51
|
Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 2021; 22:550-559. [PMID: 33707781 PMCID: PMC8132572 DOI: 10.1038/s41590-021-00886-5] [Citation(s) in RCA: 649] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
The NLRP3 inflammasome is a multimeric cytosolic protein complex that assembles in response to cellular perturbations. This assembly leads to the activation of caspase-1, which promotes maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18, as well as inflammatory cell death (pyroptosis). The inflammatory cytokines contribute to the development of systemic low-grade inflammation, and aberrant NLRP3 activation can drive a chronic inflammatory state in the body to modulate the pathogenesis of inflammation-associated diseases. Therefore, targeting NLRP3 or other signaling molecules downstream, such as caspase-1, IL-1β or IL-18, has the potential for great therapeutic benefit. However, NLRP3 inflammasome-mediated inflammatory cytokines play dual roles in mediating human disease. While they are detrimental in the pathogenesis of inflammatory and metabolic diseases, they have a beneficial role in numerous infectious diseases and some cancers. Therefore, fine tuning of NLRP3 inflammasome activity is essential for maintaining proper cellular homeostasis and health. In this Review, we will cover the mechanisms of NLRP3 inflammasome activation and its divergent roles in the pathogenesis of inflammation-associated diseases such as cancer, atherosclerosis, diabetes and obesity, highlighting the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Correspondence to: Thirumala-Devi Kanneganti, Department of Immunology, St. Jude Children’s Research Hospital, MS #351, 262 Danny Thomas Place, Memphis TN 38105-3678, Tel: (901) 595-3634; Fax. (901) 595-5766.,
| |
Collapse
|
52
|
Low NLRP3 expression predicts a better prognosis of colorectal cancer. Biosci Rep 2021; 41:228200. [PMID: 33821998 PMCID: PMC8055799 DOI: 10.1042/bsr20210280] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: NOD-like receptor pyrin domain-3 (NLRP3) inflammasome activation is a double-edged sword in tumorigenesis. Whether NLRP3 is involved in the progression and prognosis of colorectal cancer (CRC) remains elucidated and is the focus of the present study. Methods: Immunohistochemistry (IHC) was applied on tissue microarray (TMA) to determine the expression of NLRP3 in CRC patients. All 100 patients were divided into the low NLRP3 group and the high NLRP3 group according to their NLRP3 IHC scoring. Additionally, CRC xenografts were established by injecting HCT116 or RKO cells subcutaneously into nude mice. Cell proliferation and apoptosis were determined in HCT116 cells after treatment with NLRP3 inhibitor MCC950. Results: NLRP3 expression was up-regulated in colon adenocarcinoma tissues compared with that in paracancerous tissues in CRC patients, HCT116 xenograft, and RKO xenograft. High NLRP3 level correlated with the advanced TNM classification of malignant tumors, the occurrence of distant metastasis, vascular invasion, and positive lymph nodes. Furthermore, Kaplan–Meier survival analysis revealed that a high NLRP3 level was associated with a low 5-year survival rate and even a low 10-year survival rate. Moreover, the multivariable Cox proportional hazards regression model implied that NLRP3 expression level was an independent risk factor for CRC prognosis. Inhibition of NLRP3 by MCC950 suppressed cell proliferation, induced cell apoptosis, and decreased mRNA levels of interleukin 1β (IL1β) and interleukin 18 (IL18) in HCT116 cells. Conclusions: High level of NLRP3 predicts poor survival in CRC patients. NLRP3 is a putative prognostic biomarker and a potential therapeutic target in CRC treatments.
Collapse
|
53
|
Abstract
A fundamental concept in immunology is that the innate immune system initiates or instructs downstream adaptive immune responses. Inflammasomes are central players in innate immunity to pathogens, but how inflammasomes shape adaptive immunity is complex and relatively poorly understood. Here we highlight recent work on the interplay between inflammasomes and adaptive immunity. We address how inflammasome-dependent release of cytokines and antigen activates, shapes or even inhibits adaptive immune responses. We consider how distinct tissue or cellular contexts may alter the effects of inflammasome activation on adaptive immunity and how this contributes to beneficial or detrimental outcomes in infectious diseases, cancer and autoimmunity. We aspire to provide a framework for thinking about inflammasomes and their connection to the adaptive immune response.
Collapse
|
54
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
55
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1268] [Impact Index Per Article: 317.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
56
|
de Carvalho AC, Ogawa CY, De Camillis Rodrigues L, de Medeiros LS, Veiga TAM. Penicillium genus as a source for anti-leukemia compounds: an overview from 1984 to 2020. Leuk Lymphoma 2021; 62:2079-2093. [PMID: 33733992 DOI: 10.1080/10428194.2021.1897804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Penicillium is a widely explored genus due to its chemical diversity and associated biological properties; in addition, it represents an important source for cytotoxic compounds with good application perspectives. Based on these aspects, in this review, Penicillium compounds that presented activity against human leukemia cell lines are being listed and discussed. For this, a careful bibliographic survey was carried out in the main electronic databases, i.e. Scopus, SciFinder, Web of Science and Pubmed. Between 1984 and 2020, thirty seven original papers were selected, when using the search terms Penicillium and leukemia. The occurrence of l-asparaginase produced by some Penicillium spp. was also highlighted since this enzyme is being employed for acute lymphoblastic leukemia and lymphosarcoma therapies. Therefore, this overview aims to demonstrate the potential of metabolites biosynthesized by Penicillium fungi which can be applied in human leukemia therapies and opportunities for designing new lead compounds.
Collapse
|
57
|
Lo AKF, Dawson CW, Lung HL, Wong KL, Young LS. The Role of EBV-Encoded LMP1 in the NPC Tumor Microenvironment: From Function to Therapy. Front Oncol 2021; 11:640207. [PMID: 33718235 PMCID: PMC7947715 DOI: 10.3389/fonc.2021.640207] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. It is also characterized by heavy infiltration with non-malignant leucocytes. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signaling pathways which collectively promote cell proliferation and survival, angiogenesis, invasiveness, and aerobic glycolysis. LMP1 also affects cell-cell interactions, antigen presentation, and cytokine and chemokine production. Here, we discuss how LMP1 modulates local immune responses that contribute to the establishment of the NPC tumor microenvironment. We also discuss strategies for targeting the LMP1 protein as a novel therapy for EBV-driven malignancies.
Collapse
Affiliation(s)
| | | | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lawrence S. Young
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
58
|
Gut mycobiome: A promising target for colorectal cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188489. [PMID: 33278512 DOI: 10.1016/j.bbcan.2020.188489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
The human gut is mainly habited by a staggering amount and abundance of bacteria as well as fungi. Gut dysbiosis is believed as a pivotal factor in colorectal cancer (CRC) development. Lately increasing evidence from animal or clinical studies suggested that fungal disturbance also contributed to CRC development. This review summarized the current status of fungal dysbiosis in CRC and highlighted the potential tumorigenic mechanisms of fungi. Then the fungal markers and some therapeutic strategies for CRC were discussed. It would provide a better understanding of the correlation of mycobiota and CRC, and modulating fungal community would be a promising target against CRC.
Collapse
|
59
|
Segovia M, Russo S, Girotti MR, Rabinovich GA, Hill M. Role of inflammasome activation in tumor immunity triggered by immune checkpoint blockers. Clin Exp Immunol 2020; 200:155-162. [PMID: 32297328 DOI: 10.1111/cei.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint blockers improve the overall survival of a limited number of patients among different cancers. Identifying pathways that influence the immunological and clinical response to treatment is critical to improve the therapeutic efficacy and predict clinical responses. Recently, a key role has been assigned to innate immune mechanisms in checkpoint blockade-driven anti-tumor responses. However, inflammatory pathways can both improve and impair anti-tumor immunity. In this review, we discuss how different inflammatory pathways, particularly inflammasome activation, can influence the clinical outcome of immune checkpoint blockers. Inflammasome activation may reinforce anti-tumor immunity by boosting CD8+ T cell priming as well as by enhancing T helper type 17 (Th17) responses. In particular, we focus on the modulation of the cation channel transmembrane protein 176B (TMEM176B) and the ectonucleotidase CD39 as potential targets to unleash inflammasome activation leading to reinforced anti-tumor immunity and improved efficacy of immune checkpoint blockers. Future studies should be aimed at investigating the mechanisms and cell subsets involved in inflammasome-driven anti-tumor responses.
