51
|
Liu Y, Zhang Q, Guo Y, Liu J, Xu J, Li Z, Wang J, Wang Y, Xue C. Enzymatic synthesis of lysophosphatidylcholine with n−3 polyunsaturated fatty acid from sn-glycero-3-phosphatidylcholine in a solvent-free system. Food Chem 2017; 226:165-170. [DOI: 10.1016/j.foodchem.2017.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/20/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
|
52
|
Gao N, Wang XX, Sun JR, Yu WZ, Li XZ. Clinical impact of galectin-3 in newly diagnosed t (15;17)(q22;q21)/PML-RARa acute promyelocytic leukemia treated with all-trans retinoic acid and arsenic trioxide-based regimens. Ann Hematol 2017; 96:711-718. [DOI: 10.1007/s00277-017-2948-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/04/2017] [Indexed: 11/30/2022]
|
53
|
Chen P, Shan Z, Zhao J, Li F, Zhang W, Yang L, Huang Z. NFAT1 promotes cell motility through MMP-3 in esophageal squamous cell carcinoma. Biomed Pharmacother 2017; 86:541-546. [DOI: 10.1016/j.biopha.2016.12.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
|
54
|
Mei Y, Yang JP, Qian CN. For robust big data analyses: a collection of 150 important pro-metastatic genes. CHINESE JOURNAL OF CANCER 2017; 36:16. [PMID: 28109319 PMCID: PMC5251273 DOI: 10.1186/s40880-016-0178-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/03/2016] [Indexed: 02/08/2023]
Abstract
Metastasis is the greatest contributor to cancer-related death. In the era of precision medicine, it is essential to predict and to prevent the spread of cancer cells to significantly improve patient survival. Thanks to the application of a variety of high-throughput technologies, accumulating big data enables researchers and clinicians to identify aggressive tumors as well as patients with a high risk of cancer metastasis. However, there have been few large-scale gene collection studies to enable metastasis-related analyses. In the last several years, emerging efforts have identified pro-metastatic genes in a variety of cancers, providing us the ability to generate a pro-metastatic gene cluster for big data analyses. We carefully selected 285 genes with in vivo evidence of promoting metastasis reported in the literature. These genes have been investigated in different tumor types. We used two datasets downloaded from The Cancer Genome Atlas database, specifically, datasets of clear cell renal cell carcinoma and hepatocellular carcinoma, for validation tests, and excluded any genes for which elevated expression level correlated with longer overall survival in any of the datasets. Ultimately, 150 pro-metastatic genes remained in our analyses. We believe this collection of pro-metastatic genes will be helpful for big data analyses, and eventually will accelerate anti-metastasis research and clinical intervention.
Collapse
Affiliation(s)
- Yan Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Jun-Ping Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
55
|
Gao N, Yu WZ, Guo NJ, Wang XX, Sun JR. Clinical significance of galectin-3 in patients with adult acute myeloid leukemia: a retrospective cohort study with long-term follow-up and formulation of risk scoring system. Leuk Lymphoma 2016; 58:1394-1402. [PMID: 27736291 DOI: 10.1080/10428194.2016.1243677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Galectin-3 plays an increasingly important role in development and progression of tumor. However, little is known about the clinical impact of galectin-3 in non-acute promyelocytic leukemia (non-M3 AML). Peripheral blood of 298 patients with primary non-M3 AML and 30 normal donors was collected for measurement of galectin-3. Galectin-3 levels were significantly higher compared with the control group (p < .001). Patients with higher galectin-3 levels had lower CR rates (p = .001) and 1-year overall survival (OS) rates (p = .002). The Kaplan-Meier survival analysis showed that higher galectin-3 levels group had significantly shorter OS. Cox regression model revealed high galectin-3 level was an independent poor prognostic factor. A scoring system incorporating galectin-3 and other prognostic factors (age, WBC, karyotype, NPM1/FLT3-ITD, CEBPAdouble-mutation and c-KIT, WT1) was formulated to predict prognosis. In conclusion, galectin-3 may be a reliable prognostic marker in AML patients. The multifactorial scoring system was more powerful than a single factor to predict clinical outcome.
