51
|
Aubrey N, Allard-Vannier E, Martin C, Bryden F, Letast S, Colas C, Lakhrif Z, Collinet N, Dimier-Poisson I, Chourpa I, Viaud-Massuard MC, Joubert N. Site-Specific Conjugation of Auristatins onto Engineered scFv Using Second Generation Maleimide to Target HER2-positive Breast Cancer in Vitro. Bioconjug Chem 2018; 29:3516-3521. [DOI: 10.1021/acs.bioconjchem.8b00668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Aubrey
- ISP UMR 1282, INRA, Université de Tours, Team BioMAP, 31 avenue Monge, 37200 Tours, France
| | | | - Camille Martin
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| | - Francesca Bryden
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| | - Stéphanie Letast
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| | - Cyril Colas
- ICOA UMR 7311, Université d’Orléans, CNRS, rue de Chartres, 45067 Orléans, France
- CBM UPR 4311, CNRS, Université d’Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Zineb Lakhrif
- ISP UMR 1282, INRA, Université de Tours, Team BioMAP, 31 avenue Monge, 37200 Tours, France
| | - Nils Collinet
- NMNS EA 6295, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | | | - Igor Chourpa
- NMNS EA 6295, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | | | - Nicolas Joubert
- GICC EA7501, Université de Tours, Team IMT, 31 avenue Monge, 37200 Tours, France
| |
Collapse
|
52
|
Kim S, Kim H, Jo DH, Kim JH, Kim SR, Kang D, Hwang D, Chung J. Bispecific anti-mPDGFRβ x cotinine scFv-C κ-scFv fusion protein and cotinine-duocarmycin can form antibody-drug conjugate-like complexes that exert cytotoxicity against mPDGFRβ expressing cells. Methods 2018; 154:125-135. [PMID: 30292795 DOI: 10.1016/j.ymeth.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 01/29/2023] Open
Abstract
Antibody selection for antibody-drug conjugates (ADCs) has traditionally depended on its internalization into the target cell, although ADC efficacy also relies on recycling of the receptor-ADC complex, endo-lysosomal trafficking, and subsequent linker/antibody proteolysis. In this study, we observed that a bispecific anti-murine platelet-derived growth factor receptor beta (mPDGFRβ) x cotinine single-chain variable fragment (scFv)-kappa constant region (Cκ)-scFv fusion protein and cotinine-duocarmycin can form an ADC-like complex to induce cytotoxicity against mPDGFRβ expressing cells. Multiple anti-mPDGFRβ antibody candidates can be produced in this bispecific scFv-Cκ-scFv fusion protein format and tested for their ability to deliver cotinine-conjugated cytotoxic drugs, thus providing an improved approach for antibody selection in ADC development.
Collapse
Affiliation(s)
- Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 00380, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 00380, Republic of Korea
| | - Hyori Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 00380, Republic of Korea; Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Ree Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dobeen Hwang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 00380, Republic of Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 00380, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 00380, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 00380, Republic of Korea.
| |
Collapse
|
53
|
Rossin R, Versteegen RM, Wu J, Khasanov A, Wessels HJ, Steenbergen EJ, Ten Hoeve W, Janssen HM, van Onzen AHAM, Hudson PJ, Robillard MS. Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nat Commun 2018; 9:1484. [PMID: 29728559 PMCID: PMC5935733 DOI: 10.1038/s41467-018-03880-y] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/20/2018] [Indexed: 11/25/2022] Open
Abstract
Current antibody-drug conjugates (ADCs) target internalising receptors on cancer cells leading to intracellular drug release. Typically, only a subset of patients with solid tumours has sufficient expression of such a receptor, while there are suitable non-internalising receptors and stroma targets. Here, we demonstrate potent therapy in murine tumour models using a non-internalising ADC that releases its drugs upon a click reaction with a chemical activator, which is administered in a second step. This was enabled by the development of a diabody-based ADC with a high tumour uptake and very low retention in healthy tissues, allowing systemic administration of the activator 2 days later, leading to efficient and selective activation throughout the tumour. In contrast, the analogous ADC comprising the protease-cleavable linker used in the FDA approved ADC Adcetris is not effective in these tumour models. This first-in-class ADC holds promise for a broader applicability of ADCs across patient populations. Current antibody-drug conjugates (ADCs) target internalising receptors on cancer cells. Here, the authors report the development and in vivo validation of a non-internalising ADC with the capacity to target cancer cells and release its therapeutic cargo extracellularly via a chemical trigger.
Collapse
Affiliation(s)
- Raffaella Rossin
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Ron M Versteegen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Jeremy Wu
- Avipep Pty Ltd, 343 Royal Parade, Parkville, VIC, 3052, Australia
| | - Alisher Khasanov
- Levena Biopharma, 4955 Directors Place, Suite 300, San Diego, CA, 92121, USA
| | - Hans J Wessels
- Radboud Proteomics Centre, Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Erik J Steenbergen
- Department of Pathology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Henk M Janssen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | | | - Peter J Hudson
- Avipep Pty Ltd, 343 Royal Parade, Parkville, VIC, 3052, Australia
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
54
|
Marks IS, Gardeen SS, Kurdziel SJ, Nicolaou ST, Woods JE, Kularatne SA, Low PS. Development of a Small Molecule Tubulysin B Conjugate for Treatment of Carbonic Anhydrase IX Receptor Expressing Cancers. Mol Pharm 2018; 15:2289-2296. [PMID: 29715036 DOI: 10.1021/acs.molpharmaceut.8b00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a membrane-spanning zinc metalloenzyme that catalyzes the reversible consumption of CO2 and water to form H+ + HCO3-. Many human cancers upregulate CAIX to help control the pH in their hypoxic microenvironments. The consequent overexpression of CAIX on malignant cells and low expression on normal tissues render CAIX a particularly attractive target for small molecule inhibitors, antibody-drug conjugates, and ligand-targeted drugs. In this study, CAIX-targeted fluorescent reporter molecules were initially exploited to investigate CAIX-specific binding to multiple cancer cell lines, where they were shown to display potent and selective binding to CAIX positive cells. A small molecule CAIX-targeted tubulysin B conjugate was then synthesized and examined for its ability to kill CAIX-expressing tumor cells in vitro. Potent therapeutic conjugates were subsequently tested in vivo and demonstrated to eliminate solid human tumor xenografts in murine tumor models without exhibiting overt signs of toxicity. Because most solid tumors contain hypoxic regions where CAIX is overexpressed, development of a method to selectively deliver drugs to these hypoxic regions could aid in the therapy of otherwise difficult to treat tumors.
