51
|
Xue J, Li L, Li N, Li F, Qin X, Li T, Liu M. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur J Pharmacol 2019; 859:172541. [PMID: 31319067 DOI: 10.1016/j.ejphar.2019.172541] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Endometrial cancer is the most common cancer of the female reproductive system in the developed countries. Metformin is a widely used medication that has been prescribed to treat type 2 diabetes. In recent years, metformin has been found to improve the survival prognosis of cancer patients clinically. We aimed to investigate inhibition of metformin on the proliferation of endometrial carcinoma. Metformin was used to treat endometrial cancer cell lines Ishikawa and RL95-2. The expression of programmed death-ligand 1 (PD-L1) in the treated cells was assessed by western blot. The tumor cell proliferation was evaluated by colony formation assay. The binding between PD-L1 and AMP-activated protein kinase (AMPK) was identified by co-immunoprecipitation. Ishikawa and RL95-2 cells were co-cultured with activated T cells to detect the survival of Ishikawa and RL95-2 cells in the presence or absence of metformin. Our results showed that metformin treatment on endometrial cancer cells Ishikawa and RL95-2 decreased the expression level of PD-L1 protein. Metformin treatment significantly activated T cells against Ishikawa and RL95-2 cells. We demonstrated that the inhibition of PD-L1 by metformin is dependent on the AMPK signaling protein, and that metformin promotes direct binding of the AMPK protein to the PD-L1 protein. We confirmed that metformin, a conventional medication used in diabetes therapy, holds anti-tumor activity in endometrial cancer. The suppression of metformin is relevant to the inhibition of PD-L1 expression and the activation of AMPK signaling protein, providing a novel mechanism in the anti-tumor property of metformin.
Collapse
Affiliation(s)
- Jing Xue
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Feifei Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaoyan Qin
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Ming Liu
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
52
|
Galsky MD, Shahin M, Jia R, Shaffer DR, Gimpel-Tetra K, Tsao CK, Baker C, Leiter A, Holland J, Sablinski T, Mehrazin R, Sfakianos JP, Acon P, Oh WK. Telemedicine-Enabled Clinical Trial of Metformin in Patients With Prostate Cancer. JCO Clin Cancer Inform 2019; 1:1-10. [PMID: 30657386 DOI: 10.1200/cci.17.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Clinical trials are critical to informing cancer care but often are hampered by slow accrual and lack of generalizability because of poor geographic accessibility. We tested the feasibility of replacing onsite study visits with telemedicine visits in a prospective clinical trial. METHODS Castration-naïve patients with prostate cancer and a rising serum prostate-specific antigen after definitive local therapy were eligible. Patients were required to have a single onsite visit for enrollment. Study treatment consisted of oral metformin 850 mg daily for 1 month followed by 850 mg twice daily for 5 months. Telehealth video visits (televisits) were conducted monthly by using a Health Insurance Portability and Accountability Act-compliant smartphone application. The primary objective was to determine the feasibility of telemedicine-enabled study visits. Secondary objectives were defining safety, anticancer activity, quality of life, and patient satisfaction. RESULTS Fifteen patients with a median age of 68 years (range, 57 to 83 years) and median one-way driving time to the study center of 71 minutes (range, 12 to 147 minutes) were enrolled. The patients completed 84 eligible televisits (completion rate, 100%; 95% CI, 0.80 to 1). Diarrhea was the most common adverse event but was limited to grade 1 in severity; a single patient experienced grade ≥ 3 adverse events. Seven patients (46.7%; 95% CI, 24.8% to 69.9%) had a ≤ 20% increase in prostate-specific antigen relative to baseline. Patients agreed or strongly agreed that they would participate in a telemedicine-enabled clinical trial in the future. CONCLUSION To our knowledge, this interventional oncology clinical trial is the first to be conducted through telemedicine. Telemedicine-enabled trials are feasible and may overcome geographic barriers to trial participation. Metformin was generally well tolerated but associated with modest anticancer activity.
Collapse
Affiliation(s)
- Matthew D Galsky
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Mohamed Shahin
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Rachel Jia
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - David R Shaffer
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Kiev Gimpel-Tetra
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Che-Kai Tsao
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Charles Baker
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Amanda Leiter
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - John Holland
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Tomasz Sablinski
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Reza Mehrazin
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - John P Sfakianos
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - Patricia Acon
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| | - William K Oh
- Matthew D. Galsky, Mohamed Shahin, Rachel Jia, Kiev Gimpel-Tetra, Che-Kai Tsao, Charles Baker, Amanda Leiter, Reza Mehrazin, John P. Sfakianos, Patricia Acon, and William K. Oh, Icahn School of Medicine at Mount Sinai; John Holland, AMC Health; Tomasz Sablinski, Transparency Life Sciences, New York; and David R. Shaffer, Albany Medical Center, Albany, NY
| |
Collapse
|
53
|
Yamaoka M, Terabayashi T, Nishioka T, Kaibuchi K, Ishikawa T, Ishizaki T, Kimura T. IRR is involved in glucose-induced endocytosis after insulin secretion. J Pharmacol Sci 2019; 140:300-304. [DOI: 10.1016/j.jphs.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
|
54
|
Krieger CC, Boutin A, Jang D, Morgan SJ, Banga JP, Kahaly GJ, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. Arrestin-β-1 Physically Scaffolds TSH and IGF1 Receptors to Enable Crosstalk. Endocrinology 2019; 160:1468-1479. [PMID: 31127272 PMCID: PMC6542485 DOI: 10.1210/en.2019-00055] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023]
Abstract
Endogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-β-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk. HA secretion was stimulated by the TSHR-stimulating monoclonal antibodies M22 and KSAb1, or immunoglobulins from patients with GO (GO-Igs). Treatment with M22, as previously shown, resulted in biphasic dose-response stimulation of HA secretion. The high-potency phase was IGF1R dependent, and the low-potency phase was partly IGF1R independent. KSAb1 produced a monophasic dose-response stimulation of HA secretion, whose potency was lowered >20-fold after IGF1R knockdown. ARRB1 knockdown abolished M22's high-potency phase and lowered KSAb1's potency and efficacy. ARRB1 knockdown inhibited GO-Ig stimulation of HA secretion and of ERK phosphorylation. Last, ARRB1 was shown to be necessary for TSHR/IGF1R proximity. In contrast, ARRB2 knockdowns did not show these effects. Thus, TSHR must neighbor IGF1R for crosstalk in GO fibroblasts to occur, and this depends on ARRB1 acting as a scaffold. Similar scaffolding of TSHR and IGF1R by ARRB1 was found in human osteoblast-like cells and human thyrocytes. These findings support a model of TSHR/IGF1R crosstalk that may be a general mechanism for G-protein-coupled receptor/receptor tyrosine kinase crosstalk dependent on ARRB1.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daesong Jang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - J Paul Banga
- Faculty of Life Sciences & Medicine, King’s College London, The Rayne Institute, London, United Kingdom
| | - George J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
55
|
Hao F, Xu Q, Wang J, Yu S, Chang HH, Sinnett-Smith J, Eibl G, Rozengurt E. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice. PLoS One 2019; 14:e0216603. [PMID: 31100067 PMCID: PMC6524808 DOI: 10.1371/journal.pone.0216603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
We examined the impact of statins on Yes-associated Protein (YAP) localization, phosphorylation and transcriptional activity in human and mouse pancreatic ductal adenocarcinoma (PDAC) cells. Exposure of sparse cultures of PANC-1 and MiaPaCa-2 cells to cerivastatin or simvastatin induced a striking re-localization of YAP from the nucleus to the cytoplasm and inhibited the expression of the YAP/TEAD-regulated genes Connective Tissue Growth Factor (CTGF) and Cysteine-rich angiogenic inducer 61 (CYR61). Statins also prevented YAP nuclear import and expression of CTGF and CYR61 stimulated by the mitogenic combination of insulin and neurotensin in dense culture of these PDAC cells. Cerivastatin, simvastatin, atorvastatin and fluvastatin also inhibited colony formation by PANC-1 and MiaPaCa-2 cells in a dose-dependent manner. In contrast, the hydrophilic statin pravastatin did not exert any inhibitory effect even at a high concentration (10 μM). Mechanistically, cerivastatin did not alter the phosphorylation of YAP at Ser127 in either PANC-1 or MiaPaCa-2 cells incubated without or with neurotensin and insulin but blunted the assembly of actin stress fiber in these cells. We extended these findings with human PDAC cells using primary KC and KPC cells, (expressing KrasG12D or both KrasG12D and mutant p53, respectively) isolated from KC or KPC mice. Using cultures of these murine cells, we show that lipophilic statins induced striking YAP translocation from the nucleus to the cytoplasm, inhibited the expression of Ctgf, Cyr61 and Birc5 and profoundly inhibited colony formation of these cells. Administration of simvastatin to KC mice subjected to diet-induced obesity prevented early pancreatic acini depletion and PanIN formation. Collectively, our results show that lipophilic statins restrain YAP activity and proliferation in pancreatic cancer cell models in vitro and attenuates early lesions leading to PDAC in vivo.
