras-regulated breast cancer aggressiveness. Int J Cancer 2015; 138:1232-45. [PMID: 26413934 DOI: 10.1002/ijc.29869] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/03/2023]
Abstract
Elevated expression and aberrant activation of Ras have been implicated in breast cancer aggressiveness. H-Ras, but not N-Ras, induces breast cell invasion. A crucial link between lipid rafts and H-Ras function has been suggested. This study sought to identify the lipid raft protein(s) responsible for H-Ras-induced tumorigenicity and invasiveness of breast cancer. We conducted a comparative proteomic analysis of lipid raft proteins from invasive MCF10A human breast epithelial cells engineered to express active H-Ras and non-invasive cells expressing active N-Ras. Here, we identified a lipid raft protein flotillin-1 as an important regulator of H-Ras activation and breast cell invasion. Flotillin-1 was required for epidermal growth factor-induced activation of H-Ras, but not that of N-Ras, in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Flotillin-1 knockdown inhibited the invasiveness of MDA-MB-231 and Hs578T TNBC cells in vitro and in vivo. In xenograft mouse tumor models of these TNBC cell lines, we showed that flotillin-1 played a critical role in tumor growth. Using human breast cancer samples, we provided clinical evidence for the metastatic potential of flotillin-1. Membrane staining of flotillin-1 was positively correlated with metastatic spread (p = 0.013) and inversely correlated with patient disease-free survival rates (p = 0.005). Expression of flotillin-1 was associated with H-Ras in breast cancer, especially in TNBC (p < 0.001). Our findings provide insight into the molecular basis of Ras isoform-specific interplay with flotillin-1, leading to tumorigenicity and aggressiveness of breast cancer.
Collapse
Affiliation(s)
- Minsoo Koh
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hae-Young Yong
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Hwajin Son
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - You Rim Jeon
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Jin-Sun Hwang
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Myeong-Ok Kim
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Yujin Cha
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Korea
| | - Dong-Young Noh
- Department of Surgery and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Kyung-Min Lee
- Department of Surgery and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Ki-Bum Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Haemin Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Eun Joo Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Aree Moon
- College of Pharmacy, Duksung Women's University, Seoul, Korea
| |
Collapse
|
77
|
Shukla A, Cutucache CE, Sutton GL, Pitner MA, Rai K, Rai S, Opavsky R, Swanson PC, Joshi SS. Absence of caveolin-1 leads to delayed development of chronic lymphocytic leukemia in Eμ-TCL1 mouse model. Exp Hematol 2015; 44:30-7.e1. [PMID: 26435347 DOI: 10.1016/j.exphem.2015.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United States. The tissue microenvironment, specifically the lymph nodes, influences the biological and clinical behavior of CLL cells. Gene expression profiling of CLL cells from peripheral blood, bone marrow, and lymph nodes revealed Cav-1 as one of the genes that might be involved in the pathogenesis of CLL. We have previously reported that the knockdown of Cav-1 in primary CLL cells exhibits a significant decrease in cell migration and immune synapse formation. However, the precise role of Cav-1 in CLL initiation and progression in vivo is not known. Therefore, we decreased the expression of Cav-1 in vivo by breeding Eμ-TCL1 with cav-1 knockout mice. We observed a significant decrease in the number of CLL cells and rate of proliferation of CLL cells in spleen, liver, and bone marrow from Eμ-TCL1-Cav1(-/+) and Eμ-TCL1-Cav1(-/-) mice as compared with Eμ-TCL1 mice. In addition, there was a significant increase in survival of Eμ-TCL1-Cav1(-/+) and Eμ-TCL1-Cav1(-/-) compared with Eμ-TCL1 mice. Mechanistically, we observed a decrease in MAPK-Erk signaling measured by p-Erk levels in Eμ-TCL1-Cav1(-/+) mice when compared with Eμ-TCL1-Cav(wt/wt). Together these results indicate that decreased Cav-1 in Eμ-TCL1 mice significantly delays the onset of CLL and decreases leukemic progression by inhibiting MAPK-Erk signaling, suggesting a role for Cav-1 in the proliferation and progression of CLL.
