51
|
Crosstalks of the PTPIP51 interactome revealed in Her2 amplified breast cancer cells by the novel small molecule LDC3/Dynarrestin. PLoS One 2019; 14:e0216642. [PMID: 31075141 PMCID: PMC6510450 DOI: 10.1371/journal.pone.0216642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
LDC3/Dynarrestin, an aminothiazole derivative, is a recently developed small molecule, which binds protein tyrosine phosphatase interacting protein 51 (PTPIP51). PTPIP51 interacts with various proteins regulating different signaling pathways leading to proliferation and migration. Her2 positive breast cancer cells (SKBR3) express high levels of PTPIP51. Therefore, we investigated the effects of LDC3/Dynarrestin on PTPIP51 and its interactome with 12 different proteins of various signal pathways including the interaction with dynein in SKBR3 cells. The localization and semi-quantification of PTPIP51 protein and the Tyr176 phosphorylated PTPIP51 protein were evaluated. Protein-protein-interactions were assessed by Duolink proximity ligation assays. Interactions and the activation of signal transduction hubs were examined with immunoblots. LDC3/Dynarrestin led to an increased PTPIP51 tyrosine 176 phosphorylation status while the overall amount of PTPIP51 remained unaffected. These findings are paralleled by an enhanced interaction of PTPIP51 with its crucial kinase c-Src and a reduced interaction with the counteracting phosphatase PTP1B. Furthermore, the treatment results in a significantly augmented interaction of PTPIP51/14-3-3β and PTPIP51/Raf1, the link to the MAPK pathway. Under the influence of LDC3/Dynarrestin, the activity of the MAPK pathway rose in a concentration-dependent manner as indicated by RTK assays and immunoblots. The novel small molecule stabilizes the RelA/IκB/PTPIP51 interactome and can abolish the effects caused by TNFα stimulation. Moreover, LDC3/Dynarrestin completely blocked the Akt signaling, which is essential for tumor growth. The data were compared to the recently described interactome of PTPIP51 in LDC3/Dynarrestin treated non-cancerous keratinocyte cells (HaCaT). Differences were identified exclusively for the mitochondrial-associated ER-membranes (MAM) interactions and phospho-regulation related interactome of PTPIP51.LDC3/Dynarrestin gives the opportunity/possibility to influence the MAPK signaling, NFkB signaling and probably calcium homeostasis in breast cancer cells by affecting the PTPIP51 interactome.
Collapse
|
52
|
Rezaei Z, Sebzari A, Kordi-Tamandani DM, Dastjerdi K. Involvement of the Dysregulation of miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p in Trastuzumab Resistance of HER2-Positive Breast Cancer Cells and System Biology Approach to Predict Their Targets Involved in Resistance. DNA Cell Biol 2019; 38:184-192. [PMID: 30702337 DOI: 10.1089/dna.2018.4427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resistance to trastuzumab has become a limiting factor for therapeutic efficacy of human epidermal growth factor 2 (HER2)-positive breast cancer. Different expression levels of miRNAs in cancer cells have been associated with poor prognosis and response to chemotherapy. The aim of this study was to evaluate miRNAs that were thought to be associated with HER2-positive breast cancer chemoresistance. In this study, the relative expression of candidate miRNAs to U6 RNA was evaluated in trastuzumab-resistant and trastuzumab-sensitive cells using relative real-time PCR. Our results demonstrated that miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p were significantly dysregulated. For the first time in this study, these miRNAs were identified to be involved in trastuzumab resistance. TargetScan and miRDB were then used for predicting the potential targets of the candidate miRNAs. Our results also revealed that the predicted potential targets of these miRNAs were strongly associated with drug resistance pathways. As a relative expression of candidate miRNAs was statistically different in trastuzumab-resistant and trastuzumab-sensitive cells, their potential targets were involved in drug resistance pathways. We strongly hypothesized the dysregulation of miRNAs as a possible mechanism of trastuzumab resistance. We also assumed that the strategic manipulation of these regulatory networks might be a possible therapeutic strategy to improve the results of chemotherapy for this resistance. However, more research is needed to evaluate the role of these miRNAs in the acquisition of trastuzumab resistance.
Collapse
Affiliation(s)
- Zohreh Rezaei
- 1 Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ahmadreza Sebzari
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Kazem Dastjerdi
- 2 Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,3 Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
53
|
Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 2019; 10:966-981. [PMID: 30847025 PMCID: PMC6398176 DOI: 10.18632/oncotarget.26629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Circulating miRNAs (miRs) are increasingly recognized as potential biomarkers in cancer. We aimed to evaluate the differential expression of miR-23b and miR-190 which are involved in tumor dormancy, miR-21 involved in metastasis and miR-200b and miR-200c involved in epithelial-mesenchymal transition (EMT) and metastasis, in the plasma of patients with early and metastatic breast cancer (MBC). We also aimed to identify associations of the expression levels with patient and disease characteristics and outcomes in metastatic patients treated with first-line chemotherapy. Results miR-21 (p < 0.001), miR-23b (p = 0.033), miR-200b (p < 0.001) and miR-200c (p < 0.001) expression was higher in metastatic compared to early breast cancer. ROC curve analysis showed that miR-21 (AUC = 0.722; p < 0.001) and miR-200b (AUC = 0.720; p < 0.001) distinguished with high accuracy among the two disease states, whereas the combination of miR-21, miR-190, miR-200b and miR-200c, further improved accuracy (AUC = 0.797; p < 0.001). High miR-200b expression independently predicted for shorter OS (p = 0.026) in MBC. High expression of both miR23b and miR-190 emerged as a strong independent factor associated with shorter PFS (p = 0.001) in de novo metastatic patients and high miR-200b independently predicted for decreased OS in the HER2-negative subgroup (p = 0.007). Materials and Methods Blood samples were obtained from patients with early (n = 133) and MBC (n = 110) before adjuvant or first-line chemotherapy, respectively. Plasma miRNA expression levels were assessed by RT-qPCR and were classified as high or low according to the median values. Conclusions Our results are in support of the concept that circulating miRNAs represent a tool with significant diagnostic and prognostic implications in breast cancer.
Collapse
|
54
|
De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1178-1192. [PMID: 31867576 PMCID: PMC6924635 DOI: 10.20517/cdr.2019.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major challenges in oncology is drug resistance, which triggers relapse and shortens patients’ survival. In order to promote drug desensitization, cancer cells require the establishment of an ideal tumor microenvironment that accomplishes specific conditions. To achieve this objective, cellular communication is a key factor. Classically, cells were believed to restrictively communicate by ligand-receptor binding, physical cell-to-cell interactions and synapses. Nevertheless, the crosstalk between tumor cells and stroma cells has also been recently reported to be mediated through exosomes, the smallest extracellular vesicles, which transport a plethora of functionally active molecules, such as: proteins, lipids, messenger RNA, DNA, microRNA or long non-coding RNA (lncRNAs). LncRNAs are RNA molecules greater than 200 base pairs that are deregulated in cancer and other diseases. Exosomal lncRNAs are highly stable and can be found in several body fluids, being considered potential biomarkers for tumor liquid biopsy. Exosomal lncRNAs promote angiogenesis, cell proliferation and drug resistance. The role of exosomal lncRNAs in drug resistance affects the main treatment strategies in oncology: chemotherapy, targeted therapy, hormone therapy and immunotherapy. Overall, knowing the molecular mechanisms by which exosomal lncRNA induce pharmacologic resistance could improve further drug development and identify drug resistance biomarkers.
Collapse
Affiliation(s)
- Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 40015, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 022328, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
55
|
Huang Y, Huang L, Zhu G, Pei Z, Zhang W. Downregulated microRNA-27b attenuates lipopolysaccharide-induced acute lung injury via activation of NF-E2-related factor 2 and inhibition of nuclear factor κB signaling pathway. J Cell Physiol 2018; 234:6023-6032. [PMID: 30584668 DOI: 10.1002/jcp.27187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Acute lung injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema, and respiratory failure. Lipopolysaccharide (LPS) is a leading cause for ALI and when administered to a mouse it induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. This study focused on investigating whether microRNA-27b (miR-27b) affects ALI in a mouse model established by LPS-induction and to further explore the underlying mechanism. After model establishment, the mice were treated with miR-27b agomir, miR-27b antagomir, or D-ribofuranosylbenzimidazole (an inhibitor of nuclear factor-E2-related factor 2 [Nrf2]) to determine levels of miR-27b, Nrf2, nuclear factor kappa-light-chain-enhancer of activated B cells nuclear factor κB (NF-κB), p-NF-κB, and heme oxygenase-1 (HO-1). The levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in bronchoalveolar lavage fluid (BALF) were determined. The results of luciferase activity suggested that Nrf2 was a target gene of miR-27b. It was indicated that the Nrf2 level decreased in lung tissues from ALI mice. The downregulation of miR-27b decreased the levels of IL-1β, IL-6, and TNF-α in BALF of ALI mice. Downregulated miR-27b increased Nrf2 level, thus enhancing HO-1 level along with reduction of NF-κB level as well as the extent of NF-κB phosphorylation in the lung tissues of the transfected mice. Pathological changes were ameliorated in LPS-reduced mice elicited by miR-27b inhibition. The results of this study demonstrate that downregulated miR-27b couldenhance Nrf2 and HO-1 expressions, inhibit NF-κB signaling pathway, which exerts a protective effect on LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Yan Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Lixue Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Guangfa Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zhenye Pei
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wenmei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
56
|
Liu H, Wei W, Wang X, Guan X, Chen Q, Pu Z, Xu X, Wei A. miR‑23b‑3p promotes the apoptosis and inhibits the proliferation and invasion of osteosarcoma cells by targeting SIX1. Mol Med Rep 2018; 18:5683-5692. [PMID: 30387818 DOI: 10.3892/mmr.2018.9611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/04/2018] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor and the third most common cancer that occurs during childhood and adolescence. Increasing evidence has suggested that microRNA (miR)‑23b‑3p has an important role in OS tumorigenesis; however, the underlying molecular mechanisms remain unknown. The aim of the present study was to investigate the expression levels of miR‑23b‑3p and sine oculis homeobox homolog 1 (SIX1) in OS tissues and cell lines (MG‑63, SaOS‑2 and U2OS), as well as to observe the effects of miR‑23b‑3p on U2OS cell viability, cell cycle, apoptosis and invasive ability. The results revealed that the expression levels of miR‑23b‑3p were significantly decreased in OS tissues and cell lines compared with tumor‑adjacent normal tissues and a non‑cancerous human fetal osteoblastic cell line (hFOB1.19). To investigate the underlying mechanisms of miR‑23b‑3p in OS tumorigenesis and progression, human U2OS cell lines over‑ or under expressing miR‑23b‑3p were established. The effects of miR‑23b‑3p on U2OS cell viability, cell cycle, apoptosis and invasion properties were determined by performing Cell Counting Kit‑8, flow cytometry and Transwell invasion assays. miR‑23b‑3p was revealed to suppress cell viability, proliferation and invasion, and to enhance the levels of cell apoptosis. Furthermore, SIX1 mRNA and protein expression levels in OS tissues and cell lines were significantly upregulated when compared with tumor‑adjacent normal tissues and hFOB 1.19 cells, which suggested that SIX1 expression levels may be inversely associated with miR‑23b‑3p levels in OS. Luciferase reporter system analysis demonstrated that miR‑23b‑3p binds to the SIX1 3'‑untranslated region. miR‑23b‑3p downregulation contributed to SIX1 upregulation, which facilitated the potentiation of cyclin D1 and vascular endothelial growth factor‑C expression levels, as well as the inhibition of caspase‑3 expression. Collectively, these results suggested that miR‑23b‑3p is downregulated and SIX1 is upregulated in OS cells, and that miR‑23b‑3p inhibition may suppress the proliferation and invasion of OS cells, and contribute to cell apoptosis via negative regulation of SIX1. miR‑23b‑3p/SIX1 may therefore represent a potential target for the treatment of OS.