Collapse
Affiliation(s)
- Na Gao
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| | - Wen-Zheng Yu
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| | - Nong-Jian Guo
- b Department of hematology, Central Hospital of Jinan , Shandong University School of Medicine , Jinan , Shandong , PR China
| | - Xue-Xia Wang
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| | - Jian-Rong Sun
- a Department of hematology , Binzhou Medical University Hospital , Binzhou , Shandong , PR China
| |
Collapse
|
56
|
Shoshan E, Braeuer RR, Kamiya T, Mobley AK, Huang L, Vasquez ME, Velazquez-Torres G, Chakravarti N, Ivan C, Prieto V, Villares GJ, Bar-Eli M. NFAT1 Directly Regulates IL8 and MMP3 to Promote Melanoma Tumor Growth and Metastasis. Cancer Res 2016; 76:3145-55. [PMID: 27013197 PMCID: PMC4891299 DOI: 10.1158/0008-5472.can-15-2511] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
Nuclear factor of activated T cell (NFAT1, NFATC2) is a transcription factor that binds and positively regulates IL2 expression during T-cell activation. NFAT1 has important roles in both innate and adaptive immune responses, but its involvement in cancer is not completely understood. We previously demonstrated that NFAT1 contributes to melanoma growth and metastasis by regulating the autotaxin gene (Enpp2). Here, we report a strong correlation between NFAT1 expression and metastatic potential in melanoma cell lines and tumor specimens. To elucidate the mechanisms underlying NFAT1 overexpression during melanoma progression, we conducted a microarray on a highly metastatic melanoma cell line in which NFAT1 expression was stably silenced. We identified and validated two downstream targets of NFAT1, IL8, and MMP3. Accordingly, NFAT1 depletion in metastatic melanoma cell lines was associated with reduced IL8 and MMP3 expression, whereas NFAT1 overexpression in a weakly metastatic cell line induced expression of these targets. Restoration of NFAT1 expression recovered IL8 and MMP3 expression levels back to baseline, indicating that both are direct targets of NFAT1. Moreover, in vivo studies demonstrated that NFAT1 and MMP3 promoted melanoma tumor growth and lung metastasis. Collectively, our findings assign a new role for NFAT1 in melanoma progression, underscoring the multifaceted functions that immunomodulatory factors may acquire in an unpredictable tumor microenvironment. Cancer Res; 76(11); 3145-55. ©2016 AACR.
Collapse
Affiliation(s)
- Einav Shoshan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Russell R Braeuer
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takafumi Kamiya
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aaron K Mobley
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayra E Vasquez
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Nitin Chakravarti
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor Prieto
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
57
|
Schummer P, Kuphal S, Vardimon L, Bosserhoff AK, Kappelmann M. Specific c-Jun target genes in malignant melanoma. Cancer Biol Ther 2016; 17:486-97. [PMID: 27050748 DOI: 10.1080/15384047.2016.1156264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.
Collapse
Affiliation(s)
- Patrick Schummer
- a Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Silke Kuphal
- a Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Lily Vardimon
- b Department of Biochemistry and Molecular Biology , Tel Aviv University , Israel
| | - Anja K Bosserhoff
- a Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Melanie Kappelmann
- a Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
58
|
Yan L, Zhan C, Wu J, Wang S. Expression profile analysis of head and neck squamous cell carcinomas using data from The Cancer Genome Atlas. Mol Med Rep 2016; 13:4259-65. [PMID: 27035117 PMCID: PMC4838150 DOI: 10.3892/mmr.2016.5054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the major histological type of head and neck cancer and no curative treatments are currently available. Using advanced sequencing technologies, The Cancer Genome Atlas (TCGA) has produced large-scale sequencing data, which provide unprecedented opportunities to reveal molecular mechanisms of cancer. The present study analyzed the mRNA and micro (mi)RNA expression data of HNSCC and normal control tissues released by the TCGA database using a bioinformatics approach to explore underlying molecular mechanisms. The mRNA and miRNA expression data were downloaded from the TCGA database and differentially expressed genes (DEGs) and miRNAs (DEMs) between HNSCC and normal head and neck tissues were identified using TwoClassDif. Subsequently, the gene functions and pathways which are significantly altered in HNSCC were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Regulatory networks among DEGs and DEMs were then constructed, and transcription factors (TFs) potentially regulating the DEGs and DEMs were determined and a TF - miRNA - gene network was established. A total of 2,594 significant DEGs (1,087 upregulated and 1,507 downregulated), and 25 DEMs (8 upregulated and 17 downregulated) were identified in HNSCC compared with normal control samples. These DEGs were significantly enriched in GOs and KEGG pathways such as mitosis, cell cycle, Wnt, JAK/STAT and TLR signaling pathway. CPBP, NF-AT1 and miR-1 were situated in the central hub of the TF - miRNA - gene network, underlining their central roles in regulatory processes specific for HNSCC. The present study enhanced the current understanding of the molecular mechanisms underlying HNSCC and may offer novel strategies for its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Li Yan
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jihong Wu