Collapse
Affiliation(s)
- Ashima Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | | | - Garrett L Sutton
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Michael A Pitner
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Karan Rai
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Siddharth Rai
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Rene Opavsky
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
78
|
Hammer A, Laghate S, Diakonova M. Src tyrosyl phosphorylates cortactin in response to prolactin. Biochem Biophys Res Commun 2015; 463:644-9. [PMID: 26043691 DOI: 10.1016/j.bbrc.2015.05.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/30/2015] [Indexed: 12/18/2022]
Abstract
The hormone/cytokine prolactin (PRL) is implicated in breast cancer cell invasion and metastasis. PRL-induced pathways are mediated by two non-receptor tyrosine kinases, JAK2 and Src. We previously demonstrated that prolactin stimulates invasion of breast cancer cells TMX2-28 through JAK2 and its target serine/threonine kinase PAK1. We hypothesize herein that the actin-binding protein cortactin, a protein involved in invadopodia formation and cell invasion, is activated by PRL. We demonstrate that TMX2-28 cells are more invasive than T47D breast cancer cells in response to PRL. We determine that cortactin is tyrosyl phosphorylated in response to PRL in a time and dose-dependent manner in TMX2-28 cells, but not in T47D cells. Furthermore, we show that PRL mediates cortactin tyrosyl phosphorylation via Src, but not JAK2. Finally, we demonstrate that maximal PRL-mediated TMX2-28 cell invasion requires both Src and JAK2 kinase activity, while T47D cell invasion is JAK2- but not Src-dependent. Thus PRL may induce cell invasion via two pathways: through a JAK2/PAK1 mediated pathway that we have previously demonstrated, and Src-dependent activation and tyrosyl phosphorylation of cortactin.
Collapse
Affiliation(s)
- Alan Hammer
- The Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606-3390, USA.
| | - Sneha Laghate
- The Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606-3390, USA.
| | - Maria Diakonova
- The Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606-3390, USA.
| |
Collapse
|
79
|
Ebisawa M, Iwano H, Nishikawa M, Tochigi Y, Komatsu T, Endou Y, Hirayama K, Taniyama H, Kadosawa T, Yokota H. Significance of caveolin-1 and matrix metalloproteinase 14 gene expression in canine mammary tumours. Vet J 2015; 206:191-6. [PMID: 26364240 DOI: 10.1016/j.tvjl.2015.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023]
Abstract
Canine mammary tumours (CMTs) are the most common neoplasms affecting female dogs. There is an urgent need for molecular biomarkers that can detect early stages of the disease in order to improve accuracy of CMT diagnosis. The aim of this study was to examine whether caveolin-1 (Cav-1) and matrix metalloproteinase 14 (MMP14) are associated with CMT histological malignancy and invasion. Sixty-five benign and malignant CMT samples and six normal canine mammary glands were analysed using quantitative reverse transcription-polymerase chain reaction. Cav-1 and MMP14 genes were highly expressed in CMT tissues compared to normal tissues. Cav-1 especially was overexpressed in malignant and invasive CMT tissues. When a CMT cell line was cultured on fluorescent gelatin-coated coverslips, localisation of Cav-1 was observed at invadopodia-mediated degradation sites of the gelatin matrix. These findings suggest that Cav-1 may be involved in CMT invasion and that the markers may be useful for estimating CMT malignancy.
Collapse
Affiliation(s)
- M Ebisawa
- Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - H Iwano
- Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
| | - M Nishikawa
- Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Y Tochigi
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - T Komatsu
- Laboratory of Veterinary Clinical Oncology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Y Endou
- Laboratory of Veterinary Clinical Oncology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - K Hirayama
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - H Taniyama
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - T Kadosawa
- Laboratory of Veterinary Clinical Oncology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - H Yokota
- Laboratory of Veterinary Biochemistry, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
80
|
Gould CM, Courtneidge SA. Regulation of invadopodia by the tumor microenvironment. Cell Adh Migr 2015; 8:226-35. [PMID: 24714597 DOI: 10.4161/cam.28346] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Christine M Gould
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | - Sara A Courtneidge
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| |
Collapse
|
81
|
Fujita T, Chiwaki F, Takahashi RU, Aoyagi K, Yanagihara K, Nishimura T, Tamaoki M, Komatsu M, Komatsuzaki R, Matsusaki K, Ichikawa H, Sakamoto H, Yamada Y, Fukagawa T, Katai H, Konno H, Ochiya T, Yoshida T, Sasaki H. Identification and Characterization of CXCR4-Positive Gastric Cancer Stem Cells. PLoS One 2015; 10:e0130808. [PMID: 26110809 PMCID: PMC4481351 DOI: 10.1371/journal.pone.0130808] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/25/2015] [Indexed: 12/18/2022] Open
Abstract
Diffuse-type solid tumors are often composed of a high proportion of rarely proliferating (i.e., dormant) cancer cells, strongly indicating the involvement of cancer stem cells (CSCs) Although diffuse-type gastric cancer (GC) patients have a poor prognosis due to high-frequent development of peritoneal dissemination (PD), it is limited knowledge that the PD-associated CSCs and efficacy of CSC-targeting therapy in diffuse-type GC. In this study, we established highly metastatic GC cell lines by in vivo selection designed for the enrichment of PD-associated GC cells. By microarray analysis, we found C-X-C chemokine receptor type 4 (CXCR4) can be a novel marker for highly metastatic CSCs, since CXCR4-positive cells can grow anchorage-independently, initiate tumors in mice, be resistant to cytotoxic drug, and produce differentiated daughter cells. In clinical samples, these CXCR4-positive cells were found from not only late metastasis stage (accumulated ascites) but also earlier stage (peritoneal washings). Moreover, treatment with transforming growth factor-β enhanced the anti-cancer effect of docetaxel via induction of cell differentiation/asymmetric cell division of the CXCR4-positive gastric CSCs even in a dormant state. Therefore, differentiation inducers hold promise for obtaining the maximum therapeutic outcome from currently available anti-cancer drugs through re-cycling of CSCs.
