51
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
52
|
Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, Schwerdtle T, Schomburg L, Kipp AP. Copper interferes with selenoprotein synthesis and activity. Redox Biol 2020; 37:101746. [PMID: 33059313 PMCID: PMC7567034 DOI: 10.1016/j.redox.2020.101746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Selenium and copper are essential trace elements for humans, needed for the biosynthesis of enzymes contributing to redox homeostasis and redox-dependent signaling pathways. Selenium is incorporated as selenocysteine into the active site of redox-relevant selenoproteins including glutathione peroxidases (GPX) and thioredoxin reductases (TXNRD). Copper-dependent enzymes mediate electron transfer and other redox reactions. As selenoprotein expression can be modulated e.g. by H2O2, we tested the hypothesis that copper status affects selenoprotein expression. To this end, hepatocarcinoma HepG2 cells and mice were exposed to a variable copper and selenium supply in a physiologically relevant concentration range, and transcript and protein expression as well as GPX and TXNRD activities were compared. Copper suppressed selenoprotein mRNA levels of GPX1 and SELENOW, downregulated GPX and TXNRD activities and decreased UGA recoding efficiency in reporter cells. The interfering effects were successfully suppressed by applying the copper chelators bathocuproinedisulfonic acid or tetrathiomolybdate. In mice, a decreased copper supply moderately decreased the copper status and negatively affected hepatic TXNRD activity. We conclude that there is a hitherto unknown interrelationship between copper and selenium status, and that copper negatively affects selenoprotein expression and activity most probably via limiting UGA recoding. This interference may be of physiological relevance during aging, where a particular shift in the selenium to copper ratio has been reported. An increased concentration of copper in face of a downregulated selenoprotein expression may synergize and negatively affect the cellular redox homeostasis contributing to disease processes.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Katja Schirl
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Johannes Florian Kopp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Anna Patricia Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
53
|
Abstract
Significance: The selenium-containing Glutathione peroxidases (GPxs)1-4 protect against oxidative challenge, inhibit inflammation and oxidant-induced regulated cell death. Recent Advances: GPx1 and GPx4 dampen phosphorylation cascades predominantly via prevention of inactivation of phosphatases by H2O2 or lipid hydroperoxides. GPx2 regulates the balance between regeneration and apoptotic cell shedding in the intestine. It inhibits inflammation-induced carcinogenesis in the gut but promotes growth of established cancers. GPx3 deficiency facilitates platelet aggregation likely via disinhibition of thromboxane biosynthesis. It is also considered a tumor suppressor. GPx4 is expressed in three different forms. The cytosolic form proved to inhibit interleukin-1-driven nuclear factor κB activation and leukotriene biosynthesis. Moreover, it is a key regulator of ferroptosis, because it reduces hydroperoxy groups of complex lipids and silences lipoxygenases. By alternate substrate use, the nuclear form contributes to chromatin compaction. Mitochondrial GPx4 forms the mitochondrial sheath of spermatozoa and, thus, guarantees male fertility. Out of the less characterized GPxs, the cysteine-containing GPx7 and GPx8 are unique in contributing to oxidative protein folding in the endoplasmic reticulum by reacting with protein isomerase as an alternate substrate. A yeast 2-Cysteine glutathione peroxidase equipped with CP and CR was reported to sense H2O2 for inducing an adaptive response. Critical Issues: Most of the findings compiled are derived from tissue culture and/or animal studies only. Their impact on human physiology is sometimes questionable. Future Directions: The expression of individual GPxs and GPx-dependent regulatory phenomena are to be further investigated, in particular in respect to human health.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition-Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Leopold Flohé
- Depatamento de Biochímica, Universidad de la República, Montevideo, Uruguay.,Dipartimento di Medicina Moleculare, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
54
|
Yang J, Zhao Z, Hu K, Zhou C, Wang Y, Song S, Zhao J, Gong Z. Strongylocentrotus nudus lipids induce apoptosis in HepG2 cells through the induction of oxidative stress. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
55
|
Olive Leaf Polyphenols Attenuate the Clinical Course of Experimental Autoimmune Encephalomyelitis and Provide Neuroprotection by Reducing Oxidative Stress, Regulating Microglia and SIRT1, and Preserving Myelin Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6125638. [PMID: 32802267 PMCID: PMC7415106 DOI: 10.1155/2020/6125638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
Numerous evidences suggest that plant polyphenols may have therapeutic benefits in regulating oxidative stress and providing neuroprotection in many neurodegenerative diseases, including multiple sclerosis (MS). However, these mechanisms are not yet completely understood. In this study, we investigated the effect of olive leaf polyphenols on oxidative stress through oxidation marker level and activity (TBARS, SOD, and GPX) and their protein expression (SOD1, SOD2, and GPX1), as well as the protein expression of Sirtuin 1 (SIRT1) and microglia markers (Iba-1, CD206, and iNOS) and myelin integrity (proteolipid protein expression) in the brain of rats with induced experimental autoimmune encephalomyelitis (EAE) and subjected to olive leaf therapy. Experiments were performed in male EAE DA rats, which were randomly divided into 2 main groups: EAE groups treated with the therapy of olive leaf (EAE+TOL) and untreated EAE control groups. The EAE treated groups consumed olive leaf tea instead of drinking water (ad libitum) from the beginning to the end of the experiment. In addition, olive leaf extract was injected intraperitoneally (i.p.) for the 10 continuous days and started on the 8th day after EAE induction. The clinical course was monitored in both groups until the 30th day after EAE induction. Our results demonstrated that TOL attenuated the clinical course of EAE; reduced the oxidative stress (by decreasing the concentration of MDA); upregulated antioxidant enzymes (SOD1, SOD2, and GPX1), SIRT1 (overall and microglial), and anti-inflammatory M2 microglia; downregulated proinflammatory M1 type; and preserved myelin integrity. These data support the idea that TOL may be an effective therapeutic approach for treating MS and other neurodegenerative diseases.
Collapse
|
56
|
Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol 2020; 11:755. [PMID: 32760286 PMCID: PMC7373076 DOI: 10.3389/fphys.2020.00755] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondria are a major source of reactive oxygen species (ROS). Superoxide anion (O2•–) is produced by the process of oxidative phosphorylation associated with glucose, amino acid, and fatty acid metabolism, resulting in the production of adenosine triphosphate (ATP) in the mitochondria. Excess production of reactive oxidants in the mitochondria, including O2•–, and its by-product, peroxynitrite (ONOO–), which is generated by a reaction between O2•– with nitric oxide (NO•), alters cellular function via oxidative modification of proteins, lipids, and nucleic acids. Mitochondria maintain an antioxidant enzyme system that eliminates excess ROS; manganese superoxide dismutase (Mn-SOD) is one of the major components of this system, as it catalyzes the first step involved in scavenging ROS. Reduced expression and/or the activity of Mn-SOD results in diminished mitochondrial antioxidant capacity; this can impair the overall health of the cell by altering mitochondrial function and may lead to the development and progression of kidney disease. Targeted therapeutic agents may protect mitochondrial proteins, including Mn-SOD against oxidative stress-induced dysfunction, and this may consequently lead to the protection of renal function. Here, we describe the biological function and regulation of Mn-SOD and review the significance of mitochondrial oxidative stress concerning the pathogenesis of kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), with a focus on Mn-SOD dysfunction.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
57
|
A Dual Face of APE1 in the Maintenance of Genetic Stability in Monocytes: An Overview of the Current Status and Future Perspectives. Genes (Basel) 2020; 11:genes11060643. [PMID: 32545201 PMCID: PMC7349382 DOI: 10.3390/genes11060643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Monocytes, which play a crucial role in the immune system, are characterized by an enormous sensitivity to oxidative stress. As they lack four key proteins responsible for DNA damage response (DDR) pathways, they are especially prone to reactive oxygen species (ROS) exposure leading to oxidative DNA lesions and, consequently, ROS-driven apoptosis. Although such a phenomenon is of important biological significance in the regulation of monocyte/macrophage/dendritic cells’ balance, it also a challenge for monocytic mechanisms that have to provide and maintain genetic stability of its own DNA. Interestingly, apurinic/apyrimidinic endonuclease 1 (APE1), which is one of the key proteins in two DDR mechanisms, base excision repair (BER) and non-homologous end joining (NHEJ) pathways, operates in monocytic cells, although both BER and NHEJ are impaired in these cells. Thus, on the one hand, APE1 endonucleolytic activity leads to enhanced levels of both single- and double-strand DNA breaks (SSDs and DSBs, respectively) in monocytic DNA that remain unrepaired because of the impaired BER and NHEJ. On the other hand, there is some experimental evidence suggesting that APE1 is a crucial player in monocytic genome maintenance and stability through different molecular mechanisms, including induction of cytoprotective and antioxidant genes. Here, the dual face of APE1 is discussed.