Collapse
Affiliation(s)
- M Segovia
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - S Russo
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - M R Girotti
- Laboratory of Translational Immuno-Oncology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - G A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina.,School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - M Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
60
|
Liu H, Xu Y, Liang K, Liu R. Immune Cells Combined With NLRP3 Inflammasome Inhibitor Exert Better Antitumor Effect on Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:1378. [PMID: 32974137 PMCID: PMC7471723 DOI: 10.3389/fonc.2020.01378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is among the most aggressive malignancies associated with chronic inflammation. Moreover, cellular immunity can be inhibited by inflammation induced by nucleotide-binding domain, leucine-rich family, pyrin-containing 3 (NLRP3) inflammasome. Accordingly, NLRP3 inhibition combining cytokine-induced killer (CIK) cells may improve antitumor efficacy. 3,4-Methylenedioxy-β-nitrostyrene (MNS) was selected as a specific NLRP3 inflammasome inhibitor. Western blot was used to evaluate the NLRP3 inflammasome expression in pancreatic cancer cell lines SW1990 and PANC-1. The impact of NLRP3 inhibition on migration, invasiveness, and proliferation of pancreatic cancer cells was analyzed through wound healing assay, Transwell assay, and Cell Counting Kit-8 (CCK-8) assay, respectively. The combining antitumor effect in vivo of CIK and NLRP3 inhibition was evaluated in a subcutaneous human pancreatic cancer BALB/c nude mouse model. Western blot analysis showed significant expression of NLRP3 inflammasome in human pancreatic cancer lines SW1990 and PANC-1, and MNS did significantly inhibit the expression of NLRP3 inflammasome in cell lines. Moreover, NLRP3 inhibition could significantly decrease the migration, invasiveness, and proliferation of pancreatic cancer cells. In vivo experiments showed that combination treatment with MNS and CIK cells had the greatest antitumor effect among the four treatment groups including control, MNS, and CIK. Combination treatment with NLRP3 inflammasome inhibition and CIK cells showed greater antitumor efficacy through inflammation inhibition and immunity restoration.
Collapse
Affiliation(s)
- Hailiang Liu
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Xu
- The Second Hepatobiliary Surgical Department, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kai Liang
- General Surgery Institute, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rong Liu
- The Second Hepatobiliary Surgical Department, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
61
|
Bleve A, Durante B, Sica A, Consonni FM. Lipid Metabolism and Cancer Immunotherapy: Immunosuppressive Myeloid Cells at the Crossroad. Int J Mol Sci 2020; 21:ijms21165845. [PMID: 32823961 PMCID: PMC7461616 DOI: 10.3390/ijms21165845] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer progression generates a chronic inflammatory state that dramatically influences hematopoiesis, originating different subsets of immune cells that can exert pro- or anti-tumor roles. Commitment towards one of these opposing phenotypes is driven by inflammatory and metabolic stimuli derived from the tumor-microenvironment (TME). Current immunotherapy protocols are based on the reprogramming of both specific and innate immune responses, in order to boost the intrinsic anti-tumoral activity of both compartments. Growing pre-clinical and clinical evidence highlights the key role of metabolism as a major influence on both immune and clinical responses of cancer patients. Indeed, nutrient competition (i.e., amino acids, glucose, fatty acids) between proliferating cancer cells and immune cells, together with inflammatory mediators, drastically affect the functionality of innate and adaptive immune cells, as well as their functional cross-talk. This review discusses new advances on the complex interplay between cancer-related inflammation, myeloid cell differentiation and lipid metabolism, highlighting the therapeutic potential of metabolic interventions as modulators of anticancer immune responses and catalysts of anticancer immunotherapy.
Collapse
Affiliation(s)
- Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Barbara Durante
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
- Humanitas Clinical and Research Center–IRCCS–, via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: ; Tel.: +39-(0)-321-375881; Fax: +39-(0)-321-375821
| | - Francesca Maria Consonni
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani, 2-28100 Novara, Italy; (A.B.); (B.D.); (F.M.C.)
| |
Collapse
|
62
|
Yang Y, Li C, Liu T, Dai X, Bazhin AV. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Front Immunol 2020; 11:1371. [PMID: 32793192 PMCID: PMC7387650 DOI: 10.3389/fimmu.2020.01371] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Among the various immunological and non-immunological tumor-promoting activities of myeloid-derived suppressor cells (MDSCs), their immunosuppressive capacity remains a key hallmark. Effort in the past decade has provided us with a clearer view of the suppressive nature of MDSCs. More suppressive pathways have been identified, and their recognized targets have been expanded from T cells and natural killer (NK) cells to other immune cells. These novel mechanisms and targets afford MDSCs versatility in suppressing both innate and adaptive immunity. On the other hand, a better understanding of the regulation of their development and function has been unveiled. This intricate regulatory network, consisting of tumor cells, stromal cells, soluble mediators, and hostile physical conditions, reveals bi-directional crosstalk between MDSCs and the tumor microenvironment. In this article, we will review available information on how MDSCs exert their immunosuppressive function and how they are regulated in the tumor milieu. As MDSCs are a well-established obstacle to anti-tumor immunity, new insights in the potential synergistic combination of MDSC-targeted therapy and immunotherapy will be discussed.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Lab of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
63
|
Lebegge E, Arnouk SM, Bardet PMR, Kiss M, Raes G, Van Ginderachter JA. Innate Immune Defense Mechanisms by Myeloid Cells That Hamper Cancer Immunotherapy. Front Immunol 2020; 11:1395. [PMID: 32733461 PMCID: PMC7363805 DOI: 10.3389/fimmu.2020.01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past decade, cancer immunotherapy has been steering immune responses toward cancer cell eradication. However, these immunotherapeutic approaches are hampered by the tumor-promoting nature of myeloid cells, including monocytes, macrophages, and neutrophils. Despite the arsenal of defense strategies against foreign invaders, myeloid cells succumb to the instructions of an established tumor. Interestingly, the most primordial defense responses employed by myeloid cells against pathogens, such as complement activation, antibody-dependent cell cytotoxicity and phagocytosis, actually seem to favor cancer progression. In this review, we discuss how rudimentary defense mechanisms deployed by myeloid cells can promote tumor progression.