Collapse
|
55
|
Cazzamalli S, Ziffels B, Widmayer F, Murer P, Pellegrini G, Pretto F, Wulhfard S, Neri D. Enhanced Therapeutic Activity of Non-Internalizing Small-Molecule-Drug Conjugates Targeting Carbonic Anhydrase IX in Combination with Targeted Interleukin-2. Clin Cancer Res 2018; 24:3656-3667. [PMID: 29691298 DOI: 10.1158/1078-0432.ccr-17-3457] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Antibody-drug conjugates and small-molecule-drug conjugates have been proposed as alternatives to conventional anticancer cytotoxic agents, with the potential to deliver bioactive payloads to the site of disease, helping spare normal tissues.Experimental Design: Here, we describe a novel small-molecule-drug conjugate, based on a high-affinity ligand specific to carbonic anhydrase IX. The product featured a peptidic linker, suitable for cleavage in the tumor extracellular environment, and monomethyl auristatin E as cytotoxic payload.Results: A potent anticancer activity was observed in nude mice bearing SKRC-52 renal cell carcinoma xenografts, but no durable complete responses could be observed in this model. However, when the product was administered together with L19-IL2 (a clinical-stage fusion protein capable of delivering IL2 to the tumor neovasculature), all treated mice in the combination group could be rendered tumor free, in a process that favored the influx of natural killer cells into the tumor mass. The combination of L19-IL2 and the new small-molecule-drug conjugate also eradicated cancer in 100% of immunocompetent mice, bearing subcutaneously grafted CT26 colorectal cancer cells, which stably expressed carbonic anhydrase IX.Conclusions: These findings may be of clinical significance, because carbonic anhydrase IX is overexpressed in the majority of clear cell renal cell carcinomas and in approximately 30% of colorectal cancers. The targeted delivery of IL2 helps potentiate the action of targeted cytotoxics, leading to cancer eradication in models that cannot be cured by conventional chemotherapy. Clin Cancer Res; 24(15); 3656-67. ©2018 AACR.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Barbara Ziffels
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Fontaine Widmayer
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Patrizia Murer
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | | | - Dario Neri
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland.
| |
Collapse
|
56
|
Nielsen CF, van Putten SM, Lund IK, Melander MC, Nørregaard KS, Jürgensen HJ, Reckzeh K, Christensen KR, Ingvarsen SZ, Gårdsvoll H, Jensen KE, Hamerlik P, Engelholm LH, Behrendt N. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers. Oncotarget 2018; 8:44605-44624. [PMID: 28574834 PMCID: PMC5546505 DOI: 10.18632/oncotarget.17883] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/24/2017] [Indexed: 11/29/2022] Open
Abstract
A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.
Collapse
Affiliation(s)
- Christoffer Fagernæs Nielsen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Sander Maarten van Putten
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ida Katrine Lund
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Maria Carlsén Melander
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kirstine Sandal Nørregaard
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Henrik Jessen Jürgensen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kristine Rothaus Christensen
- Experimental Animal Models Section, Department of Veterinary Disease Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Signe Ziir Ingvarsen
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Petra Hamerlik
- Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Lars Henning Engelholm
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, Biotech Research and Innovation Center (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
57
|
Deonarain MP, Yahioglu G, Stamati I, Pomowski A, Clarke J, Edwards BM, Diez-Posada S, Stewart AC. Small-Format Drug Conjugates: A Viable Alternative to ADCs for Solid Tumours? Antibodies (Basel) 2018; 7:E16. [PMID: 31544868 PMCID: PMC6698822 DOI: 10.3390/antib7020016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) have been through multiple cycles of technological innovation since the concept was first practically demonstrated ~40 years ago. Current technology is focusing on large, whole immunoglobulin formats (of which there are approaching 100 in clinical development), many with site-specifically conjugated payloads numbering 2 or 4. Despite the success of trastuzumab-emtansine in breast cancer, ADCs have generally failed to have an impact in solid tumours, leading many to explore alternative, smaller formats which have better penetrating properties as well as more rapid pharmacokinetics (PK). This review describes research and development progress over the last ~10 years obtained from the primary literature or conferences covering over a dozen different smaller format-drug conjugates from 80 kDa to around 1 kDa in total size. In general, these agents are potent in vitro, particularly more recent ones incorporating ultra-potent payloads such as auristatins or maytansinoids, but this potency profile changes when testing in vivo due to the more rapid clearance. Strategies to manipulate the PK properties, whilst retaining the more effective tumour penetrating properties could at last make small-format drug conjugates viable alternative therapeutics to the more established ADCs.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Ioanna Stamati
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Anja Pomowski
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - James Clarke
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Bryan M Edwards
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Soraya Diez-Posada
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Ashleigh C Stewart
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| |
Collapse
|
58
|
Cazzamalli S, Dal Corso A, Widmayer F, Neri D. Chemically Defined Antibody- and Small Molecule-Drug Conjugates for in Vivo Tumor Targeting Applications: A Comparative Analysis. J Am Chem Soc 2018; 140:1617-1621. [PMID: 29342352 PMCID: PMC5844464 DOI: 10.1021/jacs.7b13361] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first direct comparative evaluation of an antibody-drug conjugate and of a small molecule-drug conjugate for cancer therapy, using chemically defined products which bind with high-affinity to carbonic anhydrase IX, a marker of tumor hypoxia and of renal cell carcinoma.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Carbonic Anhydrase IX/antagonists & inhibitors
- Carbonic Anhydrase IX/metabolism
- Carbonic Anhydrase Inhibitors/chemical synthesis
- Carbonic Anhydrase Inhibitors/chemistry
- Carbonic Anhydrase Inhibitors/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Tumor Hypoxia/drug effects
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich (Switzerland)
| | - Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich (Switzerland)
| | - Fontaine Widmayer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zurich (Switzerland)
| |
Collapse
|
59
|
Raavé R, van Kuppevelt TH, Daamen WF. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J Control Release 2018; 274:1-8. [PMID: 29382546 DOI: 10.1016/j.jconrel.2018.01.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/17/2022]
Abstract
Systemic chemotherapy is a primary strategy in the treatment of cancer, but comes with a number of limitations such as toxicity and unfavorable biodistribution. To overcome these issues, numerous targeting systems for specific delivery of chemotherapeutics to tumor cells have been designed and evaluated. Such strategies generally address subsets of tumor cells, still allowing the progressive growth of tumor cells not expressing the target. Moreover, tumor stem cells and tumor supportive cells, such as cancer associated fibroblasts and cancer associated macrophages, are left unaffected by this approach. In this review, we discuss an alternative targeting strategy aimed at delivery of anti-tumor drugs to the tumoral extracellular matrix with the potential to eliminate all cell types. The extracellular matrix of tumors is vastly different from that of healthy tissue and offers hooks for targeted drug delivery. It is concluded that matrix targeting is promising, but that clinical studies are required to evaluate translation.
Collapse
Affiliation(s)
- René Raavé
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Biochemistry, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Biochemistry, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Biochemistry, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
60
|
Antibody-Drug Conjugates: Targeting the Tumor Microenvironment. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-78154-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
61
|
Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer 2017; 117:1736-1742. [PMID: 29065110 PMCID: PMC5729478 DOI: 10.1038/bjc.2017.367] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Antibody drug conjugates (ADCs) employ the exquisite specificity of tumour-specific monoclonal antibodies (mAb) for the targeted delivery of highly potent cytotoxic drugs to the tumour site. The chemistry of the linker, which connects the drug to the mAb, determines how and when the drug is released from the mAb. This, as well as the chemistry of the drug, can dictate whether the drug can diffuse into surrounding cells, resulting in 'bystander killing'. Initially, any bystander killing mechanism of action of an ADC was understood to involve an essential sequence of steps beginning with surface antigen targeting, internalisation, intracellular linker cleavage, drug release, and diffusion of drug away from the targeted cell. However, recent studies indicate that, depending on the linker and drug combination, this mechanism may not be essential and ADCs can be cleaved extracellularly or via other mechanisms. In this minireview, we will examine the role of bystander killing by ADCs and explore the emerging evidence of how this can occur independently of internalisation.