Collapse
Affiliation(s)
- Takeshi Fujita
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Fumiko Chiwaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryou-u Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiko Aoyagi
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuyoshi Yanagihara
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Takao Nishimura
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masashi Tamaoki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Masayuki Komatsu
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Komatsuzaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhide Yamada
- Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takeo Fukagawa
- Gastric Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Katai
- Gastric Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
82
|
Sivasubramaniyan K, Harichandan A, Schilbach K, Mack AF, Bedke J, Stenzl A, Kanz L, Niederfellner G, Bühring HJ. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology 2015; 25:902-17. [PMID: 25978997 DOI: 10.1093/glycob/cwv032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4(+) prostate cancer cells formed fibroblast-like colonies with limited cell-cell contacts, whereas SSEA-4(-) cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4(+) cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4(+) fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4(+) primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4(+) cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4(+) cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell-cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix.
Collapse
Affiliation(s)
- Kavitha Sivasubramaniyan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Abhishek Harichandan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Stem Cell Transplantation, University Children's Hospital, Tübingen 72076, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Lothar Kanz
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Gerhard Niederfellner
- Discovery Oncology, Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| |
Collapse
|
83
|
Grass GD, Dai L, Qin Z, Parsons C, Toole BP. CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance. Adv Cancer Res 2015; 123:351-73. [PMID: 25081536 DOI: 10.1016/b978-0-12-800092-2.00013-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Major determinants that influence negative outcome in cancer patients are the abilities of cancer cells to resist current therapies and to invade surrounding host tissue, consequently leading to local and metastatic dissemination. Hyaluronan (HA), a prominent constituent of the tumor microenvironment, not only provides structural support but also interacts with cell surface receptors, especially CD44, that influence cooperative signaling pathways leading to chemoresistance and invasiveness. CD147 (emmprin; basigin) is a member of the Ig superfamily that has also been strongly implicated in chemoresistance and invasiveness. CD147 both regulates HA synthesis and interacts with the HA receptors, CD44, and LYVE-1. Increased CD147 expression induces formation of multiprotein complexes containing CD44 (or LYVE-1) as well as members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or monocarboxylate transporter families, which become assembled in specialized lipid raft domains along with CD147 itself. In each case, multivalent HA-receptor interactions are essential for formation or stabilization of the lipid raft complexes and for downstream signaling pathways or transporter activities that are driven by these complexes. We conclude that cooperativity between HA, HA receptors, and CD147 may be a major driver of the interconnected pathways of invasiveness and chemoresistance widely critical to malignancy.