Collapse
|
58
|
Mumyatova VA, Balakina AA, Lapshina MA, Sen' VD, Kornev AB, Terent'ev AA. Influence of Tumor Suppressor p53 Functioning on the Expression of Antioxidant System Genes under the Action of Cytotoxic Compounds. Bull Exp Biol Med 2020; 169:169-175. [PMID: 32504383 DOI: 10.1007/s10517-020-04844-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 01/18/2023]
Abstract
The effect of inhibition of the tumor suppressor p53 on the antioxidant system genes expression under the influence of cytotoxic compounds of the platinum group was studied. It was found that the action of platinum(II) and platinum(IV) complexes induced accumulation of p53 protein with a maximum in 12 h, which was confirmed by an increase in the expression of the P21 gene, the target gene of the p53 protein. It was shown that the action of platinum complexes activated the expression of catalase and superoxide dismutase 2 genes. Suppression of p53 protein functions with specific inhibitor α-piphitrin under the action of platinum complexes reduced the expression of catalase and superoxide dismutase 2 genes and the target gene P21, which attested to the p53-dependent regulation of these genes.
Collapse
Affiliation(s)
- V A Mumyatova
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia.
- Scientific and Educational Center in Chernogolovka of Moscow Region State University, Mytishchi, Moscow region, Russia.
| | - A A Balakina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
- Scientific and Educational Center in Chernogolovka of Moscow Region State University, Mytishchi, Moscow region, Russia
| | - M A Lapshina
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
- Scientific and Educational Center in Chernogolovka of Moscow Region State University, Mytishchi, Moscow region, Russia
| | - V D Sen'
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
| | - A B Kornev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
| | - A A Terent'ev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
- Scientific and Educational Center in Chernogolovka of Moscow Region State University, Mytishchi, Moscow region, Russia
| |
Collapse
|
59
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
60
|
Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6039769. [PMID: 32190175 PMCID: PMC7066401 DOI: 10.1155/2020/6039769] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
The nuclear transcription factor p53, discovered in 1979, has a broad range of biological functions, primarily the regulation of apoptosis, the cell cycle, and DNA repair. In addition to these canonical functions, a growing body of evidence suggests that p53 plays an important role in regulating intracellular redox homeostasis through transcriptional and nontranscriptional mechanisms. Oxidative stress induction and p53 activation are common responses to chemical exposure and are suggested to play critical roles in chemical-induced toxicity. The activation of p53 can exert either prooxidant or antioxidant activity, depending on the context. In this review, we discuss the functional role of p53 in regulating chemical-induced oxidative stress, summarize the potential signaling pathways involved in p53's regulation of chemically mediated oxidative stress, and propose issues that should be addressed in future studies to improve understanding of the relationship between p53 and chemical-induced oxidative stress.
Collapse
|
61
|
Cordani M, Butera G, Pacchiana R, Masetto F, Mullappilly N, Riganti C, Donadelli M. Mutant p53-Associated Molecular Mechanisms of ROS Regulation in Cancer Cells. Biomolecules 2020; 10:biom10030361. [PMID: 32111081 PMCID: PMC7175157 DOI: 10.3390/biom10030361] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an “Achilles heel” of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene.
Collapse
Affiliation(s)
- Marco Cordani
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Francesca Masetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy;
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (R.P.); (F.M.); (N.M.)
- Correspondence: ; Tel.: +39-045-8027281; Fax: +39-045-8027170
| |
Collapse
|
62
|
Min KH, Lee W. Alteration of mitochondrial DNA content modulates antioxidant enzyme expressions and oxidative stress in myoblasts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:519-528. [PMID: 31680774 PMCID: PMC6819904 DOI: 10.4196/kjpp.2019.23.6.519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial dysfunction is closely associated with reactive oxygen species (ROS) generation and oxidative stress in cells. On the other hand, modulation of the cellular antioxidant defense system by changes in the mitochondrial DNA (mtDNA) content is largely unknown. To determine the relationship between the cellular mtDNA content and defense system against oxidative stress, this study examined a set of myoblasts containing a depleted or reverted mtDNA content. A change in the cellular mtDNA content modulated the expression of antioxidant enzymes in myoblasts. In particular, the expression and activity of glutathione peroxidase (GPx) and catalase were inversely correlated with the mtDNA content in myoblasts. The depletion of mtDNA decreased both the reduced glutathione (GSH) and oxidized glutathione (GSSG) slightly, whereas the cellular redox status, as assessed by the GSH/GSSG ratio, was similar to that of the control. Interestingly, the steady-state level of the intracellular ROS, which depends on the reciprocal actions between ROS generation and detoxification, was reduced significantly and the lethality induced by H2O2 was alleviated by mtDNA depletion in myoblasts. Therefore, these results suggest that the ROS homeostasis and antioxidant enzymes are modulated by the cellular mtDNA content and that the increased expression and activity of GPx and catalase through the depletion of mtDNA are closely associated with an alleviation of the oxidative stress in myoblasts.
Collapse
Affiliation(s)
- Kyung-Ho Min
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea.,Channelopathy Research Center, Dongguk University College of Medicine, Goyang 10326, Korea
| |
Collapse
|
63
|
Akhter MS, Uddin MA, Kubra KT, Barabutis N. P53-induced reduction of lipid peroxidation supports brain microvascular endothelium integrity. J Pharmacol Sci 2019; 141:83-85. [PMID: 31607444 DOI: 10.1016/j.jphs.2019.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023] Open
Abstract
Dysregulation of the blood brain barrier due to oxidative stress causes neurological disorders, such as Alzheimer's and Parkinson's disease. We employed brain microvascular endothelial cells; to investigate the effects of P53 towards the lipid oxidation of the BBB. P53 reduction by LPS, siRNA for P53 and Pifithrin increased the expression levels of malondialdehyde, a marker of oxidative stress and lipid peroxidation. Furthermore, P53 suppression impaired the permeability of the BBB monolayers. In contrast, P53 induction by Nutlin and Hsp90 inhibitor AUY922 enhanced the BBB function. In conclusion, P53 supports BBB integrity, at least in part, by reducing lipid peroxidation.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
64
|
Cellular Stress Responses in Radiotherapy. Cells 2019; 8:cells8091105. [PMID: 31540530 PMCID: PMC6769573 DOI: 10.3390/cells8091105] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.
Collapse
|
65
|
Ex vivo human HSC expansion requires coordination of cellular reprogramming with mitochondrial remodeling and p53 activation. Blood Adv 2019; 2:2766-2779. [PMID: 30348672 DOI: 10.1182/bloodadvances.2018024273] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 01/02/2023] Open
Abstract
The limited number of hematopoietic stem cells (HSCs) in umbilical cord blood (UCB) units restricts their use for stem cell transplantation. Ex vivo treatment of UCB-CD34+ cells with valproic acid (VPA) increases the number of transplantable HSCs. In this study, we demonstrate that HSC expansion is not merely a result of proliferation of the existing stem cells but, rather, a result of a rapid reprogramming of CD34+CD90- cells into CD34+CD90+ cells, which is accompanied by limited numbers of cell divisions. Beyond this phenotypic switch, the treated cells acquire and retain a transcriptomic and mitochondrial profile, reminiscent of primary HSCs. Single and bulk RNA-seq revealed a signature highly enriched for transcripts characteristic of primary HSCs. The acquisition of this HSC signature is linked to mitochondrial remodeling accompanied by a reduced activity and enhanced glycolytic potential. These events act in concert with a modest upregulation of p53 activity to limit the levels of reactive oxygen species (ROS). Inhibition of either glycolysis or p53 activity impairs HSC expansion. This study indicates that a complex interplay of events is required for effective ex vivo expansion of UCB-HSCs.