Collapse
Affiliation(s)
- Els Lebegge
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sana M Arnouk
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Pauline M R Bardet
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Máté Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
64
|
Hamarsheh S, Zeiser R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front Immunol 2020; 11:1444. [PMID: 32733479 PMCID: PMC7360837 DOI: 10.3389/fimmu.2020.01444] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is involved in tumor development and progression as well as antitumor response to therapy. In the past decade, the crosstalk between inflammation, immunity, and cancer has been investigated extensively, which led to the identification of several underlying mechanisms and cells involved. The formation of inflammasome complexes leads to the activation of caspase-1, production of interleukin (IL)-1β, and IL-18 and pyroptosis. Multiple studies have shown the involvement of NLRP3 inflammasome in tumorigenesis. Conversely, other reports have indicated a protective role in certain cancers. In this review, we summarize these contradictory roles of NLRP3 inflammasome in cancer, shed the light on oncogenic signaling leading to NLRP3 activation and IL-1β production and outline the current knowledge on therapeutic approaches.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS) and Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
65
|
Understanding the Differentiation, Expansion, Recruitment and Suppressive Activities of Myeloid-Derived Suppressor Cells in Cancers. Int J Mol Sci 2020; 21:ijms21103599. [PMID: 32443699 PMCID: PMC7279333 DOI: 10.3390/ijms21103599] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
There has been a great interest in myeloid-derived suppressor cells (MDSCs) due to their biological functions in tumor-mediated immune escape by suppressing antitumor immune responses. These cells arise from altered myelopoiesis in response to the tumor-derived factors. The most recognized function of MDSCs is suppressing anti-tumor immune responses by impairing T cell functions, and these cells are the most important players in cancer dissemination and metastasis. Therefore, understanding the factors and the mechanism of MDSC differentiation, expansion, and recruitment into the tumor microenvironment can lead to its control. However, most of the studies only defined MDSCs with no further characterization of granulocytic and monocytic subsets. In this review, we discuss the mechanisms by which specific MDSC subsets contribute to cancers. A better understanding of MDSC subset development and the specific molecular mechanism is needed to identify treatment targets. The understanding of the specific molecular mechanisms responsible for MDSC accumulation would enable more precise therapeutic targeting of these cells.
Collapse
|
66
|
Theivanthiran B, Evans KS, DeVito NC, Plebanek M, Sturdivant M, Wachsmuth LP, Salama AK, Kang Y, Hsu D, Balko JM, Johnson DB, Starr M, Nixon AB, Holtzhausen A, Hanks BA. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest 2020; 130:2570-2586. [PMID: 32017708 PMCID: PMC7190922 DOI: 10.1172/jci133055] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
An in-depth understanding of immune escape mechanisms in cancer is likely to lead to innovative advances in immunotherapeutic strategies. However, much remains unknown regarding these mechanisms and how they impact immunotherapy resistance. Using several preclinical tumor models as well as clinical specimens, we identified a mechanism whereby CD8+ T cell activation in response to programmed cell death 1 (PD-1) blockade induced a programmed death ligand 1/NOD-, LRR-, and pyrin domain-containing protein 3 (PD-L1/NLRP3) inflammasome signaling cascade that ultimately led to the recruitment of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) into tumor tissues, thereby dampening the resulting antitumor immune response. The genetic and pharmacologic inhibition of NLRP3 suppressed PMN-MDSC tumor infiltration and significantly augmented the efficacy of anti-PD-1 antibody immunotherapy. This pathway therefore represents a tumor-intrinsic mechanism of adaptive resistance to anti-PD-1 checkpoint inhibitor immunotherapy and is a promising target for future translational research.
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy
- Inflammasomes/immunology
- Male
- Melanoma/immunology
- Melanoma/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Immunological
- Myeloid-Derived Suppressor Cells/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Signal Transduction/immunology
- Translational Research, Biomedical
- Tumor Escape/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Durham, North Carolina, USA
| | | | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Alisha Holtzhausen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brent A. Hanks
- Division of Medical Oncology and
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
67
|
Gouravani M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. The NLRP3 inflammasome: a therapeutic target for inflammation-associated cancers. Expert Rev Clin Immunol 2020; 16:175-187. [PMID: 31928260 DOI: 10.1080/1744666x.2020.1713755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Inflammasomes are large multimeric intracellular complexes that are capable of maturation and secretion of pro-inflammatory cytokines, IL-1β and IL-18, in response to danger signal molecules. As a member of the inflammasome family, the NLRP3 inflammasome has recently been under intense investigation revealing its possible role in several human diseases especially cancers.Areas covered: In this review, we will discuss the biology and mechanism of NLRP3 inflammasome activation, its role in specific types of tumors and the novel therapeutic modalities targeting this complex.Expert opinion: The NLRP3 inflammasome and its components including the adapter apoptosis-associated speck-like (ASC) protein and caspase-1 impose different and sometimes contrasting effects in tumorigenesis depending on various contexts. Considering the novel role of this complex in the initiation and progression of neoplasia, the NLRP3 inflammasome and its pathways provide desirable therapeutic targets for prevention, treatment, and prognosis of certain types of cancer. To date, several agents have been introduced for this purpose, some of which have shown promising results in the clinic.
Collapse
Affiliation(s)
- Mahdi Gouravani
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
68
|
Hwang BJ, Zhang Y, Brozowski JM, Liu Z, Burette S, Lough K, Smith CC, Shan Y, Chen J, Li N, Williams S, Su M, Googe P, Thomas NE, Liu Z. The dysfunction of BP180/collagen XVII in keratinocytes promotes melanoma progression. Oncogene 2019; 38:7491-7503. [PMID: 31435021 PMCID: PMC6908749 DOI: 10.1038/s41388-019-0961-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/12/2019] [Indexed: 12/18/2022]
Abstract
BP180, also termed collagen XVII, is a hemidesmosomal transmembrane glycoprotein expressed in basal keratinocytes, and functions as a cell-matrix adhesion molecule in the dermal-epidermal junction of the skin. Its function, other than cell-matrix adhesion, remains unclear. We generated a mouse strain with BP180 dysfunction (termed ∆NC16A), which develops spontaneous skin inflammation accompanied by an influx of myeloid derived suppressor cells (MDSCs). We used the B16 mouse melanoma model to demonstrate that BP180 dysfunction in either skin or basal keratinocytes promotes MDSC influx into skin and tumor progression. MDSC depletion reduced tumor progression in ∆NC16A mice, demonstrating a critical role for BP180 dysfunction-driven MDSCs in melanoma progression. This study provides the first direct evidence that BP180, a cell-cell matrix adhesion molecule, possesses antitumor function through modulating infiltration of MDSCs. Basal keratinocytes actively participate in skin microenvironment changes caused by BP180 dysfunction. ∆NC16A mice could be a new animal model to study the melanoma microenvironment.
Collapse
Affiliation(s)
- Bin-Jin Hwang
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yang Zhang
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Dermatology, School of Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jaime M Brozowski
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine-Rheumatology and Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Zhen Liu
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangdong Center for Adverse Drug Reactions of Monitoring, Guangzhou, China
| | - Susan Burette
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendall Lough
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christof C Smith
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Shan
- Department of Biostatistics, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinbo Chen
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Williams
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maureen Su
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul Googe
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy E Thomas
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhi Liu
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
69
|
Lee C, Do HTT, Her J, Kim Y, Seo D, Rhee I. Inflammasome as a promising therapeutic target for cancer. Life Sci 2019; 231:116593. [DOI: 10.1016/j.lfs.2019.116593] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
|
70
|
Dos Reis EC, Leal VNC, Soares JLDS, Fernandes FP, Souza de Lima D, de Alencar BC, Pontillo A. Flagellin/NLRC4 Pathway Rescues NLRP3-Inflammasome Defect in Dendritic Cells From HIV-Infected Patients: Perspective for New Adjuvant in Immunocompromised Individuals. Front Immunol 2019; 10:1291. [PMID: 31244842 PMCID: PMC6579915 DOI: 10.3389/fimmu.2019.01291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction: NLRP3 inflammasome plays a key role in dendritic cells (DC) activation in response to vaccine adjuvants, however we previously showed that it is not properly activated in DC from HIV-infected patients (HIV-DC), explaining, at least in part, the poor response to immunization of these patients. Taking in account that several cytoplasmic receptors are able to activate inflammasome, and that bacterial components are considered as a novel and efficient adjuvant, we postulated that bacterial flagellin (FLG), a natural ligand of NAIP/NLRC4 inflammasome, could rescue the activation of the complex in HIV-DC. Objective: Demonstrate that FLG is able to activate monocyte-derived dendritic cells from HIV-infected individuals better than LPS, and to what extent the entity of inflammasome activation differs between DC from HIV-infected patients and healthy donors. Methods: Monocyte-derived dendritic cells from HIV-infected patients (HIV-DC) and healthy donors (HD-DC) were stimulated with FLG, and inflammasome as well as DC activation (phenotypic profile, cytokine production, autologous lymphocytes activation) were compared. Chemical and genetic inhibitors were used to depict the relative contribution of NLRC4 and NLRP3 in HIV/HD-DC response to FLG. Results: FLG properly activates HD-DC and HIV-DC. FLG induces higher inflammasome activation than LPS in HIV-DC. FLG acts through NLRC4 and NLRP3 in HD-DC, but at a lesser extent in HIV-DC due to intrinsic NLRP3 defect. Conclusions: FLG by-passes NLRP3 defect in HIV-DC, through the activation of NAIP/NLRC4 inflammasome, indicating possible future use of the bacterial component as an efficient adjuvant in immunocompromised individuals.