Collapse
Affiliation(s)
- Fang Hao
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Tianjin Medical University, Tianjin, China
| | - Qinhong Xu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Shuo Yu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Xi'an Jiaotong University, Xi'an, China
| | - Hui-Hua Chang
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- CURE: Digestive Diseases Research Center, Los Angeles, California, United States of America
- VA Greater Los Angeles Health Care System, Los Angeles, California, United States of America
| |
Collapse
|
56
|
Lee J, Hong EM, Kim JH, Jung JH, Park SW, Koh DH, Choi MH, Jang HJ, Kae SH. Metformin Induces Apoptosis and Inhibits Proliferation through the AMP-Activated Protein Kinase and Insulin-like Growth Factor 1 Receptor Pathways in the Bile Duct Cancer Cells. J Cancer 2019; 10:1734-1744. [PMID: 31205529 PMCID: PMC6547996 DOI: 10.7150/jca.26380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background/Aims: Metformin has been found to have antineoplastic activity in some cancer cells. This study was performed to determine whether metformin inhibits the proliferation of bile duct cancer cells by inducing apoptosis and its effects on the expression of gene-related proteins involved in cancer growth. Methods: Human extrahepatic bile duct cancer cells (SNU-245 and SNU-1196) were cultured. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were performed to determine the effect of metformin on the cell proliferation. Apoptosis was measured by a cell death detection enzyme-linked immunosorbent assay and a caspase-3 activity assay. Expression levels of various proteins, with or without specific small interfering ribonucleic acid-induced gene disruption, were measured by Western blot analysis. The migratory activity of the cancer cells was evaluated by wound healing assay. Results: Metformin suppressed cell proliferation in bile duct cancer cells by inducing apoptosis. Metformin inhibited mammalian target of rapamycin (mTOR) by activation of tuberous sclerosis complex 2 (TSC-2) through phosphorylation of adenosine monophosphate-activated protein kinase at threonine-172 (AMPKThr172). Hyperglycemia impaired metformin-induced AMPKThr172 activation and enhanced phosphorylation of AMPK at serine-485 (AMPKSer485). Metformin blocked the inhibitory effect of insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor substrate 1 (IRS-1) pathway on TSC-2, and hyperglycemia impaired metformin-induced inhibition of IGF-1R/IRS-1 pathway and modulated the invasiveness of bile duct cancer cells; however, this effect was impaired by hyperglycemia. Conclusions: Metformin has antineoplastic effects in bile duct cancer, and hyperglycemic environment interrupts the effect of metformin. In addition, AMPK and IGF-1R play a key role in the proliferation of bile duct cancer cells.
Collapse
Affiliation(s)
- Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| | - Eun Mi Hong
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| | - Jung Han Kim
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Jang Han Jung
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| | - Dong Hee Koh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| | - Min Ho Choi
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| | - Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| | - Sea Hyub Kae
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Gyeonggi-Do, Korea
| |
Collapse
|
57
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
58
|
Demirsoy İH, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L, Aras N. Profiles of Circulating MiRNAs Following Metformin Treatment in Patients with Type 2 Diabetes. J Med Biochem 2018; 37:499-506. [PMID: 30584410 PMCID: PMC6298473 DOI: 10.2478/jomb-2018-0009] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/17/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Metformin, a widely used biguanide class of anti-diabetic drug, has potential to increase insulin sensitivity and reduce blood glucose to treat type 2 diabetes (T2D). It has been reported that metformin has an activity on regulation of miRNAs by targeting several downstream genes in metabolic pathways. However, molecular mechanism underlying the process is still not fully known. In this study, it was aimed to identify differential expression profiles of plasma derived miRNAs following 3 months metformin treatment in patients with T2D. METHODS The plasma samples of 47 patients with T2D (received no anti-diabetic treatments) and plasma samples of same 47 patients received 3 months metformin treatment was recruited to the study. Total RNAs were isolated from plasma and reverse transcribed into cDNA. Profiles of differential expressions of miRNAs in plasma were assessed by using of micro-fluidic based multiplex quantitative real time -PCR (BioMarkTM 96.96 Dynamic Array). RESULTS Our results showed that expression profiles of 13 candidate miRNAs; hsa-let-7e-5p, hsa-let-7f-5p, hsa-miR- 21-5p, hsa-miR-24-3p, hsa-miR-26b-5p, hsa-miR-126-5p, hsa-miR-129-5p, hsa-miR-130b-3p, hsa-miR-146a-5p, hsamiR- 148a-3p, hsa-miR-152-3p, hsa-miR-194-5p, hsa-miR- 99a-5p were found significantly downregulated following metformin treatments in patients with T2D (p<0.05). CONCLUSIONS In conclusion, our finding could provide development of better and more effective miRNAs based therapeutic strategies against T2D.
Collapse
Affiliation(s)
| | | | - Şenay Balci
- Department of Medical Biochemistry, Mersin University, Mersin, Turkey
| | - Ümit Çınkır
- Department of Endocrinology and Metabolism, Mersin University, Mersin, Turkey
| | - Kerem Sezer
- Department of Endocrinology and Metabolism, Mersin University, Mersin, Turkey
| | - Lülüfer Tamer
- Department of Medical Biochemistry, Mersin University, Mersin, Turkey
| | - Nurcan Aras
- Department of Medical Biology, Mersin University, Mersin, Turkey
| |
Collapse
|
59
|
Krieger CC, Morgan SJ, Neumann S, Gershengorn MC. Thyroid Stimulating Hormone (TSH)/Insulin-like Growth Factor 1 (IGF1) Receptor Cross-talk in Human Cells. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2018; 2:29-33. [PMID: 30547142 PMCID: PMC6287758 DOI: 10.1016/j.coemr.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thyroid stimulating hormone and insulin-like growth factor 1 receptors (TSHRs and IGF1Rs, respectively) interact leading to additive or synergistic stimulation of cellular responses. Recent findings provide evidence that the interaction between TSHRs and IGF1Rs is similar to that described for other G protein-coupled receptors and receptor tyrosine kinases. These types of interactions occur at or proximal to the receptors and are designated "receptor cross-talk." Herein, we describe our studies in human thyrocytes, human retro-orbital fibroblasts from Graves' orbitopathy patients and a model cell line that support the concept of TSHR/IGF1R cross-talk. We also discuss how receptor cross-talk is involved in stimulation by a monoclonal TSHR-stimulating antibody and how targeting both receptors may lead to novel treatments of Graves' orbitopathy.
Collapse
Affiliation(s)
- Christine C. Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah J. Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
60
|
You HL, Liu TT, Weng SW, Chen CH, Wei YC, Eng HL, Huang WT. Association of IRS2 overexpression with disease progression in intrahepatic cholangiocarcinoma. Oncol Lett 2018; 16:5505-5511. [PMID: 30250623 PMCID: PMC6144925 DOI: 10.3892/ol.2018.9284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
Insulin receptor substrate 2 (IRS2) is a candidate driver oncogene frequently amplified in cancer and is positively associated with IRS2 expression. The overexpression of IRS2 has been suggested to promote tumor metastasis. However, its function in intrahepatic cholangiocarcinoma (iCCA) has not been investigated extensively. The present study examined 86 cases of iCCA to analyze IRS2 expression and its correlation with clinicopathological characteristics using immunohistochemical assays. Three stable cell lines overexpressing IRS2 were established. The mobility potential of cells was compared in the basal condition and following manipulation using cell migration and invasion assays. Epithelial-mesenchymal transition (EMT)-associated proteins were assessed by western blotting. IRS2 was overexpressed in 29 iCCA cases (33.7%) and was significantly more frequent in cases with large tumor size (P=0.033), classified as an advanced stage by the American Joint Committee on Cancer (P=0.046). In comparison with the control cells, the three IRS2-overexpressing iCCA cell lines exhibited a statistically significant increase in mobility potential. Expression analysis of EMT markers demonstrated decreased epithelial marker levels and increased mesenchymal marker levels in IRS2-overexpressing cells compared with their corresponding control cells. The results of the present study indicate that IRS2 overexpression is characterized by a large tumor size and advanced tumor stage in iCCA, and that it may increase tumor mobility potential by regulating EMT pathways. Therefore, it is a valuable predictive indicator of metastasis and may provide a novel direction for targeted therapy in iCCA.
Collapse
Affiliation(s)
- Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Chang-Han Chen
- The Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Yu-Ching Wei
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, R.O.C
| | - Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| |
Collapse
|
61
|
Jian-Yu E, Graber JM, Lu SE, Lin Y, Lu-Yao G, Tan XL. Effect of Metformin and Statin Use on Survival in Pancreatic Cancer Patients: a Systematic Literature Review and Meta-analysis. Curr Med Chem 2018; 25:2595-2607. [PMID: 28403788 DOI: 10.2174/0929867324666170412145232] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Current epidemiological studies report conflicting results for the effect of statin or metformin on pancreatic cancer overall survival. This literature review and meta-analysis summarize the studies reporting an association between statin or metformin use and overall survival of pancreatic cancer patients. METHODS We systematically searched for studies about the association between statin or metformin use and pancreatic cancer overall survival in electronic databases (PubMed, ISI Web of Science, MEDLINE, Cochrane, Scopus, Google Scholar). A meta-analysis based on hazard ratios (HRs) and 95% confidence intervals (CIs) was performed using random effect models. Heterogeneity between the studies was examined using I2 statistics, and sensitivity analyses were conducted to assess the robustness of the findings. RESULTS Of 116 statin-related articles identified, 6 retrospective cohort studies representing 12,057 patients were included. There was significant heterogeneity between studies. Statin use was associated with improved survival among pancreatic cancer patients (meta-HR = 0.75; 95% CI: 0.59, 0.90; P < 0.001). Of 311 metformin-related articles, 8 retrospective cohort studies and 2 randomized clinical trials, representing 3,042 patients were identified. Metformin use was associated with better overall survival among pancreatic cancer patients (meta-HR = 0.79; 95% CI: 0.70, 0.92, P < 0.001), and significant heterogeneity was observed between studies. CONCLUSION Our findings suggest that the improved survival time of pancreatic cancer patients are associated with statin or metformin use. Due to the multiple sources of heterogeneity of the original studies, these findings should be considered cautiously, and confirmed with larger prospective individual-level studies.