Collapse
|
66
|
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6175804. [PMID: 31467634 PMCID: PMC6701375 DOI: 10.1155/2019/6175804] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are by-products of normal cell activity. They are produced in many cellular compartments and play a major role in signaling pathways. Overproduction of ROS is associated with the development of various human diseases (including cancer, cardiovascular, neurodegenerative, and metabolic disorders), inflammation, and aging. Tumors continuously generate ROS at increased levels that have a dual role in their development. Oxidative stress can promote tumor initiation, progression, and resistance to therapy through DNA damage, leading to the accumulation of mutations and genome instability, as well as reprogramming cell metabolism and signaling. On the contrary, elevated ROS levels can induce tumor cell death. This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Collapse
|
67
|
Mondal P, Shaw P, Bandyopadhyay A, Dey Bhowmik A, Chakraborty A, Sudarshan M, Chattopadhyay A. Mixture effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) liver: Expression pattern of Nrf2 and related xenobiotic metabolizing enzymes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105219. [PMID: 31195325 DOI: 10.1016/j.aquatox.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is a crucial transcription factor that regulates the expression of cytoprotective enzymes and controls cellular redox homeostasis. Both arsenic and fluoride are potent toxicants that are known to induce Nrf2. They are reported to coexist in many areas of the world leading to complex mixture effects in exposed organisms. The present study investigated the expression of Nrf2 and related xenobiotic metabolizing enzymes along with other stress markers such as histopathological alterations, catalase activity, reduced glutathione content and lipid peroxidation in zebrafish liver as a function of combined exposure to environmentally relevant concentrations of arsenic (37.87 μgL-1 or 5.05 × 10-7 M) and fluoride (6.8 mg L-1 or 3.57 × 10-4 M) for 60 days. The decrease in the total reduced glutathione level was evident in all treatment conditions. Hyperactivity of catalase along with conspicuous elevation in reactive oxygen species, malondialdehyde content and histo-architectural anomalies signified the presence of oxidative stress in the treatment groups. Nrf2 was seen to be induced at both transcriptional and translational levels in case of both individual and co-exposure. The same pattern was observed in case of its nuclear translocation also. From the results of qRT-PCR it was evident that at each time point co-exposure to arsenic and fluoride seemed to alter the gene expression of Cu/Zn Sod, Mn Sod, Gpx and Nqo1 just like their individual exposure but at a very low magnitude. In conclusion, this study demonstrates for the first time the differential expression and activity of Nrf2 and other stress response genes in the zebrafish liver following individual and combined exposure to arsenic and fluoride.
Collapse
Affiliation(s)
- Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, West Bengal, India
| | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, West Bengal, India
| | | |
Collapse
|
68
|
Li W, Li N, Liang L, Yu Q, Ren P, Shi H, Storey KB, Hong M, Ding L. Regulation of p53 in the red-eared slider (Trachemys scripta elegans) in response to salinity stress. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:49-58. [PMID: 30940557 DOI: 10.1016/j.cbpc.2019.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
The freshwater red-eared slider (Trachemys scripta elegans) is found not only in freshwater but also in coastal saline habitats. Hyperosmotic salinity can induce cell damage. p53, regarded as the guardian of the genome, is very important and versatile in response to the change of environment. In this study, the role of p53 in T. s. elegans under environmental salinity change will be explored. The results indicated that amino acid sequence of p53 showed high similarity to p53 of other species. In addition, the expression of p53 showed differences in various tissues under normal condition. Under salinity stress, the mRNA levels of p53 in the liver increased significantly at 48 h with 15‰ group (15 practical salinity units-exposed group). In the heart, p53 mRNA levels increased at 6 h in 5‰ (5 practical salinity units) and 15‰ groups. Furthermore, the changes of p21 mRNA expression levels in liver and heart were similar to p53, while cyclin D1, cyclin-dependent kinase4 (CDK4) and cyclin-dependent kinase6 (CDK6) showed opposite changes to p53. Moreover, Bax and caspase 3 mRNA expression levels were similar to p53, respectively, while Bcl-2 showed opposite changes. The positive cells of apoptosis were found in the liver of 15‰ at 48 h and 30 d of chronic stress. Taken together, these results indicated that the T. s. elegans may protect itself by regulating cell cycle progression and apoptosis of damaged cells under salinity stress, which played an important role for T. s. elegans in salinity adaptation.
Collapse
Affiliation(s)
- Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Qifan Yu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Peng Ren
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China.
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China.
| |
Collapse
|
69
|
Shafabakhsh R, Asemi Z. Quercetin: a natural compound for ovarian cancer treatment. J Ovarian Res 2019; 12:55. [PMID: 31202269 PMCID: PMC6570913 DOI: 10.1186/s13048-019-0530-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is the main cause of death among all reproductive cancers in females. In 2018, ovarian cancer was the seventh most common cancer of women entire the world. A wide variety of molecular and genetic alterations as well as different response to therapies in the different types of ovarian cancer lead to problems in design a common therapeutic strategy. Besides, ovarian cancer cells have tendency to acquire resistance to common cancer treatments through multiple mechanisms. Various factors, including cytokines, growth factors, proteases, adhesion molecules, coagulation factors, hormones and apoptotic agents have been examined to find effective cancer treatment. Phytochemicals have been indicated to have great potential anti-cancer properties against various types of cancers. Quercetin is one of the phytochemicals that exists extensively in daily foods. Wide evidences revealed that quercetin is able to inhibit various types of cancers including breast, lung, nasopharyngeal, kidney, colorectal, prostate, pancreatic, and ovarian cancer. Several in vitro and in vivo studied conducted to evaluate cytotoxic effects of quercetin on ovarian cancer. Since quercetin does not harm healthy cells and it is cytotoxic to cancer cells via various mechanisms, researchers suggest that it could be an ideal agent for ovarian cancer treatment or an adjuvant agent in combination with other anti-cancer drugs. Thus, in this review, we focused on chemo-preventive and curative attitude of quercetin for ovarian cancer and summarize some of the most recent findings which regard the possible molecular mechanisms by which this natural compound inhibits this cancer.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
70
|
Mao XY, Zhou HH, Jin WL. Redox-Related Neuronal Death and Crosstalk as Drug Targets: Focus on Epilepsy. Front Neurosci 2019; 13:512. [PMID: 31191222 PMCID: PMC6541114 DOI: 10.3389/fnins.2019.00512] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Cell death has a vital role in embryonic development and organismal homeostasis. Biochemical, pharmacological, behavioral, and electrophysiological evidences support the idea that dysregulation of cell death programs are involved in neuropathological conditions like epilepsy. The brain is particularly vulnerable to oxidative damage due to higher oxygen consumption and lower endogenous antioxidant defense than other bodily organ. Thus, in this review, we focused on the comprehensive summarization of evidence for redox-associated cell death pathways including apoptosis, autophagy, necroptosis, and pyroptosis in epilepsy and the oxidative stress-related signaling in this process. We specially proposed that the molecular crosstalk of various redox-linked neuronal cell death modalities might occur in seizure onset and/or epileptic conditions according to the published data. Additionally, abundance of polyunsaturated fatty acids in neuronal membrane makes the brain susceptible to lipid peroxidation. This presumption was then formalized in the proposal that ferroptosis, a novel type of lipid reactive oxygen species (ROS)-dependent regulatory cell death, is likely to be a critical mechanism for the emergence of epileptic phenotype. Targeting ferroptosis process or combination treatment with multiple cell death pathway inhibitors may shed new light on the therapy of epilepsy.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Lin Jin
- Center for Translational Medicine, Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
71
|