Collapse
Affiliation(s)
- Edione Cristina Dos Reis
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, São Paulo, Brazil
| | - Vinícius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, São Paulo, Brazil
| | - Jaíne Lima da Silva Soares
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, São Paulo, Brazil
| | - Fernanda Pereira Fernandes
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, São Paulo, Brazil
| | - Dhêmerson Souza de Lima
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, São Paulo, Brazil
| | - Bruna Cunha de Alencar
- Laboratory of Immune System Cell Biology, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
71
|
Salminen A, Kauppinen A, Kaarniranta K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med (Berl) 2019; 97:1049-1064. [PMID: 31129755 PMCID: PMC6647228 DOI: 10.1007/s00109-019-01795-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
AMP-activated protein kinase (AMPK) has a crucial role not only in the regulation of tissue energy metabolism but it can also control immune responses through its cooperation with immune signaling pathways, thus affecting immunometabolism and the functions of immune cells. It is known that AMPK signaling inhibits the activity of the NF-κB system and thus suppresses pro-inflammatory responses. Interestingly, AMPK activation can inhibit several major immune signaling pathways, e.g., the JAK-STAT, NF-κB, C/EBPβ, CHOP, and HIF-1α pathways, which induce the expansion and activation of myeloid-derived suppressor cells (MDSC). MDSCs induce an immunosuppressive microenvironment in tumors and thus allow the escape of tumor cells from immune surveillance. Chronic inflammation has a key role in the expansion and activation of MDSCs in both tumors and inflammatory disorders. The numbers of MDSCs also significantly increase during the aging process concurrently with the immunosenescence associated with chronic low-grade inflammation. Increased fatty acid oxidation and lactate produced by aerobic glycolysis are important immunometabolic enhancers of MDSC functions. However, it seems that AMPK signaling regulates the functions of MDSCs in a context-dependent manner. Currently, the activators of AMPK signaling are promising drug candidates for cancer therapy and possibly for the extension of healthspan and lifespan. We will describe in detail the AMPK-mediated regulation of the signaling pathways controlling the expansion and activation of immunosuppressive MDSCs. We will propose that the beneficial effects mediated by AMPK activation, e.g., in cancers and the aging process, could be induced by the inhibition of MDSC functions.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| |
Collapse
|
72
|
Vaccari M, Fourati S, Brown DR, Silva de Castro I, Bissa M, Schifanella L, Doster MN, Foulds KE, Roederer M, Koup RA, Sui Y, Berzofsky JA, Sekaly RP, Franchini G. Myeloid Cell Crosstalk Regulates the Efficacy of the DNA/ALVAC/gp120 HIV Vaccine Candidate. Front Immunol 2019; 10:1072. [PMID: 31139193 PMCID: PMC6527580 DOI: 10.3389/fimmu.2019.01072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022] Open
Abstract
Vaccination with DNA-SIV + ALVAC-SIV + gp120 alum results in inflammasome activation, high levels of IL-1β production, emergency myelopoiesis, and the egress of CXCR4+ CD14+ pre-monocytes from bone marrow. Previously we have shown that this vaccine-induced innate monocyte memory is associated with decreased risk of SIVmac251 acquisition. Because IL-1β also promotes the propagation of monocyte-derived suppressor (M-MDSC)-like cells, here we extended our analysis to this negative regulator subset, characterizing its levels and functions in macaques. Interestingly, we found that DNA prime engages M-MDSC-like cells and their levels are positively associated with the frequency of CD14+ classical monocytes, and negatively with the levels of CD16+ monocytes, correlates of decreased and increased risk of SIV acquisition, respectively. Accordingly, M-MDSC frequency, arginase activity, and NO were all associated with decrease of CD8 T cells responses and worse vaccination outcome. DNA vaccination thus induces innate immunity by engaging three subsets of myeloid cells, M-MDSCs, CD14+ innate monocyte memory, and CD16+ monocytes all playing different role in protection. The full characterization of the immunological space created by myeloid cell crosstalk will likely provide clues to improve the efficacy of HIV vaccine candidates.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
73
|
Abstract
Inflammasomes are molecular platforms that assemble upon sensing various intracellular stimuli. Inflammasome assembly leads to activation of caspase 1, thereby promoting the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and inducing an inflammatory cell death called pyroptosis. Effectors of the inflammasome efficiently drive an immune response, primarily providing protection against microbial infections and mediating control over sterile insults. However, aberrant inflammasome signalling is associated with pathogenesis of inflammatory and metabolic diseases, neurodegeneration and malignancies. Chronic inflammation perpetuated by inflammasome activation plays a central role in all stages of tumorigenesis, including immunosuppression, proliferation, angiogenesis and metastasis. Conversely, inflammasome signalling also contributes to tumour suppression by maintaining intestinal barrier integrity, which portrays the diverse roles of inflammasomes in tumorigenesis. Studies have underscored the importance of environmental factors, such as diet and gut microbiota, in inflammasome signalling, which in turn influences tumorigenesis. In this Review, we deliver an overview of the interplay between inflammasomes and tumorigenesis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
74
|
LXRα promotes cell metastasis by regulating the NLRP3 inflammasome in renal cell carcinoma. Cell Death Dis 2019; 10:159. [PMID: 30770793 PMCID: PMC6377709 DOI: 10.1038/s41419-019-1345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/25/2022]
Abstract
Notwithstanding the researches on biomarkers and targeted therapies in renal cell carcinomas (RCC) have made progress in the last decades, the application of the biomarkers and targeted therapy agents for RCC in clinic are restricted because of their limitation or side effects. Liver X receptors (LXRs) and the NLRP3 inflammasome have been the research hotspots in recent years. In our study, we integrated bioinformatics analysis, molecular biology experiments and biological function experiments to study the roles of LXRα and the NLRP3 inflammasome in RCC. The study demonstrated that the elevated LXRα expression is correlated with a poor prognosis in RCC. Furthermore, our study revealed the expression levels and roles of the NLRP3 inflammasome in RCC for the first time. This research demonstrated that LXRα could promote the metastasis of RCC cells by suppressing the expression of the NLRP3 inflammasome. In Brief, LXRα had the possibility to be a novel diagnostic and prognostic biomarker and therapeutic target in renal cell cancer and LXRα could regulate the metastasis of renal cell cancer via NLRP3 inflammamsome.