Collapse
Affiliation(s)
- Jian-Yu E
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Judith M Graber
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.,Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, United States
| | - Shou-En Lu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States.,Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Yong Lin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States.,Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Grace Lu-Yao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, United States
| |
Collapse
|
62
|
Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduct Target Ther 2018; 3:11. [PMID: 29682330 PMCID: PMC5908807 DOI: 10.1038/s41392-017-0005-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is generally a fatal disease with no efficacious treatment modalities. Elucidation of signaling mechanisms that will lead to the identification of novel targets for therapy and chemoprevention is urgently needed. Here, we review the role of Yes-associated protein (YAP) and WW-domain-containing Transcriptional co-Activator with a PDZ-binding motif (TAZ) in the development of PDAC. These oncogenic proteins are at the center of a signaling network that involves multiple upstream signals and downstream YAP-regulated genes. We also discuss the clinical significance of the YAP signaling network in PDAC using a recently published interactive open-access database (www.proteinatlas.org/pathology) that allows genome-wide exploration of the impact of individual proteins on survival outcomes. Multiple YAP/TEAD-regulated genes, including AJUBA, ANLN, AREG, ARHGAP29, AURKA, BUB1, CCND1, CDK6, CXCL5, EDN2, DKK1, FOSL1,FOXM1, HBEGF, IGFBP2, JAG1, NOTCH2, RHAMM, RRM2, SERP1, and ZWILCH, are associated with unfavorable survival of PDAC patients. Similarly, components of AP-1 that synergize with YAP (FOSL1), growth factors (TGFα, EPEG, and HBEGF), a specific integrin (ITGA2), heptahelical receptors (P2Y2R, GPR87) and an inhibitor of the Hippo pathway (MUC1), all of which stimulate YAP activity, are associated with unfavorable survival of PDAC patients. By contrast, YAP inhibitory pathways (STRAD/LKB-1/AMPK, PKA/LATS, and TSC/mTORC1) indicate a favorable prognosis. These associations emphasize that the YAP signaling network correlates with poor survival of pancreatic cancer patients. We conclude that the YAP pathway is a major determinant of clinical aggressiveness in PDAC patients and a target for therapeutic and preventive strategies in this disease. Yes-associated protein (YAP) signaling contributes to pancreatic cancer progression and is associated with poor patient survival. Previous studies have shown that YAP activates genes involved in cell proliferation to incite tumor growth and metastasis. Enrique Rozengurt and colleagues at University of California Los Angeles review the latest knowledge on YAP signaling and used the open access database The Human Protein Atlas to analyze the gene expression profile and prognosis of 176 patients with pancreatic ductal adenocarcinoma. Activation of upstream or downstream elements of the YAP signaling pathway correlated with shorter survival in patients. Conversely, the activation of signaling pathways that oppose YAP signaling were associated with a more favorable prognosis. These findings highlight YAP signaling pathway components as both prognostic markers and potential targets for developing much needed therapeutic and preventative strategies.
Collapse
|
63
|
Metformin Decreases the Incidence of Pancreatic Ductal Adenocarcinoma Promoted by Diet-induced Obesity in the Conditional KrasG12D Mouse Model. Sci Rep 2018; 8:5899. [PMID: 29651002 PMCID: PMC5897574 DOI: 10.1038/s41598-018-24337-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a particularly deadly disease. Chronic conditions, including obesity and type-2 diabetes are risk factors, thus making PDAC amenable to preventive strategies. We aimed to characterize the chemo-preventive effects of metformin, a widely used anti-diabetic drug, on PDAC development using the KrasG12D mouse model subjected to a diet high in fats and calories (HFCD). LSL-KrasG12D/+;p48-Cre (KC) mice were given control diet (CD), HFCD, or HFCD with 5 mg/ml metformin in drinking water for 3 or 9 months. After 3 months, metformin prevented HFCD-induced weight gain, hepatic steatosis, depletion of intact acini, formation of advanced PanIN lesions, and stimulation of ERK and mTORC1 in pancreas. In addition to reversing hepatic and pancreatic histopathology, metformin normalized HFCD-induced hyperinsulinemia and hyperleptinemia among the 9-month cohort. Importantly, the HFCD-increased PDAC incidence was completely abrogated by metformin (p < 0.01). The obesogenic diet also induced a marked increase in the expression of TAZ in pancreas, an effect abrogated by metformin. In conclusion, administration of metformin improved the metabolic profile and eliminated the promoting effects of diet-induced obesity on PDAC formation in KC mice. Given the established safety profile of metformin, our findings have a strong translational potential for novel chemo-preventive strategies for PDAC.
Collapse
|
64
|
Global phenotypic characterisation of human platelet lysate expanded MSCs by high-throughput flow cytometry. Sci Rep 2018; 8:3907. [PMID: 29500387 PMCID: PMC5834600 DOI: 10.1038/s41598-018-22326-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/21/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source to develop cell therapy for many diseases. Human platelet lysate (PLT) is increasingly used as an alternative to foetal calf serum (FCS) for clinical-scale MSC production. To date, the global surface protein expression of PLT-expended MSCs (MSC-PLT) is not known. To investigate this, paired MSC-PLT and MSC-FCS were analysed in parallel using high-throughput flow cytometry for the expression of 356 cell surface proteins. MSC-PLT showed differential surface protein expression compared to their MSC-FCS counterpart. Higher percentage of positive cells was observed in MSC-PLT for 48 surface proteins, of which 13 were significantly enriched on MSC-PLT. This finding was validated using multiparameter flow cytometry and further confirmed by quantitative staining intensity analysis. The enriched surface proteins are relevant to increased proliferation and migration capacity, as well as enhanced chondrogenic and osteogenic differentiation properties. In silico network analysis revealed that these enriched surface proteins are involved in three distinct networks that are associated with inflammatory responses, carbohydrate metabolism and cellular motility. This is the first study reporting differential cell surface protein expression between MSC-PLT and MSC-FSC. Further studies are required to uncover the impact of those enriched proteins on biological functions of MSC-PLT.
Collapse
|
65
|
Abstract
Resistance to chemotherapeutic drugs exemplifies the greatest hindrance to effective treatment of cancer patients. The molecular mechanisms responsible have been investigated for over 50 years and have revealed the lack of a single cause, but instead, multiple mechanisms including induced expression of membrane transporters that pump drugs out of cells (multidrug resistance (MDR) phenotype), changes in the glutathione system, and altered metabolism. Treatment of cancer patients/cancer cells with chemotherapeutic agents and/or molecularly targeted drugs is accompanied by acquisition of resistance to the treatment administered. Chemotherapeutic agent resistance was initially assumed to be due to induction of mutations leading to a resistant phenotype. While this has occurred for molecularly targeted drugs, it is clear that drugs selectively targeting tyrosine kinases (TKs) cause the acquisition of mutational changes and resistance to inhibition. The first TK to be targeted, Bcr-Abl, led to the generation of several drugs including imatinib, dasatinib, and sunitinib that provided a rich understanding of this phenomenon. It became clear that mutations alone were not the only cause of resistance. Additional mechanisms were involved, including alternative splicing, alternative/compensatory signaling pathways, and epigenetic changes. This review will focus on resistance to tyrosine kinase inhibitors (TKIs), receptor TK (RTK)-directed antibodies, and antibodies that inactivate specific RTK ligands. New approaches and concepts aimed at avoiding the generation of drug resistance will be examined. Many RTKs, including the IGF-1R, are dependence receptors that induce ligand-independent apoptosis. How this signaling paradigm has implications on therapeutic strategies will also be considered.
Collapse
|
66
|
Biased G protein-coupled receptor agonism mediates Neu1 sialidase and matrix metalloproteinase-9 crosstalk to induce transactivation of insulin receptor signaling. Cell Signal 2018; 43:71-84. [DOI: 10.1016/j.cellsig.2017.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/26/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
|
67
|
Poli G, Cantini G, Armignacco R, Fucci R, Santi R, Canu L, Nesi G, Mannelli M, Luconi M. Metformin as a new anti-cancer drug in adrenocortical carcinoma. Oncotarget 2018; 7:49636-49648. [PMID: 27391065 PMCID: PMC5226535 DOI: 10.18632/oncotarget.10421] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/09/2016] [Indexed: 12/30/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare heterogeneous malignancy with poor prognosis. Since radical surgery is the only available treatment, more specific and effective drugs are urgently required. The anti-diabetic drug metformin has been associated with a decreased cancer prevalence and mortality in several solid tumors, prompting its possible use for ACC treatment. This paper evaluates the in vitro and in vivo anti-cancer effects of metformin using the ACC cell model H295R. Metformin treatment significantly reduces cell viability and proliferation in a dose- and time-dependent manner and associates with a significant inhibition of ERK1/2 and mTOR phosphorylation/activation, as well as with stimulation of AMPK activity. Metformin also triggers the apoptotic pathway, shown by the decreased expression of Bcl-2 and HSP27, HSP60 and HSP70, and enhanced membrane exposure of annexin V, resulting in activation of caspase-3 apoptotic effector. Metformin interferes with the proliferative autocrine loop of IGF2/IGF-1R, which supports adrenal cancer growth. Finally, in the ACC xenograft mouse model, obtained by subcutaneous injection of H295R cells, metformin intraperitoneal administration inhibits tumor growth, confirmed by the significant reduction of Ki67%. Our data suggest that metformin inhibits H295R cell growth both in vitro and in vivo. Further preclinical studies are necessary to validate the potential anti-cancer effect of metformin in patients affected by ACC.