Collapse
Affiliation(s)
- Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Wei Wei
- Department of Orthopedics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Xiaojian Wang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Xiaojun Guan
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Qingqing Chen
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Zhongjin Pu
- Department of Tumor, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Xudong Xu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Aichun Wei
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| |
Collapse
|
57
|
Stevic I, Müller V, Weber K, Fasching PA, Karn T, Marmé F, Schem C, Stickeler E, Denkert C, van Mackelenbergh M, Salat C, Schneeweiss A, Pantel K, Loibl S, Untch M, Schwarzenbach H. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med 2018; 16:179. [PMID: 30301470 PMCID: PMC6178264 DOI: 10.1186/s12916-018-1163-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The focus of this study is to identify particular microRNA (miRNA) signatures in exosomes derived from plasma of 435 human epidermal growth factor receptor 2 (HER2)-positive and triple-negative (TN) subtypes of breast cancer (BC). METHODS First, miRNA expression profiles were determined in exosomes derived from the plasma of 15 TNBC patients before neoadjuvant therapy using a quantitative TaqMan real-time PCR-based microRNA array card containing 384 different miRNAs. Forty-five miRNAs associated with different clinical parameters were then selected and mounted on microRNA array cards that served for the quantification of exosomal miRNAs in 435 BC patients before therapy and 20 healthy women. Confocal microscopy, Western blot, and ELISA were used for exosome characterization. RESULTS Quantification of 45 exosomal miRNAs showed that compared with healthy women, 10 miRNAs in the entire cohort of BC patients, 13 in the subgroup of 211 HER2-positive BC, and 17 in the subgroup of 224 TNBC were significantly deregulated. Plasma levels of 18 exosomal miRNAs differed between HER2-positive and TNBC subtypes, and 9 miRNAs of them also differed from healthy women. Exosomal miRNAs were significantly associated with the clinicopathological and risk factors. In uni- and multivariate models, miR-155 (p = 0.002, p = 0.003, respectively) and miR-301 (p = 0.002, p = 0.001, respectively) best predicted pathological complete response (pCR). CONCLUSION Our findings show a network of deregulated exosomal miRNAs with specific expression patterns in exosomes of HER2-positive and TNBC patients that are also associated with clinicopathological parameters and pCR within each BC subtype.
Collapse
Affiliation(s)
- Ines Stevic
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Karn
- University Women's Hospital, Frankfurt, Germany
| | - Frederic Marmé
- Center for Gynecological Oncology at University Women's Hospital, Heidelberg, Germany
| | | | | | - Carsten Denkert
- Charite Berlin, Institute of Pathology and German Cancer Consortium (DKTK), Partner Site, Berlin, Germany
| | | | | | | | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | | | | | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
58
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
59
|
Xu Y, Han YF, Ye B, Zhang YL, Dong JD, Zhu SJ, Chen J. miR-27b-3p is Involved in Doxorubicin Resistance of Human Anaplastic Thyroid Cancer Cells via Targeting Peroxisome Proliferator-Activated Receptor Gamma. Basic Clin Pharmacol Toxicol 2018; 123:670-677. [PMID: 29924913 DOI: 10.1111/bcpt.13076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Chemotherapy is one of the most effective forms of cancer treatment. It has been widely used in the treatment of various malignant tumours. To investigate molecular mechanisms responsible for the chemoresistance of anaplastic thyroid cancer (ATC), we established the doxorubicin (Dox) resistance of human ATC SW1736 and 8305C cells and named them SW1736/Dox and 8305C/Dox, respectively. We evaluated the expression of various micro-RNAs (miRNAs) between control and Dox-resistant ATC cells and found that the expression of miR-27b-3p was significantly increased in Dox-resistant ATC cells. Targeted inhibition of miR-27b can increase the sensitivity of SW1736/Dox and 8305C/Dox cells. Bioinformatics analysis revealed that miR-27b can directly target peroxisome proliferator-activated receptor gamma (PPARγ) within the 3' untranslated region (UTR). This was proved by the results that miR-27b-3p down-regulated the protein and mRNA levels of PPARγ. While the mutant in the core binding sites of PPARγ abolished miR-27b-3p-induced down-regulation of luciferase activity. Over-expression of PPARγ can increase the Dox sensitivity of SW1736/Dox and 8305C/Dox cells. Basic fibroblast growth factor (bFGF) might be involved in miR-27b-3p/PPARγ-regulated Dox resistance of ATC cells. The activation of p65 nuclear factor-κB (NF-κB) regulated the up-regulation of miR-27b-3p in Dox-resistant ATC cells. Collectively, our data revealed that miR-27b-3p/PPARγ is involved in the Dox resistance of human ATC cells. It suggested that targeted inhibition of miR-27b-3p might be helpful to overcome the drug resistance of ATC cells.
Collapse
Affiliation(s)
- Yuan Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Fan Han
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Ye
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yin-Long Zhang
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Da Dong
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shao-Jun Zhu
- Department of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiong Chen
- Department of General Surgery, Anhui Provincial Hospital, Hefei, Anhui, China
| |
Collapse
|
60
|
Eastlack SC, Dong S, Ivan C, Alahari SK. Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer. Mol Cancer 2018; 17:100. [PMID: 30012170 PMCID: PMC6048708 DOI: 10.1186/s12943-018-0851-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The disruption of normal gene regulation due to microRNA dysfunction is a common event in cancer pathogenesis. MicroRNA-27b is an example of an oncogenic miRNA, and it is frequently upregulated in breast cancer. MicroRNAs have been found to deregulate tumor metabolism, which typically manifests as heightened cellular glucose uptake in consort with increased flux through glycolysis, followed by the preferential conversion of glycolytic pyruvate into lactate (a phenomenon known as the Warburg Effect). Pyruvate Dehydrogenase, an enzyme complex linking glycolysis with downstream oxidative metabolism, represents a key location where regulation of metabolism occurs; PDHX is a key structural component of this complex and is essential for its function. METHODS We sought to characterize the role of miR-27b in breast cancer by identifying novel transcripts under its control. We began by utilizing luciferase, RNA, and protein assays to establish PDHX as a novel target of miR-27b. We then tested whether miR-27b could alter metabolism using several metabolite assay kits and performed a seahorse analysis. We also examined how the altered metabolism might affect cell proliferation. Lastly, we confirmed the relevance of our findings in human breast tumor samples. RESULTS Our data indicate that Pyruvate Dehydrogenase Protein X is a credible target of miR-27b in breast cancer. Mechanistically, by suppressing PDHX, miR-27b altered levels of pyruvate, lactate and citrate, as well as reducing mitochondrial oxidation and promoting extracellular acidification. These changes corresponded with an increased capacity for cell proliferation. In human breast tumor samples, PDHX expression was deficient, and low levels of PDHX were associated with reduced patient survival. CONCLUSIONS MicroRNA-27b targets PDHX, resulting in an altered metabolic configuration that is better suited to fuel biosynthetic processes and cell proliferation, thereby promoting breast cancer progression.
Collapse
Affiliation(s)
- Steven C Eastlack
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
61
|
Papadaki C, Stratigos M, Markakis G, Spiliotaki M, Mastrostamatis G, Nikolaou C, Mavroudis D, Agelaki S. Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res 2018; 20:72. [PMID: 29996899 PMCID: PMC6042266 DOI: 10.1186/s13058-018-1001-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/04/2018] [Indexed: 01/04/2023] Open
Abstract
Background In primary breast cancer metastases frequently arise from a state of dormancy that may persist for extended periods of time. We investigated the efficacy of plasma micro-RNA (miR)-21, miR-23b, miR-190, miR-200b and miR-200c, related to dormancy and metastasis, to predict the outcome of patients with early breast cancer. Methods miRNAs were evaluated by RT-qPCR in plasma obtained before adjuvant chemotherapy. miRNA expression, classified as high or low according to median values, correlated with relapse and survival. Receiver operating characteristic (ROC) curves were constructed to determine miRNA sensitivity and specificity. Results miR-21 (p < 0.001), miR-23b (p = 0.028) and miR-200c (p < 0.001) expression were higher and miR-190 was lower (p = 0.013) in relapsed (n = 49), compared to non-relapsed patients (n = 84). Interestingly, miR-190 was lower (p = 0.0032) in patients with early relapse (at < 3 years; n = 23) compared to those without early relapse (n = 110). On the other hand, miR-21 and miR-200c were higher (p = 0.015 and p < 0.001, respectively) in patients with late relapse (relapse at ≥ 5 years; n = 20) as compared to non-relapsed patients. High miR-200c was associated with shorter disease-free survival (DFS) (p = 0.005) and high miR-21 with both shorter DFS and overall survival (OS) (p < 0.001 and p = 0.033, respectively) compared to low expression. ROC curve analysis revealed that miR-21, miR-23b, miR-190 and miR-200c discriminated relapsed from non-relapsed patients. A combination of of miR-21, miR-23b and miR-190 showed higher sensitivity and specificity in ROC analyses compared to each miRNA alone; accuracy was further improved by adding lymph node infiltration and tumor grade to the panel of three miRs (AUC 0.873). Furthermore, the combination of miR-200c, lymph node infiltration, tumor grade and estrogen receptor predicted late relapse (AUC 0.890). Conclusions Circulating miRNAs are differentially expressed among relapsed and non-relapsed patients with early breast cancer and predict recurrence many years before its clinical detection. Our results suggest that miRNAs represent potential circulating biomarkers in early breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-1001-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece
| | - Michalis Stratigos
- Department of Medical Oncology, University General Hospital of Heraklion, 1352 PO BOX, 711 10, Heraklion, Crete, Greece
| | - Georgios Markakis
- Department of Agricultural, Technological Education Institute of Heraklion, 72100, Heraklion, Crete, Greece
| | - Maria Spiliotaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece
| | - Georgios Mastrostamatis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Computational Genomics Group, Department of Biology, University of Crete, 70013, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, 1352 PO BOX, 711 10, Heraklion, Crete, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece. .,Department of Medical Oncology, University General Hospital of Heraklion, 1352 PO BOX, 711 10, Heraklion, Crete, Greece.
| |
Collapse
|
62
|
Li J, Hui L, Kang Q, Li R. Down-regulation of microRNA-27b promotes retinal pigment epithelial cell proliferation and migration by targeting Nox2. Pathol Res Pract 2018; 214:925-933. [DOI: 10.1016/j.prp.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
|
63
|
Jiang T, Huang Z, Zhang S, Zou W, Xiang L, Wu X, Shen Y, Liu W, Zeng Z, Zhao A, Zhou S, Zeng Q. miR‑23b inhibits proliferation of SMMC‑7721 cells by directly targeting IL‑11. Mol Med Rep 2018; 18:1591-1599. [PMID: 29901200 PMCID: PMC6072194 DOI: 10.3892/mmr.2018.9151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer‑associated mortality in the 21st century. microRNA (miR)‑23b has been shown to be involved in the pathogenesis of many cancers, including breast and prostate cancer. However, the role of miR‑23b in HCC remains unclear. The present study revealed a negative correlation between miR‑23b expression in HCC tissues and progression of carcinomas. Compared to normal tissues, miR‑23b expression was significantly downregulated in HCC tissues, whereas the expression of interleukin (IL)‑11 and IL‑11 receptor α (IL‑11Rα) was significantly upregulated, indicating that miR‑23b expression is negatively correlated with IL‑11 and IL‑11Rα expression. In addition, miR‑23b inhibited proliferation and promoted apoptosis of SMMC‑7721 cells. This effect was mediated by IL‑11, which was found to be the direct target of miR‑23b in this study. These results indicated that miR‑23b regulates IL‑11 and IL‑11Rα expression, and might act as an anti‑oncogenic agent in the progression of HCC by directly downregulating IL‑11 expression.
