51
|
Xue KH, Jiang YF, Bai JY, Zhang DZ, Chen YH, Ma JB, Zhu ZJ, Wang X, Guo P. Melatonin suppresses Akt/mTOR/S6K activity, induces cell apoptosis, and synergistically inhibits cell growth with sunitinib in renal carcinoma cells via reversing Warburg effect. Redox Rep 2023; 28:2251234. [PMID: 37642220 PMCID: PMC10472857 DOI: 10.1080/13510002.2023.2251234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Metabolic alteration drives renal cell carcinoma (RCC) development, while the impact of melatonin (MLT), a neurohormone secreted during darkness, on RCC cell growth and underlying mechanisms remains unclear. METHODS We detected concentration of metabolites through metabolomic analyses using UPLC-MS/MS, and the oxygen consumption rate was determined using the Seahorse Extracellular Flux analyzer. RESULTS We observed that MLT effectively inhibited RCC cell growth both in vitro and in vivo. Additionally, MLT increased ROS levels, suppressed antioxidant enzyme activity, and induced apoptosis. Furthermore, MLT treatment upregulated key TCA cycle metabolites while reducing aerobic glycolysis products, leading to higher oxygen consumption rate, ATP production, and membrane potential. Moreover, MLT treatment suppressed phosphorylation of Akt, mTOR, and p70 S6 Kinase as well as the expression of HIF-1α/VEGFA in RCC cells; these effects were reversed by NAC (ROS inhibitors). Conversely, MLT synergistically inhibited cell growth with sunitinib and counteracted the Warburg effect induced by sunitinib in RCC cells. CONCLUSIONS In conclusion, our results indicate that MLT treatment reverses the Warburg effect and promotes intracellular ROS production, which leads to the suppression of Akt/mTOR/S6K signaling pathway, induction of cell apoptosis, and synergistically inhibition of cell growth with sunitinib in RCC cells. Overall, this study provides new insights into the mechanisms underlying anti-tumor effect of MLT in RCC cells, and suggests that MLT might be a promising therapeutic for RCC.
Collapse
Affiliation(s)
- Kai-Hua Xue
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi-Fan Jiang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Ji-Yu Bai
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Di-Ze Zhang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yu-Hang Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jian-Bin Ma
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Zhi-Jing Zhu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, People’s Republic of China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, People’s Republic of China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, People’s Republic of China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, People’s Republic of China
| |
Collapse
|
52
|
Muñoz JP, Calaf GM. Downregulation of Glycine N-Acyltransferase in Kidney Renal Clear Cell Carcinoma: A Bioinformatic-Based Screening. Diagnostics (Basel) 2023; 13:3505. [PMID: 38066746 PMCID: PMC10706668 DOI: 10.3390/diagnostics13233505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Clear cell renal cell carcinoma (KIRC) is the most common subtype of renal cell carcinoma (RCC). This form of cancer is characterized by resistance to traditional therapies and an increased likelihood of metastasis. A major factor contributing to the pathogenesis of KIRC is the alteration of metabolic pathways. As kidney cancer is increasingly considered a metabolic disease, there is a growing need to understand the enzymes involved in the regulation of metabolism in tumorigenic cells. In this context, our research focused on glycine N-acyltransferase (GLYAT), an enzyme known to play a role in various metabolic diseases and cancer. Here, through a bioinformatic analysis of public databases, we performed a characterization of GLYAT expression levels in KIRC cases. Our goal is to evaluate whether GLYAT could serve as a compelling candidate for an in-depth study, given its pivotal role in metabolic regulation and previously established links to other malignancies. The analysis showed a marked decrease in GLYAT expression in all stages and grades of KIRC, regardless of mutation rates, suggesting an alternative mechanism of regulation along the tumor development. Additionally, we observed a hypomethylation in the GLYAT promoter region and a negative correlation between the expression of the GLYAT and the levels of cancer-associated fibroblasts. Finally, the data show a correlation between higher levels of GLYAT expression and better patient prognosis. In conclusion, this article underscores the potential of GLYAT as a diagnostic and prognostic marker in KIRC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
53
|
Hu P, Li K, Peng X, Kan Y, Li H, Zhu Y, Wang Z, Li Z, Liu HY, Cai D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023; 15:4772. [PMID: 38004166 PMCID: PMC10674366 DOI: 10.3390/nu15224772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid metabolic diseases have substantial morbidity and mortality rates, posing a significant threat to human health. PPARα, a member of the peroxisome proliferator-activated receptors (PPARs), plays a crucial role in lipid metabolism and immune regulation. Recent studies have increasingly recognized the pivotal involvement of PPARα in diverse pathological conditions. This comprehensive review aims to elucidate the multifaceted role of PPARα in metabolic diseases including liver diseases, diabetes-related diseases, age-related diseases, and cancers, shedding light on the underlying molecular mechanisms and some regulatory effects of natural/synthetic ligands of PPARα. By summarizing the latest research findings on PPARα, we aim to provide a foundation for the possible therapeutic exploitation of PPARα in lipid metabolic diseases.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yanli Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Ziyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