Collapse
Affiliation(s)
- Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
62
|
Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017; 142:393-415. [DOI: 10.1016/j.ejmech.2017.08.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
|
63
|
Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, Tutt AN, Spicer JF, Thurston DE, Crescioli S, Karagiannis SN. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology 2017; 7:e1395127. [PMID: 29375935 PMCID: PMC5769674 DOI: 10.1080/2162402x.2017.1395127] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are emerging as effective tools in cancer therapy, combining the antibody's exquisite specificity for the target antigen-expressing cancer cell together with the cytotoxic potency of the payload. Much success stems from the rational design of "toxic warheads", chemically linked to antibodies, and from fine-tuning the intricate properties of chemical linkers. Here, we focus on the antibody moiety of ADCs, dissecting the impact of Fab, linkers, isotype and Fc structure on the anti-tumoral and immune-activating functions of ADCs. Novel design approaches informed by antibody structural attributes present opportunities that may contribute to the success of next generation ADCs.
Collapse
Affiliation(s)
- Ricarda M Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Ben G T Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,School of Clinical Medicine, University College London Medical School, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Andrew N Tutt
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - David E Thurston
- Institute of Pharmaceutical Science, King's College London, Britannia House, London, United Kingdom.,Femtogenix Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
64
|
Affiliation(s)
- Madduri Srinivasarao
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
65
|
Dal Corso A, Gébleux R, Murer P, Soltermann A, Neri D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J Control Release 2017; 264:211-218. [PMID: 28867376 DOI: 10.1016/j.jconrel.2017.08.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022]
Abstract
Antibody-drug conjugates are generally believed to crucially rely on internalization into cancer cells for therapeutic activity. Here, we show that a non-internalizing antibody-drug conjugate, based on the F16 antibody specific to the alternatively spliced A1 domain of tenascin-C, mediates a potent therapeutic activity when equipped with the anthracycline PNU159682. The peptide linker, connecting the F16 antibody in IgG format at a specific cysteine residue to the drug, was stable in serum but could be efficiently cleaved in the subendothelial extracellular matrix by proteases released by the dying tumor cells. The results indicate that there may be a broader potential applicability of non-internalizing antibody-drug conjugates for cancer therapy than what had previously been assumed.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Rémy Gébleux
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Alex Soltermann
- Institute of Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland.
| |
Collapse
|
66
|
|
67
|
Opaliński Ł, Sokołowska-Wędzina A, Szczepara M, Zakrzewska M, Otlewski J. Antibody-induced dimerization of FGFR1 promotes receptor endocytosis independently of its kinase activity. Sci Rep 2017; 7:7121. [PMID: 28769084 PMCID: PMC5540934 DOI: 10.1038/s41598-017-07479-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their plasma membrane-localized receptors (FGFRs) play a key role in the regulation of developmental processes and metabolism. Aberrant FGFR signaling is associated with the progression of serious metabolic diseases and human cancer. Binding of FGFs to FGFRs induces receptor dimerization and transphosphorylation of FGFR kinase domains that triggers activation of intracellular signaling pathways. Following activation, FGFRs undergo internalization and subsequent lysosomal degradation, which terminates transmission of signals. Although factors that regulate FGFR endocytosis are continuously discovered, little is known about the molecular mechanism that initiates the internalization of FGFRs. Here, we analyzed the internalization of antibody fragments in various formats that target FGFR1. We show that FGFR1-specific antibody fragments in the monovalent scFv format bind to FGFR1, but are not internalized into cells that overproduce FGFR1. In contrast, the same scFv proteins in the bivalent scFv-Fc format are efficiently internalized via FGFR1-mediated, clathrin and dynamin dependent endocytosis. Interestingly, the receptor tyrosine kinase activity is dispensable for endocytosis of scFv-Fc-FGFR1 complexes, suggesting that only dimerization of receptor is required to trigger endocytosis of FGFR1 complexes.
Collapse
Affiliation(s)
- Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| | - Aleksandra Sokołowska-Wędzina
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Martyna Szczepara
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
68
|
Liang Y, Li S, Wang X, He B, He B, Dai W, Zhang H, Wang X, Wang Y, Zhou D, Zhang Q. A Nanosystem of Amphiphilic Oligopeptide-Drug Conjugate Actualizing Both αvβ3 Targeting and Reduction-Triggered Release for Maytansinoid. Theranostics 2017; 7:3306-3318. [PMID: 28900511 PMCID: PMC5595133 DOI: 10.7150/thno.20242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
To design a prodrug-based self-assembling nanosystem with both ligand targeting and stimuli-responsive features, and elucidate the superiority of each targeting strategy and the synergistic effect between them, we synthesized four small molecule amphiphilic peptide-drug conjugates (APDCs) using maytansinoid (DM1) as a cytotoxic agent, cRGDfK as a homing peptide, and disulfide (SS) or thioether (SMCC) as linker. Owing to their amphiphilicity, the APDCs could self-assemble into nanoparticles (APDC@NPs) which were evaluated in vitro in three different cell lines and in vivo in tumor-bearing C57BL/6 mice. The RSSD@NPs showed the strongest interaction with αvβ3 integrin, highest cell uptake and intracellular free drug level, and best antitumor efficacy in vitro and in vivo, while it shared the same goodness with other test nanosystems in terms of high drug loading, EPR effect and free of potentially toxic polymers. Especially, the in vivo efficacy of RSSD@NPs was 2 fold of free DM1 which is too cytotoxic to be a drug, while the active targeted APDC@NPs demonstrated acceptable system, tissue and blood compatibility. In αvβ3-positive cells or tumors, the RGD targeting contributed much more than disulfide in anticancer effect. The maximum synergism of the two strategies reached to 22 fold in vitro and 3 fold in vivo. Generally, the active targeting, prodrug and nanosystem could significantly decrease the toxicity of free DM1 and improve its therapy outcome via combining active targeting, prodrug and nanopreparation, especially the dual targeting strategies and their synergism.
Collapse
|
69
|
Abstract
PURPOSE OF REVIEW The current review describes the rationale and current clinical development of antibody drug conjugates (ADCs), along with their perspectives for the future. RECENT FINDINGS Trastuzumab emtansine was the first ADC approved by the U.S. Food and Drug Administration for the treatment of human epidermal growth factor receptor 2 positive metastatic breast cancer in the second-line setting, with a high efficacy and a favorable safety profile. ADC represents an exciting new class of cancer therapeutics that combines a targeted approach for delivering cytotoxic agents. About 30 new ADCs are currently under investigation in oncology. SUMMARY ADCs are empowered antibodies designed to exploit the targeting ability of monoclonal antibodies (mAbs) by linking them to cytotoxic agents, giving them higher tumor selectivity, and potentially an increased therapeutic window, as compared with cytotoxic agents alone. The key components of ADCs include a mAb, a stable linker and a cytotoxic agent. In linking mAbs with cytotoxic agents, the aim is to optimize the properties of both components, bringing their complementary features together. Trastuzumab emtansine has been the first ADC to be marketed in human epidermal growth factor receptor 2 positive metastatic breast cancer. Current clinical development of ADCs includes a variety of targets, as well as combinations with other therapeutic agents, such as chemotherapy, radiotherapy, targeted therapies, and immune checkpoint inhibitors.