Collapse
Affiliation(s)
- Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550002, P.R. China
| | - Zhi Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550002, P.R. China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Weijie Zou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550002, P.R. China
| | - Lei Xiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550002, P.R. China
| | - Xiaowen Wu
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550002, P.R. China
| | - Yaping Shen
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Weixin Liu
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Ansu Zhao
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| | - Shi Zhou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550002, P.R. China
| | - Qingfan Zeng
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
64
|
Guo Y, Min Z, Jiang C, Wang W, Yan J, Xu P, Xu K, Xu J, Sun M, Zhao Y, Hussain S, Zhang R, Wang Q, Han Y, Zhang F, Zhu W, Li D, Meng L, Sun J, Lu S. Downregulation of HS6ST2 by miR-23b-3p enhances matrix degradation through p38 MAPK pathway in osteoarthritis. Cell Death Dis 2018; 9:699. [PMID: 29899528 PMCID: PMC5999974 DOI: 10.1038/s41419-018-0729-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/01/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis involving major structural changes of peripheral joints and local or systemic inflammation and in lack of therapeutic approaches because of complexity of underlying molecular basis. Our previous work showed that HS6ST2, an enzyme involved in the transfer of sulfate, is downregulated in cartilage tissues of OA patients compared with normal donors, but little is known about its regulatory mechanism. In this study, we demonstrated that the expression of HS6ST2 was lower in OA-damaged cartilage than smooth cartilage from the same patient. In chondrocytes, HS6ST2 could be targeted by miR-23b-3p, which was higher expressed in OA-damaged cartilage. Under TNF-α stimulation, the expression of HS6ST2 was found inversely correlated with the expression of miR-23b-3p. Downregulation of HS6ST2 regulated by overexpression of miR-23b-3p and siRNAs against HS6ST2 could enhance the protein level of MMP13 and aggravate the matrix degradation in chondrocytes. Increased expression of MMP13 depended on activity of p38 MAPK rather than total p38 MAPK level and was abrogated by HS6ST2 overexpression. Together, the results indicated that downregulated HS6ST2 targeted by miR-23b-3p promotes matrix degradation by activating p38 MAPK in chondrocytes and OA cartilage.
Collapse
Affiliation(s)
- Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Zixin Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Wei Wang
- Department of Child Health Care, Shaanxi Provincial People's Hospital, Shaanxi, 710068, Xi'an, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710068, Xi'an, China
| | - Peng Xu
- Xi'an Hong Hui Hospital, the Affiliated Hospital of Xi'an Jiaotong University Health Science Center, 710054, Xi'an, China
| | - Ke Xu
- Xi'an Hong Hui Hospital, the Affiliated Hospital of Xi'an Jiaotong University Health Science Center, 710054, Xi'an, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Mengyao Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Yitong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Safdar Hussain
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Quancheng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China.
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, 710061, Xi'an, China.
| |
Collapse
|
65
|
Zhang J, Zhang Y, Tan X, Zhang Q, Liu C, Zhang Y. MiR-23b-3p induces the proliferation and metastasis of esophageal squamous cell carcinomas cells through the inhibition of EBF3. Acta Biochim Biophys Sin (Shanghai) 2018; 50:605-614. [PMID: 29750239 DOI: 10.1093/abbs/gmy049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs), some small non-coding RNAs that regulate gene expression at the posttranscriptional level, are always aberrantly expressed in carcinomas. In this study, we found that miR-23b-3p was remarkably up-regulated in human esophageal squamous cell carcinoma cells and tissues. Moreover, miR-23b-3p could induce the proliferation, invasion, and metastasis in vitro. EBF3 was identified as the direct downstream target gene of miR-23b-3p and ectogenic EBF3 could strongly inhibit the proliferation, invasion, and metastasis in vitro. Furthermore, it was found that miR-23b-3p could regulate epithelial-to-mesenchymal transition progress by blocking EBF3. Therefore, it was concluded that miR-23b-3p targeted EBF3 to accelerate the proliferation, invasion, and metastasis in ESCC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Medical School of Yangtze University, Jingzhou 434023, China
| | - Yan Zhang
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Xiaoping Tan
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Qing Zhang
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Chaoyong Liu
- Department of Gastroenterology, No. 1 Hospital Affiliated to Yangtze University, Jingzhou 434000, China
| | - Yali Zhang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
66
|
miR-27b-3p Suppressed Osteogenic Differentiation of Maxillary Sinus Membrane Stem Cells by Targeting Sp7. IMPLANT DENT 2018; 26:492-499. [PMID: 28719571 DOI: 10.1097/id.0000000000000637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To explore the critical role and function of miRNAs in the regulation of development and physiology of maxillary sinus membrane stem cell (MSMSC) osteogenesis. METHODS Microarray analysis was performed to screen the miRNAs expression profiles during the process of MSMSC osteogenic differentiation. Quantitative real-time polymerase chain reaction was applied to verify the miRNAs expression profiles. Gain- and loss-of-function experiments were used to demonstrate that miR-27b-3p inhibited MSMSC osteoblastic differentiation. Bioinformatic analysis was performed to predict the potential target of miR-27b-3p and then demonstrated by luciferase reporter assay and western blot. The negative regulation between miR-27b-3p and Sp7 was further confirmed using mimic and inhibitor of miR-27b-3p in vitro. Xenograft mice model was generated to confirm the relationship between miR-27b-3p and Sp7 using recombinant adenoviruses in vivo. RESULTS MiR-27b-3p was downregulated during osteogenic differentiation of MSMSCs. The expression of Sp7, alkaline phosphatase, and osteocalcin decreased when transfected with miR-27b-3p-mimic in MSMSCs after osteogenic differentiation. MiR-27b-3p directly targeted Sp7 and inhibited the MSMSC osteogenesis in vivo. CONCLUSION MiR-27b-3p suppressed the osteogenic differentiation of MSMSCs by directly inhibiting Sp7.
Collapse
|
67
|
ADAMTS6 suppresses tumor progression via the ERK signaling pathway and serves as a prognostic marker in human breast cancer. Oncotarget 2018; 7:61273-61283. [PMID: 27542224 PMCID: PMC5308650 DOI: 10.18632/oncotarget.11341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family is involved in tumor development. However, how ADAMTS6 influences cancer remains unknown. We investigated the biological function and clinical implications of ADAMTs6 in breast cancer (BC). Its functional significance in BC cell lines was confirmed by ADAMTs6 overexpression or downregulation both in vitro and in vivo studies. Enhanced ADAMTS6 expression suppressed cell migration, invasion, and tumorigenesis, whereas knockdown promoted these characteristics. The extracellular signal-regulated kinase (ERK) pathway was partially involved in ADAMTS6-mediated inhibition of BC development, and miR-221-3p was identified as a predicted target for ADAMTS6. Results from the luciferase assay confirmed that miR-221-3p directly inhibited ADAMTS6 expression by binding its 3′-untranslated region. In addition, immunohistochemistry data from specimens from 182 BC patients showed that high ADAMTS6 expression was significantly correlated with favorable disease-free survival (DFS, p = 0.045). Subgroup analysis of patients with ER positive, PR positive or HER-2 negative tumors revealed that high ADAMTS6 expression more strongly extended DFS compared to low expression (p = 0.004, p = 0.009, p = 0.017). Multivariate analyses confirmed that ADAMTS6 expression was an independent risk factor for DFS (p = 0.011). Together, these data demonstrate that ADAMTS6 inhibits tumor development by regulating the ERK pathway via binding of miR-221-3p. Thus, its expression may be a potential prognostic biomarker for BC.
Collapse
|
68
|
He RQ, Wu PR, Xiang XL, Yang X, Liang HW, Qiu XH, Yang LH, Peng ZG, Chen G. Downregulated miR-23b-3p expression acts as a predictor of hepatocellular carcinoma progression: A study based on public data and RT-qPCR verification. Int J Mol Med 2018; 41:2813-2831. [PMID: 29484429 PMCID: PMC5846654 DOI: 10.3892/ijmm.2018.3513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/15/2018] [Indexed: 12/18/2022] Open
Abstract
Mounting evidence has shown that miR-23b-3p, which is associated with cell proliferation, invasion, and apoptosis, acts as a biomarker for diagnosis and outcomes in numerous cancers. However, the clinicopathological implication of miR-23b-3p in hepatocellular carcinoma (HCC) remains unclear. Our study evaluated the role of miR-23b-3p in HCC and investigated its potential application as a marker for preliminary diagnosis and therapy in HCC. High-throughput data from the NCBI Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were collected and analyzed. One hundred and one tissue sections of HCC were paired with adjacent non-cancerous HCC as further supplements. miR-23b-3p expression was detected using quantitative real-time PCR. Additionally, the relationship between miR-23b-3p expression and HCC progression and Time-to-recurrence (months) was explored. Ten algorithms were applied to predict the prospective target genes of miR-23b-3p. Next, we conducted bioinformatics analysis for further study. miR-23b-3p expression was pronouncedly decreased in HCC tissues in contrast with their paired adjacent non-cancerous HCC (P<0.001) with RT-qPCR. In total, 405 targets, acquired with consistent prediction from at least five databases, were used for the bioinformatics analysis. According to the Gene Ontology (GO) analysis, all targets were classified into biological processes, cellular components and molecular functions. In the pathway analysis, targets of miR-23b-3p were primarily enriched in the signaling pathways of renal cell carcinoma, hepatitis B and pancreatic cancer (corrected P-value <0.05). In the protein-protein interaction (PPI) network for miR-23b-3p, a total of 8 targets, including SRC, AKT1, EGFR, CTNNB1, BCL2, SMAD3, PTEN and KDM6A, were located in the key nodes with high degree (>35). In conclusion, this study provides impressive illumination of the potential role of miR-23b-3p in HCC tumorigenesis and progression. Furthermore, miR-23b-3p may act as a predictor of HCC and could be a new treatment target.