54
|
Liu X, Ren J, Zhou R, Wen Z, Wen Z, Chen Z, He S, Zhang H. Construction of iron metabolism-related prognostic features of gastric cancer based on RNA sequencing and TCGA database. BMC Cancer 2023; 23:1106. [PMID: 37957566 PMCID: PMC10644585 DOI: 10.1186/s12885-023-11569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Researches have manifested that the disorder of iron metabolism is participated in Gastric cancer (GC), but whether iron metabolism-relevant genes (IMRGs) is related to the survival outcome of GC remain unknown. METHODS Eleven tumor as well as nine adjacent normal tissues from GC patients were underwent mRNA sequencing, and the The Cancer Genome Atlas Stomach Cancer (TCGA-STAD) datasets were acquired from the TCGA database. Cox analyses and least absolute shrinkage and selection operator (LASSO) regression were applied to build a IMRGs signature. The relationship between signature genes and the infiltration profiling of 24 immune cells were investigated using single-sample GSEA (ssGSEA). Meanwhile, the potential biological significance, genes that act synergistically with signature genes, and the upstream regulatory targets were predicted. Finally, the abundance of the signature genes were measured via the quantitative real-time PCR (qRT-PCR). RESULTS A IMRGs signature was constructed according to the expression and corresponding coefficient of DOHH, P4HA3 and MMP1 (The Schoenfeld individual test showed risk score was not significant with P values = 0.83). The prognostic outcome of patients in the high-risk group was terrible (p < 0.05). Receiver operating characteristic (ROC) curves confirmed that the IMRGs signature presented good efficiency for predicting GC prognosis (AUC > 0.6). The nomogram was performed well for clinical utilize (C-index = 0.60), and the MMP1 expression significantly increased in the cohorts at age > 60 and Stage II-IV (p < 0.05). The positive correlation of P4HA3 and MMP1 expression as well as the negative correlation of DOHH expression with risk score (p < 0.0001) and worse prognosis (p < 0.05) were detected as well. Furthermore, 11 differential immune cells were associated with these signature genes (most p < 0.01). Finally, qRT-PCR revealed that the abundance of DOHH, P4HA3 and MMP1 were high in tumor cases, indicating the complex mechanism between the high expression of DOHH as a protective factor and the high expression of P4HA3 and MMP1 as the risk factors in the development of GC. CONCLUSION An iron metabolism-related signature was constructed and has significant values for foretelling the OS of GC.
Collapse
Affiliation(s)
- Xihong Liu
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Junyu Ren
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ruize Zhou
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhengqi Wen
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhengwei Wen
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zihao Chen
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shanshan He
- Department of Oncology First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongbin Zhang
- Department of Pediatric Surgery First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, P. R. China.
| |
Collapse
|
55
|
Crooks DR, Cawthon GM, Fitzsimmons CM, Perez M, Ricketts CJ, Vocke CD, Yang Y, Middelton L, Nielsen D, Schmidt LS, Tandon M, Merino MJ, Ball MW, Meier JL, Batista PJ, Linehan WM. Cryptic splice mutation in the fumarate hydratase gene in patients with clinical manifestations of Hereditary Leiomyomatosis and Renal Cell Cancer. Hum Mol Genet 2023; 32:3135-3145. [PMID: 37561409 PMCID: PMC10630246 DOI: 10.1093/hmg/ddad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant condition characterized by the development of cutaneous and uterine leiomyomas and risk for development of an aggressive form of papillary renal cell cancer. HLRCC is caused by germline inactivating pathogenic variants in the fumarate hydratase (FH) gene, which encodes the enzyme that catalyzes the interconversion of fumarate and L-malate. We utilized enzyme and protein mobility assays to evaluate the FH enzyme in a cohort of patients who showed clinical manifestations of HLRCC but were negative for known pathogenic FH gene variants. FH enzyme activity and protein levels were decreased by 50% or greater in three family members, despite normal FH mRNA expression levels as measured by quantitative PCR. Direct Nanopore RNA sequencing demonstrated 57 base pairs of retained intron sequence between exons 9 and 10 of polyadenylated FH mRNA in these patients, resulting in a truncated FH protein. Genomic sequencing revealed a heterozygous intronic alteration of the FH gene (chr1: 241498239 T/C) resulting in formation of a splice acceptor site near a polypyrimidine tract, and a uterine fibroid obtained from a patient showed loss of heterozygosity at this site. The same intronic FH variant was identified in an unrelated patient who also showed a clinical phenotype of HLRCC. These data demonstrate that careful clinical assessment as well as biochemical characterization of FH enzyme activity, protein expression, direct RNA sequencing, and genomic DNA sequencing of patient-derived cells can identify pathogenic variants outside of the protein coding regions of the FH gene.