Collapse
|
70
|
Sadowsky JD, Pillow TH, Chen J, Fan F, He C, Wang Y, Yan G, Yao H, Xu Z, Martin S, Zhang D, Chu P, dela Cruz-Chuh J, O’Donohue A, Li G, Del Rosario G, He J, Liu L, Ng C, Su D, Lewis Phillips GD, Kozak KR, Yu SF, Xu K, Leipold D, Wai J. Development of Efficient Chemistry to Generate Site-Specific Disulfide-Linked Protein– and Peptide–Payload Conjugates: Application to THIOMAB Antibody–Drug Conjugates. Bioconjug Chem 2017. [DOI: 10.1021/acs.bioconjchem.7b00258] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jack D. Sadowsky
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Fang Fan
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Changrong He
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yanli Wang
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Gang Yan
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Hui Yao
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Zijin Xu
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Shanique Martin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Phillip Chu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Aimee O’Donohue
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoffrey Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jintang He
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Luna Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dian Su
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Katherine R. Kozak
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Douglas Leipold
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd, 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| |
Collapse
|
71
|
Dal Corso A, Cazzamalli S, Gébleux R, Mattarella M, Neri D. Protease-Cleavable Linkers Modulate the Anticancer Activity of Noninternalizing Antibody-Drug Conjugates. Bioconjug Chem 2017; 28:1826-1833. [PMID: 28662334 DOI: 10.1021/acs.bioconjchem.7b00304] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antibody-drug conjugates (ADCs) represent an attractive class of biopharmaceutical agents, with the potential to selectively deliver potent cytotoxic agents to tumors. It is generally assumed that ADC products should preferably bind and internalize into cancer cells in order to liberate their toxic payload, but a growing body of evidence indicates that also ADCs based on noninternalizing antibodies may be potently active. In this Communication, we investigated dipeptide-based linkers (frequently used for internalizing ADC products) in the context of the noninternalizing F16 antibody, specific to a splice isoform of tenascin-C. Using monomethyl auristatin E (MMAE) as potent cytotoxic drug, we observed that a single amino acid substitution of the Val-Cit dipeptide linker can substantially modulate the in vivo stability of the corresponding ADC products, as well as the anticancer activity in mice bearing the human epidermoid A431 carcinoma. In these settings, the linker based on the Val-Ala dipeptide exhibited better performances, compared to Val-Cit, Val-Lys, and Val-Arg analogues. Mass spectrometric analysis revealed that the four linkers displayed not only different stability in vivo but also differences in cleavage sites. Moreover, the absence of anticancer activity for a F16-MMAE conjugate featuring a noncleavable linker indicated that drug release modalities, based on proteolytic degradation of the immunoglobulin moiety, cannot be exploited with noninternalizing antibodies. ADC products based on the noninternalizing F16 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed in the extracellular matrix of several tumors, while being virtually undetectable in most normal adult tissues.
Collapse
Affiliation(s)
- Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Rémy Gébleux
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|
72
|
An atlas of bloodstream-accessible bone marrow proteins for site-directed therapy of acute myeloid leukemia. Leukemia 2017; 32:510-519. [DOI: 10.1038/leu.2017.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
|
73
|
Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov Today 2017. [PMID: 28627385 DOI: 10.1016/j.drudis.2017.05.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antibody-drug conjugates (ADCs), a potent class of anticancer therapeutics, comprise a high-affinity antibody (Ab) and cytotoxic payload coupled via a suitable linker for selective tumor cell killing. In the initial phase of their development, two ADCs, Mylotarg®, and Adcetris® were approved by the US Food and Drug Administration (FDA) for treating hematological cancer, but the real breakthrough came with the discovery of the breast cancer-targeting ADC, Kadcyla®. With advances in bioengineering, linker chemistry, and potent cytotoxic payload, ADC technology has become a more powerful tool for targeted cancer therapy. In addition, ADCs with improved safety using humanized Abs with a unified 'drug:antibody ratio' (DAR) have been achieved. Concomitantly, there has been a significant increase in the number of clinical trials with anticancer ADCs with high translation potential.
Collapse
Affiliation(s)
- Samaresh Sau
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O Alsaab
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 26571, Saudi Arabia
| | - Sushil Kumar Kashaw
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
74
|
Pillow TH, Sadowsky JD, Zhang D, Yu SF, Del Rosario G, Xu K, He J, Bhakta S, Ohri R, Kozak KR, Ha E, Junutula JR, Flygare JA. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci 2017; 8:366-370. [PMID: 28451181 PMCID: PMC5365059 DOI: 10.1039/c6sc01831a] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023] Open
Abstract
Disulfide bonds provide a bioactivatable connection with applications in imaging and therapy. The circulation stability and intracellular release of disulfides are problematically coupled in that increasing stability causes a corresponding decrease in cleavage and payload release. However, an antibody offers the potential for a reversible stabilization. We examined this by attaching a small molecule directly to engineered cysteines in an antibody. At certain sites this unhindered disulfide was stable in circulation yet cellular internalization and antibody catabolism generated a disulfide catabolite that was rapidly reduced. We demonstrated that this stable connection and facile release is applicable to a variety of payloads. The ability to reversibly stabilize a labile functional group with an antibody may offer a way to improve targeted probes and therapeutics.
Collapse
Affiliation(s)
- Thomas H Pillow
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Jack D Sadowsky
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Donglu Zhang
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Shang-Fan Yu
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Geoffrey Del Rosario
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Keyang Xu
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Jintang He
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Sunil Bhakta
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Rachana Ohri
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Katherine R Kozak
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Edward Ha
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - Jagath R Junutula
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| | - John A Flygare
- Research & Early Development , Genentech, Inc. , 1 DNA Way , South San Francisco , CA 94080 , USA .
| |
Collapse
|
75
|
Gébleux R, Stringhini M, Casanova R, Soltermann A, Neri D. Non-internalizing antibody-drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix. Int J Cancer 2016; 140:1670-1679. [PMID: 27943268 DOI: 10.1002/ijc.30569] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a promising class of biopharmaceuticals with the potential to localize at the tumor site and improve the therapeutic index of cytotoxic drugs. While it is generally believed that ADCs need to be internalized into tumor cells in order to display optimal therapeutic activity, it has recently been shown that non-internalizing antibodies can efficiently liberate disulfide-linked drugs at the extracellular tumor site, leading to potent anti-cancer activity in preclinical animal models. Here, we show that engineered variants of the F16 antibody, specific to a splice isoform of tenascin-C, selectively localize to the subendothelial tumor extracellular matrix in three mouse models of human cancer (U87, A431, MDA-MB-231). A site-specific coupling of F16 in IgG format with a monomethyl auristatin E (MMAE) derivative, featuring a valine-citrulline dipeptide linker equipped with a self-immolative spacer, yielded an ADC product, which cured tumor-bearing mice at a dose of 7 mg/Kg. The observation of an efficient extracellular proteolytic cleavage of the valine-citrulline linker was surprising, as it has generally been assumed that this peptidic structure would be selectively cleaved by cathepsin B in intracellular compartments. The products described in this article may be useful for the treatment of human malignancies, as their cognate antigen is strongly expressed in the majority of human solid tumors, lymphomas and aggressive leukemias, while being virtually undetectable in most normal adult tissues.