- Research Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Shengzi Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
59
|
Federico L, Jeong KJ, Vellano CP, Mills GB. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res 2016; 57:25-35. [PMID: 25977291 PMCID: PMC4689343 DOI: 10.1194/jlr.r060020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Indexed: 12/18/2022] Open
Abstract
The ectonucleotide pyrophosphatase/phosphodiesterase type 2, more commonly known as autotaxin (ATX), is an ecto-lysophospholipase D encoded by the human ENNP2 gene. ATX is expressed in multiple tissues and participates in numerous key physiologic and pathologic processes, including neural development, obesity, inflammation, and oncogenesis, through the generation of the bioactive lipid, lysophosphatidic acid. Overwhelming evidence indicates that altered ATX activity leads to oncogenesis and cancer progression through the modulation of multiple hallmarks of cancer pathobiology. Here, we review the structural and catalytic characteristics of the ectoenzyme, how its expression and maturation processes are regulated, and how the systemic integration of its pleomorphic effects on cells and tissues may contribute to cancer initiation, progression, and therapy. Additionally, the up-to-date spectrum of the most frequent ATX genomic alterations from The Cancer Genome Atlas project is reported for a subset of cancers.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Christopher P Vellano
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
60
|
Sun W, Li L, Yang Q, Shan W, Zhang Z, Huang Y. G3-C12 Peptide Reverses Galectin-3 from Foe to Friend for Active Targeting Cancer Treatment. Mol Pharm 2015; 12:4124-36. [PMID: 26393405 DOI: 10.1021/acs.molpharmaceut.5b00568] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Galectin-3 is overexpressed by numerous carcinomas and is a potential target for active tumor treatments. On the other hand, galectin-3 also plays a key role in cancer progression and prevents cells from undergoing apoptosis, thereby offsetting the benefits of active targeting drugs. However, the relative contribution of the protective antiapoptotic effects of galectin-3 and the proapoptotic effects of galectin-3-targeted therapies has remained yet unrevealed. Here, we show that a galectin-3-binding peptide G3-C12 could reverse galectin-3 from foe to friend for active targeting delivery system. Results showed G3-C12 modified N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin conjugates (G3-C12-HPMA-Dox) could internalize into galectin-3 overexpressed PC-3 cells via a highly specific ligand-receptor pathway (2.2 times higher cellular internalization than HPMA-Dox). The internalized Dox stimulated the translocation of galectin-3 to the mitochondria to prevent from apoptosis. In turn, this caused G3-C12-HPMA-Dox to concentrate into the mitochondria after binding to galectin-3 intracellularly. Initially, mitochondrial galectin-3 weakened Dox-induced mitochondrial damage; however, as time progressed, G3-C12 active-mediation allowed increasing amounts of Dox to be delivered to the mitochondria, which eventually induced higher level of apoptosis than nontargeted copolymers. In addition, G3-C12 downregulates galectin-3 expression, 0.43 times lower than control cells, which could possibly be responsible for the suppressed cell migration. Thus, G3-C12 peptide exerts sequential targeting to both cell membrane and mitochondria via regulating galectin-3, and eventually reverses and overcomes the protective effects of galectin-3; therefore, it could be a promising agent for the treatment of galectin-3-overexpressing cancers.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P. R. China
| | - Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P. R. China
| | - Qingqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P. R. China
| | - Wei Shan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P. R. China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P. R. China
| |
Collapse
|
61
|
Duckworth CA, Guimond SE, Sindrewicz P, Hughes AJ, French NS, Lian LY, Yates EA, Pritchard DM, Rhodes JM, Turnbull JE, Yu LG. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis. Oncotarget 2015; 6:23671-87. [PMID: 26160844 PMCID: PMC4695144 DOI: 10.18632/oncotarget.4409] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/12/2015] [Indexed: 12/26/2022] Open
Abstract
Concentrations of circulating galectin-3, a metastasis promoter, are greatly increased in cancer patients. Here we show that 2- or 6-de-O-sulfated, N-acetylated heparin derivatives are galectin-3 binding inhibitors. These chemically modified heparin derivatives inhibited galectin-3-ligand binding and abolished galectin-3-mediated cancer cell-endothelial adhesion and angiogenesis. Unlike standard heparin, these modified heparin derivatives and their ultra-low molecular weight sub-fractions had neither anticoagulant activity nor effects on E-, L- or P-selectin binding to their ligands nor detectable cytotoxicity. Intravenous injection of such heparin derivatives (with cancer cells pre-treated with galectin-3 followed by 3 subcutaneous injections of the derivatives) abolished the circulating galectin-3-mediated increase in lung metastasis of human melanoma and colon cancer cells in nude mice. Structural analysis using nuclear magnetic resonance and synchrotron radiation circular dichroism spectroscopies showed that the modified heparin derivatives bind to the galectin-3 carbohydrate-recognition domain. Thus, these chemically modified, non-anticoagulant, low-sulfated heparin derivatives are potent galectin-3 binding inhibitors with substantial potential as anti-metastasis/cancer drugs.