Collapse
Affiliation(s)
- Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Geetha Mariah Cawthon
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Christina M Fitzsimmons
- RNA Metabolism and Epitranscriptomics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Minervo Perez
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyles St., Frederick, MD 21072, United States
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Lindsay Middelton
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Debbie Nielsen
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, 1050 Boyles St. Frederick, MD 21701, United States
| | - Mayank Tandon
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 1050 Boyles St., Frederick, MD 21072, United States
| | - Maria J Merino
- Translational Surgical Pathology, Laboratory of Pathology Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyles St., Frederick, MD 21072, United States
| | - Pedro J Batista
- RNA Metabolism and Epitranscriptomics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - William Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
56
|
Lei G, Tang L, Yu Y, Bian W, Yu L, Zhou J, Li Y, Wang Y, Du J. The potential of targeting cuproptosis in the treatment of kidney renal clear cell carcinoma. Biomed Pharmacother 2023; 167:115522. [PMID: 37757497 DOI: 10.1016/j.biopha.2023.115522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the top ten malignancies and tumor-related causes of death worldwide. The most common histologic subtype is kidney renal clear cell carcinoma (KIRC), accounting for approximately 75% of all RCC cases. Early resection is considered the basic treatment for patients with KIRC. However, approximately 30% of these patients experience recurrence post-operation. Cuproptosis, an autonomous mechanism for controlling cell death, encompasses various molecular mechanisms and multiple cellular metabolic pathways. These pathways mainly include copper metabolic signaling pathways, mitochondrial metabolism signaling pathways, and lipoic acid pathway signaling pathways. Recent evidence shows that cuproptosis is identified as a key cell death modality that plays a meaningful role in tumor progression. However, there is no published systematic review that summarizes the correlation between cuproptosis and KIRC, despite the fact that investigations on cuproptosis and the pathogenesis of KIRC have increased in past years. Researchers have discovered that exogenous copper infusion accelerates the dysfunction of mitochondrial dysfunction and suppresses KIRC cells by inducing cuproptosis. The levels of tricarboxylic acid cycle proteins, lipoic acid protein, copper, and ferredoxin 1 (FDX1) were dysregulated in KIRC cells, and the prognosis of patients with high FDX1 expression is better than that of patients with low expression. Cuproptosis played an indispensable role in the regulation of tumor microenvironment features, tumor progression, and long-term prognosis of KIRC. In this review, we summarized the systemic and cellular metabolic processes of copper and the copper-related signaling pathways, highlighting the potential targets related to cuproptosis for KIRC treatment.
Collapse
Affiliation(s)
- Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lusheng Tang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wenxia Bian
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
57
|
Liu C, Zhou D, Yang K, Xu N, Peng J, Zhu Z. Research progress on the pathogenesis of the SDHB mutation and related diseases. Biomed Pharmacother 2023; 167:115500. [PMID: 37734265 DOI: 10.1016/j.biopha.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
With the improvement of genetic testing technology in diseases in recent years, researchers have a more detailed and clear understanding of the source of cancers. Succinate dehydrogenase B (SDHB), a mitochondrial gene, is related to the metabolic activities of cells and tissues throughout the body. The mutations of SDHB have been found in pheochromocytoma, paraganglioma and other cancers, and is proved to affect the occurrence and progress of those cancers due to the important structural functions. The importance of SDHB is attracting more and more attention of researchers, however, reviews on the structure and function of SDHB, as well as on the mechanism of its carcinogenesis is inadequate. This paper reviews the relationship between SDHB mutations and related cancers, discusses the molecular mechanism of SDHB mutations that may lead to tumor formation, analyzes the mutation spectrum, structural domains, and penetrance of SDHB and sorts out some of the previously discovered diseases. For the patients with SDHB mutation, it is recommended that people in SDHB mutation families undergo regular genetic testing or SDHB immunohistochemistry (IHC). The purpose of this paper is hopefully to provide some reference and help for follow-up researches on SDHB.