Lu P, Vander Mause ER, Redd Bowman KE, Brown SM, Ahne L, Lim CS. Mitochondrially targeted p53 or DBD subdomain is superior to wild type p53 in ovarian cancer cells even with strong dominant negative mutant p53. J Ovarian Res 2019; 12:45. [PMID: 31092272 PMCID: PMC6521536 DOI: 10.1186/s13048-019-0516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Background While tumor suppressor p53 functions primarily as a transcription factor in the nucleus, cellular stress can cause p53 to translocate to the mitochondria and directly trigger a rapid apoptotic response. We have previously shown that fusing p53 (or its DNA binding domain, DBD, alone) to the mitochondrial targeting signal (MTS) from Bak or Bax can target p53 to the mitochondria and induce apoptosis in gynecological cancer cell lines including cervical cancer cells (HeLa; wt p53), ovarian cancer cells (SKOV-3; p53 267del non-expressing), and breast cancer cells (T47D; L194F p53 mutation). However, p53 with Bak or Bax MTSs have not been previously tested in cancers with strong dominant negative (DN) mutant p53 which are capable of inactivating wt p53 by homo-oligomerization. Since p53-Bak or Bax MTS constructs act as monomers, they are not subject to DN inhibition. For this study, the utility of p53-Bak or p53-Bax MTS constructs was tested for ovarian cancers which are known to have varying p53 statuses, including a strong DN contact mutant p53 (Ovcar-3 cells), a p53 DN structural mutant (Kuramochi cells), and a p53 wild type, low expressing cells (ID8). Results Our mitochondrial p53 constructs were tested for their ability to localize to the mitochondria in both mutant non-expressing p53 (Skov-3) and p53 structural mutant (Kuramochi) cell lines using fluorescence microscopy and a nuclear transcriptional activity assay. The apoptotic activity of these mitochondrial constructs was determined using a mitochondrial outer membrane depolarization assay (TMRE), caspase assay, and a late stage cell death assay (7-AAD). We also tested the possibility of using our constructs with paclitaxel, the current standard of care in ovarian cancer treatment. Our data indicates that our mitochondrial p53 constructs are able to effectively localize to the mitochondria in cancer cells with structural mutant p53 and induce apoptosis in many ovarian cancer cell lines with different p53 statuses. These constructs can also be used in combination with paclitaxel for an increased apoptotic effect. Conclusions The results suggest that targeting p53 to mitochondria can be a new strategy for ovarian cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13048-019-0516-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Erica R Vander Mause
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Katherine E Redd Bowman
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Sarah M Brown
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Lisa Ahne
- Philipps-Universitat Marburg, Biegenstraße 10, Marburg, 35037, Germany
| | - Carol S Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
72
|
Perina EA, Ivanov VV, Pershina AG, Perekucha NA, Dzyuman AN, Kaminskii IP, Saltykova IV, Sazonov AE, Ogorodova LM. Imbalance in the glutathione system in Opisthorchis felineus infected liver promotes hepatic fibrosis. Acta Trop 2019; 192:41-48. [PMID: 30684449 DOI: 10.1016/j.actatropica.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023]
Abstract
Although data on oxidative stress during liver fluke infection have been previously presented, a comprehensive study of the glutathione system that plays a crucial role in scavenging of reactive oxygen species (ROS) and detoxification of primary and secondary oxidation products has not been addressed yet. In the present study, the hepatic glutathione system was investigated in a hamster model of experimental opisthorchiasis infection. It was shown that chronic oxidative stress in an Opisthorchis felineus infected liver, evidenced by abundant hydroperoxide accumulation, leads to strong imbalance in the hepatic glutathione system, namely the depletion of reduced form of glutathione (GSH), lowering of the GSH/GSSG ratio, and a decrease in the glutathione peroxidase and glyoxalase 1 activity. O. felineus infection provokes hepatocellular damage that results in the progression of liver fibrosis, accompanied by an increase in collagen deposition in the hepatic tissue. Modulation of hepatic GSH levels in the O. felineus infected liver through N-acetylcysteine (NAC) or l-buthionine-S, R-sulfoxinine (BSO) treatments lead to changes in expression and activity of glutathione S-transferase and glyoxalase I as well as markedly decreases or increases collagen content in the O. felineus infected liver and the severity of liver fibrosis, respectively. Thus, the glutathione system can be considered as a target for liver protection from O. felineus-induced injury.
Collapse
Affiliation(s)
- Ekaterina A Perina
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Vladimir V Ivanov
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Alexandra G Pershina
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia; National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050, Russia.
| | - Natalya A Perekucha
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia; National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050, Russia
| | - Anna N Dzyuman
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Ilya P Kaminskii
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Irina V Saltykova
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Alexey E Sazonov
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| | - Ludmila M Ogorodova
- Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russia
| |
Collapse
|
73
|
Kizhuveetil U, Palukuri MV, Sharma P, Karunagaran D, Rengaswamy R, Suraishkumar GK. Entrainment of superoxide rhythm by menadione in HCT116 colon cancer cells. Sci Rep 2019; 9:3347. [PMID: 30833672 PMCID: PMC6399287 DOI: 10.1038/s41598-019-40017-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 02/07/2019] [Indexed: 11/08/2022] Open
Abstract
Reactive oxygen species (ROS) are primary effectors of cytotoxicity induced by many anti-cancer drugs. Rhythms in the pseudo-steady-state (PSS) levels of particular intracellular ROS in cancer cells and their relevance to drug effectiveness are unknown thus far. We report that the PSS levels of intracellular superoxide (SOX), an important ROS, exhibit an inherent rhythm in HCT116 colon cancer cells, which is entrained (reset) by the SOX inducer, menadione (MD). This reset was dependent on the expression of p53, and it doubled the sensitivity of the cells to MD. The period of oscillation was found to have a linear correlation with MD concentration, given by the equation, T, in h = 23.52 - 1.05 [MD concentration in µM]. Further, we developed a mathematical model to better understand the molecular mechanisms involved in rhythm reset. Biologically meaningful parameters were obtained through parameter estimation techniques; the model can predict experimental profiles of SOX, establish qualitative relations between interacting species in the system and serves as an important tool to understand the profiles of various species. The model was also able to successfully predict the rhythm reset in MD treated hepatoma cell line, HepG2.
Collapse
Affiliation(s)
- Uma Kizhuveetil
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Meghana V Palukuri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Raghunathan Rengaswamy
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - G K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
74
|
Al-Aamri HM, Ku H, Irving HR, Tucci J, Meehan-Andrews T, Bradley C. Time dependent response of daunorubicin on cytotoxicity, cell cycle and DNA repair in acute lymphoblastic leukaemia. BMC Cancer 2019; 19:179. [PMID: 30813936 PMCID: PMC6391779 DOI: 10.1186/s12885-019-5377-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Daunorubicin is commonly used in the treatment of acute lymphoblastic leukaemia (ALL). The aim of this study was to explore the kinetics of double strand break (DSB) formation of three ALL cell lines following exposure to daunorubicin and to investigate the effects of daunorubicin on the cell cycle and the protein kinases involved in specific checkpoints following DNA damage and recovery periods. METHODS Three ALL cell lines CCRF-CEM and MOLT-4 derived from T lymphocytes and SUP-B15 derived from B lymphocytes were examined following 4 h treatment with daunorubicin chemotherapy and 4, 12 and 24 h recovery periods. Cell viability was measured via MTT (3-(4,5-dimethylthiazol-2-yl)-2-5 diphenyltetrazolium bromide) assay, reactive oxygen species (ROS) production by flow cytometry, double stranded DNA breaks by detecting γH2AX levels while stages of the cell cycle were detected following propidium iodide staining and flow cytometry. Western blotting was used to detect specific proteins while RNA was extracted from all cell lines and converted to cDNA to sequence Ataxia-telangiectasia mutated (ATM). RESULTS Daunorubicin induced different degrees of toxicity in all cell lines and consistently generated reactive oxygen species. Daunorubicin was more potent at inducing DSB in MOLT-4 and CCRF-CEM cell lines while SUP-B15 cells showed delays in DSB repair and significantly more resistance to daunorubicin compared to the other cell lines as measured by γH2AX assay. Daunorubicin also causes cell cycle arrest in all three cell lines at different checkpoints at different times. These effects were not due to mutations in ATM as sequencing revealed none in any of the three cell lines. However, p53 was phosphorylated at serine 15 only in CCRF-CEM and MOLT-4 but not in SUP-B15 cells. The lack of active p53 may be correlated to the increase of SOD2 in SUP-B15 cells. CONCLUSIONS The delay in DSB repair and lower sensitivity to daunorubicin seen in the B lymphocyte derived SUP-B15 cells could be due to loss of function of p53 that may be correlated to increased expression of SOD2 and lower ROS production.