Collapse
Affiliation(s)
- G Daniel Grass
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Lu Dai
- Department of Medicine, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhiqiang Qin
- Department of Microbiology, Immunology & Parasitology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Chris Parsons
- Department of Medicine, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Microbiology, Immunology & Parasitology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Bryan P Toole
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
84
|
Lim HC, Multhaupt HAB, Couchman JR. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 2015; 14:15. [PMID: 25623282 PMCID: PMC4326193 DOI: 10.1186/s12943-014-0279-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cell surface proteoglycans interact with numerous regulators of cell behavior through their glycosaminoglycan chains. The syndecan family of transmembrane proteoglycans are virtually ubiquitous cell surface receptors that are implicated in the progression of some tumors, including breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two-tailed paired t-test and one-way ANOVA with Tukey’s post-hoc test were used in the analysis of data. Results MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced invasion and matrix degradation. The molecular basis for this effect was revealed to have two components. First, thrombin inhibition contributed to enhanced cell adhesion and reduced invasion. Second, a specific loss of cell surface syndecan-2 was noted. The ensuing junction formation was dependent on syndecan-4, whose role in promoting actin cytoskeletal organization is known. Syndecan-2 interacts with, and may regulate, caveolin-2. Depletion of either molecule had the same adhesion-promoting influence, along with reduced invasion, confirming a role for this complex in maintaining the invasive phenotype of mammary carcinoma cells. Finally, both syndecan-2 and caveolin-2 were upregulated in tissue arrays from breast cancer patients compared to normal mammary tissue. Moreover their expression levels were correlated in triple negative breast cancers. Conclusion Cell surface proteoglycans, notably syndecan-2, may be important regulators of breast carcinoma progression through regulation of cytoskeleton, cell adhesion and invasion.
Collapse
Affiliation(s)
- Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Current address: Stem Cell Center, Lund University, Lund, Sweden.
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
85
|
Abstract
Pericellular proteases have long been associated with cancer invasion and metastasis due to their ability to degrade extracellular matrix components. Recent studies demonstrate that proteases also modulate tumor progression and metastasis through highly regulated and complex processes involving cleavage, processing, or shedding of cell adhesion molecules, growth factors, cytokines, and kinases. In this review, we address how cancer cells, together with their surrounding microenvironment, regulate pericellular proteolysis. We dissect the multitude of mechanisms by which pericellular proteases contribute to cancer progression and discuss how this knowledge can be integrated into therapeutic opportunities.
Collapse
Affiliation(s)
- Lisa Sevenich
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| |
Collapse
|
86
|
Havrylov S, Park M. MS/MS-based strategies for proteomic profiling of invasive cell structures. Proteomics 2014; 15:272-86. [PMID: 25303514 DOI: 10.1002/pmic.201400220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/19/2014] [Accepted: 10/01/2014] [Indexed: 12/29/2022]
Abstract
Acquired capacity of cancer cells to penetrate through the extracellular matrix of surrounding tissues is a prerequisite for tumour metastatic spread - the main source of cancer-associated mortality. Through combined efforts of many research groups, we are beginning to understand that the ability of cells to invade through the extracellular matrix is a multi-faceted phenomenon supported by variety of specialised protrusive cellular structures, primarily pseudopodia, invadopodia and podosomes. Additionally, secreted extracellular vesicles are being increasingly recognised as important mediators of invasive cell phenotypes and therefore may be considered bona fide invasive cell structures. Dissection of the molecular makings underlying biogenesis and function of all of these structures is crucial to identify novel targets for specific anti-metastatic therapies. Rapid advances and growing accessibility of MS/MS-based protein identification made this family of techniques a suitable and appropriate choice for proteomic profiling of invasive cell structures. In this review, we provide a summary of current progress in the characterisation of protein composition and topology of protein interaction networks of pseudopodia, invadopodia, podosomes and extracellular vesicles, as well as outline challenges and perspectives of the field.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
87
|
Martín-Villar E, Borda-d'Agua B, Carrasco-Ramirez P, Renart J, Parsons M, Quintanilla M, Jones GE. Podoplanin mediates ECM degradation by squamous carcinoma cells through control of invadopodia stability. Oncogene 2014; 34:4531-44. [PMID: 25486435 PMCID: PMC4430312 DOI: 10.1038/onc.2014.388] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/19/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022]
Abstract
Invadopodia are actin-rich cell membrane projections used by invasive cells to penetrate the basement membrane. Control of invadopodia stability is critical for efficient degradation of the extracellular matrix (ECM); however, the underlying molecular mechanisms remain poorly understood. Here, we uncover a new role for podoplanin, a transmembrane glycoprotein closely associated with malignant progression of squamous cell carcinomas (SCCs), in the regulation of invadopodia-mediated matrix degradation. Podoplanin downregulation in SCC cells impairs invadopodia stability, thereby reducing the efficiency of ECM degradation. We report podoplanin as a novel component of invadopodia-associated adhesion rings, where it clusters prior to matrix degradation. Early podoplanin recruitment to invadopodia is dependent on lipid rafts, whereas ezrin/moesin proteins mediate podoplanin ring assembly. Finally, we demonstrate that podoplanin regulates invadopodia maturation by acting upstream of the ROCK-LIMK-Cofilin pathway through the control of RhoC GTPase activity. Thus, podoplanin has a key role in the regulation of invadopodia function in SCC cells, controlling the initial steps of cancer cell invasion.