Collapse
Affiliation(s)
- Carrie A. Duckworth
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Scott E. Guimond
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paulina Sindrewicz
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ashley J. Hughes
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Diamond Light Source Ltd, Harwell Innovation Campus, Didcot, UK
| | - Neil S. French
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lu-Yun Lian
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Edwin A. Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - D. Mark Pritchard
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Rhodes
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jeremy E. Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
62
|
López S, Smith-Zubiaga I, García de Galdeano A, Boyano MD, García O, Gardeazábal J, Martinez-Cadenas C, Izagirre N, de la Rúa C, Alonso S. Comparison of the Transcriptional Profiles of Melanocytes from Dark and Light Skinned Individuals under Basal Conditions and Following Ultraviolet-B Irradiation. PLoS One 2015; 10:e0134911. [PMID: 26244334 PMCID: PMC4526690 DOI: 10.1371/journal.pone.0134911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/16/2015] [Indexed: 12/19/2022] Open
Abstract
We analysed the whole-genome transcriptional profile of 6 cell lines of dark melanocytes (DM) and 6 of light melanocytes (LM) at basal conditions and after ultraviolet-B (UVB) radiation at different time points to investigate the mechanisms by which melanocytes protect human skin from the damaging effects of UVB. Further, we assessed the effect of different keratinocyte-conditioned media (KCM+ and KCM-) on melanocytes. Our results suggest that an interaction between ribosomal proteins and the P53 signaling pathway may occur in response to UVB in both DM and LM. We also observed that DM and LM show differentially expressed genes after irradiation, in particular at the first 6h after UVB. These are mainly associated with inflammatory reactions, cell survival or melanoma. Furthermore, the culture with KCM+ compared with KCM- had a noticeable effect on LM. This effect includes the activation of various signaling pathways such as the mTOR pathway, involved in the regulation of cell metabolism, growth, proliferation and survival. Finally, the comparison of the transcriptional profiles between LM and DM under basal conditions, and the application of natural selection tests in human populations allowed us to support the significant evolutionary role of MIF and ATP6V0B in the pigmentary phenotype.
Collapse
Affiliation(s)
- Saioa López
- Department of Genetics, Physical Anthropology and Animal Physiology. University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- * E-mail:
| | - Isabel Smith-Zubiaga
- Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Alicia García de Galdeano
- Department of Cell Biology and Histology. University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology. University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- BioCruces Health Research Institute, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | - Oscar García
- Forensic Genetics Laboratory, Forensic Science Unit, Ertaintza-Basque Country Police, Erandio, Bizkaia, Spain
| | - Jesús Gardeazábal
- Dermatology Service, BioCruces Health Research Institute, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | | | - Neskuts Izagirre
- Department of Genetics, Physical Anthropology and Animal Physiology. University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Concepción de la Rúa
- Department of Genetics, Physical Anthropology and Animal Physiology. University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology. University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
63
|
Barbayianni E, Kaffe E, Aidinis V, Kokotos G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog Lipid Res 2015; 58:76-96. [DOI: 10.1016/j.plipres.2015.02.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023]
|
64
|
Kavunja HW, Voss PG, Wang JL, Huang X. Identification of Lectins from Metastatic Cancer Cells through Magnetic Glyconanoparticles. Isr J Chem 2015; 55:423-436. [PMID: 27110035 PMCID: PMC4838199 DOI: 10.1002/ijch.201400156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles. The galactose-coated magnetic glyconanoparticles could bind with lectins present in the cells and be isolated through magnet-mediated separation. Through Western blot and mass spectrometry, the arginine/serine rich splicing factor Sfrs1 was identified as a galactose-selective endogenous lectin, overexpressed in B16F10 cells, compared with B16F1 cells. In addition, galactin-3 was found in higher amounts in B16F10 cells. Finally, the glyconanoparticles exhibited a superior efficiency in lectin isolation, from both protein mixtures and live cells, than the corresponding more traditional microparticles functionalized with carbohydrates. Thus, the magnetic glyconanoparticles present a useful tool for discovery of endogenous lectins, as well as binding partners of lectins, without prior knowledge of protein identities.