Collapse
Affiliation(s)
- Hussain Mubarak Al-Aamri
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Heng Ku
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Helen R Irving
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia.
| | - Joseph Tucci
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Christopher Bradley
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| |
Collapse
|
75
|
Mitochondrial superoxide dismutase 2 mediates γ-irradiation-induced cancer cell invasion. Exp Mol Med 2019; 51:1-10. [PMID: 30755594 PMCID: PMC6372678 DOI: 10.1038/s12276-019-0207-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Sublethal doses of γ-rays promote cancer cell invasion by stimulating a signaling pathway that sequentially involves p53, sulfatase 2 (SULF2), β-catenin, interleukin-6 (IL-6), signal transducer and activator of transcription 3 (STAT3), and Bcl-XL. Given that Bcl-XL can increase O2•− production by stimulating respiratory complex I, the possible role of mitochondrial reactive oxygen species (ROS) in γ-irradiation-induced cell invasion was investigated. Indeed, γ-irradiation promoted cell invasion by increasing mitochondrial ROS levels, which was prevented by metformin, an inhibitor of complex I. γ-Irradiation-stimulated STAT3 increased the expression of superoxide dismutase 2 (SOD2), a mitochondrial enzyme that catalyzes the conversion of O2•− to hydrogen peroxide (H2O2). In contrast to O2•−, H2O2 functions as a signaling molecule. γ-Irradiation consistently stimulated the Src-dependent invasion pathway in a manner dependent on both complex I and SOD2. SOD2 was also essential for the invasion of un-irradiated cancer cells induced by upregulation of Bcl-XL, an intracellular oncogene, or extracellular factors, such as SULF2 and IL-6. Overall, these data suggested that SOD2 is critical for the malignant effects of radiotherapy and tumor progression through diverse endogenous factors. A drug usually used to treat type 2 diabetes may also help to prevent cancer relapse following radiotherapy, which is commonly used to kill cancer cells. However, any tumor cells that survive radiation are highly invasive, sometimes causing tumors to spread. Hong-Duck Um and co-workers at the Korea Institute of Radiological & Medical Sciences in Seoul, South Korea, noticed that the surviving cells often showed higher levels of a key enzyme, superoxide dismutase 2 (SOD2), which is involved in energy production in the cellular powerhouse, the mitochondria. Artificially increasing levels of SOD2, without radiation, made cells more invasive. Treatment with metformin, which prevents production of the molecule that SOD2 acts on, prevented cells from becoming invasive. SOD2 has been implicated in many cancers, and is therefore a very promising therapeutic target.
Collapse
|
76
|
Li Y, Chen Y, Qiu C, Ma X, Lei K, Cai G, Liang X, Liu J. 17-allylamino-17-demethoxygeldanamycin impeded chemotherapy through antioxidant activation via reducing reactive oxygen species-induced cell death. J Cell Biochem 2019; 120:1560-1576. [PMID: 30378153 DOI: 10.1002/jcb.27397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023]
Abstract
Hyperthermia enhances the anticancer effects of thymidylate synthase (TYMS) inhibitors (raltitrexed, RTX) and improves the precise biochemical mechanisms partially through enhancement of intracellular drug absorption. Recent research focuses on the potential anticancer drug target Heat Shock Protein 90 (HSP90), which could increase the sensitivity of cancer cells to TYMS inhibitors; however, with different HSP90 inhibitors, several research studies finally showed a poor efficacy in preclinical or clinical research. Here, we showed that 17-allylamino-17-demethoxygeldanamycin (17-AAG, HSP90 inhibitor) affects the efficacy of chemotherapy through antioxidant activation-induced resistance. In this study, we found that RTX, alone or in combination with hyperthermia, triggers reactive oxygen species (ROS) exposure and thus induces cell death. Also, the addition of hyperthermia showed more ROS exposure and function. The pharmacologic inhibition of HSP90 reversed the effects of chemotherapeutical treatments, while the overexpression of HSP90 showed no relation with these effects, which demonstrated that dysregulation of HSP90 might have a significant impact on chemotherapeutic treatments. The addition of 17-AAG increased the activation of antioxidant with increased antioxidant enzymes, thus affecting the RTX efficacy.
Collapse
Affiliation(s)
- Yueqi Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiyang Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cen Qiu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kecheng Lei
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
77
|
Foo SC, Yusoff FM, Imam MU, Foo JB, Ismail N, Azmi NH, Tor YS, Khong NMH, Ismail M. Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. ACTA ACUST UNITED AC 2018; 21:e00296. [PMID: 30581767 PMCID: PMC6296166 DOI: 10.1016/j.btre.2018.e00296] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
Both treatments inhibited cancer proliferation in a time and dose dependent manner. FxRF treatment were effective in inducing apoptosis in HepG2 cells than crude extract. Treatments stimulated regulation in cell signalling, apoptotic and antioxidant genes.
In this study, anti-proliferative effects of C. calcitrans extract and its fucoxanthin rich fraction (FxRF) were assessed on human liver HepG2 cancer cell line. Efficacy from each extract was determined by cytotoxicity assay, morphological observation, and cell cycle analysis. Mechanisms of action observed were evaluated using multiplex gene expression analysis. Results showed that CME and FxRF induced cytotoxicity to HepG2 cells in a dose and time-dependent manner. FxRF (IC50: 18.89 μg.mL−1) was found to be significantly more potent than CME (IC50: 87.5 μg.mL−1) (p < 0.05). Gene expression studies revealed that anti-proliferative effects in treated cells by C. calcitrans extracts were mediated partly through the modulation of numerous genes involved in cell signaling (AKT1, ERK1/2, JNK), apoptosis (BAX, BID, Bcl-2, APAF, CYCS) and oxidative stress (SOD1, SOD2, CAT). Overall, C. calcitrans extracts demonstrated effective intervention against HepG2 cancer cells where enhanced apoptotic activities were observed with increased fucoxanthin content.
Collapse
Affiliation(s)
- Su Chern Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fatimah Md Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,The International Institute of Aquaculture and Aquatic Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mustapha Umar Imam
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodio University, Sokoto, Nigeria
| | - Jhi Biau Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Norsharina Ismail
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nur Hanisah Azmi
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Nicholas M H Khong
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Maznah Ismail
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
78
|
p53 as a double-edged sword in the progression of non-alcoholic fatty liver disease. Life Sci 2018; 215:64-72. [DOI: 10.1016/j.lfs.2018.10.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
|
79
|
The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018; 7:cells7100156. [PMID: 30287799 PMCID: PMC6211135 DOI: 10.3390/cells7100156] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important metabolite involved in most of the redox metabolism reactions and processes of the cells. H2O2 is recognized as one of the main molecules in the sensing, modulation and signaling of redox metabolism, and it is acting as a second messenger together with hydrogen sulfide (H2S) and nitric oxide (NO). These second messengers activate in turn a cascade of downstream proteins via specific oxidations leading to a metabolic response of the cell. This metabolic response can determine proliferation, survival or death of the cell depending on which downstream pathways (homeostatic, pathological, or protective) have been activated. The cells have several sources of H2O2 and cellular systems strictly control its concentration in different subcellular compartments. This review summarizes research on the role played by H2O2 in signaling pathways of eukaryotic cells and how this signaling leads to homeostatic or pathological responses.
Collapse
|
80
|
Ouyang J, Zeng Z, Fang H, Li F, Zhang X, Tan W. SIRT3 Inactivation Promotes Acute Kidney Injury Through Elevated Acetylation of SOD2 and p53. J Surg Res 2018; 233:221-230. [PMID: 30502252 DOI: 10.1016/j.jss.2018.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The deactivation of SIRT3, a novel deacetylase located in mitochondria, can aggravate multiple organ dysfunction. However, the role of SIRT3 and its downstream targets in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) remain unknown. MATERIALS AND METHODS I/R was reproduced in a rat model using a clamp placed on the left and right renal pedicles for 40 min. The rats were intraperitoneally injected with either the vehicle or a selective SIRT3 inhibitor (3-TYP) and scarified at different time points (4, 8, and 24 h after I/R). A portion of the renal tissue was extracted for histological analysis, and another portion was collected for the isolation of renal tubular epithelial cells for Western blotting, SOD2 and SIRT3 activity, cell apoptosis, and the determination of oxidative stress. RESULTS The I/R-induced AKI model was successfully reproduced and SIRT3 activity was considerably reduced than control (sham operated) group, accompanied by increased acetylation of SOD2 and p53, as well as their elevated physical interaction in extracted mitochondrial protein (all P values < 0.05). Moreover, SIRT3 suppression by 3-TYP treatment (comparing with the vehicle treatment group) aggravated AKI, as evidenced by increased indicators of oxidative stress (increased mitochondrial red fluorescence MitoSOX and decreased reduced glutathione/oxidized glutathione ratio, all P values < 0.01). CONCLUSIONS The elevation of SOD2 and p53 protein acetylation in the mitochondria of renal tubular epithelial cells is an important signaling event in the pathogenesis of I/R-induced AKI. Thus, deacetylase SIRT3 may be an upstream regulator of both SOD2 and p53, and the SIRT3 deactivation may aggravate AKI.