Collapse
Affiliation(s)
- Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Pei-Rong Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xue-Lian Xiang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hui Qiu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Hua Yang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Gang Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
69
|
HOTAIR contributes to cell proliferation and metastasis of cervical cancer via targetting miR-23b/MAPK1 axis. Biosci Rep 2018; 38:BSR20171563. [PMID: 29335299 PMCID: PMC5803494 DOI: 10.1042/bsr20171563] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
The long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well-known, evidence suggests that miR-23b might be involved in this event. In the present study, the expressions of HOTAIR and miR-23b were detected by real-time PCR in 33 paired cervical cancer tissue samples and cervical cell lines. The effects of HOTAIR on the expressions of miR-23b and mitogen-activated protein kinase 1 (MAPK1) were studied by overexpression and RNAi approaches. We found that HOTAIR expression was significantly increased in cervical cancer cells and tissues. In contrast, the expression of miR-23b was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation and invasion in vitro and in vivo. Moreover, our data indicated that HOTAIR may competitively bind miR-23b and modulate the expression of MAPK1 indirectly in cervical cancer cells. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role, and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of cervical cancer.
Collapse
|
70
|
miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018; 9:188. [PMID: 29416005 PMCID: PMC5833695 DOI: 10.1038/s41419-017-0211-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
Abstract
Drug resistance remains a major problem in the treatment of conventional chemotherapeutic agents in breast cancers. Owing to heterogeneity and complexity of chemoresistance mechanisms, most efforts that focus on a single pathway were unsuccessful, and exploring novel personalized therapeutics becomes urgent. By a system approach, we identified that microRNA-27b-3p (miR-27b), a miRNA deleted in breast cancer tissues and cell lines, has a master role in sensitizing breast cancer cells to a broad spectrum of anticancer drugs in vitro and in vivo. Mechanistic analysis indicated that miR-27b enhanced responses to PTX by directly targeting CBLB and GRB2 to inactivate both PI3K/Akt and MAPK/Erk signaling pathways. Further, miR-27b was identified as a promising molecular biomarker in chemoresistance, clinicopathological features, and prognosis for breast cancer patients. In conclusion, we propose that combinational use of miR-27b and chemotherapeutic agents might be a promising therapeutic strategy to increase long-term drug responses in breast cancers.
Collapse
|
71
|
Luo Y, Yu SY, Chen JJ, Qin J, Qiu YE, Zhong M, Chen M. MiR-27b directly targets Rab3D to inhibit the malignant phenotype in colorectal cancer. Oncotarget 2017; 9:3830-3841. [PMID: 29423086 PMCID: PMC5790503 DOI: 10.18632/oncotarget.23237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
MiRNAs, as oncogenes or as anti-oncogenes, play critically regulated roles in the initiation and progression of colorectal cancer at posttranscriptional level. However, the underlying functions of miR-27b in colorectal cancer remain largely unexplored. Here, we demonstrated miR-27b is significantly down-regulated in colorectal cancer tissues, and decreased miR-27b expression was closely associated with shorter overall survival of patients with colorectal cancer. By gain- and loss-of-function studies, we showed miR-27b remarkably suppressed cell proliferation and invasion of colorectal cancer. Furthermore, luciferase reporter assay identified Rab3D was the direct functional target of miR-27b. And Rab3D partly reversed the suppression of cell proliferation and invasion caused by miR-27b mimics. Finally, the animal experiment showed miR-27b plays a crucial role on colorectal cancer progression by targeting Rab3D. Taken together, our study implied miR-27b inhibits cell growth and invasion by targeting Rab3D, and miR-27b is a potential biomarker for prognosis and therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Shi-Yong Yu
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, P.R. China
| | - Jian-Jun Chen
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Er Qiu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Min Chen
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
72
|
Martínez-Reza I, Díaz L, García-Becerra R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci 2017; 24:90. [PMID: 29202842 PMCID: PMC5713022 DOI: 10.1186/s12929-017-0398-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 01/23/2023] Open
Abstract
Breast cancer is the most common malignancy in women and a public health problem worldwide. Breast cancer is often accompanied by an inflammatory process characterized by the presence of proinflammatory cytokines such as tumor necrosis factor (TNF-α), which has important implications in the course of the disease. Inflammation has been described primarily as a favorable environment for tumor development. However, under certain conditions TNF-α can promote signals for activation, differentiation, survival or cell death, so the study of the variants of this cytokine, its receptors, the presence of polymorphisms and its implication in different phenotypes of breast cancer is necessary. Although the clinical application of TNF-α has been limited by its toxicity and side effects, preclinical and clinical studies have shown that these effects may partially be avoided via tumor-targeted delivery strategies. In this manner, TNF-α alone or combined with chemotherapy and radiotherapy can function as an adjuvant in the treatment of breast cancer.
Collapse
Affiliation(s)
- Isela Martínez-Reza
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P.14080, Ciudad de México, México.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Circuito Interior, Cuidad Universitaria, Av. Universidad 3000, 04510, Coyoacán, México D.F, México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P.14080, Ciudad de México, México
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P.14080, Ciudad de México, México.
| |
Collapse
|
73
|
Bu TT, Shen J, Chao Q, Shen Z, Yan Z, Zheng HY, Wang BC. Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using Concanavalin A lectin affinity chromatography and a nano-LC-MS/MS-based iTRAQ approach. PLANT CELL REPORTS 2017; 36:1943-1958. [PMID: 28942497 DOI: 10.1007/s00299-017-2209-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The identification of N -glycosylated proteins with information about changes in the level of N -glycosylation during de-etiolation provides a database that will aid further research on plant N -glycosylation and de-etiolation. N-glycosylation is one of the most prominent and abundant protein post-translational modifications in all eukaryotes and in plants it plays important roles in development, stress tolerance and immune responses. Because light-induced de-etiolation is one of the most dramatic developmental processes known in plants, seedlings undergoing de-etiolation are an excellent model for investigating dynamic proteomic profiles. Here, we present a comprehensive, quantitative N-glycoproteomic profile of maize seedlings undergoing 12 h of de-etiolation obtained using Concanavalin A (Con A) lectin affinity chromatography enrichment coupled with a nano-LC-MS/MS-based iTRAQ approach. In total, 1084 unique N-glycopeptides carrying 909 N-glycosylation sites and corresponding to 609 proteins were identified and quantified, including 186 N-glycosylation sites from 162 proteins that were significantly regulated over the course of the 12 h de-etiolation period. Based on hierarchical clustering analysis, the significantly regulated N-glycopeptides were divided into seven clusters that showed different N-glycosylation patterns during de-etiolation. We found no obvious difference in the enriched MapMan bincode categories for each cluster, and these clustered significantly regulated N-glycoproteins (SRNPs) are enriched in miscellaneous, protein, cell wall and signaling, indicating that although the N-glycosylation regulation patterns of these SRNPs might differ, they are involved in similar biological processes. Overall, this study represents the first large-scale quantitative N-glycoproteome of the model C4 plant, maize, which is one of the most important cereal and biofuel crops. Our results greatly expand the maize N-glycoproteomic database and also shed light on the potential roles of N-glycosylation modification during the greening of maize leaves.
Collapse
Affiliation(s)
- Tian-Tian Bu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhuo Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhen Yan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Robert-Wood Johnson Medical School-Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
74
|
Zhu Y, Li T, Chen G, Yan G, Zhang X, Wan Y, Li Q, Zhu B, Zhuo W. Identification of a serum microRNA expression signature for detection of lung cancer, involving miR-23b, miR-221, miR-148b and miR-423-3p. Lung Cancer 2017; 114:6-11. [DOI: 10.1016/j.lungcan.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
|
75
|
Li T, Sun X, Liu Y. miR-27b expression in diagnosis and evaluation prognosis of prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11415-11424. [PMID: 31966497 PMCID: PMC6966086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The aim of study was to investigate the expression of microRNA-27b in different prostate tissues and its anti-tumor effects in prostate cancer. METHODS Measuring the expression of microRNA-27b, evaluating the PI3K protein expression in 28 benign prostatic hyperplasia and 63 prostate cancer tissues, analyzing the correlation between miRNA-27b and PI3K, and miRNA-27b's correlation with Gleason Grading and clinical stages were analyzed. We divided the prostate cancer patients into two groups: low group and high group, comparing the overall survival and progression free survival. In the cell experiment, the PC3 was divided into three groups: NC group, BL group and miRNA group. The cells of difference groups were measuring the cell proliferation, apoptosis and cycle and evaluating PI3K, AKT and P21 protein expressions of difference groups. RESULTS The microRNA-27b expression of prostate cancer significantly increased Compared with benign prostatic hyperplasia (P<0.05). The PI3K protein expression of prostate cancer tissues were significantly enhanced compared with benign prostatic hyperplasia. The PI3K protein expression was positive correlation with miRNA-27b in cancer tissues. Furthermore, the microRNA-27b expression was significantly correlated with the Gleason Grading and clinical stages in prostate cancer (P<0.05, respectively). The patients with higher miR-27b expression level had both poorer overall survival and progression free survival. In cell experiment, the cell proliferation of miRNA group was significantly lower than NC group (P<0.05); the cell apoptosis and G1 phase of miRNA group were significantly difference compared with NC group (P<0.05, respectively); Compared with NC group, PI3K, AKT and P21 protein expressions were significantly down-regulation in miRNA group (P<0.05, respectively). CONCLUSIONS miR-27b was up-regulated in prostate cancer tissue compared with benign prostatic hyperplasia tissues, and its expression level was correlated with a variety of important clinical pathological parameters. In the treatment of prostate cancer, miR-27b inhibition had effects to suppress prostate cancer proliferation by regulation PI3K/AKT/P21 signaling pathway. Moreover; miR-27b may serve as a promising biomarker for predicting the prognosis of prostate cancer.