Collapse
|
75
|
Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology 2019; 156:329-338. [PMID: 30666624 DOI: 10.1111/imm.13046] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated inflammation is one of the hallmarks of cancer initiation and progression. Emerging evidence indicates that inflammasomes play a central role in regulating immune cell functions in various infections and cancer. Inflammasomes are multimeric complexes consisting of nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs). Among the NLRs, NOD1, NOD2 and NLRP3 respond to a variety of endogenous (i.e. damage-associated molecular patterns) and exogenous (i.e. pathogen-associated molecular patterns) stimuli. The NLRP3 inflammasome is associated with the onset and progression of autoinflammatory and autoimmune diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, and cryopyrin-associated periodic fever syndrome. NLRP3 is also associated with a wide variety of infections and tumorigenesis that are closely correlated with chemotherapy response and prognosis. In this review, we explore the rapidly expanding body of research on the expression and functions of NLRP3 in infections and cancers and outline novel inhibitors targeting the NLRP3 inflammasome that could be developed as therapeutic alternatives to current anticancer treatment.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
76
|
Deng J, Yu XQ, Wang PH. Inflammasome activation and Th17 responses. Mol Immunol 2019; 107:142-164. [PMID: 30739833 DOI: 10.1016/j.molimm.2018.12.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022]
Abstract
Immune sensing of exogenous molecules from microbes (e.g., pathogen-associated molecular patterns) and nonmicrobial molecules (e.g., asbestos, alum, and silica), as well as endogenous damage-associated molecular patterns (e.g., ATP, uric acid crystals, and amyloid A) activates innate immunity by inducing immune-related genes, including proinflammatory cytokines, which further facilitate the development of adaptive immunity. The roles of transcriptional responses downstream of immune sensing have been widely characterized in informing adaptive immunity; however, few studies focus on the effect of post-translational responses on the modulation of adaptive immune responses. Inflammasomes activated by the previously described endo- and exogenous stimuli autocatalytically induce intracellular pro-caspase-1, which cleaves the inactive precursors of interleukin-1β (IL-1β) and IL-18 into bioactive proinflammatory cytokines. IL-1β and IL-18 not only contribute to the host defense against infections by activating phagocytes, such as monocytes, macrophages, dendritic cells, and neutrophils, but also induce T-helper 17 (Th17)- and Th1-mediated adaptive immune responses. In synergy with IL-6 and IL-23, IL-1β activates IL-1 receptor (IL-1R) signaling to drive the differentiation of IL-17-producing Th17 cells, which not only play critical roles in host protective immunity to infections of bacteria, fungi, and certain viruses but also participate in the pathology of inflammatory disorders and tumorigenesis. Consequently, targeting inflammasomes and IL-1/IL-1R signaling may effectively improve the treatment of Th17-associated disorders, such as autoinflammatory diseases and cancers, thereby providing novel insights into drug development.
Collapse
Affiliation(s)
- Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Qiang Yu
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110-2499, USA
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
77
|
Huang S, Wang Z, Zhou J, Huang J, Zhou L, Luo J, Wan YY, Long H, Zhu B. EZH2 Inhibitor GSK126 Suppresses Antitumor Immunity by Driving Production of Myeloid-Derived Suppressor Cells. Cancer Res 2019; 79:2009-2020. [PMID: 30737232 DOI: 10.1158/0008-5472.can-18-2395] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/01/2018] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
Enhancer of zeste homolog (EZH2) is a key epigenetic regulator of gene expression and is frequently overexpressed in various cancer types, suggesting a role in oncogenesis. The therapeutic potential of EZH2 inhibitors is currently being explored, but their effect on antitumor immunity is largely unknown. Here we report that suppressing EZH2 activity using EZH2 inhibitor GSK126 resulted in increased numbers of myeloid-derived suppressor cells (MDSC) and fewer CD4+ and IFNγ+CD8+ T cells, which are involved in antitumor immunity. Addition of a neutralizing antibody against the myeloid differentiation antigen GR-1 or gemcitabine/5-fluorouracil-depleted MDSCs alleviated MDSC-mediated immunosuppression and increased CD4+ and CD8+ T-cell tumor infiltration and GSK126 therapeutic efficacy. Mechanistically, we identified a novel pathway of MDSC production in cancer in which EZH2 inhibition directs myeloid differentiation from primitive hematopoietic progenitor cells. These findings suggest that modulating the tumor immune microenvironment may improve the efficacy of EZH2 inhibitors. SIGNIFICANCE: This study uncovers a potential mechanism behind disappointing results of a phase I clinical trial of EZH2 inhibitor GSK126 and identifies a translatable combinational strategy to overcome it.
Collapse
Affiliation(s)
- Shuo Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Jie Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Jiani Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Li Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Jing Luo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yisong Y Wan
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North California
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
78
|
Bruns H, Jitschin S, Gamali S, Saul D, Böttcher M, Mackensen A, Jitschin R, Mougiakakos D. A novel immunoregulatory function of beta-2-microglobulin as a promoter of myeloid derived suppressor cell induction. Leukemia 2019; 33:1282-1287. [PMID: 30635624 DOI: 10.1038/s41375-018-0345-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Simon Jitschin
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Sara Gamali
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Domenica Saul
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Regina Jitschin
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
79
|
Karan D. Inflammasomes: Emerging Central Players in Cancer Immunology and Immunotherapy. Front Immunol 2018; 9:3028. [PMID: 30631327 PMCID: PMC6315184 DOI: 10.3389/fimmu.2018.03028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 01/04/2023] Open
Abstract
Inflammation has an established role in cancer development and progression and is a key player in regulating the entry and exit of immune cells in the tumor microenvironment, mounting a significant impact on anti-tumor immunity. Recent studies have shed light on the role of inflammasomes in the regulation of inflammation with a focus on the subsequent effects on the immunobiology of tumors. To generate strong anti-tumor immunity, cross-talk between innate, and adaptive immune cells is necessary. Interestingly, inflammasome bridges both arms of the immune system representing a unique opportunity to manipulate the role of inflammation in favor of tumor suppression. In this review, we discuss the impact of inflammasomes on the regulation of the levels of inflammatory cytokines-chemokines and the efficacy of immunotherapy response in cancer treatment.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, MCW Cancer Center and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
80
|
Karachaliou N, Fernandez-Bruno M, Bracht JWP, Rosell R. Challenges and unanswered questions for the next decade of immune-oncology research in NSCLC. Transl Lung Cancer Res 2018; 7:691-702. [PMID: 30505714 PMCID: PMC6249614 DOI: 10.21037/tlcr.2018.06.08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Over the last 20 years there have been great advances in the treatment of lung cancer. Immune checkpoint blockade together with targeted therapies have provided oncologists with the means to improve survival of non-small cell lung cancer (NSCLC) and patients with a better quality of life and therapies with manageable toxicity. Maybe in a short period of time the possibility of a cure in metastatic NSCLC will be raised. Therefore, continued research into new drugs, biomarkers and especially combination therapies is necessary in order to expand the clinical benefit of the current treatments to a broader population of NSCLC patients. The purpose of our review is to highlight our thoughts about potential mechanisms of resistance to immunotherapy that, if better explored, can provide us with both biomarkers to predict response to these therapies and partners to combine with and prolong the benefit of immune checkpoint blockade. We are presenting our own experience of immunotherapy with a case report from our institution.
Collapse
Affiliation(s)
- Niki Karachaliou
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Manuel Fernandez-Bruno
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain
| | | | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Institute of Oncology Rosell (IOR), Quiron-Dexeus University Institute, Barcelona, Spain
- Catalan Institute of Oncolgy, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
81
|
Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer 2018; 17:158. [PMID: 30447690 PMCID: PMC6240225 DOI: 10.1186/s12943-018-0900-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are large intracellular multi-protein signalling complexes that are formed in the cytosolic compartment as an inflammatory immune response to endogenous danger signals. The formation of the inflammasome enables activation of an inflammatory protease caspase-1, pyroptosis initiation with the subsequent cleaving of the pro-inflammatory cytokines interleukin (IL)-1β and proIL-18 to produce active forms. The inflammasome complex consists of a Nod-like receptor (NLR), the adapter apoptosis-associated speck-like (ASC) protein, and Caspase-1. Dysregulation of NLRP3 inflammasome activation is involved tumor pathogenesis, although its role in cancer development and progression remains controversial due to the inconsistent findings described. In this review, we summarize the current knowledge on the contribution of the NLRP3 inflammasome on potential cancer promotion and therapy.