Collapse
Affiliation(s)
- Jie Ouyang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinji Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
81
|
Diwanji N, Bergmann A. An unexpected friend - ROS in apoptosis-induced compensatory proliferation: Implications for regeneration and cancer. Semin Cell Dev Biol 2018; 80:74-82. [PMID: 28688927 PMCID: PMC5756134 DOI: 10.1016/j.semcdb.2017.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022]
Abstract
Apoptosis-induced compensatory proliferation (AiP) is a form of compensatory proliferation that is triggered by apoptotic cell death to maintain tissue homeostasis. As such, AiP is essential for many tissue repair processes including regeneration. The apoptotic effectors, termed caspases, not only execute apoptosis, but are also directly involved in the generation of the signals required for AiP. Reactive oxygen species (ROS) play an important role for regenerative processes. Recently, it was shown in Drosophila that apoptotic caspases can mediate the generation of ROS for promoting AiP. This review summarizes and discusses these findings in the context of regenerative processes and cancer.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| |
Collapse
|
82
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
83
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
84
|
Ong AL, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev 2018; 43:64-80. [PMID: 29476819 DOI: 10.1016/j.arr.2018.02.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/23/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Regulatory role of Sirtuin 1 (SIRT1), one of the most extensively studied members of its kind in histone deacetylase family in governing multiple cellular fates, is predominantly linked to p53 activity. SIRT1 deacetylates p53 in a NAD+-dependent manner to inhibit transcription activity of p53, in turn modulate pathways that are implicated in regulation of tissue homoeostasis and many disease states. In this review, we discuss the role of SIRT1-p53 pathway and its regulatory axis in the cellular events which are implicated in cellular aging, cancer and reprogramming. It is noteworthy that these cellular events share few common regulatory pathways, including SIRT1-p53-LDHA-Myc, miR-34a,-Let7 regulatory network, which forms a positive feedback loop that controls cell cycle, metabolism, proliferation, differentiation, epigenetics and many others. In the context of aging, SIRT1 expression is reduced as a protective mechanism against oncogenesis and for maintenance of tissue homeostasis. Interestingly, its activation in aged cells is evidenced in response to DNA damage to protect the cells from p53-dependent apoptosis or senescence, predispose these cells to neoplastic transformation. Importantly, the dual roles of SIRT1-p53 axis in aging and tumourigenesis, either as tumour suppressor or tumour promoter are determined by SIRT1 localisation and type of cells. Conceptualising the distinct similarity between tumorigenesis and cellular reprogramming, this review provides a perspective discussion on involvement of SIRT1 in improving efficiency in the induction and maintenance of pluripotent state. Further research in understanding the role of SIRT1-p53 pathway and their associated regulators and strategies to manipulate this regulatory axis very likely foster the development of therapeutics and strategies for treating cancer and aging-associated degenerative diseases.
Collapse
|
85
|
Malarz K, Mrozek-Wilczkiewicz A, Serda M, Rejmund M, Polanski J, Musiol R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget 2018; 9:17689-17710. [PMID: 29707141 PMCID: PMC5915149 DOI: 10.18632/oncotarget.24844] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/28/2018] [Indexed: 01/21/2023] Open
Abstract
Thiosemicarbazones are chelators of transition metals such as iron or copper whose anticancer potency is intensively investigated. Although two compounds from this class have entered clinical trials, their precise mechanism of action is still unknown. Recent studies have suggested the mobilization of the iron ions from a cell, as well as the inhibition of ribonucleotide reductase, and the formation of reactive oxygen species. The complexity and vague nature of this mechanism not only impedes a more rational design of novel compounds, but also the further development of those that are highly active that are already in the preclinical phase. In the current work, a series of highly active thiosemicarbazones was studied for their antiproliferative activity in vitro. Our experiments indicate that these complexes have ionophoric properties and redox activity. They appeared to be very effective generating reactive oxygen species and deregulating the antioxidative potential of a cell. Moreover, the genes that are responsible for antioxidant capacity were considerably deregulated, which led to the induction of apoptosis and cell cycle arrest. On the other hand, good intercalating properties of the studied compounds may explain their ability to cleave DNA strands and to also poison related enzymes through the formation of reactive oxygen species. These findings may help to explain the particularly high selectivity that they have over normal cells, which generally have a stronger redox equilibrium.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
| | - Anna Mrozek-Wilczkiewicz
- Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, Katowice, Poland
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Marta Rejmund
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
86
|
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 2018; 28:643-661. [PMID: 28891317 PMCID: PMC5824489 DOI: 10.1089/ars.2017.7290] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Antioxidant and redox signaling (ARS) events are regulated by critical molecules that modulate antioxidants, reactive oxygen species (ROS) or reactive nitrogen species (RNS), and/or oxidative stress within the cell. Imbalances in these molecules can disturb cellular functions to become pathogenic. Sirtuins serve as important regulators of ARS in cells. Recent Advances: Sirtuins (SIRTs 1-7) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases with the ability to deacetylate histone and nonhistone targets. Recent studies show that sirtuins modulate the regulation of a variety of cellular processes associated with ARS. SIRT1, SIRT3, and SIRT5 protect the cell from ROS, and SIRT2, SIRT6, and SIRT7 modulate key oxidative stress genes and mechanisms. Interestingly, SIRT4 has been shown to induce ROS production and has antioxidative roles as well. CRITICAL ISSUES A complete understanding of the roles of sirtuins in redox homeostasis of the cell is very important to understand the normal functioning as well as pathological manifestations. In this review, we have provided a critical discussion on the role of sirtuins in the regulation of ARS. We have also discussed mechanistic interactions among different sirtuins. Indeed, a complete understanding of sirtuin biology could be critical at multiple fronts. FUTURE DIRECTIONS Sirtuins are emerging to be important in normal mammalian physiology and in a variety of oxidative stress-mediated pathological situations. Studies are needed to dissect the mechanisms of sirtuins in maintaining redox homeostasis. Efforts are also required to assess the targetability of sirtuins in the management of redox-regulated diseases. Antioxid. Redox Signal. 28, 643-661.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | | | - Nicholas J Mack
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
87
|
Gardaneh M, Shojaei S, Rahimi Shamabadi A, Akbari P. Breast Cancer Cell Apoptosis is Synergistically Induced by Curcumin, Trastuzumab, and Glutathione Peroxidase-1 but Robustly Inhibited by Glial Cell Line-Derived Neurotrophic Factor. Nutr Cancer 2018; 70:288-296. [PMID: 29297700 DOI: 10.1080/01635581.2018.1412486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We hypothesized that synergy between curcumin (CURC), trastuzumab (TZMB), and glutathione peroxidase-1 (GPX-1) accelerates breast cancer (BC) cell apoptosis which is inhibited by glial cell line-derived neurotrophic factor (GDNF). We measured survival of BC cell lines treated or cotreated with CURC and TZMB, and then with GDNF, before measuring expression levels of growth and apoptosis genes. These experiments were also repeated on SKBR3 cells transiently expressing GPX-1. CURC+TZMB cotreatment induced BC cell apoptosis more significantly than single treatment. GDNF highly inhibited CURC+TZMB toxicity and restored survival. Ectopic overexpression of GPX-1 per se induced SKBR3 cell death that was accelerated upon CURC+TZMB cotreatment. This substantial death induction was inhibited by GDNF more robustly than in single-treated cells. All these changes correlated with changes in expression levels of key molecules and were further confirmed by flow cytometry and correlation analysis. Our data indicate apoptotic induction is jointly shaped in BC cells by CURC, TZMB, and GPX-1 which correlates directly with their tripartite synergism and inversely with GDNF progrowth effects. In light of the active presence of GDNF in tumor microenvironment and necessity to overcome drug resistance, our findings can help in designing combined therapeutic strategies with implications for challenging TZMB resistance in BC.