Collapse
Affiliation(s)
- E Martín-Villar
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain.,Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - B Borda-d'Agua
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - P Carrasco-Ramirez
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | - J Renart
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | - M Parsons
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - M Quintanilla
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | - G E Jones
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
88
|
Precise manipulation of cell behaviors on surfaces for construction of tissue/organs. Colloids Surf B Biointerfaces 2014; 124:97-110. [DOI: 10.1016/j.colsurfb.2014.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
|
89
|
Bajpai S, Feng Y, Wirtz D, Longmore GD. β-Catenin serves as a clutch between low and high intercellular E-cadherin bond strengths. Biophys J 2014; 105:2289-300. [PMID: 24268141 DOI: 10.1016/j.bpj.2013.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
A wide range of invasive pathological outcomes originate from the loss of epithelial phenotype and involve either loss of function or downregulation of transmembrane adhesive receptor complexes, including Ecadherin (Ecad) and binding partners β-catenin and α-catenin at adherens junctions. Cellular pathways regulating wild-type β-catenin level, or direct mutations in β-catenin that affect the turnover of the protein have been shown to contribute to cancer development, through induction of uncontrolled proliferation of transformed tumor cells, particularly in colon cancer. Using single-molecule force spectroscopy, we show that depletion of β-catenin or the prominent cancer-related S45 deletion mutation in β-catenin present in human colon cancers both weaken tumor intercellular Ecad/Ecad bond strength and diminishes the capacity of specific extracellular matrix proteins-including collagen I, collagen IV, and laminin V-to modulate intercellular Ecad/Ecad bond strength through α-catenin and the kinase activity of glycogen synthase kinase 3 (GSK-3β). Thus, in addition to regulating tumor cell proliferation, cancer-related mutations in β-catenin can influence tumor progression by weakening the adhesion of tumor cells to one another through reduced individual Ecad/Ecad bond strength and cellular adhesion to specific components of the extracellular matrix and the basement membrane.
Collapse
Affiliation(s)
- Saumendra Bajpai
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | |
Collapse
|
90
|
Lin CW, Sun MS, Liao MY, Chung CH, Chi YH, Chiou LT, Yu J, Lou KL, Wu HC. Podocalyxin-like 1 promotes invadopodia formation and metastasis through activation of Rac1/Cdc42/cortactin signaling in breast cancer cells. Carcinogenesis 2014; 35:2425-35. [PMID: 24970760 DOI: 10.1093/carcin/bgu139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metastatic disease is the leading cause of cancer mortality. Identifying biomarkers and regulatory mechanisms is important toward developing diagnostic and therapeutic tools against metastatic cancer. In this study, we demonstrated that podocalyxin-like 1 (PODXL) is overexpressed in breast tumor cells and increased in lymph node metastatic cancer. Mechanistically, we found that the expression of PODXL was associated with cell motility and invasiveness. Suppression of PODXL in MDA-MB-231 cells reduced lamellipodia formation and focal adhesion kinase (FAK) and paxillin phosphorylation. PODXL knockdown reduced the formation of invadopodia, such as inhibiting the colocalization of F-actin with cortactin and suppressing phosphorylation of cortactin and neural Wiskott-Aldrich syndrome protein. Conversely, overexpression of PODXL in MCF7 cells induced F-actin/cortactin colocalization and enhanced invadopodia formation and activation. Invadopodia activity and tumor invasion in PODXL-knockdown cells are similar to that in cortactin-knockdown cells. We further found that the DTHL motif in PODXL is crucial for regulating cortactin phosphorylation and Rac1/Cdc42 activation. Inhibition of Rac1/Cdc42 impeded PODXL-mediated cortactin activation and FAK and paxillin phosphorylation. Moreover, inhibition of PODXL in MDA-MB-231 cells significantly suppressed tumor colonization in the lungs and distant metastases, similar to those in cortactin-knockdown cells. These findings show that overexpression of PODXL enhanced invadopodia formation and tumor metastasis by inducing Rac1/Cdc42/cortactin signaling network.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Biochemistry, School of Medicine, Taipei Medical University, Taipei 110, Taiwan, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan,
| | - Min-Siou Sun
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and
| | - Mei-Ying Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chu-Hung Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Hsuan Chi
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Li-Tin Chiou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - John Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Lung Lou
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106, Taiwan and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
91
|
Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. Br J Cancer 2014; 111:539-50. [PMID: 24921915 PMCID: PMC4119973 DOI: 10.1038/bjc.2014.298] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Myosin X (MYO10) was recently reported to promote tumour invasion by transporting integrins to filopodial tips in breast cancer. However, the role of MYO10 in tumours remains poorly defined. Here, we report that MYO10 is required in invadopodia to mediate invasive growth and extracellular matrix degradation, which depends on the binding of MYO10's pleckstrin homology domain to PtdIns(3,4,5)P3. METHODS The expression of MYO10 and its associations with clinicopathological and biological factors were examined in breast cancer cells and breast cancer specimens (n=120). Cell migration and invasion were investigated after the silencing of MYO10. The ability of cells to form invadopodia was studied using a fluorescein isothiocyanate-conjugated gelatin degradation assay. A mouse model was established to study tumour invasive growth and metastasis in vivo. RESULTS Elevated MYO10 levels were correlated with oestrogen receptor status, progesterone receptor status, poor differentiation, and lymph node metastasis. Silencing MYO10 reduced cell migration and invasion. Invadopodia were responsible for MYO10's role in promoting invasion. Furthermore, decreased invasive growth and lung metastasis were observed in the MYO10-silenced nude mouse model. CONCLUSIONS Our findings suggest that elevated MYO10 expression increases the aggressiveness of breast cancer; this effect is dependent on the involvement of MYO10 in invadopodial formation.
Collapse
|
92
|
Hryniewicz-Jankowska A, Augoff K, Biernatowska A, Podkalicka J, Sikorski AF. Membrane rafts as a novel target in cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1845:155-65. [DOI: 10.1016/j.bbcan.2014.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/16/2013] [Accepted: 01/17/2014] [Indexed: 01/06/2023]
|
93
|
Gonzalez E, Piva M, Rodriguez-Suarez E, Gil D, Royo F, Elortza F, Falcon-Perez JM, Vivanco MDM. Human mammospheres secrete hormone-regulated active extracellular vesicles. PLoS One 2014; 9:e83955. [PMID: 24404144 PMCID: PMC3880284 DOI: 10.1371/journal.pone.0083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/10/2013] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression.
Collapse
Affiliation(s)
| | - Marco Piva
- Cell Biology and Stem Cells Unit, CIBERehd, Derio, Spain
| | | | - David Gil
- Structural Biology, CIC bioGUNE, Derio, Spain
| | | | - Felix Elortza
- Proteomics Platform, ProteoRed-ISCIII, CIBERehd, Derio, Spain
| | - Juan M. Falcon-Perez
- Metabolomics CIBERehd, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail: (JMFP); (MDMV)
| | - Maria dM. Vivanco
- Cell Biology and Stem Cells Unit, CIBERehd, Derio, Spain
- * E-mail: (JMFP); (MDMV)
| |
Collapse
|
94
|
Tan SH, Shui G, Zhou J, Shi Y, Huang J, Xia D, Wenk MR, Shen HM. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy 2013; 10:226-42. [PMID: 24296537 DOI: 10.4161/auto.27003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2(-/-) mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2(-/-) MEFs compared with Tsc2(+/+) MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2(-/-) MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2(-/-) MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.
Collapse
Affiliation(s)
- Shi-Hao Tan
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing, China
| | - Jing Zhou
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Yin Shi
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Jingxiang Huang
- Department of Pathology; National University Hospital of Singapore; Singapore
| | - Dajing Xia
- Zhejiang University School of Public Health; Hangzhou, Zhejiang, China
| | - Markus R Wenk
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore; Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Han-Ming Shen
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Singapore; NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| |
Collapse
|
95
|
Choi JA, Lim IK. TIS21/BTG2 inhibits invadopodia formation by downregulating reactive oxygen species level in MDA-MB-231 cells. J Cancer Res Clin Oncol 2013; 139:1657-65. [PMID: 23907596 DOI: 10.1007/s00432-013-1484-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/22/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE Invasion of cancer cells depends on the proteolytic degradation of extracellular matrix regulated by actin-driven membrane protrusions, called invadopodia. However, the mechanisms underlying invadopodia formation in cancer cells remain largely unknown. METHODS By employing adenoviral transduction of breast cancer cells with either β-galactosidase (Ad-LacZ) or TIS21(/BTG2/Pc3) (Ad-TIS21) gene, the regulation of invadopodia formation was investigated. Invasion activity was examined by invadopodia assay and Matrigel assay. Intracellular reactive oxygen species (ROS) was monitored by FACS-based analysis. RESULTS Here, we observed that TIS21 suppressed invadopodia formation as well as invasion activity along with F-actin remodeling. The inhibition of TIS21-mediated invadopodia formation was accompanied with attenuation of ROS generation in the TIS21 expressers, indicating that TIS21-mediated inhibition of ROS plays a critical role for invadopodia formation by regulating actin-associated protein remodeling. This was further confirmed in the TIS21(-/-)MEF cells. CONCLUSIONS This is the first report to provide insight into invasion signals regulated by tumor suppressor, TIS21(/BTG2/Pc3) gene, in the intractable breast cancer cells.