Collapse
Affiliation(s)
- Rémy Gébleux
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, CH-8093, Switzerland
| | - Marco Stringhini
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, CH-8093, Switzerland
| | - Ruben Casanova
- Institute of Pathology, University Hospital Zurich, Zurich, CH-8091, Switzerland
| | - Alex Soltermann
- Institute of Pathology, University Hospital Zurich, Zurich, CH-8091, Switzerland
| | - Dario Neri
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, CH-8093, Switzerland
| |
Collapse
|
76
|
Cazzamalli S, Corso AD, Neri D. Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma. J Control Release 2016; 246:39-45. [PMID: 27890855 DOI: 10.1016/j.jconrel.2016.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
Small molecule-drug conjugates (SMDCs) are increasingly being considered as an alternative to antibody-drug conjugates (ADCs) for the selective delivery of anticancer agents to the tumor site, sparing normal tissues. Carbonic anhydrase IX (CAIX) is a membrane-bound enzyme, which is over-expressed in the majority of renal cell carcinomas and which can be efficiently targeted in vivo, using charged derivatives of acetazolamide, a small heteroaromatic sulfonamide. Here, we show that SMDC products, obtained by the coupling of acetazolamide with monomethyl auristatin E (MMAE) using dipeptide linkers, display a potent anti-tumoral activity in mice bearing xenografted SKRC-52 renal cell carcinomas. A comparative evaluation of four dipeptides revealed that SMDCs featuring valine-citrulline and valine-alanine linkers exhibited greater serum stability and superior therapeutic activity, compared to the counterparts with valine-lysine or valine-arginine linkers. The most active products substantially inhibited tumor growth over a prolonged period of time, in a tumor model for which sunitinib and sorafenib do not display therapeutic activity. However, complete tumor eradication was not possible even after ten intravenous injection. Macroscopic near-infrared imaging procedures confirmed that ligands had not lost the ability to selectively localize at the tumor site at the end of therapy and that the neoplastic masses continued to express CAIX. The findings are of mechanistic and of therapeutic significance, since CAIX is a non-internalizing membrane-associated antigen, which can be considered for targeted drug delivery applications in kidney cancer patients.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| |
Collapse
|
77
|
Antibody-drug conjugates: Current status and future perspectives. Pharmacol Ther 2016; 167:48-59. [DOI: 10.1016/j.pharmthera.2016.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 02/02/2023]
|
78
|
Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn 2016; 43:567-582. [PMID: 27670282 DOI: 10.1007/s10928-016-9495-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
Antibody-drug conjugates (ADCs) are designed to target antigen expressing (Ag+) cells in a tumor. Once processed by the Ag+ cells, ADCs can release cytotoxic drug molecules that can diffuse out of Ag+ cells into the neighboring antigen-negative (Ag-) cells to induce their cytotoxicity. This additional efficacy of ADCs on Ag- cells in the presence of Ag+ cells is known as the 'bystander effect'. Although the importance of this phenomena is widely acknowledged for effective killing of a heterogeneous tumor, the rate and extent of the bystander killing in a heterogeneous system is not quantitatively understood yet. Thus, the objectives of this manuscript were to: (1) synthesize and characterize a tool ADC Trastuzumab-vc-MMAE that is capable of exhibiting bystander effect, (2) quantify the time course of the bystander effect for the tool ADC using in vitro co-culture systems created using mixture of various HER2-expressing cell lines, and (3) develop a pharmacodynamic (PD) model that is capable of characterizing the bystander effect of ADCs. Co-culture studies conducted using GFP labelled MCF7 cells as Ag- cells and N87, BT474, and SKBR3 as Ag+ cells revealed that the bystander effect of ADC increases with increasing fraction of Ag+ cells in a co-culture system, and with increased expression level of target on Ag+ cells. A notable lag time after ADC incubation was also observed prior to significant bystander killing of Ag- cells. Based on our results we hypothesize that there may be other determinants apart from the antigen expression level that can also influence the ability of Ag+ cells to demonstrate the bystander effect in a co-culture system. The co-culture analysis also suggested that the bystander effect of the ADC can dissipate over the period of time as the population of Ag+ cells declines. A novel PD model was developed to mathematically characterize the bystander effect of ADCs by combining two different cell distribution models to represent the population of Ag+ and Ag- cells in a co-culture system. This PD model can be integrated with the systems PK model for ADCs in the future to generate a quantitative framework that is capable of supporting the discovery and development of novel ADCs with optimal bystander killing capabilities.
Collapse
Affiliation(s)
- Aman P Singh
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Sharad Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
79
|
Cazzamalli S, Dal Corso A, Neri D. Acetazolamide Serves as Selective Delivery Vehicle for Dipeptide-Linked Drugs to Renal Cell Carcinoma. Mol Cancer Ther 2016; 15:2926-2935. [PMID: 27609641 DOI: 10.1158/1535-7163.mct-16-0283] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 08/28/2016] [Indexed: 01/12/2023]
Abstract
In most cases, cytotoxic drugs do not preferentially accumulate at the tumor site, causing unwanted toxicities and preventing dose escalation to therapeutically active regimens. Here, we show that acetazolamide derivatives, which bind to carbonic anhydrase IX (CAIX) on the surface of kidney cancer cells, selectively deliver payloads at the site of disease, sparing normal organs. Biodistribution studies, performed in tumor-bearing mice with acetazolamide derivatives bearing a technetium-99m chelator complex or a red fluorophore as payload, revealed a preferential tumor accumulation of the compound at doses up to 560 nmol/kg. The percentage of injected dose per gram in the tumor was dose-dependent and revealed optimal tumor:organ ratios at 140 nmol/kg, with a tumor:blood ratio of 80:1 at 6 hours. Acetazolamide, coupled to potent cytotoxic drugs via a dipeptide linker, exhibited a potent antitumor activity in nude mice bearing SKRC-52 renal cell carcinomas, whereas drug derivatives devoid of the acetazolamide moiety did not exhibit any detectable anticancer activity at the same doses. The observation of tumor regression with a noninternalizing ligand and with different cytotoxic moieties (MMAE and PNU-159682) indicates a general mechanism of action, based on the selective accumulation of the product on tumor cells, followed by the extracellular proteolytic release of the cytotoxic payload at the neoplastic site and the subsequent drug internalization into tumor cells. Acetazolamide-based drug conjugates may represent a promising class of targeted agents for the treatment of metastatic kidney cancer, as the majority of human clear cell renal cell carcinomas are strongly positive for CAIX. Mol Cancer Ther; 15(12); 2926-35. ©2016 AACR.
Collapse
Affiliation(s)
- Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich (Switzerland)
| | - Alberto Dal Corso
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich (Switzerland)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich (Switzerland).
| |
Collapse
|
80
|
Rossin R, van Duijnhoven SMJ, Ten Hoeve W, Janssen HM, Kleijn LHJ, Hoeben FJM, Versteegen RM, Robillard MS. Triggered Drug Release from an Antibody-Drug Conjugate Using Fast "Click-to-Release" Chemistry in Mice. Bioconjug Chem 2016; 27:1697-706. [PMID: 27306828 DOI: 10.1021/acs.bioconjchem.6b00231] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of a bioorthogonal reaction for the selective cleavage of tumor-bound antibody-drug conjugates (ADCs) would represent a powerful new tool for ADC therapy, as it would not rely on the currently used intracellular biological activation mechanisms, thereby expanding the scope to noninternalizing cancer targets. Here we report that the recently developed inverse-electron-demand Diels-Alder pyridazine elimination reaction can provoke rapid and self-immolative release of doxorubicin from an ADC in vitro and in tumor-bearing mice.