Collapse
Affiliation(s)
- Tian Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
- Minimally Invasive Technique and Product Translational Center, Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, Guangdong, China
| | - Yifan Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
- Minimally Invasive Technique and Product Translational Center, Guangzhou Medical UniversityGuangzhou 510700, Guangdong, China
| |
Collapse
|
76
|
Liu F, Zhang S, Zhao Z, Mao X, Huang J, Wu Z, Zheng L, Wang Q. MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer. Oncotarget 2017; 7:19666-79. [PMID: 26910911 PMCID: PMC4991410 DOI: 10.18632/oncotarget.7531] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
The infection with high-risk human papillomavirus is linked to cervical cancer, nevertheless, the role of miRNAs regulated by HPV oncogenes in cancer progression remain largely unknown. Here, we knocked down endogenous E6/E7 in HPV16-positive CaSki cell lines, screened differences in miRNA expression profile with control using miRNA array. 38 miRNAs were down-regulated and 6 miRNAs were up-regulated in the E6/E7 silenced CaSki cells (>2-fold changes with P <0.05). The levels of miR-27b, miR-20a, miR-24, miR-93, and miR-106b were verified by qPCR in E6/E7 silenced CaSki and SiHa cells. MiR-27b, up-regulated by E7, promoted CaSki and SiHa cell proliferation and invasion, inhibit paclitaxel-induced apoptosis. Dual-luciferase experiment confirmed miR-27b down-regulated its target gene PLK2 through the “seed regions”. The tumor suppressor PLK2 inhibited SiHa cell proliferation, reduced cell viability, and promoted paclitaxel/cisplatin -induced apoptosis. Furthermore, DGCR8 was found to mediate the up-regulation of miR-27b by HPV16 E7. Our study demonstrated that HPV16 E7 could increase DGCR8 to promote the generation of miR-27b, which accelerated cell proliferation and inhibited paclitaxel-induced cell apoptosis through down-regulating PLK2. These findings provide an insight into the interaction network of viral oncogene, miR-27b and PLK2, and support the potential strategies using antisense nucleic acid of miR-27b for therapy of cervical cancer in the future.
Collapse
Affiliation(s)
- Fei Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shimeng Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Central Laboratory, Shenzhen Shekou People's Hospital, Shenzhen 518000, China
| | - Zhen Zhao
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD 20892, USA
| | - Xinru Mao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlan Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zixian Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
77
|
Wang W, Wang Y, Liu W, van Wijnen AJ. Regulation and biological roles of the multifaceted miRNA-23b (MIR23B). Gene 2017; 642:103-109. [PMID: 29101066 DOI: 10.1016/j.gene.2017.10.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are important short endogenous non-coding RNAs that have critical biological roles by acting as post-transcriptional regulators of gene expression. Chromosomal region 9q22.32 encodes the miR-23b/27b/24-1 cluster and produces miR-23b, which is a pleiotropic modulator in many developmental processes and pathological conditions. Expression of miR-23b is actively suppressed and induced in response to many different stimuli. We discuss the biological functions and transcriptional regulation of this multifaceted miRNA in different tumor types, during development, upon viral infection, as well as in various clinical disorders, immune responses, as well as cardiovascular and thyroid functions. The combined body of work suggests that miR-23b expression is modulated by a diverse array of stimuli in cells from different lineages and participates in multiple gene regulatory feedback loops. Elevation of miR-23b levels appears to instruct cells to limit their proliferative and migratory potential, while promoting the acquisition of specialized phenotypes or protection from invading viruses and parasites. In contrast, loss of miR-23b can deregulate normal tissue homeostasis by removing constraints on cell cycle progression and cell motility. Collectively, the findings on miR-23b indicate that it is a very potent post-transcriptional regulator of growth and differentiation during development, multiple cancers and other biological processes. Understanding the regulation and activity of miR-23b has significant diagnostic value in many biological disorders and may identify cellular pathways that are amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China; Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Wang
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopaedics, Changzhou No. 2 People's Hospital, Nanjing Medical University, 29 Xinglong Alley, Jiangsu, China
| | - Weijun Liu
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Andre J van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
78
|
Li H, Liu J, Wang Y, Fu Z, Hüttemann M, Monks TJ, Chen AF, Wang JM. MiR-27b augments bone marrow progenitor cell survival via suppressing the mitochondrial apoptotic pathway in Type 2 diabetes. Am J Physiol Endocrinol Metab 2017; 313:E391-E401. [PMID: 28698281 PMCID: PMC5668595 DOI: 10.1152/ajpendo.00073.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 12/24/2022]
Abstract
Bone marrow-derived progenitor cells (BMPCs) are potential candidates for autologous cell therapy in tissue repair and regeneration because of their high angiogenic potential. However, increased progenitor cell apoptosis in diabetes directly limits their success in the clinic. MicroRNAs are endogenous noncoding RNAs that regulate gene expression at the posttranscriptional level, but their roles in BMPC-mediated angiogenesis are incompletely understood. In the present study, we tested the hypothesis that the proangiogenic miR-27b inhibits BMPC apoptosis in Type 2 diabetes. Bone marrow-derived EPCs from adult male Type 2 diabetic db/db mice and their normal littermates db/+ mice were used. MiR-27b expression (real-time PCR) in EPCs was decreased after 24 h of exposure to methylglyoxal (MGO) or oxidized low-density lipoprotein but not high glucose, advanced glycation end products, the reactive oxygen species generator LY83583, or H2O2 The increase in BMPC apoptosis in the diabetic mice was rescued following transfection with a miR-27b mimic, and the increased apoptosis induced by MGO was also rescued by the miR-27b mimic. p53 protein expression and the Bax/Bcl-2 ratio in EPCs (Western blot analyses) were significantly higher in db/db mice, both of which were suppressed by miR-27b. Furthermore, mitochondrial respiration, as measured by oxygen consumption rate, was enhanced by miR-27b in diabetic BMPCs, with concomitant decrease of mitochondrial Bax/Bcl-2 ratio. The 3' UTR binding assays revealed that both Bax, and its activator RUNX1, were direct targets of miR-27b, suggesting that miR-27b inhibits Bax expression in both direct and indirect manners. miR-27b prevents EPC apoptosis in Type 2 diabetic mice, at least in part, by suppressing p53 and the Bax/Bcl-2 ratio. These findings may provide a mechanistic basis for rescuing BMPC dysfunction in diabetes for successful autologous cell therapy.
Collapse
Affiliation(s)
- Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Jenny Liu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Yihan Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Zhiyao Fu
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
- Departments of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
- Integrated Biosciences, Wayne State University, Detroit, Michigan
| | - Alex F Chen
- Clinical Research Institute, Department of Cardiology and Endocrinology, The Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
- Vascular Surgery Research, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan;
| |
Collapse
|
79
|
Ofek P, Tiram G, Satchi-Fainaro R. Angiogenesis regulation by nanocarriers bearing RNA interference. Adv Drug Deliv Rev 2017; 119:3-19. [PMID: 28163106 DOI: 10.1016/j.addr.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Since the approval of bevacizumab as anti-angiogenic therapy in 2004 by the FDA, an array of angiogenesis inhibitors have been developed and approved. However, results were disappointing with regard to their therapeutic efficacy. RNA interference approaches offer the possibility of rational design with high specificity, lacking in many current drug treatments for various diseases including cancer. However, in vivo delivery issues still represent a significant obstacle for widespread clinical applications. In the current review, we summarize the advances in the last decade in the field of angiogenesis-targeted RNA interference approaches, with special emphasis on oncology applications. We present pro-angiogenic and anti-angiogenic factors as potential targets, experimental evidence and clinical trials data on angiogenesis regulation by RNA interference. Consequent challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Paula Ofek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
80
|
Lewinska A, Adamczyk-Grochala J, Deregowska A, Wnuk M. Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells. Theranostics 2017; 7:3461-3477. [PMID: 28912888 PMCID: PMC5596436 DOI: 10.7150/thno.20657] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer cells are characterized by genetic and epigenetic alterations and phytochemicals, epigenetic modulators, are considered as promising candidates for epigenetic therapy of cancer. In the present study, we have investigated cancer cell fates upon stimulation of breast cancer cells (MCF-7, MDA-MB-231, SK-BR-3) with low doses of sulforaphane (SFN), an isothiocyanate. SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence, whereas at the concentration of 20 µM, apoptosis was induced. The effects were accompanied by nitro-oxidative stress, genotoxicity and diminished AKT signaling. Moreover, SFN stimulated energy stress as judged by decreased pools of ATP and AMPK activation, and autophagy induction. Anticancer effects of SFN were mediated by global DNA hypomethylation, decreased levels of DNA methyltransferases (DNMT1, DNMT3B) and diminished pools of N6-methyladenosine (m6A) RNA methylation. SFN (10 µM) also affected microRNA profiles, namely SFN caused upregulation of sixty microRNAs and downregulation of thirty two microRNAs, and SFN promoted statistically significant decrease in the levels of miR-23b, miR-92b, miR-381 and miR-382 in three breast cancer cells. Taken together, we show for the first time that SFN is an epigenetic modulator in breast cancer cells that results in cell cycle arrest and senescence, and SFN may be considered to be used in epigenome-focused anticancer therapy.
Collapse
Affiliation(s)
- Anna Lewinska
- Laboratory of Cell Biology, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa, Poland
| | | | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
| |
Collapse
|
81
|
Zhu HT, Liu RB, Liang YY, Hasan AME, Wang HY, Shao Q, Zhang ZC, Wang J, He CY, Wang F, Shao JY. Serum microRNA profiles as diagnostic biomarkers for HBV-positive hepatocellular carcinoma. Liver Int 2017; 37:888-896. [PMID: 28061012 DOI: 10.1111/liv.13356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The discovery of effective and reliable biomarkers to detect hepatitis B virus (HBV)-positive hepatocellular carcinoma (HCC) at an early stage may improve the survival of HCC. The aim of this study was to establish serum microRNA (miRNA) profiles as diagnostic biomarkers for HBV-positive HCC. METHODS We used deep sequencing to screen serum miRNAs in a discovery cohort (n=100). Quantitative polymerase chain reaction (qPCR) assays were then applied to evaluate the expression of selected miRNAs. A diagnostic 2-miRNA panel was established by a logistic regression model using a training cohort (n=182). The predicted probability of being detected as HCC was used to construct the receiver operating characteristic (ROC) curve. Area under the ROC curve (AUC) was used to assess the diagnostic performance of the selected miRNA panel. RESULTS The predicted probability of being detected as HCC by the 2-miRNA panel was calculated by: logit P=-2.988 + 1.299 × miR-27b-3p + 1.245 × miR-192-5p. These results were further confirmed in a validation cohort (n=246).The miRNA panel provided a high diagnostic accuracy of HCC (AUC=0.842, P<.0001 for training set; AUC=0.836, P<.0001 for validation set respectively). In addition, the miRNA panel showed better prediction of HCC diagnosis than did alpha-foetoprotein (AFP). The miRNA panel also differentiated HCC from healthy (AUC=0.823, P<.0001), and cirrhosis patients (AUC=0.859, P<.0001) respectively. CONCLUSIONS Differentially expressed serum miRNAs may have considerable clinical value in HCC diagnosis, and be particularly helpful for AFP-negative HCC.
Collapse
Affiliation(s)
- Hao-Tu Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong-Bin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ya-Yong Liang
- Department of paediatrics, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Abdulbaqi M E Hasan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Chen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cai-Yun He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Yong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
82
|
Dysregulation of Blimp1 transcriptional repressor unleashes p130Cas/ErbB2 breast cancer invasion. Sci Rep 2017; 7:1145. [PMID: 28442738 PMCID: PMC5430666 DOI: 10.1038/s41598-017-01332-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/28/2017] [Indexed: 12/29/2022] Open
Abstract
ErbB2 overexpression is detected in approximately 20% of breast cancers and is correlated with poor survival. It was previously shown that the adaptor protein p130Cas/BCAR1 is a crucial mediator of ErbB2 transformation and that its overexpression confers invasive properties to ErbB2-positive human mammary epithelial cells. We herein prove, for the first time, that the transcriptional repressor Blimp1 is a novel mediator of p130Cas/ErbB2-mediated invasiveness. Indeed, high Blimp1 expression levels are detected in invasive p130Cas/ErbB2 cells and correlate with metastatic status in human breast cancer patients. The present study, by using 2D and 3D breast cancer models, shows that the increased Blimp1 expression depends on both MAPK activation and miR-23b downmodulation. Moreover, we demonstrate that Blimp1 triggers cell invasion and metastasis formation via its effects on focal adhesion and survival signaling. These findings unravel the previously unidentified role that transcriptional repressor Blimp1 plays in the control of breast cancer invasiveness.