Collapse
Affiliation(s)
- Jung-A Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Division of Cell Transformation and Restoration, Ajou University School of Medicine, Suwon, 443-721, Korea
| | | |
Collapse
|
96
|
Antelmi E, Cardone RA, Greco MR, Rubino R, Di Sole F, Martino NA, Casavola V, Carcangiu M, Moro L, Reshkin SJ. ß1 integrin binding phosphorylates ezrin at T567 to activate a lipid raft signalsome driving invadopodia activity and invasion. PLoS One 2013; 8:e75113. [PMID: 24086451 PMCID: PMC3782503 DOI: 10.1371/journal.pone.0075113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/09/2013] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires matrix degrading protrusions called invadopodia. The Na+/H+ exchanger (NHE1) has recently been shown to be fundamental in the regulation of invadopodia actin cytoskeleton dynamics and activity. However, the structural link between the invadopodia cytoskeleton and NHE1 is still unknown. A candidate could be ezrin, a linker between the NHE1 and the actin cytoskeleton known to play a pivotal role in invasion and metastasis. However, the mechanistic basis for its role remains unknown. Here, we demonstrate that ezrin phosphorylated at T567 is highly overexpressed in the membrane of human breast tumors and positively associated with invasive growth and HER2 overexpression. Further, in the metastatic cell line, MDA-MB-231, p-ezrin was almost exclusively expressed in invadopodia lipid rafts where it co-localized in a functional complex with NHE1, EGFR, ß1-integrin and phosphorylated-NHERF1. Manipulation by mutation of ezrins T567 phosphorylation state and/or PIP2 binding capacity or of NHE1s binding to ezrin or PIP2 demonstrated that p-ezrin expression and binding to PIP2 are required for invadopodia-mediated ECM degradation and invasion and identified NHE1 as the membrane protein that p-ezrin regulates to induce invadopodia formation and activity.
Collapse
Affiliation(s)
- Ester Antelmi
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Rosa A. Cardone
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Maria R. Greco
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Rosa Rubino
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine and the Medical Service, Department of Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Nicola A. Martino
- Department of Animal Production, Faculty of Biotechnological Sciences, University of Bari, Bari, Italy
| | - Valeria Casavola
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
| | - MariaLuisa Carcangiu
- Department of Pathology, Anatomic Pathology A Unit, Istituto Nazionale Tumori, Milan, Italy
| | - Loredana Moro
- Institute of Biomembranes and Bioenergetics (IBBE), CNR, Bari, Italy
| | - Stephan J. Reshkin
- Department of Bioscience, Biotechnology and Biopharmacologics, University of Bari, Bari, Italy
- * E-mail:
| |
Collapse
|
97
|
Sisci D, Maris P, Cesario MG, Anselmo W, Coroniti R, Trombino GE, Romeo F, Ferraro A, Lanzino M, Aquila S, Maggiolini M, Mauro L, Morelli C, Andò S. The estrogen receptor α is the key regulator of the bifunctional role of FoxO3a transcription factor in breast cancer motility and invasiveness. Cell Cycle 2013; 12:3405-20. [PMID: 24047697 DOI: 10.4161/cc.26421] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of the Forkhead box class O (FoxO)3a transcription factor in breast cancer migration and invasion is controversial. Here we show that FoxO3a overexpression decreases motility, invasiveness, and anchorage-independent growth in estrogen receptor α-positive (ERα+) cancer cells while eliciting opposite effects in ERα-silenced cells and in ERα-negative (ERα-) cell lines, demonstrating that the nuclear receptor represents a crucial switch in FoxO3a control of breast cancer cell aggressiveness. In ERα+ cells, FoxO3a-mediated events were paralleled by a significant induction of Caveolin-1 (Cav1), an essential constituent of caveolae negatively associated to tumor invasion and metastasis. Cav1 induction occurs at the transcriptional level through FoxO3a binding to a Forkhead responsive core sequence located at position -305/-299 of the Cav1 promoter. 17β-estradiol (E2) strongly emphasized FoxO3a effects on cell migration and invasion, while ERα and Cav1 silencing were able to reverse them, demonstrating that both proteins are pivotal mediators of these FoxO3a controlled processes. In vivo, an immunohistochemical analysis on tissue sections from patients with ERα+ or ERα- invasive breast cancers or in situ ductal carcinoma showed that nuclear FoxO3a inversely (ERα+) or directly (ERα-) correlated with the invasive phenotype of breast tumors. In conclusion, FoxO3a role in breast cancer motility and invasion depends on ERα status, disclosing a novel aspect of the well-established FoxO3a/ERα interplay. Therefore FoxO3a might become a pursuable target to be suitably exploited in combination therapies either in ERα+ or ERα- breast tumors.