Collapse
Affiliation(s)
- Herbert W. Kavunja
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| | - Patricia G. Voss
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - John L. Wang
- Department of Biochemistry and Molecular Biology, Biochemistry Building, Room 402, 603 Wilson Road, Michigan State University, East Lansing, MI 48824 (USA)
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824 (USA)
| |
Collapse
|
65
|
Kaunisto A, Henry WS, Montaser-Kouhsari L, Jaminet SC, Oh EY, Zhao L, Luo HR, Beck AH, Toker A. NFAT1 promotes intratumoral neutrophil infiltration by regulating IL8 expression in breast cancer. Mol Oncol 2015; 9:1140-54. [PMID: 25735562 DOI: 10.1016/j.molonc.2015.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022] Open
Abstract
NFAT transcription factors are key regulators of gene expression in immune cells. In addition, NFAT1-induced genes play diverse roles in mediating the progression of various solid tumors. Here we show that NFAT1 induces the expression of the IL8 gene by binding to its promoter and leading to IL8 secretion. Thapsigargin stimulation of breast cancer cells induces IL8 expression in an NFAT-dependent manner. Moreover, we show that NFAT1-mediated IL8 production promotes the migration of primary human neutrophils in vitro and also promotes neutrophil infiltration in tumor xenografts. Furthermore, expression of active NFAT1 effectively suppresses the growth of nascent and established tumors by a non cell-autonomous mechanism. Evaluation of breast tumor tissue reveals that while the levels of NFAT1 are similar in tumor cells and normal breast epithelium, cells in the tumor stroma express higher levels of NFAT1 compared to normal stroma. Elevated levels of NFAT1 also correlate with increased neutrophil infiltrate in breast tumors. These data point to a mechanism by which NFAT1 orchestrates the communication between breast cancer cells and host neutrophils during breast cancer progression.
Collapse
Affiliation(s)
- Aura Kaunisto
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Whitney S Henry
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Shou-Ching Jaminet
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eun-Yeong Oh
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Li Zhao
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Hongbo R Luo
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
66
|
Ebrahim AH, Alalawi Z, Mirandola L, Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E, Figueroa JA, Chiriva-Internati M. Galectins in cancer: carcinogenesis, diagnosis and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:88. [PMID: 25405163 DOI: 10.3978/j.issn.2305-5839.2014.09.12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022]
Abstract
A major breakthrough in the field of medical oncology has been the discovery of galectins and their role in cancer development, progression and metastasis. In this review article we have condensed the results of a number of studies published over the past decade in an effort to shed some light on the unique role played by the galectin family of proteins in neoplasia, and how this knowledge may alter the approach to cancer diagnosis as well as therapy in the future. In this review we have also emphasized the potential use of galectin inhibitors or modulators in the treatment of cancer and how this novel treatment modality may affect patient outcomes in the future. Based on current pre-clinical models we believe the use of galectin inhibitors/modulators will play a significant role in cancer treatment in the future. Early clinical studies are underway to evaluate the utility of these promising agents in cancer patients.
Collapse
Affiliation(s)
- Ali Hasan Ebrahim
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Zainab Alalawi
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Leonardo Mirandola
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Rahman Rakhshanda
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Scott Dahlbeck
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Diane Nguyen
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Marjorie Jenkins
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Fabio Grizzi
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Everardo Cobos
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Jose A Figueroa
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Maurizio Chiriva-Internati
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
67
|
Hersey P, Kakavand H, Wilmott J, van der Westhuizen A, Gallagher S, Gowrishankar K, Scolyer R. How anti-PD1 treatments are changing the management of melanoma. Melanoma Manag 2014; 1:165-172. [PMID: 30190821 PMCID: PMC6094707 DOI: 10.2217/mmt.14.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The introduction of immunotherapy based on the blockade of the PD1/PD-L1 checkpoints has been associated with high response rates and durable remissions of disease in patients with metastatic melanoma, to the extent that it is now considered the standard of care for a wide range of patients, irrespective of their BRAF or NRAS mutation status. In addition, more frequent follow-up of patients who are at high risk of recurrence after surgical treatment appears to be justified, as does neoadjuvant treatments in order to render patients treatable by surgery. The limitations of this treatment include failure of some patients to respond, a low rate of complete responses and relapses of the disease during treatment. New initiatives in order to overcome these limitations include the identification of biomarkers for the selection responders and evaluations of treatment combinations that will increase responses and their durability. The latter includes combinations with antibodies against other checkpoints on T cells and cotreatments with inhibitors of resistance pathways in melanoma.