Collapse
|
83
|
Ding L, Ni J, Yang F, Huang L, Deng H, Wu Y, Ding X, Tang J. Promising therapeutic role of miR-27b in tumor. Tumour Biol 2017; 39:1010428317691657. [PMID: 28351320 DOI: 10.1177/1010428317691657] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small nonprotein-encoding RNAs ranging from 18 to 25 nucleotides in size and regulate multiple biological pathways via directly targeting a variety of associated genes in cancers. MicroRNA-27b is a highly conserved MicroRNA throughout vertebrates and there are two homologs (hsa-miR-27a and hsa-miR-27b) in humans. MicroRNA-27b is an intragenic microRNA located on chromosome 9q22.1 within the C9orf3 gene, clustering with miR-23b and miR-24-1 in human. As a frequently dysregulated microRNA in human cancers, microRNA-27b could function as a tumor suppressor or an oncogenic microRNA. More and more studies indicate that microRNA-27b is involved in affecting various biological processes, such as angiogenesis, proliferation, metastasis, and drug resistance, and thus may act as a promising therapeutic target in human cancers. In this review, we discuss the role of microRNA-27b in detail and offer novel insights into molecular targeting therapy for cancers.
Collapse
Affiliation(s)
- Li Ding
- 1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.,2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Jie Ni
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,3 The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Fan Yang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Lingli Huang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Heng Deng
- 4 The Graduate School, AnHui University of Traditional Chinese Medicine, Hefei, P.R. China
| | - Yang Wu
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xuansheng Ding
- 1 School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jinhai Tang
- 2 Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,5 Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
84
|
Zhou H, Liu Y, Xiao L, Hu Z, Xia K. Overexpression of MicroRNA-27b Inhibits Proliferation, Migration, and Invasion via Suppression of MET Expression. Oncol Res 2017; 25:147-154. [PMID: 28081743 PMCID: PMC7840835 DOI: 10.3727/096504016x14732772150505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MicroRNA-27b (miR-27b) was recently found to be significantly downregulated in different human cancers. However, evidence of the function of miR-27b in non-small cell lung cancer (NSCLC) remains limited. In this study, we aimed to investigate novel miR-27b-mediated targets or signaling pathways associated with the tumorigenesis and metastasis of NSCLC. Real-time (RT) PCR was performed to examine miR-27b expression in NSCLC specimens. MTT assay, wound-healing assay, and Transwell assay were used to determine cell proliferation, migration, and invasion. Our data indicated that the miR-27b levels were significantly decreased in NSCLC specimens and cell lines (SK-MES-1, H358, H460, A549, and H1229) when compared to matched normal adjacent tissues and normal human lung epithelial cell lines, respectively. Restoration of miR-27b significantly inhibited the proliferation, migration, and invasion of A549 cells. We then conducted in silico analysis and luciferase reporter gene assay and identified MET, a receptor tyrosine kinase, as a direct target of miR-27b in NSCLC cells. Moreover, overexpression of MET rescued the suppressive effect of miR-27b on the proliferation, migration, and invasion of A549 cells, suggesting that MET acts as a downstream effecter of miR-27b in NSCLC cells. In summary, our study identified a novel miR-27b/MET signaling pathway involved in the cell proliferation, migration, and invasion of NSCLC, and identification of miR-27b-mediated novel signaling pathways may help reveal the molecular mechanism underlying the development and malignant progression of this disease.
Collapse
|
85
|
Bagheri A, Khorram Khorshid HR, Mowla SJ, Mohebbi HA, Mohammadian A, Yaseri M, Solaymani-Dodaran M, Sherafatian M, Tavallaie M. Altered miR-223 Expression in Sputum for Diagnosis of Non-Small Cell Lung Cancer. Avicenna J Med Biotechnol 2017; 9:189-195. [PMID: 29090068 PMCID: PMC5650736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Diagnosis of Non-small Cell Lung Cancer (NSCLC) at an early stage is a daunting challenge due to the deficiency of specific noninvasive markers. MicroRNAs (miRNAs) play important roles in the initiation and progression of NSCLC. Measuring miRNA expression levels could provide a potential approach for the diagnosis of NSCLC. Our goals were to examine miR-223, miR-212, miR-192, miR-3074, SNORD33 and SNORD37 expression levels in tissue and sputum of NSCLC patients and cancer free subjects for molecular diagnosis of NSCLC. METHODS Relative expressions of miR-223, miR-212, miR-192, miR-3074, SNORD33 and SNORD37 were examined with quantitative real-time RT-PCR assay in tissue and sputum obtained from 17 NSCLC patients and 17 controls. RESULTS miR-3074 was upregulated in tissue samples of NSCLC patients compared with control group. miR-223 was upregulated, miR-212 and SNORD37 were downergulated in sputum samples of patients compared with controls. miR-223 quantification produced 82% sensitivity and 95% specificity with areas under the ROC curve at 0.90 in detection of NSCLC. CONCLUSION miR-223 clearly discriminated cancer patients from cancer-free subjects and our results suggest that miR-223 could be a diagnostic useful biomarker. The measurement of altered miRNA expression in sputum samples manifested the potential noninvasive approach for detection of lung cancer.
Collapse
Affiliation(s)
- Abouzar Bagheri
- Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ali Mohebbi
- Trauma Research Center, Baghiyatallah University of Medical Sciences, Tehran, Iran
| | - Azam Mohammadian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masih Sherafatian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Tavallaie
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author: Mahmood Tavallaie, Ph.D., Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, Tel: +98 9121055684, Fax: +98 21 88053609, E-mail:
| |
Collapse
|
86
|
O'Bryan S, Dong S, Mathis JM, Alahari SK. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. Eur J Cancer 2016; 72:1-11. [PMID: 27997852 DOI: 10.1016/j.ejca.2016.11.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
Abstract
Since the discovery of tumour suppressive miRNA in 2002, the dysregulation of miRNAs was implicated in many cancers, exhibiting both tumour suppressive and oncogenic roles. Dysregulation of miRNAs was found to be involved in the initiation of oncogenesis, as well as the progression, invasion and metastasis of cancers. While normal miRNA inhibitory functions help regulate gene expression in the cell, oncogenic miRNA, when dysregulated can lead to suppression of critical pathways that control apoptosis, cell cycle progression, growth and proliferation. This suppression allows for the upregulation of pro-oncogenic factors that drive cell survival, growth and proliferation. Due to emerging discoveries, oncogenic miRNAs are proving to be a critical component in cancers, such as breast cancer, and may provide novel avenues for cancer treatment. In this article, we discuss the roles of the most studied oncogenic miRNAs in breast cancer including clusters and families involved as well as the less studied and recently discovered oncogenic miRNAs. These miRNAs provide valuable information into the complexity of regulatory elements affected by their overexpression and the overall impact in the progression of breast cancer. Also, identifying miRNAs causing or leading to resistance or sensitivity to current anti-cancer drugs prior to treatment may lead to an improvement in treatment selection and overall patient response. This review summarizes known and recently discovered miRNAs in literature found to have oncogenic roles in breast cancer initiation and the progression, invasion and metastasis of the disease.
Collapse
Affiliation(s)
- Samia O'Bryan
- Department of Comparative Biomedical Science, School of Veterinary Science, Louisiana State University, Baton Rouge, LA, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, LSU School of Medicine, New Orleans, LA 70112, USA
| | - J Michael Mathis
- Department of Comparative Biomedical Science, School of Veterinary Science, Louisiana State University, Baton Rouge, LA, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, LSU School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
87
|
Venturutti L, Russo RIC, Rivas MA, Mercogliano MF, Izzo F, Oakley RH, Pereyra MG, De Martino M, Proietti CJ, Yankilevich P, Roa JC, Guzmán P, Cortese E, Allemand DH, Huang TH, Charreau EH, Cidlowski JA, Schillaci R, Elizalde PV. MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene 2016; 35:6189-6202. [PMID: 27157613 PMCID: PMC5832962 DOI: 10.1038/onc.2016.151] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/26/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
ErbB-2 amplification/overexpression accounts for an aggressive breast cancer (BC) subtype (ErbB-2-positive). Enhanced ErbB-2 expression was also found in gastric cancer (GC) and has been correlated with poor clinical outcome. The ErbB-2-targeted therapies trastuzumab (TZ), a monoclonal antibody, and lapatinib, a tyrosine kinase inhibitor, have proved highly beneficial. However, resistance to such therapies remains a major clinical challenge. We here revealed a novel mechanism underlying the antiproliferative effects of both agents in ErbB-2-positive BC and GC. TZ and lapatinib ability to block extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase (PI3K)/AKT in sensitive cells inhibits c-Myc activation, which results in upregulation of miR-16. Forced expression of miR-16 inhibited in vitro proliferation in BC and GC cells, both sensitive and resistant to TZ and lapatinib, as well as in a preclinical BC model resistant to these agents. This reveals miR-16 role as tumor suppressor in ErbB-2-positive BC and GC. Using genome-wide expression studies and miRNA target prediction algorithms, we identified cyclin J and far upstream element-binding protein 1 (FUBP1) as novel miR-16 targets, which mediate miR-16 antiproliferative effects. Supporting the clinical relevance of our results, we found that high levels of miR-16 and low or null FUBP1 expression correlate with TZ response in ErbB-2-positive primary BCs. These findings highlight a potential role of miR-16 and FUBP1 as biomarkers of sensitivity to TZ therapy. Furthermore, we revealed miR-16 as an innovative therapeutic agent for TZ- and lapatinib-resistant ErbB-2-positive BC and GC.