Collapse
Affiliation(s)
- Maryam Moossavi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Stephen L Atkin
- Weill Cornell Medicine Qatar, Education City, PO Box 24144, Doha, Qatar.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
82
|
Abstract
Danger signals are a hallmark of many common inflammatory diseases, and these stimuli can function to activate the cytosolic innate immune signalling receptor NLRP3 (NOD-, LRR- and pyrin domain-containing 3). Once activated, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Pharmacological inhibition of NLRP3 activation results in potent therapeutic effects in a wide variety of rodent models of inflammatory diseases, effects that are mirrored by genetic ablation of NLRP3. Although these findings highlight the potential of NLRP3 as a drug target, an understanding of NLRP3 structure and activation mechanisms is incomplete, which has hampered the discovery and development of novel therapeutics against this target. Here, we review recent advances in our understanding of NLRP3 activation and regulation, highlight the evolving landscape of NLRP3 modulators and discuss opportunities for pharmacologically targeting NLRP3 with novel small molecules.
Collapse
|
83
|
Zhiyu W, Wang N, Wang Q, Peng C, Zhang J, Liu P, Ou A, Zhong S, Cordero MD, Lin Y. The inflammasome: an emerging therapeutic oncotarget for cancer prevention. Oncotarget 2018; 7:50766-50780. [PMID: 27206676 PMCID: PMC5226619 DOI: 10.18632/oncotarget.9391] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
Deregulated inflammation is considered to be one of the hallmarks of cancer initiation and development regulation. Emerging evidence indicates that the inflammasome plays a central role in regulating immune cells and cytokines related to cancer. The inflammasome is a multimeric complex consisting of NOD-like receptors (NLRs) and responds to a variety of endogenous (damage-associated molecular patterns) and exogenous (pathogen-associated molecular patterns) stimuli. Several lines of evidence suggests that in cancer the inflammasome is positively associated with characteristics such as elevated levels of IL-1β and IL-18, activation of NF-κB signaling, enhanced mitochondrial oxidative stress, and activation of autophagic process. A number of NLRs, such as NLRP3 and NLRC4 are also highlighted in carcinogenesis and closely correlate to chemoresponse and prognosis. Although conflicting evidence suggested the duplex role of inflammasome in cancer development, the phenomenon might be attributed to NLRs difference, cell and tissue type, cancer stage, and specific experimental conditions. Given the promising role of inflammasome in mediating cancer development, precise elucidation of its signaling network and pathological significance may lead to novel therapeutic options for malignancy therapy and prevention.
Collapse
Affiliation(s)
- Wang Zhiyu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- Department of Breast Oncology, Sun Yat-sen Univeristy Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou, China
| | - Cheng Peng
- Pharmacy College, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Zhang
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengxi Liu
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Aihua Ou
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shaowen Zhong
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mario D Cordero
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain
| | - Yi Lin
- Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
84
|
Dorhoi A, Du Plessis N. Monocytic Myeloid-Derived Suppressor Cells in Chronic Infections. Front Immunol 2018; 8:1895. [PMID: 29354120 PMCID: PMC5758551 DOI: 10.3389/fimmu.2017.01895] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
Heterogeneous populations of myeloid regulatory cells (MRC), including monocytes, macrophages, dendritic cells, and neutrophils, are found in cancer and infectious diseases. The inflammatory environment in solid tumors as well as infectious foci with persistent pathogens promotes the development and recruitment of MRC. These cells help to resolve inflammation and establish host immune homeostasis by restricting T lymphocyte function, inducing regulatory T cells and releasing immune suppressive cytokines and enzyme products. Monocytic MRC, also termed monocytic myeloid-derived suppressor cells (M-MDSC), are bona fide phagocytes, capable of pathogen internalization and persistence, while exerting localized suppressive activity. Here, we summarize molecular pathways controlling M-MDSC genesis and functions in microbial-induced non-resolved inflammation and immunopathology. We focus on the roles of M-MDSC in infections, including opportunistic extracellular bacteria and fungi as well as persistent intracellular pathogens, such as mycobacteria and certain viruses. Better understanding of M-MDSC biology in chronic infections and their role in antimicrobial immunity, will advance development of novel, more effective and broad-range anti-infective therapies.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
85
|
Abstract
The current chapter focuses on the role of inflammasome in cancer prevention and development. Emerging evidence suggested that inflammasome is closely correlated with elevated levels of IL-1β and IL-18, activation of NF-κB signaling, enhanced mitochondrial oxidative stress, and activation of autophagic process in cancer. Meanwhile, inflammasome component NOD-like receptors (NLRs) are also involved in carcinogenesis and closely correlated to chemoresponse and prognosis. Although several lines indicated the duplex role of inflammasome in cancer development, the phenomenon might be attributed to NLR difference, cell and tissue type, cancer stage, and specific experimental conditions. Designation of inflammasome targeting strategy has become a novel tool for cancer prevention or treatment.
Collapse
Affiliation(s)
- Zhiyu Wang
- Integrative Breast Cancer Research Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The Research Centre for Integrative Medicine, Discipline of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Neng Wang
- Integrative Breast Cancer Research Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Centre for Integrative Medicine, Discipline of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yifeng Zheng
- Integrative Breast Cancer Research Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqi Wang
- Integrative Breast Cancer Research Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
86
|
Biology of Myeloid-Derived Suppressor Cells. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
87
|
MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene 2017; 37:884-896. [PMID: 29059152 DOI: 10.1038/onc.2017.381] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is the primary cause of gastric cancer (GC). NLRP3, as an important inflammasome component, has crucial roles in initiating inflammation. However, the potential roles of NLRP3 in GC is unknown. Here, we show that NLRP3 expression is markedly upregulated in GC, which promotes NLRP3 inflammasome activation and interleukin-1β (IL-1β) secretion in macrophages. In addition, NLRP3 binds to cyclin-D1 (CCND1) promoter and promotes its transcription in gastric epithelial cells. Consequently, NLRP3 enhances epithelial cells proliferation and GC tumorigenesis. Furthermore, we identify miR-22, which is constitutively expressed in gastric mucosa, as a suppressor of NLRP3. MiR-22 directly targets NLRP3 and attenuates its oncogenic effects in vitro and in vivo. However, Helicobacter pylori (H. pylori) infection suppresses miR-22 expression, while enhances NLRP3 expression, and that triggers uncontrolled proliferation of epithelial cells and the emergence of GC. Thus, our research describes a mechanism by which miR-22 suppresses NLRP3 and maintains homeostasis of gastric microenvironments and suggests miR-22 as a potential target for the intervention of GC.
Collapse
|
88
|
How Inflammasomes Inform Adaptive Immunity. J Mol Biol 2017; 430:217-237. [PMID: 28987733 DOI: 10.1016/j.jmb.2017.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
An immune response consists of a finely orchestrated interplay between initial recognition of potential microbial threats by the innate immune system and subsequent licensed adaptive immune neutralization. The initial recognition integrates environmental cues derived from pathogen-associated molecular patterns and cell-intrinsic damage-associated molecular patterns to contextualize the insult and inform a tailored adaptive response via T and B lymphocytes. While there are much data to support the role of transcriptional responses downstream of pattern recognition receptors in informing the adaptive immune response, markedly less attention has been paid to the role of post-translational responses to pathogen-associated molecular pattern and damage-associated molecular pattern recognition by the innate immune system, and how this may influence adaptive immunity. A well-characterized post-translational consequence of pattern recognition receptor signaling is the assembly of a multimeric signaling platform, termed the inflammasome, by members of the nucleotide-binding oligomerization domain (Nod), leucine-rich repeat-containing receptors (NLRs), and pyrin and HIN domain (PYHIN) families. Inflammasomes assemble in response to cytosolic perturbations, such as mitochondrial dysfunction and aberrant ion fluxes in the case of the canonical NLRP3 inflammasome or the presence of bacterial lipopolysaccharides in the case of the non-canonical inflammasome. Assembly of the inflammasome allows for the cleavage and activation of inflammatory caspases. These activated inflammatory caspases in turn cleave pro-form inflammatory cytokines into their mature bioactive species and lead to unconventional protein secretion and lytic cell death. In this review, we discuss evidence for inflammasome-mediated instruction and contextualization of infectious and sterile agents to the adaptive immune system.