Collapse
Affiliation(s)
- M Gardaneh
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - S Shojaei
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - A Rahimi Shamabadi
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - P Akbari
- a Division of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| |
Collapse
|
88
|
Chaiswing L, Weiss HL, Jayswal RD, St. Clair DK, Kyprianou N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 2018; 23:39-67. [PMID: 29953367 PMCID: PMC6231577 DOI: 10.1615/critrevoncog.2018025946] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiation therapy (RT) is commonly used for the treatment of localized prostate cancer (PCa). However, cancer cells often develop resistance to radiation through unknown mechanisms and pose an intractable challenge. Radiation resistance is highly unpredictable, rendering the treatment less effective in many patients and frequently causing metastasis and cancer recurrence. Understanding the molecular events that cause radioresistance in PCa will enable us to develop adjuvant treatments for enhancing the efficacy of RT. Radioresistant PCa depends on the elevated DNA repair system and the intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and scavenge anti-cancer regimens, whereas the elevated heat shock protein 90 (HSP90) and the epithelial-mesenchymal transition (EMT) enable radioresistant PCa cells to metastasize after exposure to radiation. The up-regulation of the DNA repairing system, ROS, HSP90, and EMT effectors has been studied extensively, but not targeted by adjuvant therapy of radioresistant PCa. Here, we emphasize the effects of ionizing radiation and the mechanisms driving the emergence of radioresistant PCa. We also address the markers of radioresistance, the gene signatures for the predictive response to radiotherapy, and novel therapeutic platforms for targeting radioresistant PCa. This review provides significant insights into enhancing the current knowledge and the understanding toward optimization of these markers for the treatment of radioresistant PCa.
Collapse
Affiliation(s)
| | - Heidi L. Weiss
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | - Rani D. Jayswal
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | | | - Natasha Kyprianou
- Department of Toxicology and Cancer Biology
- Department of Urology
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
89
|
Abstract
Reactive oxygen species (ROS) mediate redox signaling necessary for numerous cellular functions. Yet, high levels of ROS in cells and tissues can cause damage and cell death. Therefore, regulation of redox homeostasis is essential for ROS-dependent signaling that does not incur cellular damage. Cells achieve this optimal balance by coordinating ROS production and elimination. In this Minireview, we discuss the mechanisms by which proliferating cancer and T cells maintain a carefully controlled redox balance. Greater insight into such redox biology may enable precisely targeted manipulation of ROS for effective medical therapies against cancer or immunological disorders.
Collapse
Affiliation(s)
- Hyewon Kong
- From the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Navdeep S Chandel
- From the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
90
|
Wu W, Duan Y, Ma G, Zhou G, Park-Windhol C, D'Amore PA, Lei H. AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro. Invest Ophthalmol Vis Sci 2017; 58:6082-6090. [PMID: 29204648 PMCID: PMC5714046 DOI: 10.1167/iovs.17-21902] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)–mediated CRISPR (clustered regularly interspaced short palindromic repeats)–associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. Methods The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. Results AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. Conclusions AAV-CRISRP/Cas9–mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.
Collapse
Affiliation(s)
- Wenyi Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajian Duan
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Shanxi Eye Hospital, Taiyuan City, Shanxi Province, China
| | - Gaoen Ma
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Eye Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Guohong Zhou
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Shanxi Eye Hospital, Taiyuan City, Shanxi Province, China
| | - Cindy Park-Windhol
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hetian Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
91
|
Zhu Y, Jiao X, An Y, Li S, Teng X. Selenium against lead-induced apoptosis in chicken nervous tissues via mitochondrial pathway. Oncotarget 2017; 8:108130-108145. [PMID: 29296229 PMCID: PMC5746131 DOI: 10.18632/oncotarget.22553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/05/2017] [Indexed: 12/28/2022] Open
Abstract
To investigate alleviative effect of selenium (Se) on lead (Pb)-induced apoptosis in chicken nervous tissues, 7-day-old chickens were randomly divided into four groups. The control group was fed a standard diet and drinking water. In the Pb and Se/Pb groups, (CH3OO)2Pb was dissolved in drinking water. In the Se and Se/Pb groups, Na2SeO3 was put into the standard diet. Embryonic neurocytes were divided into the control, Se (containing Na2SeO3), Pb (containing (CH3COO)2Pb), and Se/Pb (containing Na2SeO3 and (CH3COO)2Pb) groups. The following contents were performed: Morphologic observation for 90 days in brain tissues and for 12, 24, 36, and 48 hours in embryonic neurocytes; and antioxidant indexes, messenger RNA (mRNA) expression of twenty-five selenoproteins, and mRNA and protein expression of five apoptosis-related genes for 30, 60, and 90 days in brain tissues and for 12, 24, 36, and 48 hours in embryonic neurocytes. The results indicated that Se alleviated Pb-caused morphological changes; the decrease of superoxide dismutase, glutathione peroxidase (GPx), GPx1, GPx2, GPx3, GPx4, thioredoxin reductases (Txnrd)1, Txnrd2, Txnrd3, iodothyronine deiodinases (Dio)1, Dio2, Dio3, selenoprotein (Sel)T, SelK, SelS, SelH, SelM, SelU, SelI, SelO, Selpb, selenoprotein (Sep)n1, Sepp1, Sepx1, Sepw1, 15-kDa selenoprotein, and selenophosphate synthetases 2, and B-cell lymphoma-2 (Bcl-2); the increase of malondialdehyde, p53, Bcl-2 associated X protein, cytochrome c, and Caspase-3. Pb had time-dependent effects on GPx4, SelM, and malondialdehyde in the brain tissues; and on SelU in the embryonic neurocytes. Our data demonstrated that Se alleviated Pb-induced apoptosis in the chicken nervous tissues via mitochondrial pathway.
Collapse
Affiliation(s)
- Yihao Zhu
- 1 College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaoyan Jiao
- 1 College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yang An
- 1 College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shu Li
- 2 College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- 1 College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
92
|
Changes in proHB-EGF expression after functional activation of the immune system cells. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
93
|
Davoodian N, Kadivar A, Ahmadi E, Mohebbi A. Effects of Two Amino Acids on Motion Parameters and Enzymatic Antioxidant Activity of Freeze-Thawed Stallion Spermatozoa. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
94
|
Li F, Wang P, Zhao C, Bao W, Qiu L. Cloning and characterization of PHGPx and its synergistic role with p53 in mediating stress in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2017; 71:380-392. [PMID: 29020605 DOI: 10.1016/j.fsi.2017.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/04/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Phospholipid-hydroperoxide glutathione peroxidase (PHGPx), a ubiquitous antioxidant enzyme in the glutathione peroxidase (GPx) family, plays multiple roles in different organisms. Here, a novel PHGPx (PmPHGPx) was identified from Penaeus monodon. The full-length PmPHGPx cDNA was 1885 bp in length with a 489-bp open reading frame (ORF) containing a selenocysteine codon, TGA177-179, and a selenocysteine insertion sequence in the 3'-UTR. The typical signature motifs of the GPx family were also detected in the PmPHGPx amino acid sequence. The PmPHGPx expression pattern showed tissue-specific variations, with the highest expression level in the heart and the lowest expression level in the muscle. To examine the relationship between Pmp53 and PmPHGPx, Pmp53 was successfully silenced with a dsRNA-p53 injection, and an obvious down-regulation in PmPHGPx expression was apparent. To clarify the functional roles of Pmp53 and PmPHGPx, their expression patterns were also assessed after pH-induced stress, salinity stress and heavy metal (Cu, Zn, and Cd) challenges. Similar trends in the expression profiles for PmPHGPx and Pmp53 were detected in both the gills and hepatopancreas in response to all stressors. Therefore, we conclude from the results that PmPHGPx acts synergistically and subsequently works cooperatively with Pmp53 toward mediating cell stress. This study improves our understanding of PmPHGPx and its synergistic role with Pmp53 in counteracting stressors in P. monodon.
Collapse
Affiliation(s)
- Fuxiang Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Pengfei Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | | | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS, Beijing 100141, PR China.
| |
Collapse
|
95
|
Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism. Mol Cell Biol 2017; 37:MCB.00328-17. [PMID: 28993478 DOI: 10.1128/mcb.00328-17] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
TP53 is one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of TP53 mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development. There is a strong rationale that the GOF activities, including alterations in cellular metabolism, might vary between the different p53 mutants. Accordingly, the effect of different mutant p53 proteins on cancer cell metabolism is largely unknown. In this study, we have metabolically profiled several individual frequently occurring p53 mutants in cancers, focusing on glycolytic and mitochondrial oxidative phosphorylation pathways. Our investigation highlights the diversity of different p53 mutants in terms of their effect on metabolism, which might provide a foundation for the development of more effective targeted pharmacological approaches toward variants of mutant p53.