Collapse
Affiliation(s)
- L Venturutti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - RI Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - MA Rivas
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - MF Mercogliano
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - F Izzo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - RH Oakley
- Department of Health and Human Services, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - MG Pereyra
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
- Servicio de Anatomía Patológica, Hospital General de Agudos ‘Juan A Fernández’, Buenos Aires, Argentina
| | - M De Martino
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - CJ Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - P Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires, CONICET—Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - JC Roa
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
- Departamento de Anatomía Patológica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Pontificia Universidad Católica de Chile, Santiago de Chile, Santiago, Chile
| | - P Guzmán
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - E Cortese
- Servicio de Ginecología, Hospital Aeronáutico Central, Buenos Aires, Argentina
| | - DH Allemand
- Unidad de Patología Mamaria, Hospital General de Agudos ‘Juan A Fernández’, Buenos Aires, Argentina
| | - TH Huang
- Department of Molecular Medicine/Institute of Biotechnology, Cancer Therapy and Research Center, University of Texas, San Antonio, TX, USA
| | - EH Charreau
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - JA Cidlowski
- Department of Health and Human Services, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - R Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - PV Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
88
|
Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis 2016; 7:e2454. [PMID: 27809310 PMCID: PMC5260890 DOI: 10.1038/cddis.2016.361] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/09/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
Estrogen-dependent breast cancer is often treated with the aromatase inhibitors or estrogen receptor (ER) antagonists. Tamoxifen as a major ER antagonist is usually used to treat those patients with ERα-positive breast cancer. However, a majority of patients with ERα positive fail to respond to tamoxifen due to the presence of intrinsic or acquired resistance to the drug. Altered expression and functions of microRNAs (miRNAs) have been reportedly associated with tamoxifen resistance. In this study, we investigated the role of miR-27b-3p in resistance of breast cancer to tamoxifen. MiR-27b-3p levels were remarkably reduced in the tamoxifen-resistant breast cancer cells compared with their parental cells. In addition, miR-27b-3p was also significantly downregulated in breast tumor tissues relative to adjacent non-tumor tissues. Moreover, the expression levels of miR-27b-3p were lower in the breast cancer tissues from tamoxifen-resistant patients compared with that from untreated-tamoxifen patients. Notably, tamoxifen repressed miR-27b-3p expression, whereas estrogen induced miR-27b-3p expression in breast cancer cells. Besides, we provided experimental evidences that miR-27b-3p enhances the sensitivity of breast cancer cells to tamoxifen in vitro and in vivo models. More importantly, we validated that miR-27b-3p directly targeted and inhibited the expression of nuclear receptor subfamily 5 group A member 2 (NR5A2) and cAMP-response element binding protein 1 (CREB1) and therefore augmented tamoxifen-induced cytotoxicity in breast cancer. Lastly, miR-27b-3p levels were found to be significantly negatively correlated with both NR5A2 and CREB1 levels in breast cancer tissues. Our findings provided further evidence that miR-27b-3p might be considered as a novel and potential target for the diagnosis and treatment of tamoxifen-resistant breast cancer.
Collapse
|
89
|
Kou CH, Zhou T, Han XL, Zhuang HJ, Qian HX. Downregulation of mir-23b in plasma is associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2016; 12:4838-4844. [PMID: 28101227 DOI: 10.3892/ol.2016.5265] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/12/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that act as regulators of gene expression. Circulating blood miRNAs have potential as cancer biomarkers. The main objective of the present study was to assess the effect of miRNA-23b (miR-23b) expression in plasma on the diagnosis and prognosis of colorectal cancer (CRC). Reverse transcription-quantitative polymerase chain reaction (PCR) was used to measure miR-23b expression levels, and methylation-specific PCR was used to test the promoter methylation status. Subsequently, the expression level of miR-23b in plasma samples was compared between CRC patients and healthy control individuals. The miR-23b expression levels were significantly lower in CRC cells and primary CRC tissues than in nonmalignant colorectal tissues (P<0.001). It was also shown that miR-23b expression is downregulated by promoter methylation and can be restored by demethylation agent treatment. miR-23b was significantly decreased in plasma samples from CRC patients compared with the healthy control individuals (P<0.001). The value of the area under the receiver operating characteristic curve was 0.842 (sensitivity, 84.38%; specificity, 77.08%; 95% confidence interval, 0.763-0.922). Low plasma miR-23b expression was significantly associated with clinical stage, tumor depth, distant metastasis and tumor recurrence. CRC patients with low miR-23b expression in plasma exhibited a shorter recurrence-free survival time and poorer overall survival rate. The present results suggested that the downregulation of miR-23b in the plasma has the potential to be a diagnostic and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Chang-Hua Kou
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Tian Zhou
- Department of Gastroenterology, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Xi-Lin Han
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Hui-Jie Zhuang
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Hai-Xin Qian
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
90
|
Santos JC, Ribeiro ML, Sarian LO, Ortega MM, Derchain SF. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. Am J Cancer Res 2016; 6:2129-2139. [PMID: 27822407 PMCID: PMC5088281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023] Open
Abstract
Breast cancer is the most common and fatal type of cancer in women worldwide due to the metastatic process and resistance to treatment. Despite advances in molecular knowledge, little is known regarding resistance to chemotherapy. One highlighted aspect is the DNA damage response (DDR) pathway that is activated upon genotoxic damage, controlling the cell cycle arrest or DNA repair activation. Recently, studies have showed that cancer stem cells (CSCs) could promote chemoresistance through DDR pathway. Furthermore, it is known that the epithelial-mesenchymal transition (EMT) can generate cells with CSCs characteristics and therefore regulate the chemoresistance process. The exosomes are microvesicles filled with RNAs, proteins and microRNAs (miRNAs) that can be released by many cell types, including tumor cells and CSCs. The exosomes content may be cell-to-cell transferable and it could control a wide range of pathways during tumor development and metastasis. A big challenge for modern medicine is to determine the reasons why patients do not respond to chemotherapy treatments and also guide the most appropriate therapy for each one. Considering that the CSCs are able to stimulate the formation of a more aggressive tumor phenotype with migration and metastasis ability, resistance to treatment and disease recurrence, as well as few studies capable to determine clearly the interaction of breast CSCs with its microenvironment, the present review summarize the possibility that exosomes-mediate miRNAs transfer and regulate chemoresistance in breast tumor cells and CSCs, to clarify the complexity of breast cancer progression and therapy.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Women’s Health Hospital “Prof Dr José Aristodemo Pinotti” (CAISM), State University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco UniversityBragança Paulista, SP, Brazil
| | - Luis Otávio Sarian
- Women’s Health Hospital “Prof Dr José Aristodemo Pinotti” (CAISM), State University of Campinas (UNICAMP)Campinas, SP, Brazil
| | - Manoela Marques Ortega
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco UniversityBragança Paulista, SP, Brazil
| | - Sophie Françoise Derchain
- Women’s Health Hospital “Prof Dr José Aristodemo Pinotti” (CAISM), State University of Campinas (UNICAMP)Campinas, SP, Brazil
| |
Collapse
|
91
|
Lin X, Chen L, Yao Y, Zhao R, Cui X, Chen J, Hou K, Zhang M, Su F, Chen J, Song E. CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis. Oncotarget 2016; 6:20485-99. [PMID: 26244871 PMCID: PMC4653020 DOI: 10.18632/oncotarget.4107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Our previous work has indicated that CCL18 secreted by tumor-associated macrophages (TAMs) promotes breast cancer metastasis, which is associated with poor patient prognosis. However, it remains unclear whether microRNAs (miRNAs), which may modulate multiple cellular pathways, are involved in the regulation of CCL18 signaling and the ensuing metastasis of breast cancer. In this study, we demonstrated that CCL18 reduces miR98 and miR27b expression via the N-Ras/ERK/PI3K/NFκB/Lin28b signaling pathway, while down-regulation of these mRNAs feedbacks to increase N-Ras and Lin28b levels. This cascade of events forms a positive feedback loop that sustains the activation of CCL18 signaling. More importantly, reduction in miR98 and miR27b enhances the epithelial-mesenchymal transition (EMT) of breast cancer cells, and thus promotes breast cancer metastasis. These findings suggest that down-regulation of miR98 and miR27b promotes CCL18-mediated invasion and migration of breast cancer cells.
Collapse
Affiliation(s)
- Xiaorong Lin
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China.,Diagnosis and Treatment Center of Breast Diseases, Shantou Hospital, SunYat-Sen University, Shantou, Guangdong Province, People's Republic of China
| | - Lijun Chen
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yandang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Ruihua Zhao
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China.,Department of Oncology and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Xiuying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Jun Chen
- Department of Breast Tumor, The Third Hospital of Nanchang, Nanchang City, Jiangxi Province, People's Republic of China
| | - Kailian Hou
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mingxia Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Jingqi Chen
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
92
|
Wu D, Xi QY, Cheng X, Dong T, Zhu XT, Shu G, Wang LN, Jiang QY, Zhang YL. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes. J Lipid Res 2016; 57:1360-72. [PMID: 27324794 PMCID: PMC4959853 DOI: 10.1194/jlr.m062497] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models.
Collapse
Affiliation(s)
- Di Wu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Qian-Yun Xi
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Xiao Cheng
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Tao Dong
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Xiao-Tong Zhu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Gang Shu
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Li-Na Wang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Qing-Yan Jiang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| | - Yong-Liang Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, China, 510642
| |
Collapse
|
93
|
Dhondt B, Rousseau Q, De Wever O, Hendrix A. Function of extracellular vesicle-associated miRNAs in metastasis. Cell Tissue Res 2016; 365:621-41. [DOI: 10.1007/s00441-016-2430-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/07/2016] [Indexed: 01/08/2023]
|
94
|
Ali HO, Arroyo AB, González-Conejero R, Stavik B, Iversen N, Sandset PM, Martínez C, Skretting G. The role of microRNA-27a/b and microRNA-494 in estrogen-mediated downregulation of tissue factor pathway inhibitor α. J Thromb Haemost 2016; 14:1226-37. [PMID: 26999003 DOI: 10.1111/jth.13321] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/04/2016] [Indexed: 12/01/2022]
Abstract
UNLABELLED Essentials Estrogens are known to influence the expression of microRNAs in breast cancer cells. We looked at microRNAs in estrogenic regulation of tissue factor pathway inhibitor α (TFPIα). Estrogen upregulated microRNA-27a/b and microRNA-494 through the estrogen receptor α. MicroRNA-27a/b and microRNA-494 are partly involved in estrogenic downregulation of TFPIα. SUMMARY Background Tissue factor pathway inhibitor (TFPI) has been linked to breast cancer pathogenesis. We have recently reported TFPI mRNA levels to be downregulated by estrogens in a breast cancer cell line (MCF7) through the estrogen receptor α (ERα). Accumulating evidence also indicates that activation of ERα signaling by estrogens may modulate the expression of target genes indirectly through microRNAs (miRNAs). Objectives To examine if miRNAs are involved in the estrogenic downregulation of TFPIα. Methods Computational analysis of the TFPI 3'-untranslated region (UTR) identified potential binding sites for miR-19a/b, miR-27a/b, miR-494, and miR-24. Transient overexpression or inhibition of the respective miRNAs was achieved by transfection of miRNA mimics or inhibitors. Direct targeting of TFPI 3'-UTR by miR-27a/b and miR-494 was determined by luciferase reporter assay in HEK293T cells. Effects of 17α-ethinylestradiol (EE2) and fulvestrant on relative miR-27a/b, miR-494, and TFPI mRNA levels in MCF7 cells were determined by qRT-PCR and secreted TFPIα protein by ELISA. Transient knockdown of ERα was achieved by siRNA transfection. Results EE2 treatment lead to a significant increase in miR-19a, miR-27a/b, miR-494, and miR-24 mRNA levels in MCF7 cells through ERα. miR-27a/b and miR-494 mimics lead to reduced TFPI mRNA and protein levels. Luciferase assay showed direct targeting of miR-27a/b and miR-494 on TFPI mRNA. Impaired estrogen-mediated downregulation of TFPI mRNA was detected in anti-miR-27a/b and anti-miR-494 transfected cells. Conclusions Our results provide evidence that miR-27a/b and miR-494 regulate TFPIα expression and suggest a possible role of these miRNAs in the estrogen-mediated downregulation of TFPIα.