Collapse
Affiliation(s)
- Peter Hersey
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
| | - Hojabr Kakavand
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James Wilmott
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Stuart Gallagher
- Kolling Institute, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | | - Richard Scolyer
- Melanoma Institute of Australia, Rocklands Road, North Sydney, NSW, Australia
- Department of Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
68
|
Peanut agglutinin appearance in the blood circulation after peanut ingestion mimics the action of endogenous galectin-3 to promote metastasis by interaction with cancer-associated MUC1. Carcinogenesis 2014; 35:2815-21. [DOI: 10.1093/carcin/bgu216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
69
|
Jiang SS, Weng DS, Wang QJ, Pan K, Zhang YJ, Li YQ, Li JJ, Zhao JJ, He J, Lv L, Pan QZ, Xia JC. Galectin-3 is associated with a poor prognosis in primary hepatocellular carcinoma. J Transl Med 2014; 12:273. [PMID: 25260879 PMCID: PMC4179848 DOI: 10.1186/s12967-014-0273-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Galectin-3, a member of the beta-galactoside-binding lectin family, is a multifunctional protein with various biological functions, including the proliferation and differentiation of tumor cells, angiogenesis, cancer progression, and metastasis. We aimed to clarify if expression of galectin-3 is related to the clinicopathological characteristics and prognosis of hepatocellular carcinoma (HCC) patients, and to explore the possible mechanisms of galectin-3 in hepatocellular carcinoma. METHODS First, we investigated galectin-3 mRNA and protein expression by using RT-PCR and Western blotting. Second, tissues from 165 HCC patients were used to evaluate clinicopathological characteristics and prognosis through immunohistochemical analyses. Furthermore, the functions of galectin-3 were analyzed with respect to the proliferation, cell cycle,apoptosis, migration, and invasion of HCC cell lines. Finally, we analyzed galectin-3 expression and micro-vessel density (MVD) by immunohistochemistry (IHC) to find its correlation with angiogenesis in Hepatocellular Carcinoma. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. RESULTS Galectin-3 showed high expression at the mRNA and protein levels in HCC cancer tissues and cell lines. Clinicopathological analyses revealed that increased expression of galectin-3 in tumors was closely associated with a poor prognosis. Galectin-3 knockdown by siRNA significantly inhibited cell growth, migration, and invasion, and induced apoptosis in HCC cells in vitro, whereas galectin-3 overexpression promoted cell growth, migration, and invasion. Correlation analysis of galectin-3 expression and micro-vessel density (MVD) showed that galectin-3 expression in tumor cells stimulates angiogenesis. The observed regulation of cell apoptosis was accompanied by the galectin-3-mediated modulation of caspase3 signaling pathways in HCC cells. CONCLUSIONS These data suggest that galectin-3 plays an important part in HCC progression and may serve as a prognostic factor for HCC.
Collapse
|
70
|
Ebrahim AH, Alalawi Z, Mirandola L, Rakhshanda R, Dahlbeck S, Nguyen D, Jenkins M, Grizzi F, Cobos E, Figueroa JA, Chiriva-Internati M. Galectins in cancer: carcinogenesis, diagnosis and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2014. [PMID: 25405163 DOI: 10.3978/2fj.issn.2305-5839.2014.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A major breakthrough in the field of medical oncology has been the discovery of galectins and their role in cancer development, progression and metastasis. In this review article we have condensed the results of a number of studies published over the past decade in an effort to shed some light on the unique role played by the galectin family of proteins in neoplasia, and how this knowledge may alter the approach to cancer diagnosis as well as therapy in the future. In this review we have also emphasized the potential use of galectin inhibitors or modulators in the treatment of cancer and how this novel treatment modality may affect patient outcomes in the future. Based on current pre-clinical models we believe the use of galectin inhibitors/modulators will play a significant role in cancer treatment in the future. Early clinical studies are underway to evaluate the utility of these promising agents in cancer patients.