Collapse
Affiliation(s)
- Chang Liu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Dayang Zhou
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Kexin Yang
- Department of Surgical oncology, Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, 650118, China
| | - Ning Xu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Jibang Peng
- Department of Surgical oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Zhu Zhu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China.
| |
Collapse
|
58
|
Xiong M, Liu C, Li W, Jiang H, Long W, Zhou M, Yang C, Kazobinka G, Sun Y, Zhao J, Hou T. PABPN1 promotes clear cell renal cell carcinoma progression by suppressing the alternative polyadenylation of SGPL1 and CREG1. Carcinogenesis 2023; 44:576-586. [PMID: 37452741 DOI: 10.1093/carcin/bgad049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism in cancer development and progression. Poly(A) binding protein nuclear 1 (PABPN1) is a gene that encodes abundant nuclear protein, binds with high affinity to nascent poly(A) tails, and is crucial for 3'-UTR (3'-untranslated region) APA. Although PABPN1 has been recently reported as a dominant master APA regulator in clear cell renal cell carcinoma (ccRCC), the underlying functional mechanism remain unclear and the genes subject to PABPN1 regulation that contribute to ccRCC progression have not been identified. Here, we found that PABPN1 is upregulated in ccRCC, and its expression is highly associated with the clinical prognosis of ccRCC patients. PABPN1 promotes ccRCC cell proliferation, migration, invasion, and exerts an influence on sphingolipid metabolism and cell cycle. Moreover, PABPN1 depletion significantly suppressed cancer cell growth via induction of cell cycle arrest and apoptosis. In particular, we characterized PABPN1-regulated 3'-UTR APA of sphingosine-1-phosphate lyase 1 (SGPL1) and cellular repressor of E1A stimulated genes 1 (CREG1), which contribute to ccRCC progression. Collectively, our data revealed that PABPN1 promotes ccRCC progression at least in part, by suppressing SGPL1 and CREG1. Thus, PABPN1 may be a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Jiang
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, China
| | - Wulin Long
- Department of Urology, Wuhan Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Menghao Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Yang
- Department of Gynecology and Obstetrics, Women and Children Hospital of Guangdong Province, Guangzhou 510080, China
| | - Gallina Kazobinka
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Urology Unit, La Nouvelle Polyclinique Centrale de Bujumbura, Bujumbura 378, Burundi
| | - Yi Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teng Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, China
| |
Collapse
|
59
|
Pezzicoli G, Ciciriello F, Musci V, Salonne F, Ragno A, Rizzo M. Genomic Profiling and Molecular Characterization of Clear Cell Renal Cell Carcinoma. Curr Oncol 2023; 30:9276-9290. [PMID: 37887570 PMCID: PMC10605358 DOI: 10.3390/curroncol30100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) treatment has undergone three major paradigm shifts in recent years, first with the introduction of molecular targeted therapies, then with immune checkpoint inhibitors, and, more recently, with immune-based combinations. However, to date, molecular predictors of response to targeted agents have not been identified for ccRCC. The WHO 2022 classification of renal neoplasms introduced the molecularly defined RCC class, which is a first step in the direction of a better molecular profiling of RCC. We reviewed the literature data on known genomic alterations of clinical interest in ccRCC, discussing their prognostic and predictive role. In particular, we explored the role of VHL, mTOR, chromatin modulators, DNA repair genes, cyclin-dependent kinases, and tumor mutation burden. RCC is a tumor whose pivotal genomic alterations have pleiotropic effects, and the interplay of these effects determines the tumor phenotype and its clinical behavior. Therefore, it is difficult to find a single genomic predictive factor, but it is more likely to identify a signature of gene alterations that could impact prognosis and response to specific treatment. To accomplish this task, the interpolation of large amounts of clinical and genomic data is needed. Nevertheless, genomic profiling has the potential to change real-world clinical practice settings.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Francesco Salonne
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
60
|
Ahanin EF, Sager RA, Backe SJ, Dunn DM, Dushukyan N, Blanden AR, Mate NA, Suzuki T, Anderson T, Roy M, Oberoi J, Prodromou C, Nsouli I, Daneshvar M, Bratslavsky G, Woodford MR, Bourboulia D, Chisholm JD, Mollapour M. Catalytic inhibitor of Protein Phosphatase 5 activates the extrinsic apoptotic pathway by disrupting complex II in kidney cancer. Cell Chem Biol 2023; 30:1223-1234.e12. [PMID: 37527661 PMCID: PMC10592443 DOI: 10.1016/j.chembiol.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
Serine/threonine protein phosphatase-5 (PP5) is involved in tumor progression and survival, making it an attractive therapeutic target. Specific inhibition of protein phosphatases has remained challenging because of their conserved catalytic sites. PP5 contains its regulatory domains within a single polypeptide chain, making it a more desirable target. Here we used an in silico approach to screen and develop a selective inhibitor of PP5. Compound P053 is a competitive inhibitor of PP5 that binds to its catalytic domain and causes apoptosis in renal cancer. We further demonstrated that PP5 interacts with FADD, RIPK1, and caspase 8, components of the extrinsic apoptotic pathway complex II. Specifically, PP5 dephosphorylates and inactivates the death effector protein FADD, preserving complex II integrity and regulating extrinsic apoptosis. Our data suggests that PP5 promotes renal cancer survival by suppressing the extrinsic apoptotic pathway. Pharmacologic inhibition of PP5 activates this pathway, presenting a viable therapeutic strategy for renal cancer.