Collapse
Affiliation(s)
- Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences; University of Calabria; Arcavacata di Rende; Cosenza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Brisson L, Driffort V, Benoist L, Poet M, Counillon L, Antelmi E, Rubino R, Besson P, Labbal F, Chevalier S, Reshkin SJ, Gore J, Roger S. NaV1.5 Na⁺ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J Cell Sci 2013; 126:4835-42. [PMID: 23902689 DOI: 10.1242/jcs.123901] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The degradation of the extracellular matrix by cancer cells represents an essential step in metastatic progression and this is performed by cancer cell structures called invadopodia. NaV1.5 (also known as SCN5A) Na(+) channels are overexpressed in breast cancer tumours and are associated with metastatic occurrence. It has been previously shown that NaV1.5 activity enhances breast cancer cell invasiveness through perimembrane acidification and subsequent degradation of the extracellular matrix by cysteine cathepsins. Here, we show that NaV1.5 colocalises with Na(+)/H(+) exchanger type 1 (NHE-1) and caveolin-1 at the sites of matrix remodelling in invadopodia of MDA-MB-231 breast cancer cells. NHE-1, NaV1.5 and caveolin-1 co-immunoprecipitated, which indicates a close association between these proteins. We found that the expression of NaV1.5 was responsible for the allosteric modulation of NHE-1, rendering it more active at the intracellular pH range of 6.4-7; thus, it potentially extrudes more protons into the extracellular space. Furthermore, NaV1.5 expression increased Src kinase activity and the phosphorylation (Y421) of the actin-nucleation-promoting factor cortactin, modified F-actin polymerisation and promoted the acquisition of an invasive morphology in these cells. Taken together, our study suggests that NaV1.5 is a central regulator of invadopodia formation and activity in breast cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Inserm U1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours, 10 Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Grass GD, Tolliver LB, Bratoeva M, Toole BP. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness. J Biol Chem 2013; 288:26089-26104. [PMID: 23888049 DOI: 10.1074/jbc.m113.497685] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.
Collapse
Affiliation(s)
- G Daniel Grass
- From the Department of Regenerative Medicine and Cell Biology and
| | | | - Momka Bratoeva
- From the Department of Regenerative Medicine and Cell Biology and
| | - Bryan P Toole
- From the Department of Regenerative Medicine and Cell Biology and; the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
100
|
Abstract
Remodeling of extracellular matrix (ECM) is a fundamental cell property that allows cells to alter their microenvironment and move through tissues. Invadopodia and podosomes are subcellular actin-rich structures that are specialized for matrix degradation and are formed by cancer and normal cells, respectively. Although initial studies focused on defining the core machinery of these two structures, recent studies have identified inputs from both growth factor and adhesion signaling as crucial for invasive activity. This Commentary will outline the current knowledge on the upstream signaling inputs to invadopodia and podosomes and their role in governing distinct stages of these invasive structures. We discuss invadopodia and podosomes as adhesion structures and highlight new data showing that invadopodia-associated adhesion rings promote the maturation of already-formed invadopodia. We present a model in which growth factor stimulation leads to phosphoinositide 3-kinase (PI3K) activity and formation of invadopodia, whereas adhesion signaling promotes exocytosis of proteinases at invadopodia.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Department of Cancer Biology, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232-6840, USA
| | | | | |
Collapse
|