Collapse
Affiliation(s)
- Raffaella Rossin
- Tagworks Pharmaceuticals , High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | | | | | - Henk M Janssen
- SyMO-Chem , Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | | | - Freek J M Hoeben
- SyMO-Chem , Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Ron M Versteegen
- SyMO-Chem , Het Kranenveld 14, 5612 AZ Eindhoven, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals , High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
81
|
Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM. Multiscale Modeling of Antibody-Drug Conjugates: Connecting Tissue and Cellular Distribution to Whole Animal Pharmacokinetics and Potential Implications for Efficacy. AAPS JOURNAL 2016; 18:1117-1130. [PMID: 27287046 DOI: 10.1208/s12248-016-9940-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Antibody-drug conjugates exhibit complex pharmacokinetics due to their combination of macromolecular and small molecule properties. These issues range from systemic concerns, such as deconjugation of the small molecule drug during the long antibody circulation time or rapid clearance from nonspecific interactions, to local tumor tissue heterogeneity, cell bystander effects, and endosomal escape. Mathematical models can be used to study the impact of these processes on overall distribution in an efficient manner, and several types of models have been used to analyze varying aspects of antibody distribution including physiologically based pharmacokinetic (PBPK) models and tissue-level simulations. However, these processes are quantitative in nature and cannot be handled qualitatively in isolation. For example, free antibody from deconjugation of the small molecule will impact the distribution of conjugated antibodies within the tumor. To incorporate these effects into a unified framework, we have coupled the systemic and organ-level distribution of a PBPK model with the tissue-level detail of a distributed parameter tumor model. We used this mathematical model to analyze new experimental results on the distribution of the clinical antibody-drug conjugate Kadcyla in HER2-positive mouse xenografts. This model is able to capture the impact of the drug-antibody ratio (DAR) on tumor penetration, the net result of drug deconjugation, and the effect of using unconjugated antibody to drive ADC penetration deeper into the tumor tissue. This modeling approach will provide quantitative and mechanistic support to experimental studies trying to parse the impact of multiple mechanisms of action for these complex drugs.
Collapse
Affiliation(s)
- Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Hans Guo
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Jianshan Liao
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Nikolas Christodolu
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
82
|
Akkapeddi P, Azizi SA, Freedy AM, Cal PMSD, Gois PMP, Bernardes GJL. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem Sci 2016; 7:2954-2963. [PMID: 29997785 PMCID: PMC6005007 DOI: 10.1039/c6sc00170j] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
Systemic chemotherapy, the current standard of care for the treatment of cancer, is rarely curative and is often accompanied by debilitating side effects. Targeted drug delivery stands as an alternative to chemotherapy, with the potential to improve upon its low efficacy and systemic toxicity. Among targeted therapeutic options, antibody-drug conjugates (ADCs) have emerged as the most promising. These conjugates represent a new class of biopharmaceuticals that selectively deliver potent cytotoxic drugs to cancer cells, sparing healthy tissue throughout the body. Despite this promise, early heterogenous ADCs suffered from stability, pharmacokinetic, and efficacy issues that hindered clinical development. Recent advances in antibody engineering, linkers for drug-release, and chemical site-selective antibody conjugation have led to the creation of homogenous ADCs that have proven to be more efficacious than their heterogeneous predecessors both in vitro and in vivo. In this minireview, we focus on and discuss recent advances in chemical site-selective modification strategies for the conjugation of drugs to antibodies and the resulting potential for the development of a new generation of homogenous ADCs.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Saara-Anne Azizi
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Allyson M Freedy
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Pedro M S D Cal
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| |
Collapse
|
83
|
Diamantis N, Banerji U. Antibody-drug conjugates--an emerging class of cancer treatment. Br J Cancer 2016; 114:362-7. [PMID: 26742008 PMCID: PMC4815767 DOI: 10.1038/bjc.2015.435] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are an emerging novel class of anticancer treatment agents that combines the selectivity of targeted treatment with the cytotoxic potency of chemotherapy drugs. New linker technology associated with novel highly potent cytotoxic payloads has permitted the development of more effective and safe ADCs. In recent years, two ADCs have been licensed, T-DM1 and brentuximab vedotin, and are already establishing their place in cancer treatment. A plethora of ADCs are being investigated in phases I and II trials, emerging data of which appears promising. As we deepen our understanding of what makes a successful ADC, an increasing number of ADCs will likely become viable treatment options as single agents or in combination with chemotherapy. This review will present the philosophy underlying ADCs, their main characteristics and current research developments with a focus on ADCs in solid tumours.
Collapse
Affiliation(s)
- Nikolaos Diamantis
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, Downs Road, Sutton, London SM2 5PT, UK
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, Downs Road, Sutton, London SM2 5PT, UK
| |
Collapse
|
84
|
Fauteux F, Hill JJ, Jaramillo ML, Pan Y, Phan S, Famili F, O'Connor-McCourt M. Computational selection of antibody-drug conjugate targets for breast cancer. Oncotarget 2016; 7:2555-71. [PMID: 26700623 PMCID: PMC4823055 DOI: 10.18632/oncotarget.6679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/21/2015] [Indexed: 01/03/2023] Open
Abstract
The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain. Breast cancer samples were classified into molecular subtypes using an iterative ensemble approach combining six classification algorithms and three feature selection techniques, including a novel kernel density-based method. This feature selection method was used in conjunction with differential expression and subcellular localization information to assemble a primary list of targets. A total of 50 cell membrane targets were identified, including one target for which an antibody-drug conjugate is in clinical use, and six targets for which antibody-drug conjugates are in clinical trials for the treatment of breast cancer and other solid tumors. In addition, 50 extracellular proteins were identified as potential targets for non-internalizing strategies and alternative modalities. Candidate targets linked with the epithelial-to-mesenchymal transition were identified by analyzing differential gene expression in epithelial and mesenchymal tumor-derived cell lines. Overall, these results show that mining human gene expression data has the power to select and prioritize breast cancer antibody-drug conjugate targets, and the potential to lead to new and more effective cancer therapeutics.
Collapse
Affiliation(s)
- François Fauteux
- Information and Communication Technologies, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jennifer J. Hill
- Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - Maria L. Jaramillo
- Human Health Therapeutics, National Research Council Canada, Montreal, Quebec, Canada
| | - Youlian Pan
- Information and Communication Technologies, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sieu Phan
- Information and Communication Technologies, National Research Council Canada, Ottawa, Ontario, Canada
| | - Fazel Famili
- Information and Communication Technologies, National Research Council Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
85
|
Ling Y, Ren J, Li T, Zhao Y, Wu C. POEGMA-based disulfide-containing fluorescent probes for imitating and tracing noninternalization-based intracellular drug delivery. Chem Commun (Camb) 2016; 52:4533-6. [DOI: 10.1039/c6cc00369a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study provides a proof-of-concept demonstration of exploiting bioreduction in the extracellular spaces for the intracellular delivery of hydrophobic drugs or probes.