Collapse
Affiliation(s)
- Elham F Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Natela Dushukyan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Adam R Blanden
- Department of Neurology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Nilamber A Mate
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tamie Suzuki
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
| | - Tyler Anderson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Health Professions, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Merin Roy
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Chrisostomos Prodromou
- School of Life Sciences, Biochemistry and Biomedicine, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Daneshvar
- Department of Urology, University of California, California, Irvine, CA 92868, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA.
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
61
|
Chen Y, Lu Y, Yang L, Ma W, Dong Y, Zhou S, Liu N, Gan W, Li D. LncRNA like NMRK2 mRNA functions as a key molecular scaffold to enhance mitochondrial respiration of NONO-TFE3 rearranged renal cell carcinoma in an NAD + kinase-independent manner. J Exp Clin Cancer Res 2023; 42:252. [PMID: 37770905 PMCID: PMC10537463 DOI: 10.1186/s13046-023-02837-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND NONO-TFE3 rearranged renal cell carcinoma (NONO-TFE3 rRCC) is one of a subtype of TFE3 rRCCs with high malignancy and poor prognosis. Compared with clear cell RCC, NONO-TFE3 rRCC shows a preference for mitochondrial respiration. We recently identified that the upregulation of nicotinamide ribokinase 2 (NMRK2) was associated with enhanced mitochondrial respiration and tumor progression in TFE3 rRCC. METHODS A tumor-bearing mouse model was established to verify the pro-oncogenic effect of NMRK2 on NONO-TFE3 rRCC. Then the expression of NMRK2 RNA and protein was detected in cell lines and patient specimens. The NMRK2 transcripts were Sanger-sequenced and blasted at NCBI website. We constructed dCas13b-HA system to investigate the factors binding with NMRK2 RNA. We also used molecular experiments like RIP-seq, IP-MS, FISH and fluorescence techniques to explore the mechanisms that long non-coding RNA (lncRNA) like NMRK2 mRNA promoted the mitochondrial respiration of NONO-TFE3 rRCC. The efficacy of the combination of shRNA (NMRK2)-lentivirus and metformin on NONO-TFE3 rRCC was assessed by CCK-8 assay. RESULTS In this study, we confirmed that NMRK2 showed transcriptional-translational conflict and functioned as lncRNA like mRNA in the NONO-TFE3 rRCC. Furthermore, we revealed the molecular mechanism that NONO-TFE3 fusion suppressed the translation of NMRK2 mRNA. Most importantly, three major pathways were shown to explain the facilitation effects of lncRNA like NMRK2 mRNA on the mitochondrial respiration of NONO-TFE3 rRCC in an NAD+ kinase-independent manner. Finally, the efficacy of combination of shRNA (NMRK2)-lentivirus and metformin on NONO-TFE3 rRCC was demonstrated to be superior than either agent alone. CONCLUSIONS Overall, our data comprehensively demonstrated the mechanisms for the enhanced mitochondrial respiration in NONO-TFE3 rRCC and proposed lncRNA like NMRK2 mRNA as a therapy target for NONO-TFE3 rRCC.
Collapse
Affiliation(s)
- Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Lei Yang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yuhan Dong
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shuoming Zhou
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210001, China.