Collapse
Affiliation(s)
- Ali Hasan Ebrahim
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Zainab Alalawi
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Leonardo Mirandola
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Rahman Rakhshanda
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Scott Dahlbeck
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Diane Nguyen
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Marjorie Jenkins
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Fabio Grizzi
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Everardo Cobos
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Jose A Figueroa
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| | - Maurizio Chiriva-Internati
- 1 Department of Surgery, 2 Internal Medicine Department, Salmaniya Medical Complex, Kingdom of Bahrain ; 3 Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA ; 4 Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Amarillo, TX, USA ; 5 Division of Surgical Oncology, Texas Tech University Medical Center, Amarillo, TX, USA ; 6 Kiromic, LLC, TX, USA ; 7 Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
71
|
Blanchard H, Yu X, Collins PM, Bum-Erdene K. Galectin-3 inhibitors: a patent review (2008–present). Expert Opin Ther Pat 2014; 24:1053-65. [DOI: 10.1517/13543776.2014.947961] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
72
|
Liu J, Cheng Y, He M, Yao S. Vascular endothelial growth factor C enhances cervical cancer cell invasiveness via upregulation of galectin-3 protein. Gynecol Endocrinol 2014; 30:461-5. [PMID: 24650367 DOI: 10.3109/09513590.2014.898054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) promotes cervical cancer metastasis, while the detailed mechanism remains obscure. Recent evidence shows that galectin-3 (Gal-3), a glycan binding protein, interacts with the VEGF receptors and reinforces their signal transduction. In this study, we investigated the role of Gal-3 in VEGF-C-induced cervical cancer cell invasion. On cervical carcinoma cell line SiHa cells, silencing of Gal-3 expression with specific siRNA largely impaired VEGF-C-enhanced cell invasion. Treatment with VEGF-C for 12-48 h enhanced Gal-3 protein expression, which was inhibited by the addition of NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Moreover, the silencing of NF-κB subunit p65 expression with specific siRNA attenuated VEGF-C-enhanced Gal-3 expression, suggesting that NF-κB is the key intermediate. Under VEGF-C stimulation, an enhanced interaction between VEGF receptor-3 (VEGF-R3) and Gal-3 was found, which may possibly lead to VEGF-R3 activation since exogenous Gal-3 induced VEGF-R3 phosphorylation in a dose- and time-dependent manner. In conclusion, our findings implied that VEGF-C enhanced cervical cancer invasiveness via upregulation of Gal-3 protein through NF-κB pathway, which may shed light on potential therapeutic strategies for cervical cancer therapy.
Collapse
Affiliation(s)
- Junxiu Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-Sen University , Guangdong, Guangzhou , China and
| | | | | | | |
Collapse
|
73
|
Veschi V, Petroni M, Bartolazzi A, Altavista P, Dominici C, Capalbo C, Boldrini R, Castellano A, McDowell HP, Pizer B, Frati L, Screpanti I, Gulino A, Giannini G. Galectin-3 is a marker of favorable prognosis and a biologically relevant molecule in neuroblastic tumors. Cell Death Dis 2014; 5:e1100. [PMID: 24603328 PMCID: PMC3973198 DOI: 10.1038/cddis.2014.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Childhood neuroblastic tumors are characterized by heterogeneous clinical courses, ranging from benign ganglioneuroma (GN) to highly lethal neuroblastoma (NB). Although a refined prognostic evaluation and risk stratification of each tumor patient is becoming increasingly essential to personalize treatment options, currently only few biomolecular markers (essentially MYCN amplification, chromosome 11q status and DNA ploidy) are validated for this purpose in neuroblastic tumors. Here we report that Galectin-3 (Gal-3), a β-galactoside-binding lectin involved in multiple biological functions that has already acquired diagnostic relevance in specific clinical settings, is variably expressed in most differentiated and less aggressive neuroblastic tumors, such as GN and ganglioneuroblastoma, as well as in a subset of NB cases. Gal-3 expression is associated with the INPC histopathological categorization (P<0.001) and Shimada favorable phenotype (P=0.001), but not with other prognostically relevant features. Importantly, Gal-3 expression was associated with a better 5-year overall survival (P=0.003), and with improved cumulative survival in patient subsets at worse prognosis, such as older age at diagnosis, advanced stages or NB histopathological classification. In vitro, Gal-3 expression and nuclear accumulation accompanied retinoic acid-induced cell differentiation in NB cell lines. Forced Gal-3 overexpression increased phenotypic differentiation and substrate adherence, while inhibiting proliferation. Altogether, these findings suggest that Gal-3 is a biologically relevant player for neuroblastic tumors, whose determination by conventional immunohistochemistry might be used for outcome assessment and patient's risk stratification in the clinical setting.