Collapse
Affiliation(s)
- Giada Poli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberta Armignacco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rossella Fucci
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Raffaella Santi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
68
|
The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome. Int J Mol Sci 2018; 19:ijms19020575. [PMID: 29462993 PMCID: PMC5855797 DOI: 10.3390/ijms19020575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term "metabolic syndrome". Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood.
Collapse
|
69
|
Dogan Turacli I, Umudum H, Pampal A, Candar T, Kavasoglu L, Sari Y. Do MCF7 cells cope with metformin treatment under energetic stress in low glucose conditions? Mol Biol Rep 2018; 45:195-201. [PMID: 29397517 DOI: 10.1007/s11033-018-4152-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
There is a growing body of evidence about metformin being effective in cancer therapy. Despite controversies about the ways of its effectiveness, several ongoing clinical trials are evaluating the drug when used as an adjuvant or a neo-adjuvant agent. We aimed to investigate metformin's effects on proliferation, metastasis, and hormone receptor expressions in breast cancer cell line MCF-7 incubated in two different glucose conditions. MCF-7 cells were incubated in high or low glucose media and treated with various doses of metformin. The cell viability was studied using MTT test. The Ki-67, estrogen and progesterone receptor expression were evaluated by ICC and galectin-3 expression was evaluated by ELISA or spectrophotometrically. The cell viability following consecutive metformin doses in either glucose condition for 24 and 48 h represented a significant decrease when compared to control. The proliferation detected in low glucose medium following metformin at doses < 20 mM was found significantly decreased when compared to high glucose medium at 48 h. In terms of galectin-3 levels, the increase in high glucose medium treated with metformin and the decrease in low glucose medium were found statistically significant when compared to control. Progesterone receptor staining demonstrated a significant increase in low glucose medium. Our findings represent better outcomes for cancer lines incubated in low glucose medium treated with metformin in terms of viability, receptor expression and metastatic activity, and highlight the potential benefit of metformin especially in restraining the cancer cell's ability to cope energetic stress in low glucose conditions.
Collapse
Affiliation(s)
| | - Haldun Umudum
- Department of Pathology, Ufuk University, Ankara, Turkey
| | - Arzu Pampal
- Department of Pediatrics Surgery, Ufuk University, Ankara, Turkey
| | - Tuba Candar
- Department of Medical Biochemistry, Ufuk University, Ankara, Turkey
| | | | - Yaren Sari
- Faculty of Medicine, Ufuk University, Ankara, Turkey
| |
Collapse
|
70
|
Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells. Oncotarget 2018; 7:52710-52728. [PMID: 27384677 PMCID: PMC5288143 DOI: 10.18632/oncotarget.10348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.
Collapse
|
71
|
Integrated Proteomic and Metabolomic prediction of Term Preeclampsia. Sci Rep 2017; 7:16189. [PMID: 29170520 PMCID: PMC5700929 DOI: 10.1038/s41598-017-15882-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
Term preeclampsia (tPE), ≥37 weeks, is the most common form of PE and the most difficult to predict. Little is known about its pathogenesis. This study aims to elucidate the pathogenesis and assess early prediction of tPE using serial integrated metabolomic and proteomic systems biology approaches. Serial first- (11-14 weeks) and third-trimester (30-34 weeks) serum samples were analyzed using targeted metabolomic (1H NMR and DI-LC-MS/MS) and proteomic (MALDI-TOF/TOF-MS) platforms. We analyzed 35 tPE cases and 63 controls. Serial first- (sphingomyelin C18:1 and urea) and third-trimester (hexose and citrate) metabolite screening predicted tPE with an area under the receiver operating characteristic curve (AUC) (95% CI) = 0.817 (0.732-0.902) and a sensitivity of 81.6% and specificity of 71.0%. Serial first [TATA box binding protein-associated factor (TBP)] and third-trimester [Testis-expressed sequence 15 protein (TEX15)] protein biomarkers highly accurately predicted tPE with an AUC (95% CI) of 0.987 (0.961-1.000), sensitivity 100% and specificity 98.4%. Integrated pathway over-representation analysis combining metabolomic and proteomic data revealed significant alterations in signal transduction, G protein coupled receptors, serotonin and glycosaminoglycan metabolisms among others. This is the first report of serial integrated and combined metabolomic and proteomic analysis of tPE. High predictive accuracy and potentially important pathogenic information were achieved.
Collapse
|
72
|
Eibl G, Rozengurt E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol 2017; 54:50-62. [PMID: 29079305 DOI: 10.1016/j.semcancer.2017.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to be a lethal disease with no efficacious treatment modalities. The incidence of PDAC is expected to increase, at least partially because of the obesity epidemic. Increased efforts to prevent or intercept this disease are clearly needed. Mutations in KRAS are initiating events in pancreatic carcinogenesis supported by genetically engineered mouse models of the disease. However, oncogenic KRAS is not entirely sufficient for the development of fully invasive PDAC. Additional genetic mutations and/or environmental, nutritional, and metabolic stressors, e.g. inflammation and obesity, are required for efficient PDAC formation with activation of KRAS downstream effectors. Multiple factors "upstream" of KRAS associated with obesity, including insulin resistance, inflammation, changes in gut microbiota and GI peptides, can enhance/modulate downstream signals. Multiple signaling networks and feedback loops "downstream" of KRAS have been described that respond to obesogenic diets. We propose that KRAS mutations potentiate a signaling network that is promoted by environmental factors. Specifically, we envisage that KRAS mutations increase the intensity and duration of the growth-promoting signaling network. As the transcriptional activator YAP plays a critical role in the network, we conclude that the rationale for targeting the network (at different points), e.g. with FDA approved drugs such as statins and metformin, is therefore compelling.
Collapse
Affiliation(s)
- Guido Eibl
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States.
| | - Enrique Rozengurt
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
73
|
Krieger CC, Perry JD, Morgan SJ, Kahaly GJ, Gershengorn MC. TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types. Endocrinology 2017; 158:3676-3683. [PMID: 28938449 PMCID: PMC5659693 DOI: 10.1210/en.2017-00528] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 12/25/2022]
Abstract
We previously showed that thyrotropin (TSH)/insulinlike growth factor (IGF)-1 receptor cross-talk appears to be involved in Graves' orbitopathy (GO) pathogenesis and upregulation of thyroid-specific genes in human thyrocytes. In orbital fibroblasts from GO patients, coadministration of TSH and IGF-1 induces synergistic increases in hyaluronan secretion. In human thyrocytes, TSH plus IGF-1 synergistically increased expression of the sodium-iodide symporter that appeared to involve ERK1/2 activation. However, the details of ERK1/2 activation were not known, nor was whether ERK1/2 was involved in this synergism in other cell types. Using primary cultures of GO fibroblasts (GOFs) and human thyrocytes, as well as human embryonic kidney (HEK) 293 cells overexpressing TSH receptors (HEK-TSHRs), we show that simultaneous activation of TSHRs and IGF-1 receptors (IGF-1Rs) causes rapid, synergistic phosphorylation/activation of ERK1 and ERK2 in all three cell types. This effect is partially inhibited by pertussis toxin, an inhibitor of TSHR coupling to Gi/Go proteins. In support of a role for Gi/Go proteins in ERK1/2 phosphorylation, we found that knockdown of Gi(1-3) and Go in HEK-TSHRs inhibited ERK1/2 phosphorylation stimulated by TSH and TSH plus IGF-1. These data demonstrate that the synergistic effects of TSH plus IGF-1 occur early in the TSHR signaling cascade and further support the idea that TSHR/IGF-1R cross-talk is an important mechanism for regulation of human GOFs and thyrocytes.
Collapse
Affiliation(s)
- Christine C. Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Joseph D. Perry
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah J. Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - George J. Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Langenbeckstreet 1, 55131 Mainz, Germany
| | - Marvin C. Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
74
|
Siu KH, Chen W. Control of the Yeast Mating Pathway by Reconstitution of Functional α-Factor Using Split Intein-Catalyzed Reactions. ACS Synth Biol 2017; 6:1453-1460. [PMID: 28505429 DOI: 10.1021/acssynbio.7b00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic control strategies using signaling peptides to regulate and coordinate cellular behaviors in multicellular organisms and synthetic consortia remain largely underdeveloped because of the complexities necessitated by heterologous peptide expression. Using recombinant proteins that exploit split intein-mediated reactions, we presented here a new strategy for reconstituting functional signaling peptides capable of eliciting desired cellular responses in S. cerevisiae. These designs can potentially be tailored to any signaling peptides to be reconstituted, as the split inteins are promiscuous and both the peptides and the reactions are amenable to changes by directed evolution and other protein engineering tools, thereby offering a general strategy to implement synthetic control strategies in a large variety of applications.
Collapse
Affiliation(s)
- Ka-Hei Siu
- Department of Chemical and
Biomolecular Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and
Biomolecular Engineering, University of Delaware, 150 Academy
Street, Newark, Delaware 19716, United States
| |
Collapse
|
75
|
Park JW, Lee JH, Park YH, Park SJ, Cheon JH, Kim WH, Kim TI. Sex-dependent difference in the effect of metformin on colorectal cancer-specific mortality of diabetic colorectal cancer patients. World J Gastroenterol 2017; 23:5196-5205. [PMID: 28811714 PMCID: PMC5537186 DOI: 10.3748/wjg.v23.i28.5196] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/29/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess factors associated with the higher effect of metformin on mortality in diabetic colorectal cancer (CRC) patients, since the factors related to the effectiveness of metformin have not been identified yet.