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
62
|
Yang Y, Liang J, Zhao J, Wang X, Feng D, Xu H, Shen Y, Zhang Y, Dai J, Wang Z, Wei Q, Liu Z. The multi-omics analyses of acsl1 reveal its translational significance as a tumor microenvironmental and prognostic biomarker in clear cell renal cell carcinoma. Diagn Pathol 2023; 18:96. [PMID: 37608295 PMCID: PMC10463412 DOI: 10.1186/s13000-023-01384-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the dominant subtype of kidney cancer. Dysregulation of long-chain acyl-CoA synthetase 1 (ACSL1) is strongly implicated in undesirable results in varieties of cancers. Nevertheless, the dysregulation and associated multi-omics characteristics of ACSL1 in ccRCC remain elusive. METHODS We probed the mRNA and protein profiles of ACSL1 in RCC using data from the Cancer Genome Atlas, Gene Expression Omnibus, the Human Protein Atlas (HPA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort and RCC cell lines. Correlations between ACSL1 expression and clinicopathological features, epigenetic modification and immune microenvironment characteristics were analyzed to reveal the multi-omics profile associated with ACSL1. RESULTS ACSL1 was down-regulated in ccRCC tissues compared to adjacent normal tissues. Lower expression of ACSL1 was linked to unfavorable pathological parameters and prognosis. The dysregulation of ACSL1 was greatly ascribed to CpG island-associated methylation modification. The ACSL1 high-expression subgroup had enriched fatty acid metabolism-related pathways and high expression of ferroptosis-related genes. In contrast, the ACSL1 low-expression subgroup exhibited higher immune and microenvironment scores, elevated expression of immune checkpoints PDCD1, CTLA4, LAG3, and TIGIT, and higher TIDE scores. Using data from the GDSC database, we corroborated that down-regulation of ACSL1 was associated with higher sensitivity towards Erlotinib, Pazopanib, and PI3K-Akt-mTOR-targeted therapeutic strategies. CONCLUSION Taken together, our findings point to ACSL1 as a biomarker for prognostic prediction of ccRCC, identifying the tumor microenvironment (TME) phenotype, and even contributing to treatment decision-making in ccRCC patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, No. 48, Taling South Road, Xunyang District, Jiujiang City, 332000, Jiangxi Province, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaowen Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- , No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, PR China.
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- , No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, PR China.
| |
Collapse
|
63
|
Zhong D, Wang R, Zhang H, Wang M, Zhang X, Chen H. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat Commun 2023; 14:3997. [PMID: 37414766 PMCID: PMC10326073 DOI: 10.1038/s41467-023-39716-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengqin Zhong
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Mengmeng Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
64
|
Zhu H, Wang X, Lu S, Ou K. Metabolic reprogramming of clear cell renal cell carcinoma. Front Endocrinol (Lausanne) 2023; 14:1195500. [PMID: 37347113 PMCID: PMC10280292 DOI: 10.3389/fendo.2023.1195500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignancy that exhibits metabolic reprogramming as a result of genetic mutations. This reprogramming accommodates the energy and anabolic needs of the cancer cells, leading to changes in glucose, lipid, and bio-oxidative metabolism, and in some cases, the amino acid metabolism. Recent evidence suggests that ccRCC may be classified as a metabolic disease. The metabolic alterations provide potential targets for novel therapeutic interventions or biomarkers for monitoring tumor growth and prognosis. This literature review summarized recent discoveries of metabolic alterations in ccRCC, including changes in glucose, lipid, and amino acid metabolism. The development of metabolic drugs targeting these metabolic pathways was also discussed, such as HIF-2α inhibitors, fatty acid synthase (FAS) inhibitors, glutaminase (GLS) inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, and arginine depletion. Future trends in drug development are proposed, including the use of combination therapies and personalized medicine approaches. In conclusion, this review provides a comprehensive overview of the metabolic alterations in ccRCC and highlights the potential for developing new treatments for this disease.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shihao Lu
- Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Kongbo Ou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
65
|
Ricketts CJ, Linehan WM. EDITORIAL COMMENT. Urology 2023; 176:113-114. [PMID: 37353242 DOI: 10.1016/j.urology.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
66
|
Jikuya R, Johnson TA, Maejima K, An J, Ju YS, Lee H, Ha K, Song W, Kim Y, Okawa Y, Sasagawa S, Kanazashi Y, Fujita M, Imoto S, Mitome T, Ohtake S, Noguchi G, Kawaura S, Iribe Y, Aomori K, Tatenuma T, Komeya M, Ito H, Ito Y, Muraoka K, Furuya M, Kato I, Fujii S, Hamanoue H, Tamura T, Baba M, Suda T, Kodama T, Makiyama K, Yao M, Shuch BM, Ricketts CJ, Schmidt LS, Linehan WM, Nakagawa H, Hasumi H. Comparative analyses define differences between BHD-associated renal tumour and sporadic chromophobe renal cell carcinoma. EBioMedicine 2023; 92:104596. [PMID: 37182269 PMCID: PMC10200853 DOI: 10.1016/j.ebiom.2023.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Birt-Hogg-Dubé (BHD) syndrome, caused by germline alteration of folliculin (FLCN) gene, develops hybrid oncocytic/chromophobe tumour (HOCT) and chromophobe renal cell carcinoma (ChRCC), whereas sporadic ChRCC does not harbor FLCN alteration. To date, molecular characteristics of these similar histological types of tumours have been incompletely elucidated. METHODS To elucidate renal tumourigenesis of BHD-associated renal tumours and sporadic renal tumours, we conducted whole genome sequencing (WGS) and RNA-sequencing (RNA-seq) of sixteen BHD-associated renal tumours from nine unrelated BHD patients, twenty-one sporadic ChRCCs and seven sporadic oncocytomas. We then compared somatic mutation profiles with FLCN variants and RNA expression profiles between BHD-associated renal tumours and sporadic renal tumours. FINDINGS RNA-seq analysis revealed that BHD-associated renal tumours and sporadic renal tumours have totally different expression profiles. Sporadic ChRCCs were clustered into two distinct clusters characterized by L1CAM and FOXI1 expressions, molecular markers for renal tubule subclasses. Increased mitochondrial DNA (mtDNA) copy number with fewer variants was observed in BHD-associated renal tumours compared to sporadic ChRCCs. Cell-of-origin analysis using WGS data demonstrated that BHD-associated renal tumours and sporadic ChRCCs may arise from different cells of origin and second hit FLCN alterations may occur in early third decade of life in BHD patients. INTERPRETATION These data further our understanding of renal tumourigenesis of these two different types of renal tumours with similar histology. FUNDING This study was supported by JSPS KAKENHI Grants, RIKEN internal grant, and the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), Center for Cancer Research.