Collapse
Affiliation(s)
- Yunyang Ling
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jing Ren
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Tao Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
86
|
Kim EG, Kim KM. Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics. Biomol Ther (Seoul) 2015; 23:493-509. [PMID: 26535074 PMCID: PMC4624065 DOI: 10.4062/biomolther.2015.116] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 11/05/2022] Open
Abstract
Antibody-drug conjugates utilize the antibody as a delivery vehicle for highly potent cytotoxic molecules with specificity for tumor-associated antigens for cancer therapy. Critical parameters that govern successful antibody-drug conjugate development for clinical use include the selection of the tumor target antigen, the antibody against the target, the cytotoxic molecule, the linker bridging the cytotoxic molecule and the antibody, and the conjugation chemistry used for the attachment of the cytotoxic molecule to the antibody. Advancements in these core antibody-drug conjugate technology are reflected by recent approval of Adectris(®) (anti-CD30-drug conjugate) and Kadcyla(®) (anti-HER2 drug conjugate). The potential approval of an anti-CD22 conjugate and promising new clinical data for anti-CD19 and anti-CD33 conjugates are additional advancements. Enrichment of antibody-drug conjugates with newly developed potent cytotoxic molecules and linkers are also in the pipeline for various tumor targets. However, the complexity of antibody-drug conjugate components, conjugation methods, and off-target toxicities still pose challenges for the strategic design of antibody-drug conjugates to achieve their fullest therapeutic potential. This review will discuss the emergence of clinical antibody-drug conjugates, current trends in optimization strategies, and recent study results for antibody-drug conjugates that have incorporated the latest optimization strategies. Future challenges and perspectives toward making antibody-drug conjugates more amendable for broader disease indications are also discussed.
Collapse
Affiliation(s)
- Eunhee G. Kim
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Republic of Korea
| | - Kristine M. Kim
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 24341,
Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341,
Republic of Korea
| |
Collapse
|
87
|
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67:28-45. [PMID: 25911943 PMCID: PMC4529810 DOI: 10.1016/j.molimm.2015.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications.
Collapse
Affiliation(s)
- J M Redman
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - E M Hill
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - D AlDeghaither
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - L M Weiner
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States.
| |
Collapse
|
88
|
Kemmer A, Bieber K, Abadpour A, Yu X, Mitschker N, Roth S, Kauderer C, Ludwig RJ, Seeger K, Köhl J, Zillikens D, Recke A. A recombinant fusion protein derived from dog hookworm inhibits autoantibody-induced dermal-epidermal separation ex vivo. Exp Dermatol 2015; 24:872-8. [PMID: 26174039 DOI: 10.1111/exd.12804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 02/06/2023]
Abstract
The proteins secreted by parasitic nematodes are evolutionarily optimized molecules with unique capabilities of suppressing the immune response of the host organism. Neutrophil inhibitory factor (NIF), which is secreted by the dog hookworm Ancylostoma caninum, binds to the β2 integrin CD11b/CD18, which is expressed on human neutrophils, eosinophils, monocytes and macrophages and inhibits neutrophil-dependent lung injury and neutrophil invasion of ischaemic brain tissue. Neutrophils are key players in the pathogenesis of subepidermal autoimmune blistering diseases (sAIBDs), and their pathogenic activities are crucially dependent on β2 integrin functionality. Based on the template of single-stranded, dimerizing antibody derivatives, which are already used in cancer treatment, we designed a novel biologic, NIF-IGHE-CH4, comprising NIF and the dimerizing but otherwise inert constant heavy subdomain 4 (CH4) of human IgE (IGHE). This molecule was evaluated in a variety of in vitro assays, demonstrating its ability to inhibit pathogenically relevant neutrophil functions such as migration, adhesion and spreading, and release of reactive oxygen species. Finally, we confirmed that NIF-IGHE-CH4 inhibits blister formation in an ex vivo assay of sAIBD. These results suggest that NIF-IGHE-CH4 is a novel potential anti-inflammatory drug for the treatment of neutrophil-mediated diseases such as sAIBDs. This study promotes the drugs from bugs concept and encourages further research and development focused on turning parasite proteins into useful anti-inflammatory biologics.
Collapse
Affiliation(s)
- Annette Kemmer
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Aida Abadpour
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Xinhua Yu
- Biochemical Immunology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel (Sülfeld), Germany
| | - Nina Mitschker
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Sara Roth
- Institute for Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Claudia Kauderer
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karsten Seeger
- Institute of Chemistry, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Andreas Recke
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
89
|
Gébleux R, Wulhfard S, Casi G, Neri D. Antibody Format and Drug Release Rate Determine the Therapeutic Activity of Noninternalizing Antibody-Drug Conjugates. Mol Cancer Ther 2015; 14:2606-12. [PMID: 26294742 DOI: 10.1158/1535-7163.mct-15-0480] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/06/2015] [Indexed: 01/11/2023]
Abstract
The development of antibody-drug conjugates (ADC), a promising class of anticancer agents, has traditionally relied on the use of antibodies capable of selective internalization in tumor cells. We have recently shown that also noninternalizing antibodies, coupled to cytotoxic drugs by means of disulfide linkers that can be cleaved in the tumor extracellular environment, can display a potent therapeutic activity. Here, we have compared the tumor-targeting properties, drug release rates, and therapeutic performance of two ADCs, based on the maytansinoid DM1 thiol drug and on the F8 antibody, directed against the alternatively spliced Extra Domain A (EDA) domain of fibronectin. The antibody was used in IgG or in small immune protein (SIP) format. In both cases, DM1 was coupled to unpaired cysteine residues, resulting in a drug-antibody ratio of 2. In biodistribution studies, SIP(F8)-SS-DM1 accumulated in the tumor and cleared from circulation more rapidly than IgG(F8)-SS-DM1. However, the ADC based on the IgG format exhibited a higher tumor uptake at later time points (e.g., 33%IA/g against 8%IA/g at 24 hours after intravenous administration). In mouse plasma, surprisingly, the ADC products in IgG format were substantially more stable compared with the SIP format (half-lives >48 hours and <3 hours at 37°C, respectively), revealing a novel mechanism for the control of disulfide-based drug release rates. Therapy experiments in immunocompetent mice bearing murine F9 tumors revealed that SIP(F8)-SS-DM1 was more efficacious than IgG(F8)-SS-DM1 when the two products were compared either in an equimolar basis or at equal milligram doses.