METHODS Between January 2000 and December 2010, 413 patients diagnosed with both stage 3/4 CRC and diabetes mellitus were identified. Patients’ demographics and clinical characteristics were analyzed. The effect of metformin on CRC-specific mortality and the interactions between metformin and each adjusted factor were evaluated.
RESULTS Total follow-up duration was median 50 mo (range: 1-218 mo). There were 85 deaths (45.9%) and 72 CRC-specific deaths (38.9%) among 185 patients who used metformin, compared to 130 total deaths (57.0%) and 107 CRC-specific deaths (46.9%) among 228 patients who did not use metformin. In multivariate analysis, survival benefit associated with metformin administration was identified (HR = 0.985, 95%CI: 0.974-0.997, P = 0.012). Interaction test between metformin and sex after adjustment for relevant factors revealed that female CRC patients taking metformin exhibited a significantly lower CRC-specific mortality rate than male CRC patients taking metformin (HR = 0.369, 95%CI: 0.155-0.881, P = 0.025). Furthermore, subgroup analysis revealed significant differences in CRC-specific mortality between the metformin and non-metformin groups in female patients (HR = 0.501, 95%CI: 0.286-0.879, P = 0.013) but not male patients (HR = 0.848, 95%CI: 0.594-1.211, P = 0.365). There were no significant interactions between metformin and other adjusted factors on CRC-specific mortality.
CONCLUSION We showed a strong sex-dependent difference in the effect of metformin on CRC-specific mortality in advanced stage CRC patients with diabetes.
Collapse
|
76
|
Guo Z, Zhao M, Howard EW, Zhao Q, Parris AB, Ma Z, Yang X. Phenformin inhibits growth and epithelial-mesenchymal transition of ErbB2-overexpressing breast cancer cells through targeting the IGF1R pathway. Oncotarget 2017; 8:60342-60357. [PMID: 28947975 PMCID: PMC5601143 DOI: 10.18632/oncotarget.19466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25-75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro. Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics.
Collapse
Affiliation(s)
- Zhiying Guo
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Ming Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Qingxia Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, North Carolina, USA
| |
Collapse
|
77
|
Grasso C, Jansen G, Giovannetti E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Crit Rev Oncol Hematol 2017; 114:139-152. [PMID: 28477742 DOI: 10.1016/j.critrevonc.2017.03.026] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
|
78
|
Hao F, Xu Q, Zhao Y, Stevens JV, Young SH, Sinnett-Smith J, Rozengurt E. Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Mol Cancer Res 2017; 15:929-941. [PMID: 28360038 DOI: 10.1158/1541-7786.mcr-17-0023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
We examined the impact of crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways on the regulation of Yes-associated protein (YAP) localization, phosphorylation, and transcriptional activity in the context of human pancreatic ductal adenocarcinoma (PDAC). Stimulation of PANC-1 or MiaPaCa-2 cells with insulin and neurotensin, a potent mitogenic combination of agonists for these cells, promoted striking YAP nuclear localization and decreased YAP phosphorylation at Ser127 and Ser397 Challenging PDAC cells with either insulin or neurotensin alone modestly induced the expression of YAP/TEAD-regulated genes, including connective tissue growth factor (CTGF), cysteine-rich angiogenic inducer 61 (CYR61), and CXCL5, whereas the combination of neurotensin and insulin induced a marked increase in the level of expression of these genes. In addition, siRNA-mediated knockdown of YAP/TAZ prevented the increase in the expression of these genes. A small-molecule inhibitor (A66), selective for the p110α subunit of PI3K, abrogated the increase in phosphatidylinositol 3,4,5-trisphosphate production and the expression of CTGF, CYR61, and CXCL5 induced by neurotensin and insulin. Furthermore, treatment of PDAC cells with protein kinase D (PKD) family inhibitors (CRT0066101 or kb NB 142-70) or with siRNAs targeting the PKD family prevented the increase of CTGF, CYR61, and CXCL5 mRNA levels in response to insulin and neurotensin stimulation. Thus, PI3K and PKD mediate YAP activation in response to insulin and neurotensin in pancreatic cancer cells.Implications: Inhibitors of PI3K or PKD disrupt crosstalk between insulin receptor and GPCR signaling systems by blocking YAP/TEAD-regulated gene expression in pancreatic cancer cells. Mol Cancer Res; 15(7); 929-41. ©2017 AACR.
Collapse
Affiliation(s)
- Fang Hao
- Tianjin Medical University, Tianjin, China.,Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Qinhong Xu
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Xi'an Jiaotong University, Xi'an, China
| | - Yinglan Zhao
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Sichuan University, Chengdu, China
| | - Jan V Stevens
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Steven H Young
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - James Sinnett-Smith
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Enrique Rozengurt
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California. .,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
79
|
Metformin Use Is Associated with Reduced Incidence and Improved Survival of Endometrial Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5905384. [PMID: 28409158 PMCID: PMC5376924 DOI: 10.1155/2017/5905384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 12/30/2022]
Abstract
Studies have suggested that metformin can potentially decrease the incidence of cancer and improve survival outcomes. However, the association between metformin use and the incidence and survival of endometrial cancer (EC) remains controversial. So, a meta-analysis was performed. An electronic search was conducted using PubMed, EMBASE, and Web of Science. The outcome measures were relative risks (RRs) or hazard ratios (HRs) with 95% confidence intervals (CIs) comparing the EC incidence and survival in patients treated with and without metformin. Eleven studies involving 766,926 participants were included in this study. In the pooled analysis of five studies which evaluated the association of metformin use with the incidence of EC, we found that metformin use was associated with a 13% reduction in EC risk among patients with diabetes (RR = 0.87, 95% CI: 0.80–0.95; p = 0.006). In the pooled analysis of six retrospective cohort studies evaluating the effect of metformin on the survival of EC patients, we found that, relative to nonuse, metformin use significantly improved the survival of EC patients (HR = 0.63, 95% CI: 0.45–0.87; p = 0.006). This study showed that metformin use was significantly associated with a decreased incidence of EC in diabetes and a favorable survival outcome of EC patients.
Collapse
|
80
|
Song Z, Wei B, Lu C, Huang X, Li P, Chen L. Metformin suppresses the expression of Sonic hedgehog in gastric cancer cells. Mol Med Rep 2017; 15:1909-1915. [PMID: 28260041 DOI: 10.3892/mmr.2017.6205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
The traditional anti-diabetic drug, metformin, has been found to have anticancer effects. The Sonic hedgehog (Shh) signaling pathway is involved in the on cogenesis of gastric cancer. The aim of the present study was to investigate whether metformin has an effect on the Shh signaling pathway in gastric cancer cells. HGC‑27 and MKN‑45 human gastric cancer cells were treated with metformin at different concentrations and for different durations. Subsequently the mRNA and protein levels of Shh, Smoothened (SMO), and Glioma‑associated oncogene (Gli)‑1, Gli‑2 and Gli‑3 were examined using western blot and reverse transcription‑quantitative polymerase chain reaction analyses. RNA interference was used to detect whether the effects of metformin treatment on the Shh signaling pathway were dependent on AMP‑activated protein kinase (AMPK). The results revealed that the protein and mRNA levels of Shh and Gli‑1 were decreased by metformin treatment in the two cell lines in a dose‑ and time‑dependent manner. Metformin also significantly inhibited the gene and protein expression levels of SMO, Gli‑2 and Gli‑3. The small interfering RNA‑induced depletion of AMPK reversed the suppressive effect of metformin on recombinant human Shh‑induced expression of Gli‑1 in HGC‑27 gastric cancer cells. Therefore, metformin inhibited the Shh signaling pathway in the gastric cancer cell lines and the inhibitory effect of metformin on the Shh pathway was AMPK-dependent.
Collapse
Affiliation(s)
- Zhou Song
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Bo Wei
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Canrong Lu
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Xiaohui Huang
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Peiyu Li
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Lin Chen
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
81
|
Lei Y, Yi Y, Liu Y, Liu X, Keller ET, Qian CN, Zhang J, Lu Y. Metformin targets multiple signaling pathways in cancer. CHINESE JOURNAL OF CANCER 2017; 36:17. [PMID: 28126011 PMCID: PMC5270304 DOI: 10.1186/s40880-017-0184-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
Abstract
Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.