Collapse
Affiliation(s)
- H O Ali
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - A B Arroyo
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - R González-Conejero
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - B Stavik
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - N Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - P M Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C Martínez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - G Skretting
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
95
|
CHEN SHI, WANG QIAN, ZHOU XIANMEI, ZHU JIPING, LI TIAN, HUANG MAO. MicroRNA-27b reverses docetaxel resistance of non-small cell lung carcinoma cells via targeting epithelial growth factor receptor. Mol Med Rep 2016; 14:949-54. [DOI: 10.3892/mmr.2016.5332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
|
96
|
Huang TT, Ping YH, Wang AM, Ke CC, Fang WL, Huang KH, Lee HC, Chi CW, Yeh TS. The reciprocal regulation loop of Notch2 pathway and miR-23b in controlling gastric carcinogenesis. Oncotarget 2016; 6:18012-26. [PMID: 26041881 PMCID: PMC4627232 DOI: 10.18632/oncotarget.4000] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Gastric carcinoma is one of the most common malignancies and the third highest cause of global cancer-related death. Notch2 receptor intracellular domain (N2IC), the activated form of Notch2 receptor, enhances gastric carcinogenesis. MicroRNAs (miRNAs) act as either oncogenes or tumor suppressors in tumorigenesis and cross-talk with Notch pathways. Herein, microRNA-23b (miR-23b) was identified as a Notch2 receptor-related miRNA and its role in gastric carcinogenesis was investigated. Levels of miR-23b in stomach adenocarcinoma samples were down-regulated, whereas those of Notch2 receptor, v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets1), and E2F1 transcripts were up-regulated. Results also showed that N2IC down-regulated miR-23b expression in gastric cancer cells through up-regulating E2F1. The miR-23b inhibited gastric tumorigenesis including growth, viability, epithelial-mesenchymal transition, and abilities of colony formation, migration, invasion, and tumorsphere formation. Mechanistically, miR-23b suppressed tumor progression and pluripotency gene expression and affected tumorsphere ultra-structure in gastric cancer cells via targeting Notch2 receptor or Ets1. Furthermore, miR-23b diminished the xenografted tumor growth and lung metastasis of SC-M1 gastric cancer cells through Notch2 pathway. Our results suggest that Notch2 pathway and miR-23b interplay in a reciprocal regulation loop in gastric cancer cells and this axis plays an important role in gastric carcinogenesis.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - An-Ming Wang
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Chi Ke
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Liang Fang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Hung Huang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-Shun Yeh
- Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
97
|
Icay K, Chen P, Cervera A, Rantanen V, Lehtonen R, Hautaniemi S. SePIA: RNA and small RNA sequence processing, integration, and analysis. BioData Min 2016; 9:20. [PMID: 27213017 PMCID: PMC4875694 DOI: 10.1186/s13040-016-0099-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background Large-scale sequencing experiments are complex and require a wide spectrum of computational tools to extract and interpret relevant biological information. This is especially true in projects where individual processing and integrated analysis of both small RNA and complementary RNA data is needed. Such studies would benefit from a computational workflow that is easy to implement and standardizes the processing and analysis of both sequenced data types. Results We developed SePIA (Sequence Processing, Integration, and Analysis), a comprehensive small RNA and RNA workflow. It provides ready execution for over 20 commonly known RNA-seq tools on top of an established workflow engine and provides dynamic pipeline architecture to manage, individually analyze, and integrate both small RNA and RNA data. Implementation with Docker makes SePIA portable and easy to run. We demonstrate the workflow’s extensive utility with two case studies involving three breast cancer datasets. SePIA is straightforward to configure and organizes results into a perusable HTML report. Furthermore, the underlying pipeline engine supports computational resource management for optimal performance. Conclusion SePIA is an open-source workflow introducing standardized processing and analysis of RNA and small RNA data. SePIA’s modular design enables robust customization to a given experiment while maintaining overall workflow structure. It is available at http://anduril.org/sepia. Electronic supplementary material The online version of this article (doi:10.1186/s13040-016-0099-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine Icay
- Research Programs Unit, Genome-Scale Biology, Medicum and Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki, 00014 Finland
| | - Ping Chen
- Research Programs Unit, Genome-Scale Biology, Medicum and Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki, 00014 Finland
| | - Alejandra Cervera
- Research Programs Unit, Genome-Scale Biology, Medicum and Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki, 00014 Finland
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology, Medicum and Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki, 00014 Finland
| | - Rainer Lehtonen
- Research Programs Unit, Genome-Scale Biology, Medicum and Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki, 00014 Finland
| | - Sampsa Hautaniemi
- Research Programs Unit, Genome-Scale Biology, Medicum and Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki, 00014 Finland
| |
Collapse
|
98
|
Wong AC, Watson SP, Pitroda SP, Son CH, Das LC, Stack ME, Uppal A, Oshima G, Khodarev NN, Salama JK, Weichselbaum RR, Chmura SJ. Clinical and molecular markers of long-term survival after oligometastasis-directed stereotactic body radiotherapy (SBRT). Cancer 2016; 122:2242-50. [PMID: 27206146 DOI: 10.1002/cncr.30058] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/18/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The selection of patients for oligometastasis-directed ablative therapy remains a challenge. The authors report on clinical and molecular predictors of survival from a stereotactic body radiotherapy (SBRT) dose-escalation trial for oligometastases. METHODS Patients who had from 1 to 5 metastases, a life expectancy of >3 months, and a Karnofsky performance status of >60 received escalating SBRT doses to all known cancer sites. Time to progression, progression-free survival, and overall survival (OS) were calculated at the completion of SBRT, and clinical predictors of OS were modeled. Primary tumor microRNA expression was analyzed to identify molecular predictors of OS. RESULTS Sixty-one evaluable patients were enrolled from 2004 to 2009. The median follow-up was 2.3 years for all patients (range, 0.2-9.3 years) and 6.8 years for survivors (range, 2.0-9.3 years). The median, 2-year, and 5-year estimated OS were 2.4 years, 57%, and 32%, respectively. The rate of progression after SBRT was associated with an increased risk of death (hazard ratio [HR], 1.44; 95% confidence interval [CI], 1.24-1.82). The time from initial cancer diagnosis to metastasis (HR, 0.98; 95% CI, 0.98-0.99), the time from metastasis to SBRT (HR, 0.98; 95% CI, 0.98-0.99), and breast cancer histology (HR, 0.12; 95% CI, 0.07-0.37) were significant predictors of OS. In an exploratory analysis, a candidate classifier using expression levels of 3 microRNAs (miR-23b, miR-449a, and miR-449b) predicted survival among 17 patients who had primary tumor microRNA expression data available. CONCLUSIONS A subset of oligometastatic patients achieves long-term survival after metastasis-directed SBRT. Clinical features and primary tumor microRNA expression profiling, if validated in an independent dataset, may help select oligometastatic patients most likely to benefit from metastasis-directed therapy. Cancer 2016;122:2242-50. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Anthony C Wong
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, Illinois
| | - Sydeaka P Watson
- Department of Public Health Sciences, the University of Chicago, Chicago, Illinois
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, Illinois
| | - Christina H Son
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, Illinois
| | - Lauren C Das
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, Illinois
| | - Melinda E Stack
- Department of Surgery, the University of Chicago, Chicago, Illinois
| | - Abhineet Uppal
- Department of Surgery, the University of Chicago, Chicago, Illinois
| | - Go Oshima
- Department of Surgery, the University of Chicago, Chicago, Illinois
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, Illinois.,Ludwig Center for Metastasis Research, the University of Chicago, Chicago, Illinois
| | - Joseph K Salama
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, Illinois.,Ludwig Center for Metastasis Research, the University of Chicago, Chicago, Illinois
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, the University of Chicago, Chicago, Illinois
| |
Collapse
|
99
|
Yang N, Liang Y, Yang P, Wang W, Zhang X, Wang J. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats. Exp Ther Med 2016; 12:463-468. [PMID: 27347079 DOI: 10.3892/etm.2016.3262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/03/2016] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD), a common clinical in aged patients, is characterized by deficits in cognitive functions in patients following anesthesia and surgery. It has been demonstrated that isoflurane may lead to cognitive impairment in aged rats; however, effective clinical interventions for preventing this disorder are limited. Tumor necrosis factor (TNF)-α has been suggested to be involved in neuroinflammation as well as the development of POCD. Accordingly, the present study aimed to investigate whether TNF-α signaling is involved in the isoflurane-induced cognitive impairment in aged rats, and whether TNF-α receptor antagonist are able to attenuate isoflurane-induced cognitive impairment in aged rats. A population of 20-month-old rats were administered TNF-α receptor antagonist R-7050 or an equal volume of saline by intraperitoneal injection 12 h prior to exposure to isoflurane to model cognitive impairment following anesthesia in old patients. Then the rats were exposed to 1.3% isoflurane for 4 h. In the control group, rats showed impaired cognitive functions evaluated by Morris water maze assay after isoflurane exposure. Furthermore, isoflurane exposure induced marked upregulation of proinflammatory cytokines, including interleukin (IL)-1β, TNF-α, IL-6 and IL-8 in the hippocampus tissue. In the experimental group, intracisternal administration of TNF-α receptor antagonist R-7050 significantly attenuated isoflurane-induced cognitive impairment and upregulation of proinflammatory cytokines. Further investigation revealed that intracisternal administration of TNF-α receptor antagonist R-7050 notably suppressed isoflurane-induced activation of NF-κB and MAPK signaling. Collectively, the present results suggest that TNF-α receptor antagonist may serve as a potential agent for the prevention of anesthesia-induced cognitive decline in aged patients.
Collapse
Affiliation(s)
- Nengli Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yafeng Liang
- Department of Pediatric Intensive Care Unit, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Pei Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weijian Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xuezheng Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
100
|
Understanding the CREB1-miRNA feedback loop in human malignancies. Tumour Biol 2016; 37:8487-502. [PMID: 27059735 DOI: 10.1007/s13277-016-5050-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
cAMP response element binding protein 1 (CREB1, CREB) is a key transcription factor that mediates transcriptional responses to a variety of growth factors and stress signals. CREB1 has been shown to play a critical role in development and progression of tumors. MicroRNAs (miRNAs) are a class of non-coding RNAs. They post-transcriptionally regulate gene expression through pairing with the 3'-UTR of their target mRNAs and thus regulate initiation and progression of various types of human cancers. Recent studies have demonstrated that a number of miRNAs can be transcriptionally regulated by CREB1. Interestingly, CREB1 expression can also be modulated by miRNAs, thus forming a feedback loop. This review outlines the functional roles of CREB1, miRNA, and their interactions in human malignancies. This will help to define a relationship between CREB1 and miRNA in human cancer and develop novel therapeutic strategies.
Collapse
|