Collapse
|
96
|
Wang R, Yin C, Li XX, Yang XZ, Yang Y, Zhang MY, Wang HY, Zheng XFS. Reduced SOD2 expression is associated with mortality of hepatocellular carcinoma patients in a mutant p53-dependent manner. Aging (Albany NY) 2017; 8:1184-200. [PMID: 27221200 PMCID: PMC4931826 DOI: 10.18632/aging.100967] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
The development and progression of hepatocellular carcinoma (HCC) is accompanied with persistent oxidative stress, but the molecular basis is not well defined. Superoxide dismutase 2 (SOD2) is an important mitochondrial antioxidant and a key aging factor. Here we investigated the expression and clinical significance of SOD2 in a large cohort of HBV-positive HCC tumors. Both SOD2 mRNA and protein are reduced in human primary HCCs compared with matching liver tissues. Consistently, the SOD2 DNA copy numbers are decreased in HCCs, providing a genetic basis for the decrease in SOD2 mRNA expression. Reduced SOD2 expression in HCCs is correlated with older age, larger tumor size, multiple tumor nodules and tumor emboli, and cancer recurrence. Moreover, low SOD2 expression is strongly associated with poor overall survival (OS) and recurrence-free survival (RFS). Univariate and multivariate Cox regression analyses indicates that SOD2 is an independent prognostic predictor for OS and RFS. Intriguingly, reduced SOD2 mRNA is strongly associated with poor survival in a separate cohort of HCC patients carrying mutant p53. Altogether, our results provide clinical evidence for the importance of SOD2 in tumor progression and mortality, and the close relationship of SOD2 and p53 in HCC.
Collapse
Affiliation(s)
- Ren Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Chen Yin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xian-Zi Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China.,Rutgers Cancer Institute of New Jersey, and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China.,Rutgers Cancer Institute of New Jersey, and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
97
|
Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel) 2017; 6:antiox6040086. [PMID: 29099803 PMCID: PMC5745496 DOI: 10.3390/antiox6040086] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
While loss of antioxidant expression and the resultant oxidant-dependent damage to cellular macromolecules is key to tumorigenesis, it has become evident that effective oxidant scavenging is conversely necessary for successful metastatic spread. This dichotomous role of antioxidant enzymes in cancer highlights their context-dependent regulation during different stages of tumor development. A prominent example of an antioxidant enzyme with such a dichotomous role and regulation is the mitochondria-localized manganese superoxide dismutase SOD2 (MnSOD). SOD2 has both tumor suppressive and promoting functions, which are primarily related to its role as a mitochondrial superoxide scavenger and H₂O₂ regulator. However, unlike true tumor suppressor- or onco-genes, the SOD2 gene is not frequently lost, or rarely mutated or amplified in cancer. This allows SOD2 to be either repressed or activated contingent on context-dependent stimuli, leading to its dichotomous function in cancer. Here, we describe some of the mechanisms that underlie SOD2 regulation in tumor cells. While much is known about the transcriptional regulation of the SOD2 gene, including downregulation by epigenetics and activation by stress response transcription factors, further research is required to understand the post-translational modifications that regulate SOD2 activity in cancer cells. Moreover, future work examining the spatio-temporal nature of SOD2 regulation in the context of changing tumor microenvironments is necessary to allows us to better design oxidant- or antioxidant-based therapeutic strategies that target the adaptable antioxidant repertoire of tumor cells.
Collapse
|
98
|
Perazzoli MRA, Perondi CK, Baratto CM, Winter E, Creczynski-Pasa TB, Locatelli C. Gallic Acid and Dodecyl Gallate Prevents Carbon Tetrachloride-Induced Acute and Chronic Hepatotoxicity by Enhancing Hepatic Antioxidant Status and Increasing p53 Expression. Biol Pharm Bull 2017; 40:425-434. [PMID: 28381798 DOI: 10.1248/bpb.b16-00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gallic acid (3,4,5-trihydroxybenzoic acid, GA), a natural phenolic acid has been reported as a strong antioxidant. Therefore the present study was designed to evaluate the effects of GA and dodecyl gallate (DGA) against acute and chronic carbon tetrachloride (CCl4)-induced hepatotoxicity. For acute model, rats were orally treated with GA and DGA for 7 d prior to CCl4 by intraperitoneally (i.p.) injection. For the chronic model, rats were orally treated with GA or DGA and CCl4 i.p. twice a week for four weeks. In both acute and chronic models, the CCl4-treated groups showed significantly increase in serum hepatic enzyme activities and histopathologic alterations, as well as a disruption in antioxidative status. In contrast, the treatment with GA and DGA restored serum hepatic enzymes activities, improved histopathologic alterations, increased glutathione (GSH) and decreased lipid peroxidation levels. The activities of liver antioxidant enzymes were increased by GA and DGA only in acute model. The expression of p53 gene increased about 3.5 times after GA and DGA treatments, which could result in cell death of damaged hepatocytes preventing of a lifelong liver failure. Thus, these results suggest that GA and DGA has the potential to prevent liver damages as the case of fibrosis condition.
Collapse
|
99
|
Shakdofa MM, Mousa HA, Elseidy AM, Labib AA, Ali MM, Abd-El-All AS. Anti-proliferative activity of newly synthesized Cd(II), Cu(II), Zn(II),Ni(II), Co(II), VO(II), and Mn(II) complexes of 2-((4,9-dimethoxy-5-oxo-5H-furo[3,2-g]chromen-6-yl)methylene) hydrazinecarbothioamide on three human cancer cells. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohamad M.E. Shakdofa
- Department of Chemistry, Faculty of Science and Arts, Khulais; University of Jeddah; Saudi Arabia
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
| | - Hanan A. Mousa
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
| | - Ahmed M.A. Elseidy
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
- Chemistry Department, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University (IMSIU); PO Box 5701 Riyadh 11432 Saudi Arabia
| | - Ammar A. Labib
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
| | - Mamdouh M. Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology; National Research Center; Cairo Egypt
| | - Amira S. Abd-El-All
- Division of Pharmaceutical and Drug Industries, Department Chemistry of Natural and Microbial products; National Research Centre; Dokki Cairo 12622 Egypt
| |
Collapse
|
100
|
Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, Nikitovic D, Anisimov NY, Spandidos DA, Tsatsakis AM, Rezaee R. Anticancer and apoptosis‑inducing effects of quercetin in vitro and in vivo. Oncol Rep 2017; 38:819-828. [PMID: 28677813 PMCID: PMC5561933 DOI: 10.3892/or.2017.5766] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
The present study focused on the elucidation of the putative anticancer potential of quercetin. The anticancer activity of quercetin at 10, 20, 40, 80 and 120 µM was assessed in vitro by MMT assay in 9 tumor cell lines (colon carcinoma CT‑26 cells, prostate adenocarcinoma LNCaP cells, human prostate PC3 cells, pheocromocytoma PC12 cells, estrogen receptor‑positive breast cancer MCF‑7 cells, acute lymphoblastic leukemia MOLT‑4 T‑cells, human myeloma U266B1 cells, human lymphoid Raji cells and ovarian cancer CHO cells). Quercetin was found to induce the apoptosis of all the tested cancer cell lines at the utilized concentrations. Moreover, quercetin significantly induced the apoptosis of the CT‑26, LNCaP, MOLT‑4 and Raji cell lines, as compared to control group (P<0.001), as demonstrated by Annexin V/PI staining. In in vivo experiments, mice bearing MCF‑7 and CT‑26 tumors exhibited a significant reduction in tumor volume in the quercetin‑treated group as compared to the control group (P<0.001). Taken together, quercetin, a naturally occurring compound, exhibits anticancer properties both in vivo and in vitro.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Amin Delarami Far
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Arezoo Yari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Reza Entezari Heravi
- Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sarvenaz Ekhtiari Sadegh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, Faculty of Animal Physiology‑Toxicology, University of Thessaly, Larissa, Greece
| | - George Tzanakakis
- Department of Anatomy‑Histology‑Embryology, Medical School, University of Crete, Greece
| | - Dragana Nikitovic
- Department of Anatomy‑Histology‑Embryology, Medical School, University of Crete, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|