Collapse
Affiliation(s)
- Ryosuke Jikuya
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan; Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Todd A Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Jisong An
- Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young-Seok Ju
- Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hwajin Lee
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungsik Ha
- UPPThera, Inc. BRC Laboratory 1-204 9, Songdomirae-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - WooJeung Song
- UPPThera, Inc. BRC Laboratory 1-204 9, Songdomirae-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Youngwook Kim
- National Cancer Center Korea, 323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Yuki Okawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Kanazashi
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Seiya Imoto
- Human Genome Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Taku Mitome
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Shinji Ohtake
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Go Noguchi
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Sachi Kawaura
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yasuhiro Iribe
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kota Aomori
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomoyuki Tatenuma
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Mitsuru Komeya
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hiroki Ito
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yusuke Ito
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kentaro Muraoka
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Mitsuko Furuya
- Pathology Center, GeneticLab Co., Ltd., 28-196, N9, W15, Chuo-ku, Sapporo, 060-0009, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Haruka Hamanoue
- Clinical Genetics Department, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Masaya Baba
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Toshio Suda
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 153-8904, Japan
| | - Kazuhide Makiyama
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Brian M Shuch
- Institute of Urologic Oncology, UCLA School of Medicine, Los Angeles, CA90095, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD20892, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD20892, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD20892, USA
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
67
|
Sies H, Koppenol WH. The Warburg effect - Discovered 100 years ago. Free Radic Biol Med 2023; 204:325. [PMID: 37236491 DOI: 10.1016/j.freeradbiomed.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Willem H Koppenol
- Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland.
| |
Collapse
|
68
|
Casas-Benito A, Martínez-Herrero S, Martínez A. Succinate-Directed Approaches for Warburg Effect-Targeted Cancer Management, an Alternative to Current Treatments? Cancers (Basel) 2023; 15:2862. [PMID: 37345199 DOI: 10.3390/cancers15102862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Approximately a century ago, Otto Warburg discovered that cancer cells use a fermentative rather than oxidative metabolism even though the former is more inefficient in terms of energy production per molecule of glucose. Cancer cells increase the use of this fermentative metabolism even in the presence of oxygen, and this process is called aerobic glycolysis or the Warburg effect. This alternative metabolism is mainly characterized by higher glycolytic rates, which allow cancer cells to obtain higher amounts of total ATP, and the production of lactate, but there are also an activation of protumoral signaling pathways and the generation of molecules that favor cancer progression. One of these molecules is succinate, a Krebs cycle intermediate whose concentration is increased in cancer and which is considered an oncometabolite. Several protumoral actions have been associated to succinate and its role in several cancer types has been already described. Despite playing a major role in metabolism and cancer, so far, the potential of succinate as a target in cancer prevention and treatment has remained mostly unexplored, as most previous Warburg-directed anticancer strategies have focused on other intermediates. In this review, we aim to summarize succinate's protumoral functions and discuss the use of succinate expression regulators as a potential cancer therapy strategy.
Collapse
Affiliation(s)
- Adrian Casas-Benito
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Sonia Martínez-Herrero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
69
|
Garige M, Poncet S, Norris A, Chou CK, Wu WW, Shen RF, Greenberg JW, Krane LS, Sourbier C. Extended Opioid Exposure Modulates the Molecular Metabolism of Clear Cell Renal Cell Carcinoma. Life (Basel) 2023; 13:life13051196. [PMID: 37240841 DOI: 10.3390/life13051196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.