Collapse
Affiliation(s)
- V Veschi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - M Petroni
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - A Bartolazzi
- 1] Department of Pathology, St. Andrea Hospital, Rome, Italy [2] Pathology Research Laboratory, Cancer Center Karolinska (CCK), Karolinska Hospital, Stockholm, Sweden
| | - P Altavista
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Research Center Casaccia, Rome, Italy
| | - C Dominici
- 1] Department of Pediatrics and Infantile Neuropsychiatry, University La Sapienza, Rome, Italy [2] School of Reproductive and Developmental Medicine, Liverpool University, Liverpool, UK
| | - C Capalbo
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - R Boldrini
- Division of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Castellano
- Division of Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - H P McDowell
- 1] Department of Pediatrics and Infantile Neuropsychiatry, University La Sapienza, Rome, Italy [2] School of Reproductive and Developmental Medicine, Liverpool University, Liverpool, UK
| | - B Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - L Frati
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| | - I Screpanti
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - A Gulino
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - G Giannini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| |
Collapse
|
74
|
Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions. FEBS Lett 2014; 588:2712-27. [PMID: 24560789 DOI: 10.1016/j.febslet.2014.02.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.
Collapse
|
75
|
Galectin-3 in cancer. Clin Chim Acta 2014; 431:185-91. [PMID: 24530298 DOI: 10.1016/j.cca.2014.01.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
Abstract
Galectin-3 (Gal-3) plays important roles in cell proliferation, adhesion, differentiation, angiogenesis and apoptosis in normal and pathologic tissues. Accumulated evidences indicate that Gal-3 is closely involved in tumor cell transformation, migration, invasion and metastasis. In this review, the associations of the expression and localization of Gal-3 as well as its potential action mechanism in tumorigenesis in a variety of cancers were summarized and concluded. Gal-3 is gaining its attraction as a potential new biomarker for the diagnosis, treatment and prognosis of certain tumors.
Collapse
|
76
|
Vladoiu MC, Labrie M, St-Pierre Y. Intracellular galectins in cancer cells: potential new targets for therapy (Review). Int J Oncol 2014; 44:1001-14. [PMID: 24452506 DOI: 10.3892/ijo.2014.2267] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of galectin expression is frequently observed in cancer tissues. Such an abnormal expression pattern often correlates with aggressiveness and relapse in many types of cancer. Because galectins have the ability to modulate functions that are important for cell survival, migration and metastasis, they also represent attractive targets for cancer therapy. This has been well-exploited for extracellular galectins, which bind glycoconjugates expressed on the surface of cancer cells. Although the existence of intracellular functions of galectins has been known for many years, an increasing number of studies indicate that these proteins can also alter tumor progression through their interaction with intracellular ligands. In fact, in some instances, the interactions of galectins with their intracellular ligands seem to occur independently of their carbohydrate recognition domain. Such findings call for a change in the basic assumptions, or paradigms, concerning the activity of galectins in cancer and may force us to revisit our strategies to develop galectin antagonists for the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada
| |
Collapse
|
77
|
Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, Bar-Eli M. Why is melanoma so metastatic? Pigment Cell Melanoma Res 2014; 27:19-36. [PMID: 24106873 DOI: 10.1111/pcmr.12172] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 02/03/2023]
Abstract
Malignant melanoma is one of the most aggressive cancers and can disseminate from a relatively small primary tumor and metastasize to multiple sites, including the lung, liver, brain, bone, and lymph nodes. Elucidating the molecular and genetic changes that take place during the metastatic process has led to a better understanding of why melanoma is so metastatic. Herein, we describe the unique features that distinguish melanoma from other solid tumors and contribute to the malignant phenotype of melanoma cells. For example, although melanoma cells are highly antigenic, they are extremely efficient at evading host immune response. Melanoma cells share numerous cell surface molecules with vascular cells, are highly angiogenic, are mesenchymal in nature, and possess a higher degree of 'stemness' than do other solid tumors. Finally, analysis of melanoma mutations has revealed that the gene expression profile of malignant melanoma is different from that of other cancers. Elucidating these molecular and genetic processes in highly metastatic melanoma can lead to the development of improved treatment and individualized therapy options.
Collapse
Affiliation(s)
- Russell R Braeuer
- Department of Cancer Biology, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Dye DE, Medic S, Ziman M, Coombe DR. Melanoma biomolecules: independently identified but functionally intertwined. Front Oncol 2013; 3:252. [PMID: 24069584 PMCID: PMC3781348 DOI: 10.3389/fonc.2013.00252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers – melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.
Collapse
Affiliation(s)
- Danielle E Dye
- School of Biomedical Science & Curtin Health Innovation Research Institute, Faculty of Health, Curtin University , Perth, WA , Australia
| | | | | | | |
Collapse
|