Collapse
|
89
|
Bullock TN. TNF-receptor superfamily agonists as molecular adjuvants for cancer vaccines. Curr Opin Immunol 2017; 47:70-77. [PMID: 28750279 PMCID: PMC5626616 DOI: 10.1016/j.coi.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 01/25/2023]
Abstract
Cancer vaccines have offered unrequited hope as a mechanism for rapidly and potently eliciting a patient's immune system to counter tumors. Initial results from preclinical mouse models have not translated to substantial benefit to patients, suggesting that either the targets or the vaccination approach were inadequate. Recent innovations in antigen identification have spiked renewed interest vaccination technologies. This has coincided with a detailed molecular understanding of the coordinated steps in postactivation support of T cell proliferation, differentiation and survival, leading to the development of novel targets and combinations that are substantially more effective than first and second generation cancer vaccines in preclinical models. Within this cluster of developments, the TNF-receptor superfamily members have emerged as attractive candidates for clinical implementation. Here we review recent developments in the mechanisms of action of TNFRSF agonists, and how their activity is potentiated by integration co-targeting pattern recognition receptors.
Collapse
Affiliation(s)
- Timothy Nj Bullock
- Department of Pathology and Human Immune Therapy Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
90
|
LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathog 2017; 13:e1006503. [PMID: 28732079 PMCID: PMC5540616 DOI: 10.1371/journal.ppat.1006503] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/02/2017] [Accepted: 06/30/2017] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC. The expression of the Epstein-Barr virus (EBV) oncogenic protein denoted latent membrane protein 1 (LMP1) varies in patients with NPC and is linked to tumorigenesis and tumor immunosuppression, but the molecular mechanism through which LMP1 leads to tumor immune escape remains unknown. Work to date suggests that the expansion of tumor-associated myeloid-derived suppressor cells (MDSCs) is the main cause of tumor immunosuppression such as that found in NPC. Here, we found that tumor LMP1 expression is correlated with glucose transporter 1 (GLUT1) levels, CD33+ MDSC number and unfavorable survival in patients with NPC. Based on the results of our in vitro analysis, LMP1 promotes GLUT1-dependent glycolysis in NPC cells, resulting in activation of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 signaling pathways and subsequently increased IL-1β, IL-6 and GM-CSF production. Importantly, LMP1 interacts with GLUT1 to stabilize the GLUT1 protein by disrupting its K48-linked ubiquitination and autolysosomal degradation in a p62-dependent manner and up-regulating the GLUT1 mRNA and protein levels by inducing p65 activation. Therefore, we determined that GLUT1-dependent glycolysis is required for tumor-induced MDSC differentiation and that this process is associated with LMP1 expression. Based on our findings, LMP1-mediated glycolysis is a key process involved in controlling tumor immunosuppression and directly contributes to oncogenesis.
Collapse
|
91
|
Abstract
The inflammasome is a large multimeric protein complex comprising an effector protein that demonstrates specificity for a variety of activators or ligands; an adaptor molecule; and procaspase-1, which is converted to caspase-1 upon inflammasome activation. Inflammasomes are expressed primarily by myeloid cells and are located within the cell. The macromolecular inflammasome structure can be visualized by cryo-electron microscopy. This complex has been found to play a role in a variety of disease models in mice, and several have been genetically linked to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding domain leucine-rich repeat-containing) or NOD (nucleotide oligomerization domain)-like receptor protein family. However, other effectors have also been described, with the most notable being AIM-2 (absent in melanoma 2), which recognizes DNA to elicit inflammasome function. This review will focus on the role of the inflammasome in myeloid cells and its role in health and disease.
Collapse
|
92
|
Thi HTH, Hong S. Inflammasome as a Therapeutic Target for Cancer Prevention and Treatment. J Cancer Prev 2017; 22:62-73. [PMID: 28698859 PMCID: PMC5503217 DOI: 10.15430/jcp.2017.22.2.62] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a critical modulator of carcinogenesis through secretion of inflammatory cytokines, which leads to the formation of an inflammatory microenvironment. In this process, the inflammasome plays an important role in the expression and activation of interleukin (IL)-1β and IL-18 to promote cancer development. The inflammasome is a multiprotein complex consisting of several nucleotide-binding domain and leucine-rich repeat containing receptor, adaptor proteins, and caspase 1 (CASP1). It senses the various intracellular (damage-associated molecular patterns) and extracellular (pathogen-associated molecular patterns) stimuli. A primed inflammasome recruits adaptor proteins, activates CASP1 to enhance the proteolytic cleavage of pro-IL-1β and IL-18, and sends the signal to respond to each insult. Depending on stimuli and cell contexts, several inflammasomes are closely associated with the initiation and promotion of carcinogenesis. In contrast, inflammasomes also show an ambivalent effect on carcinogenesis by enhancing inflammatory cell death (pyroptosis) and repairing damaged tissues. Although the inflammasome plays a controversial role in carcinogenesis, it may be a promising target for human cancer prevention and treatment. A more in-depth study on the role of the inflammasome in carcinogenesis, based on stimuli, cell contexts, and cancer stages, can lead to the development of novel therapeutic strategies against malignant human cancers.
Collapse
Affiliation(s)
- Huyen Trang Ha Thi
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| | - Suntaek Hong
- Department of Biochemistry, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
93
|
Abstract
Inflammation affects all stages of tumorigenesis. A key signaling pathway leading to acute and chronic inflammation is through activation of the caspase-1 inflammasome. Inflammasome complexes are assembled on activation of certain nucleotide-binding domain, leucine-rich repeat-containing proteins (NLR), AIM2-like receptors, or pyrin. Of these, NLRP1, NLRP3, NLRC4, NLRP6, and AIM2 influence the pathogenesis of cancer by modulating innate and adaptive immune responses, cell death, proliferation, and/or the gut microbiota. Activation of the inflammasome and IL18 signaling pathways is largely protective in colitis-associated colorectal cancer, whereas excessive inflammation driven by the inflammasome or the IL1 signaling pathways promotes breast cancer, fibrosarcoma, gastric carcinoma, and lung metastasis in a context-dependent manner. The clinical relevance of inflammasomes in multiple forms of cancer highlights their therapeutic promise as molecular targets. In this review, we explore the crossroads between inflammasomes and the development of various tumors and discuss possible therapeutic values in targeting the inflammasome for the prevention and treatment of cancer. Cancer Immunol Res; 5(2); 94-99. ©2017 AACR.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
94
|
Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 2016; 6:36107. [PMID: 27786298 PMCID: PMC5082376 DOI: 10.1038/srep36107] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
The inflammatory microenvironment has been shown to play important roles in various stages of tumor development including initiation, growth, and metastasis. The inflammasome is a critical innate immune pathway for the production of active IL-1β, a potent inflammatory cytokine. Although inflammasomes are essential for host defense against pathogens and contribute to autoimmune diseases, their role in tumor progression remains controversial. Here, our results demonstrate that the inflammasome and IL-1β pathway promoted tumor growth and metastasis in animal and human breast cancer models. We found that tumor progression was associated with the activation of inflammasome and elevated levels of IL-1β at primary and metastatic sites. Mice deficient for inflammasome components exhibited significantly reduced tumor growth and lung metastasis. Furthermore, inflammasome activation promoted the infiltration of myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) into tumor microenvironments. Importantly, blocking IL-1R with IL-1R antagonist (IL-Ra) inhibited tumor growth and metastasis accompanied by decreased myeloid cell accumulation. Our results suggest that targeting the inflammasome/IL-1 pathway in tumor microenvironments may provide a novel approach for the treatment of cancer.