Collapse
Affiliation(s)
- Yong Lei
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China.,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China
| | - Yanhua Yi
- School for International Education, Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yang Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China.,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China.,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China. .,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China. .,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yi Lu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China. .,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China.
| |
Collapse
|
82
|
Seabloom DE, Galbraith AR, Haynes AM, Antonides JD, Wuertz BR, Miller WA, Miller KA, Steele VE, Miller MS, Clapper ML, O'Sullivan MG, Ondrey FG. Fixed-Dose Combinations of Pioglitazone and Metformin for Lung Cancer Prevention. Cancer Prev Res (Phila) 2017; 10:116-123. [PMID: 28052934 DOI: 10.1158/1940-6207.capr-16-0232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/01/2016] [Accepted: 12/11/2016] [Indexed: 01/06/2023]
Abstract
Combination treatment with pioglitazone and metformin is utilized clinically in the treatment of type II diabetes. Treatment with this drug combination reduced the development of aerodigestive cancers in this patient population. Our goal is to expand this treatment into clinical lung cancer chemoprevention. We hypothesized that dietary delivery of metformin/pioglitazone would prevent lung adenoma formation in A/J mice in a benzo[a]pyrene (B[a]P)-induced carcinogenesis model while modulating chemoprevention and anti-inflammatory biomarkers in residual adenomas. We found that metformin (500 and 850 mg/kg/d) and pioglitazone (15 mg/kg/d) produced statistically significant decreases in lung adenoma formation both as single-agent treatments and in combination, compared with untreated controls, after 15 weeks. Treatment with metformin alone and in combination with pioglitazone resulted in statistically significant decreases in lung adenoma formation at both early- and late-stage interventions. Pioglitazone alone resulted in significant decreases in adenoma formation only at early treatment intervention. We conclude that oral metformin is a viable chemopreventive treatment at doses ranging from 500 to 1,000 mg/kg/d. Pioglitazone at 15 mg/kg/d is a viable chemopreventive agent at early-stage interventions. Combination metformin and pioglitazone performed equal to metformin alone and better than pioglitazone at 15 mg/kg/d. Because the drugs are already FDA-approved, rapid movement to human clinical studies is possible. Cancer Prev Res; 10(2); 116-23. ©2017 AACR.
Collapse
Affiliation(s)
- Donna E Seabloom
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,AeroCore Inhalation Testing, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | | - Anna M Haynes
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,AeroCore Inhalation Testing, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | | - Beverly R Wuertz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,AeroCore Inhalation Testing, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.,Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - Wendy A Miller
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - Kimberly A Miller
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Mark Steven Miller
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | | | - M Gerard O'Sullivan
- Comparative Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Frank G Ondrey
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. .,AeroCore Inhalation Testing, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.,Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
83
|
Morgan SJ, Neumann S, Marcus-Samuels B, Gershengorn MC. Thyrotropin and Insulin-Like Growth Factor 1 Receptor Crosstalk Upregulates Sodium-Iodide Symporter Expression in Primary Cultures of Human Thyrocytes. Thyroid 2016; 26:1794-1803. [PMID: 27638195 PMCID: PMC5175432 DOI: 10.1089/thy.2016.0323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major regulation of thyroid gland function is mediated by thyrotropin (TSH) activating the TSH receptor (TSHR) and inducing upregulation of genes involved in thyroid hormone synthesis. Evidence suggests that the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) may play a role in regulating TSHR functional effects. This study examined the potential role of TSHR/IGF-1R crosstalk in primary cultures of human thyrocytes. RESULTS TSH/IGF-1 co-treatment elicited additive effects on thyroglobulin (TG), thyroperoxidase (TPO), and deiodinase type 2 (DIO2) mRNA levels but synergistic effects on sodium-iodide symporter (NIS) mRNA. Similar cooperativity was seen on the level of TG protein secretion (additive) and NIS protein expression (synergistic). The IGF-1R tyrosine kinase inhibitor linsitinib inhibited TSH-stimulated upregulation of NIS but not TG, indicating that NIS regulation is in part IGF-1R dependent and occurs via receptor crosstalk. Cooperativity was not seen at the level of cAMP/protein kinase A (PKA) signaling, IGF-1R phosphorylation, or Akt activation. However, TSH and IGF-1 synergistically activated ERK1/2. Pharmacological inhibition of ERK1/2 by the MEK1/2 inhibitor U0126 and of Akt by MK-2206 virtually abolished NIS stimulation by TSH and the synergistic effect of IGF-1. CONCLUSION As linsitinib inhibited upregulation of NIS stimulated by TSH alone, it is concluded that crosstalk between TSHR and IGF-1R, without agonist activation of IGF-1R, plays a role in NIS regulation in human thyrocytes via a mechanism involving ERK1/2 and/or Akt. Fully understanding the nature of this crosstalk has clinical implications for the treatment of thyroid diseases, including thyroid cancer.
Collapse
Affiliation(s)
- Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
84
|
Law NC, White MF, Hunzicker-Dunn ME. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway. J Biol Chem 2016; 291:27160-27169. [PMID: 27856640 DOI: 10.1074/jbc.m116.763235] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser318, Ser346, Ser612, and Ser789, and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.
Collapse
Affiliation(s)
- Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| | - Morris F White
- the Division of Endocrinology, Dept. of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| |
Collapse
|
85
|
Ochnik AM, Baxter RC. Combination therapy approaches to target insulin-like growth factor receptor signaling in breast cancer. Endocr Relat Cancer 2016; 23:R513-R536. [PMID: 27733416 DOI: 10.1530/erc-16-0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor receptor (IGF1R) signaling as a therapeutic target has been widely studied and clinically tested. Despite the vast amount of literature supporting the biological role of IGF1R in breast cancer, effective clinical translation in targeting its activity as a cancer therapy has not been successful. The intrinsic complexity of cancer cell signaling mediated by many tyrosine kinase growth factor receptors that work together to modulate each other and intracellular downstream mediators in the cell highlights that studying IGF1R expression and activity as a prognostic factor and therapeutic target in isolation is certainly associated with problems. This review discusses the current literature and clinical trials associated with IGF-1 signaling and attempts to look at new ways of designing novel IGF1R-directed breast cancer therapy approaches to target its activity
and/or intracellular downstream signaling pathways in IGF1R-expressing breast cancers.
Collapse
Affiliation(s)
- Aleksandra M Ochnik
- Kolling Institute of Medical ResearchUniversity of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Robert C Baxter
- Kolling Institute of Medical ResearchUniversity of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
86
|
Novel Functional Role of NK3R Expression in the Potentiating Effects on Somatolactin α Autoregulation in grass carp pituitary cells. Sci Rep 2016; 6:36102. [PMID: 27786296 PMCID: PMC5081563 DOI: 10.1038/srep36102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/10/2016] [Indexed: 11/08/2022] Open
Abstract
In our previous study, NKB/NK3R system has been shown to act at the pituitary level to up-regulate SLα synthesis and secretion in grass carp. However, whether NK3R expression can serve as a regulatory target at the pituitary level and contribute to NKB interactions with other SLα regulators is still unclear. In current study, using grass carp pituitary cells as a model, we have a novel finding that co-treatment of SLα/SLβ with carp TAC3 gene products, could induce a noticeable enhancement in SLα mRNA expression and these potentiating effects occurred with a parallel rise in NK3R transcript level after SLα/SLβ treatment. Interestingly, the stimulatory effects of SLα/SLβ on NK3R gene expression could be further potentiated by co-treatment with IGF-I/-II and simultaneous exposure of carp pituitary cells to SLα/SLβ and IGF-I/-II in the presence of TAC3 gene products was found to markedly elevated SLα mRNA expression (20 fold increase) and this synergistic stimulation was mediated by cAMP/PKA-, PLC/PKC- and Ca2+ -dependent cascades functionally coupled with NK3R activation. These findings suggest that local release of SLα via functional interactions with IGF-I/-II and TAC3/NK3R system may constitute a potent stimulatory signal for SLα gene expression in the carp pituitary via up-regulation of NK3R expression.
Collapse
|
87
|
Bhaw-Luximon A, Jhurry D. Metformin in pancreatic cancer treatment: from clinical trials through basic research to biomarker quantification. J Cancer Res Clin Oncol 2016; 142:2159-71. [PMID: 27160287 DOI: 10.1007/s00432-016-2178-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Three major chemotherapy strategies have emerged in the treatment of PDAC in the recent past: multiple drug combination, stroma depletion, and use of nanodrug therapy. Anti-diabetic metformin was shown to improve the outcome of a number of cancer types the first seminal report on an observational study published in 2005 and the first hospital-based case-control study on pancreatic cancer in 2009. METHODS In this review paper, we confront the findings of a selected number of epidemiological studies and clinical trials on the use of metformin in pancreatic cancer treatment with basic knowledge and research. We particularly emphasize on the point that contradictory clinical results likely originate from heterogeneous study design due to a trial and error approach rather than an evidence-based and scientific approach. A non-rigorous selection of patients suffering from PDAC and often a poor understanding of the biological mechanism of metformin coupled with lack of scientific data has led to general statements on metformin positive or negative action, another aspect which we highlight in the review. RESULTS We here present a few pathways which in our opinion are predominant for pancreatic cancer specifically: mitochondrial activity, AMPK activation, mTOR inhibition, and decreased IGF-1R and HIF-1α expression. CONCLUSION We stress on the need for a better stratification of patients and a more rigorous planning of clinical trials not only focusing on classical parameters but also on potential predictive biomarkers (AMPK, mTOR, HIF-1α, IGF-1R) and metformin dosage for positive outcome.
Collapse
Affiliation(s)
- Archana Bhaw-Luximon
- Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Dhanjay Jhurry
- Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, MSIRI Building, Réduit, Mauritius.
| |
Collapse
|
88
|
Feng HY, Chen YC. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective. World J Gastroenterol 2016; 22:7463-77. [PMID: 27672269 PMCID: PMC5011662 DOI: 10.3748/wjg.v22.i33.7463] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis.
Collapse
|
89
|
Jiang W, Finniss S, Cazacu S, Xiang C, Brodie Z, Mikkelsen T, Poisson L, Shackelford DB, Brodie C. Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma. Oncotarget 2016; 7:56456-56470. [PMID: 27486821 PMCID: PMC5302927 DOI: 10.18632/oncotarget.10919] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication.