Collapse
Affiliation(s)
- Rémy Gébleux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland
| | | | | | - Dario Neri
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
90
|
Casi G, Neri D. Antibody–Drug Conjugates and Small Molecule–Drug Conjugates: Opportunities and Challenges for the Development of Selective Anticancer Cytotoxic Agents. J Med Chem 2015; 58:8751-61. [DOI: 10.1021/acs.jmedchem.5b00457] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Giulio Casi
- Philochem AG, Libernstrasse 3, CH8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Institute of Pharmaceutical
Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
91
|
Samain F, Casi G. Small targeted cytotoxics from DNA-encoded chemical libraries. Curr Opin Chem Biol 2015; 26:72-9. [DOI: 10.1016/j.cbpa.2015.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 01/09/2023]
|
92
|
Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol Adv 2015; 33:775-84. [PMID: 25981886 DOI: 10.1016/j.biotechadv.2015.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/24/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022]
Abstract
Development of efficient and safe cancer therapy is one of the major challenges of the modern medicine. Over the last few years antibody-drug conjugates (ADCs) have become a powerful tool in cancer treatment with two of them, Adcetris® (brentuximab vedotin) and Kadcyla® (ado-trastuzumab emtansine), having recently been approved by the Food and Drug Administration (FDA). Essentially, an ADC is a bioconjugate that comprises a monoclonal antibody that specifically binds tumor surface antigen and a highly potent drug, which is attached to the antibody via either cleavable or stable linker. This approach ensures specificity and efficacy in fighting cancer cells, while healthy tissues remain largely unaffected. Conventional ADCs, that employ cysteine or lysine residues as conjugation sites, are highly heterogeneous. This means that the species contain various populations of the ADCs with different drug-to-antibody ratios (DARs) and different drug load distributions. DAR and drug-load distribution are essential parameters of ADCs as they determine their stability and efficacy. Therefore, various drug-loaded forms of ADCs (usually from zero to eight conjugated molecules per antibody) may have distinct pharmacokinetics (PK) in vivo and may differ in clinical performance. Recently, a significant progress has been made in the field of site-specific conjugation which resulted in a number of strategies for synthesis of the homogeneous ADCs. This review describes newly-developed methods that ensure homogeneity of the ADCs including use of engineered reactive cysteine residues (THIOMAB), unnatural amino acids, aldehyde tags, enzymatic transglutaminase- and glycotransferase-based approaches and novel chemical methods. Furthermore, we briefly discuss the limitation of these methods emphasizing the need for further improvement in the ADC design and development.
Collapse
|
93
|
Deonarain MP, Yahioglu G, Stamati I, Marklew J. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 2015; 10:463-81. [PMID: 25797303 DOI: 10.1517/17460441.2015.1025049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody drug conjugates now make up a significant fraction of biopharma's oncology pipeline due to great advances in the understanding of the three key components and how they should be optimised together. With this clinical success comes innovation to produce new enabling technologies that can deliver more effective antibody-drug conjugates (ADCs) with a larger therapeutic index. AREAS COVERED There are many reviews that discuss the various strategies for ADCs design but the last 5 years or so have witnessed the emergence of a number of different antibody formats compete with the standard whole immunoglobulin. Using published research, patent applications and conference disclosures, the authors review the many antibody and antibody-like formats, discussing innovations in protein engineering and how these new formats impact on the conjugation strategy and ultimately the performance. The alternative chemistries that are now available offer new linkages, stability profiles, drug:antibody ratio, pharmacokinetics and efficacy. The different sizes being considered promise to address issues, such as tumour penetration, circulatory half-life and side-effects. EXPERT OPINION ADCs are at the beginning of the next stage in their evolution and as these newer formats are developed and examined in the clinic, we will discover if the predicted features have a clinical benefit. From the commercial activity, it is envisaged that smaller or fragment-based ADCs will expand oncological applications.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, Herts, SG1 2FX , UK
| | | | | | | |
Collapse
|
94
|
Abstract
Conventional cancer chemotherapy is limited by the fact that small organic cytotoxic agents typically do not preferentially localize at the tumor site, causing unwanted toxicities to normal organs and limiting dose escalation to therapeutically active regimens. In principle, antibodies and other ligands could be used for the selective pharmacodelivery of cytotoxic agents to the tumor environment. While traditionally internalizing ligands have been used for such targeting applications, increasing experimental evidence suggests that the ligand-based delivery of anticancer drugs to the extracellular space in the tumor, followed by suitable release strategies, may mediate a potent anticancer activity. In this review, we outline the main requirements for the development of noninternalizing targeted cytotoxics.
Collapse
Affiliation(s)
- Giulio Casi
- †Philochem AG, Libernstrasse 3, CH8112 Otelfingen (ZH), Switzerland
| | - Dario Neri
- ‡Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
95
|
Affiliation(s)
- Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
96
|
Glycosylation profiles determine extravasation and disease-targeting properties of armed antibodies. Proc Natl Acad Sci U S A 2015; 112:2000-5. [PMID: 25646460 DOI: 10.1073/pnas.1416694112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ability of antibodies to extravasate out of blood vessels is critical for therapeutic activity, because molecular targets for most diseases are located outside of the endothelial lining. By performing detailed biodistribution studies with a novel IL9-armed cancer-specific antibody, we identified a clear correlation between N-linked glycan structures and tumor-targeting efficiencies. Site-specific glycan analysis provided a detailed view of the glycan microheterogeneity present on the IL9 portion of the recombinant protein. Nonsialylated glycan structures have a negative impact on disease-homing activity, highlighting the importance of glycosylation control and characterization during process development.
Collapse
|
97
|
Wichert M, Krall N, Decurtins W, Franzini RM, Pretto F, Schneider P, Neri D, Scheuermann J. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat Chem 2015; 7:241-9. [DOI: 10.1038/nchem.2158] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022]
|
98
|
Evolving Strategies for Target Selection for Antibody-Drug Conjugates. Pharm Res 2015; 32:3494-507. [PMID: 25585957 DOI: 10.1007/s11095-015-1624-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/06/2015] [Indexed: 01/06/2023]
Abstract
Antibody-drug conjugates (ADCs) represent a promising modality for the treatment of cancer. The therapeutic strategy is to deliver a potent drug preferentially to the tumor and not normal tissues by attaching the drug to an antibody that recognizes a tumor antigen. The selection of antigen targets is critical to enabling a therapeutic window for the ADC and has proven to be surprisingly complex. We surveyed the tumor and normal tissue expression profiles of the targets of ADCs currently in clinical development. Our analysis demonstrates a surprisingly broad range of expression profiles and the inability to formalize any optimal parameters for an ADC target. In this context, we discuss additional considerations for ADC target selection, including interdependencies among biophysical properties of the drug, biological functions of the target and strategies for clinical development. The TPBG (5T4) oncofetal antigen and the anti-TPBG ADC A1-mcMMAF are highlighted to demonstrate the relevance of the target's biological function. Emerging platform technologies and novel biological insights are expanding ADC target space and transforming strategies for target selection.
Collapse
|
99
|
Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2014; 200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Citation(s) in RCA: 1242] [Impact Index Per Article: 112.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
Collapse
|
100
|
List T, Casi G, Neri D. A chemically defined trifunctional antibody-cytokine-drug conjugate with potent antitumor activity. Mol Cancer Ther 2014; 13:2641-52. [PMID: 25205656 DOI: 10.1158/1535-7163.mct-14-0599] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of immunostimulatory agents with cytotoxic drugs is emerging as a promising approach for potentially curative tumor therapy, but advances in this field are hindered by the requirement of testing individual combination partners as single agents in dedicated clinical studies, often with suboptimal efficacy. Here, we describe for the first time a novel multipayload class of targeted drugs, the immunocytokine-drug conjugates (IDC), which combine a tumor-homing antibody, a cytotoxic drug, and a proinflammatory cytokine in the same molecular entity. In particular, the IL2 cytokine and the disulfide-linked maytansinoid DM1 microtubular inhibitor could be coupled to the F8 antibody, directed against the alternatively spliced EDA domain of fibronectin, in a site-specific manner, yielding a chemically defined product with selective tumor-homing performance and potent anticancer activity in vivo, as tested in two different immunocompetent mouse models.
Collapse
Affiliation(s)
- Thomas List
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland.
| |
Collapse
|