Collapse
Affiliation(s)
- Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| | - Shunjun Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America
| | - Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| |
Collapse
|
95
|
Ballbach M, Hall T, Brand A, Neri D, Singh A, Schaefer I, Herrmann E, Hansmann S, Handgretinger R, Kuemmerle-Deschner J, Hartl D, Rieber N. Induction of Myeloid-Derived Suppressor Cells in Cryopyrin-Associated Periodic Syndromes. J Innate Immun 2016; 8:493-506. [PMID: 27351923 DOI: 10.1159/000446615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/05/2016] [Indexed: 12/23/2022] Open
Abstract
Cryopyrin-associated periodic syndromes (CAPS) are caused by mutations in the NLRP3 gene leading to overproduction of IL-1β and other NLRP3 inflammasome products. Myeloid-derived suppressor cells (MDSCs) represent a novel innate immune cell subset capable of suppressing T-cell responses. As inflammasome products were previously found to induce MDSCs, we hypothesized that NLRP3 inflammasome-dependent factors induce the generation of MDSCs in CAPS. We studied neutrophilic MDSCs, their clinical relevance, and MDSC-inducing factors in a unique cohort of CAPS patients under anti-IL-1 therapy. Despite anti-IL-1 therapy and low clinical disease activity, CAPS patients showed significantly elevated MDSCs compared to healthy controls. MDSCs were functionally competent, as they suppressed polyclonal T-cell proliferation, as well as Th1 and Th17 responses. In addition, MDSCs decreased monocytic IL-1β secretion. Multiplex assays revealed a distinct pattern of MDSC-inducing cytokines, chemokines, and growth factors. Experimental analyses demonstrated that IL-1 cytokine family members and autoinflammation-associated alarmins differentially induced human MDSCs. Increased MDSCs might represent a novel autologous anti-inflammatory mechanism in autoinflammatory conditions and may serve as a future therapeutic target.
Collapse
Affiliation(s)
- Marlene Ballbach
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 2016; 16:22-34. [PMID: 26711676 DOI: 10.1038/nri.2015.5] [Citation(s) in RCA: 2310] [Impact Index Per Article: 256.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Crosstalk between inflammatory pathways and neurocircuits in the brain can lead to behavioural responses, such as avoidance and alarm, that are likely to have provided early humans with an evolutionary advantage in their interactions with pathogens and predators. However, in modern times, such interactions between inflammation and the brain appear to drive the development of depression and may contribute to non-responsiveness to current antidepressant therapies. Recent data have elucidated the mechanisms by which the innate and adaptive immune systems interact with neurotransmitters and neurocircuits to influence the risk for depression. Here, we detail our current understanding of these pathways and discuss the therapeutic potential of targeting the immune system to treat depression.
Collapse
Affiliation(s)
- Andrew H Miller
- Emory University School of Medicine, Winship Cancer Institute, Atlanta, 30322 Georgia, USA
| | - Charles L Raison
- School of Human Ecology, University of Wisconsin-Madison, Madison, 53706 Wisconsin, USA
| |
Collapse
|
97
|
Sharma N, Jha S. NLR-regulated pathways in cancer: opportunities and obstacles for therapeutic interventions. Cell Mol Life Sci 2016; 73:1741-64. [PMID: 26708292 PMCID: PMC11108278 DOI: 10.1007/s00018-015-2123-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
Abstract
NLRs (nucleotide-binding domain, leucine-rich repeat containing receptors) are pattern recognition receptors associated with immunity and inflammation in response to endogenous and exogenous pathogen and damage associated molecular patterns (PAMPs and DAMPs respectively). Dysregulated NLR function is associated with several diseases including cancers, metabolic diseases, autoimmune disorders and autoinflammatory syndromes. In the last decade, distinct cell and organ specific roles for NLRs have been identified however; their roles in cancer initiation, development and progression remain controversial. This review summarizes the emerging role of NLRs in cancer and their possible future as targets for cancer therapeutics.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan, 342011, India
| | - Sushmita Jha
- Department of Biology, Indian Institute of Technology Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan, 342011, India.
| |
Collapse
|
98
|
Wan X, Cheng C, Lin Z, Jiang R, Zhao W, Yan X, Tang J, Yao K, Sun B, Chen Y. The attenuated hepatocellular carcinoma-specific Listeria vaccine Lmdd-MPFG prevents tumor occurrence through immune regulation of dendritic cells. Oncotarget 2016; 6:8822-38. [PMID: 25826093 PMCID: PMC4496186 DOI: 10.18632/oncotarget.3558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/12/2015] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is a promising treatment for liver cancer. Here, we tested the ability of the attenuated hepatocellular carcinoma-specific Listeria vaccine (Lmdd-MPFG) to treat hepatocellular carcinoma (HCC) in a mouse model. Immunization with the vaccine caused a strong anti-tumor response, especially in mice reinfused with dendritic cells (DCs). In mice that were also administered DCs, tumor suppression was accompanied by the strongest cytotoxic T lymphocyte response of all treatment groups and by induced differentiation of CD4+ T cells, especially Th17 cells. Additionally, the Lmdd-MPFG vaccine caused maturation of DCs in vitro. We demonstrated the synergistic effect of TLR4 and NLRP3 or NOD1 signaling pathways in LM-induced DC activation. These results suggest that the Lmdd-MPFG vaccine is a feasible strategy for preventing HCC.
Collapse
Affiliation(s)
- Xin Wan
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ci Cheng
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhe Lin
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Zhao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Yan
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junwei Tang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kun Yao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Beicheng Sun
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Chen
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
99
|
Li WA, Lu BY, Gu L, Choi Y, Kim J, Mooney DJ. The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials 2016; 83:249-56. [PMID: 26784009 DOI: 10.1016/j.biomaterials.2016.01.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/23/2022]
Abstract
Biomaterial scaffold based vaccines show significant potential in generating potent antigen-specific immunity. However, the role of the scaffold surface chemistry in initiating and modulating the immune response is not well understood. In this study, a mesoporous silica micro-rod (MSR) scaffold was modified with PEG, PEG-RGD and PEG-RDG groups. PEG modification significantly enhanced BMDC activation marker up-regulation and IL-1β production in vitro, and innate immune cell infiltration in vivo. PEG-RGD MSRs and PEG-RDG MSRs displayed decreased inflammation compared to PEG MSRs, and the effect was not RGD specific. Finally, the Nlrp3 inflammasome was found to be necessary for MSR stimulated IL-1β production in vitro and played a key role in regulating immune cell infiltration in vivo. These findings suggest that simply modulating the surface chemistry of a scaffold can regulate its immune cell infiltration profile and have implications for the design and development of new material based vaccines.
Collapse
Affiliation(s)
- Weiwei Aileen Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Beverly Ying Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Luo Gu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, South Korea
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
100
|
Lech M, Lorenz G, Kulkarni OP, Grosser MOO, Stigrot N, Darisipudi MN, Günthner R, Wintergerst MWM, Anz D, Susanti HE, Anders HJ. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling. Ann Rheum Dis 2015; 74:2224-35. [PMID: 25135254 DOI: 10.1136/annrheumdis-2014-205496] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/30/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1β/IL-18, but its potential role in autoimmunity is speculative. METHODS We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. RESULTS While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-β receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-β target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-β1-deficient mice. CONCLUSIONS These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity.
Collapse
Affiliation(s)
- Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Georg Lorenz
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Onkar P Kulkarni
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Marian O O Grosser
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Nora Stigrot
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Murthy N Darisipudi
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Roman Günthner
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Maximilian W M Wintergerst
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - David Anz
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Heni Eka Susanti
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| |
Collapse
|