Collapse
Affiliation(s)
- Wei Jiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Susan Finniss
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Simona Cazacu
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Cunli Xiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Ziv Brodie
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Tom Mikkelsen
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Laila Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - David B. Shackelford
- Department of Pulmonary and Critical Care Medicine, UCLA David Geffen School of Medicine Los Angeles, CA, USA
| | - Chaya Brodie
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
90
|
Barone E, Corrado A, Gemignani F, Landi S. Environmental risk factors for pancreatic cancer: an update. Arch Toxicol 2016; 90:2617-2642. [PMID: 27538405 DOI: 10.1007/s00204-016-1821-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is one of the most aggressive diseases. Only 10 % of all PC cases are thought to be due to genetic factors. Here, we analyzed the most recently published case-control association studies, meta-analyses, and cohort studies with the aim to summarize the main environmental factors that could have a role in PC. Among the most dangerous agents involved in the initiation phase, there are the inhalation of cigarette smoke, and the exposure to mutagenic nitrosamines, organ-chlorinated compounds, heavy metals, and ionizing radiations. Moreover, pancreatitis, high doses of alcohol drinking, the body microbial infections, obesity, diabetes, gallstones and/or cholecystectomy, and the accumulation of asbestos fibers seem to play a crucial role in the progression of the disease. However, some of these agents act both as initiators and promoters in pancreatic acinar cells. Protective agents include dietary flavonoids, marine omega-3, vitamin D, fruit, vegetables, and the habit of regular physical activity. The identification of the factors involved in PC initiation and progression could be of help in establishing novel therapeutic approaches by targeting the molecular signaling pathways responsive to these stimuli. Moreover, the identification of these factors could facilitate the development of strategies for an early diagnosis or measures of risk reduction for high-risk people.
Collapse
Affiliation(s)
- Elisa Barone
- Genetic Unit, Department of Biology, University of Pisa, Via Derna, 1, 56121, Pisa, Italy
| | - Alda Corrado
- Genetic Unit, Department of Biology, University of Pisa, Via Derna, 1, 56121, Pisa, Italy
| | - Federica Gemignani
- Genetic Unit, Department of Biology, University of Pisa, Via Derna, 1, 56121, Pisa, Italy
| | - Stefano Landi
- Genetic Unit, Department of Biology, University of Pisa, Via Derna, 1, 56121, Pisa, Italy.
| |
Collapse
|
91
|
Krieger CC, Place RF, Bevilacqua C, Marcus-Samuels B, Abel BS, Skarulis MC, Kahaly GJ, Neumann S, Gershengorn MC. TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis. J Clin Endocrinol Metab 2016; 101:2340-7. [PMID: 27043163 PMCID: PMC4891793 DOI: 10.1210/jc.2016-1315] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT The TSH receptor (TSHR) is considered the main target of stimulatory autoantibodies in the pathogenesis of Graves' ophthalmopathy (GO); however, it has been suggested that stimulatory IGF-1 receptor (IGF-1R) autoantibodies also play a role. OBJECTIVE We previously demonstrated that a monoclonal stimulatory TSHR antibody, M22, activates TSHR/IGF-1R cross talk in orbital fibroblasts/preadipocytes obtained from patients with GO (GO fibroblasts [GOFs]). We show that cross talk between TSHR and IGF-1R, not direct IGF-1R activation, is involved in the mediation of GO pathogenesis stimulated by Graves' autoantibodies. DESIGN/SETTING/PARTICIPANTS Immunoglobulins were purified from the sera of 57 GO patients (GO-Igs) and tested for their ability to activate TSHR and/or IGF-1R directly and TSHR/IGF-1R cross talk in primary cultures of GOFs. Cells were treated with M22 or GO-Igs with or without IGF-1R inhibitory antibodies or linsitinib, an IGF-1R kinase inhibitor. MAIN OUTCOME MEASURES Hyaluronan (hyaluronic acid [HA]) secretion was measured as a major biological response for GOF stimulation. IGF-1R autophosphorylation was used as a measure of direct IGF-1R activation. TSHR activation was determined through cAMP production. RESULTS A total of 42 out of 57 GO-Ig samples stimulated HA secretion. None of the GO-Ig samples exhibited evidence for IGF-1R autophosphorylation. Both anti-IGF-1R antibodies completely inhibited IGF-1 stimulation of HA secretion. By contrast, only 1 IGF-1R antibody partially blocked HA secretion stimulated by M22 or GO-Igs in a manner similar to linsitinib, whereas the other IGF-1R antibody had no effect on M22 or GO-Ig stimulation. These findings show that the IGF-1R is involved in GO-Igs stimulation of HA secretion without direct activation of IGF-1R. CONCLUSIONS IGF-1R activation by GO-Igs occurs via TSHR/IGF-1R cross talk rather than direct binding to IGF-1R, and this cross talk is important in the pathogenesis of GO.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Robert F Place
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Carmine Bevilacqua
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Brent S Abel
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Monica C Skarulis
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - George J Kahaly
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology (C.C.K., R.F.P., C.B., B.M.-S., S.N., M.C.G.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Nova Therapeutics LLC (R.F.P.), Pasadena, California; Diabetes, Endocrinology, and Obesity Branch (B.S.A., M.C.S.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Johannes Gutenberg University Medical Center (G.J.K.), Mainz, Germany
| |
Collapse
|
92
|
Sośnicki S, Kapral M, Węglarz L. Molecular targets of metformin antitumor action. Pharmacol Rep 2016; 68:918-25. [PMID: 27362768 DOI: 10.1016/j.pharep.2016.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 12/28/2022]
Abstract
Epidemiological studies have shown that metformin, a first line therapeutic agent for diabetes mellitus, reduced the risk of developing various malignancies. Several preclinical studies established some possible mechanisms of its anticancer effects. The primary effect of metformin action is a decrease in cell energy status, which activates AMP-activated kinase (AMPK), a cellular metabolic sensor. This event is followed by a decrease in serum concentrations of insulin and insulin growth factor I (IGF-I), the potent mitogens for cancer cells. In addition to the indirect mode of action, metformin may exhibit direct inhibitory effect on cancer cells by targeting mammalian target of rapamycin (mTOR) signaling and anabolic processes. This review gathers information on mechanisms of metformin antitumor activity, with special attention given to the impact of this antidiabetic drug on insulin/PI3K/mTOR and AMPK signaling. Furthermore, the factors required for this novel activity of metformin are discussed.
Collapse
Affiliation(s)
- Stanisław Sośnicki
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biochemistry, Sosnowiec, Poland.
| | - Małgorzata Kapral
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biochemistry, Sosnowiec, Poland.
| | - Ludmiła Węglarz
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biochemistry, Sosnowiec, Poland.
| |
Collapse
|
93
|
Dai X, Pang W, Zhou Y, Yao W, Xia L, Wang C, Chen X, Zen K, Zhang CY, Yuan Y. Altered profile of serum microRNAs in pancreatic cancer-associated new-onset diabetes mellitus. J Diabetes 2016; 8:422-33. [PMID: 25991015 DOI: 10.1111/1753-0407.12313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND New-onset diabetes mellitus in pancreatic cancer has been recognized as a paraneoplastic phenomenon caused by the existence of the tumor. Circulating microRNAs (miRNAs) are emerging as non-invasive biomarkers for the detection of various cancers. In the present study, we hypothesized that a specific serum miRNA profile exists in pancreatic cancer-associated new-onset diabetes mellitus (PaC-DM). METHODS Initial screening of differentially expressed miRNAs in pooled serum samples from 25 PaC-DM patients, 25 non-cancer new-onset type 2 diabetes mellitus (T2DM) patients, and 25 healthy controls was performed by TaqMan low-density arrays (TLDA). A stem-loop quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to confirm the relative concentrations of candidate miRNAs in 80 PaC-DM, 85 non-cancer new-onset T2DM patients, and 80 healthy controls. RESULTS The TLDA identified 16 serum miRNAs that were significantly increased in PaC-DM samples. A combination of six serum miRNAs (miR-483-5p, miR-19a, miR-29a, miR-20a, miR-24, miR-25) was selected by qRT-PCR as a biomarker for PaC-DM. The area under the receiver operating characteristic curve (AUC) for the six-miRNA panel training and validation sets was 0.959 (95% confidence interval [CI] 0.890-1.028) and 0.902 (95% CI 0.844-0.955), respectively. The combination of these six miRNAs enabled the discrimination of PaC-DM from non-cancer new-onset T2DM with an AUC of 0.885 (95% CI 0.784-0.986) and 0.887 (95% CI 0.823-0.952) for the training and validation sets, respectively. CONCLUSION The six-serum miRNA panel may have potential as a biomarker for the accurate diagnosis and discrimination of PaC-DM from healthy controls and non-cancer new-onset T2DM.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjing Pang
- Department of Gastroenterology, Tianyou Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Yufeng Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Xia
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Wang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yaozong Yuan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
94
|
Iriana S, Ahmed S, Gong J, Annamalai AA, Tuli R, Hendifar AE. Targeting mTOR in Pancreatic Ductal Adenocarcinoma. Front Oncol 2016; 6:99. [PMID: 27200288 PMCID: PMC4843105 DOI: 10.3389/fonc.2016.00099] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Treatment options for advanced pancreatic ductal adenocarcinoma (PDAC) are limited; however, new therapies targeting specific tumor-related molecular characteristics may help certain patient cohorts. Emerging preclinical data have shown that inhibition of mammalian target of rapamycin (mTOR) in specific KRAS-dependent PDAC subtypes leads to inhibition of tumorigenesis in vitro and in vivo. Early phase II studies of mono-mTOR inhibition have not shown promise. However, studies have shown that combined inhibition of multiple steps along the mTOR signaling pathway may lead to sustained responses by targeting mechanisms of tumor resistance. Coordinated inhibition of mTOR along with specific KRAS-dependent mutations in molecularly defined PDAC subpopulations may offer a viable alternative for treatment in the future.
Collapse
Affiliation(s)
- Sentia Iriana
- Department of Medicine, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Shahzad Ahmed
- Department of Medicine, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Jun Gong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Andrew Eugene Hendifar
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| |
Collapse
|
95
|
Phase I dose escalation study of temsirolimus in combination with metformin in patients with advanced/refractory cancers. Cancer Chemother Pharmacol 2016; 77:973-7. [PMID: 27014780 DOI: 10.1007/s00280-016-3009-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Mammalian target of rapamycin (mTOR) inhibitors like temsirolimus may result in undesirable AKT upregulation. Metformin inhibits mTOR through different mechanisms and may enhance temsirolimus's antitumor activity. We conducted an open-label phase I dose escalation trial of this drug combination in patients with advanced/refractory cancers. METHODS Temsirolimus, 25 mg weekly, was combined with an escalating daily dose of metformin (level 1: 500; level 2: 1000; level 3: 1500; level 4: 2000 mg) by utilizing a standard 3 + 3 trial design. Treatment was administered in 28-day cycles following initial 2-week metformin titration during the first cycle. RESULTS Twenty-one patients (median age, 56 years) with sarcoma (n = 8), colorectal (n = 3), endometrial (n = 4), uterine carcinosarcoma (n = 2), ovarian (n = 2), and other (n = 2) cancers were enrolled. Patients had received median of four prior systemic treatments. Two dose-limiting toxicities were observed (grade 3 mucositis, grade 3 renal failure); both patients continued treatment after dose modification. Fifty-six percent patients had stable disease as best response; clinical benefit rate was 22 %. Patients continued treatment for median of 11 weeks. CONCLUSIONS Combination temsirolimus/metformin was well tolerated with modestly promising effectiveness among this heavily pretreated patient cohort. We recommend a dose of temsirolimus 25 mg weekly and metformin 2000 mg daily for phase II study.
Collapse
|
96
|
Ambe CM, Mahipal A, Fulp J, Chen L, Malafa MP. Effect of Metformin Use on Survival in Resectable Pancreatic Cancer: A Single-Institution Experience and Review of the Literature. PLoS One 2016; 11:e0151632. [PMID: 26967162 PMCID: PMC4788143 DOI: 10.1371/journal.pone.0151632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/02/2016] [Indexed: 12/16/2022] Open
Abstract
Observational studies have demonstrated that metformin use in diabetic patients is associated with reduced cancer incidence and mortality. Here, we aimed to determine whether metformin use was associated with improved survival in patients with resected pancreatic cancer. All patients with diabetes who underwent resection for pancreatic adenocarcinoma between 12/1/1986 and 4/30/2013 at our institution were categorized by metformin use. Survival analysis was done using the Kaplan-Meier method, with log-rank test and Cox proportional hazards multivariable regression models. For analyses of our data and the only other published study, we used Meta-Analysis version 2.2. We identified 44 pancreatic cancer patients with diabetes who underwent resection of the primary tumor (19 with ongoing metformin use, 25 never used metformin). There were no significant differences in major clinical and demographic characteristics between metformin and non-metformin users. Metformin users had a better median survival than nonusers, but the difference was not statistically significant (35.3 versus 20.2 months; P = 0.3875). The estimated 2-, 3-, and 5-year survival rates for non-metformin users were 42%, 28%, and 14%, respectively. Metformin users fared better with corresponding rates of 68%, 34%, and 34%, respectively. In our literature review, which included 111 patients from the two studies (46 metformin users and 65 non-users), overall hazard ratio was 0.668 (95% CI 0.397–1.125), with P = 0.129. Metformin use was associated with improved survival outcomes in patients with resected pancreatic cancer, but the difference was not statistically significant. The potential benefit of metformin should be investigated in adequately powered prospective studies.
Collapse
Affiliation(s)
- Chenwi M. Ambe
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Amit Mahipal
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jimmy Fulp
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Lu Chen
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Mokenge P. Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
97
|
Smith JP, Fonkoua LK, Moody TW. The Role of Gastrin and CCK Receptors in Pancreatic Cancer and other Malignancies. Int J Biol Sci 2016; 12:283-91. [PMID: 26929735 PMCID: PMC4753157 DOI: 10.7150/ijbs.14952] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gastrointestinal (GI) peptide gastrin is an important regulator of the release of gastric acid from the stomach parietal cells and it also plays an important role in growth of the gastrointestinal tract. It has become apparent that gastrin and its related peptide cholecystokinin (CCK) are also significantly involved with growth of GI cancers as well as other malignancies through activation of the cholecystokinin-B (CCK-B) receptor. Of interest, gastrin is expressed in the embryologic pancreas but not in the adult pancreas; however, gastrin becomes re-expressed in pancreatic cancer where it stimulates growth of this malignancy by an autocrine mechanism. Strategies to down-regulate gastrin or interfere with its interface with the CCK receptor with selective antibodies or receptor antagonists hold promise for the treatment of pancreatic cancer and other gastrin--responsive tumors.
Collapse
Affiliation(s)
- Jill P Smith
- 1. Department of Medicine, Georgetown University, Washington, DC, USA
| | - Lionel K Fonkoua
- 2. Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Terry W Moody
- 3. National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
98
|
Current anti-diabetes mechanisms and clinical trials using Morus alba L. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [DOI: 10.1016/j.jtcms.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
99
|
Cui X, Liu Y, Wang B, Xian G, Liu X, Tian X, Qin C. Knockdown of GPR137 by RNAi inhibits pancreatic cancer cell growth and induces apoptosis. Biotechnol Appl Biochem 2015; 62:861-7. [PMID: 25471990 DOI: 10.1002/bab.1326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of cell-surface molecules involved in a number of biological and pathological processes, have recently emerged as key players in carcinogenesis and cancer progression. Orphan G protein-coupled receptors (oGPCRs) are a group of proteins lacking endogenous ligands. GPR137, one of the novel oGPCR genes, was discovered by homology screening. However, the biological role of GPR137 in cancers has not yet been discussed and is of great therapeutic interest. In this study, we knocked down GPR137 via a lentivirus system in two human pancreatic cancer cell lines BXPC-3 and PANC-1. Knockdown of GPR137 strongly inhibited cell proliferation and colony formation. Flow cytometry showed that cell cycle was arrested in the sub-G1 phase and apoptotic cells were significantly increased after GPR137 knockdown. Western blotting confirmed that GPR137 silencing induced apoptosis due to cleavage of PARP (poly ADP-ribose polymerase) and upregulation of caspase 3. Furthermore, lentivirus-mediated overexpression of GPR137 promoted the proliferation of PANC-1 cells, suggesting GPR137 as a potential oncogene in pancreatic cancer cells. Taken together, our results prove the importance of GPR137 as a crucial regulator in controlling cancer cell growth and apoptosis.
Collapse
Affiliation(s)
- Xianping Cui
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Yanguo Liu
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Bo Wang
- Department of immunology, Shandong University School of Medicine, Jinan, People's Republic of China
| | - Guozhe Xian
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Xin Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
100
|
Reni M, Dugnani E, Cereda S, Belli C, Balzano G, Nicoletti R, Liberati D, Pasquale V, Scavini M, Maggiora P, Sordi V, Lampasona V, Ceraulo D, Di Terlizzi G, Doglioni C, Falconi M, Piemonti L. (Ir)relevance of Metformin Treatment in Patients with Metastatic Pancreatic Cancer: An Open-Label, Randomized Phase II Trial. Clin Cancer Res 2015; 22:1076-85. [PMID: 26459175 DOI: 10.1158/1078-0432.ccr-15-1722] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/04/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE We aimed to assess the safety and efficacy of metformin for treating patients with metastatic pancreatic cancer and to identify endocrine and metabolic phenotypic features or tumor molecular markers associated with sensitivity to metformin antineoplastic action. EXPERIMENTAL DESIGN We designed an open-label, randomized, phase II trial to assess the efficacy of adding metformin to a standard systemic therapy with cisplatin, epirubicin, capecitabine, and gemcitabine (PEXG) in patients with metastatic pancreatic cancer. Patients ages 18 years or older with metastatic pancreatic cancer were randomly assigned (1:1) to receive PEXG every 4 weeks in combination or not with 2 g oral metformin daily. The primary endpoint was 6-months progression-free survival (PFS-6) in the intention-to-treat population. RESULTS Between August 2010 and January 2014, we randomly assigned 60 patients to receive PEXG with (n = 31) or without metformin (n = 29). At the preplanned interim analysis, the study was ended for futility. PFS-6 was 52% [95% confidence interval (CI), 33-69] in the control group and 42% (95% CI, 24-59) in the metformin group (P = 0.61). Furthermore, there was no difference in disease-free survival and overall survival between groups. Despite endocrine metabolic modifications induced by metformin, there was no correlation with the outcome. Single-nucleotide polymorphism rs11212617 predicted glycemic response, but not tumor response to metformin. Gene expression on tumor tissue did not predict tumor response to metformin. CONCLUSIONS Addition of metformin at the dose commonly used in diabetes did not improve outcome in patients with metastatic pancreatic cancer treated with standard systemic therapy. See related commentary by Yang and Rustgi, p. 1031.
Collapse
Affiliation(s)
- Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Erica Dugnani
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cereda
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Belli
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Balzano
- Pancreatic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Nicoletti
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Liberati
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Pasquale
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Scavini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maggiora
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Domenica Ceraulo
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaetano Di Terlizzi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy. Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|