Collapse
Affiliation(s)
- Mamatha Garige
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sarah Poncet
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexis Norris
- Division of Animal Bioengineering and Cellular Therapies, Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 20852, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jacob W Greenberg
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Louis Spencer Krane
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Carole Sourbier
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
70
|
Zhou Y, Sun S, Ling T, Chen Y, Zhou R, You Q. The role of fibroblast growth factor 18 in cancers: functions and signaling pathways. Front Oncol 2023; 13:1124520. [PMID: 37228502 PMCID: PMC10203589 DOI: 10.3389/fonc.2023.1124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Fibroblast growth factor 18(FGF18) is a member of the fibroblast growth factor family (FGFs). FGF18 is a class of bioactive substances that can conduct biological signals, regulate cell growth, participate in tissue repair and other functions, and can promote the occurrence and development of different types of malignant tumors through various mechanisms. In this review, we focus on recent studies of FGF18 in the diagnosis, treatment, and prognosis of tumors in digestive, reproductive, urinary, respiratory, motor, and pediatric systems. These findings suggest that FGF18 may play an increasingly important role in the clinical evaluation of these malignancies. Overall, FGF18 can function as an important oncogene at different gene and protein levels, and can be used as a potential new therapeutic target and prognostic biomarker for these tumors.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sizheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzhen Chen
- Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rongzhong Zhou
- Department of Ophthalmology, Zaoyang First People’s Hosipital, Zaoyang, China
| | - Qiang You
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
71
|
Nunes-Xavier CE, Emaldi M, Mingo J, Øyjord T, Mælandsmo GM, Fodstad Ø, Errarte P, Larrinaga G, Llarena R, López JI, Pulido R. The expression pattern of pyruvate dehydrogenase kinases predicts prognosis and correlates with immune exhaustion in clear cell renal cell carcinoma. Sci Rep 2023; 13:7339. [PMID: 37147361 PMCID: PMC10162970 DOI: 10.1038/s41598-023-34087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Renal cancer cells constitute a paradigm of tumor cells with a glycolytic reprogramming which drives metabolic alterations favouring cell survival and transformation. We studied the expression and activity of pyruvate dehydrogenase kinases (PDK1-4), key enzymes of the energy metabolism, in renal cancer cells. We analysed the expression, subcellular distribution and clinicopathological correlations of PDK1-4 by immunohistochemistry of tumor tissue microarray samples from a cohort of 96 clear cell renal cell carcinoma (ccRCC) patients. Gene expression analysis was performed on whole tumor tissue sections of a subset of ccRCC samples. PDK2 and PDK3 protein expression in tumor cells correlated with lower patient overall survival, whereas PDK1 protein expression correlated with higher patient survival. Gene expression analysis revealed molecular association of PDK2 and PDK3 expression with PI3K signalling pathway, as well as with T cell infiltration and exhausted CD8 T cells. Inhibition of PDK by dichloroacetate in human renal cancer cell lines resulted in lower cell viability, which was accompanied by an increase in pAKT. Together, our findings suggest a differential role for PDK enzymes in ccRCC progression, and highlight PDK as actionable metabolic proteins in relation with PI3K signalling and exhausted CD8 T cells in ccRCC.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Tove Øyjord
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Peio Errarte
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Gorka Larrinaga
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Roberto Llarena
- Department of Urology, Cruces University Hospital, Barakaldo, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
72
|
Chalfin HJ, Yerram N, Owens-Walton J, Gurram S, Li W, Linehan WM, Ball MW. A novel multiplex score to predict outcomes of partial nephrectomy for multiple tumors. Urol Oncol 2023; 41:257.e1-257.e6. [PMID: 37037679 PMCID: PMC10845006 DOI: 10.1016/j.urolonc.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND The RENAL nephrometry score (RNS) is widely used to describe renal mass complexity and inform patient counseling for partial nephrectomy (PN). However, in cases with multiple tumors, it is unknown which features drive perioperative outcomes. OBJECTIVE To employ a novel scoring equation (multiplex score [MS]) derived from RNS to assess outcomes of multiplex PN at our institution. DESIGN, SETTING, AND PARTICIPANTS A total of 62 consecutive multiplex PN (median (range) # tumors = 4(2-11), 65% robotic) were performed by a single surgeon. The MS was defined a priori as a weighted score derived from RNS (# low risk ([LR] lesions) + 2*(# intermediate risk [IR]) + 4*(# high risk [HR]) based on published complication rates. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS MS was dichotomized into favorable/unfavorable based on median score. Patient outcomes were maintained prospectively. MS was compared with other potential RNS derived scoring systems. RESULTS AND LIMITATION A total of 249 tumors were scored. Median (range) MS was 6(range 2-20, IQR 3-8). Complications occurred in 10 patients (16.1%). Only 1 complication occurred in the favorable MS(<6) group, and MS was associated with perioperative complication (P = 0.02) and blood loss (P < .001). When compared to other potential scoring systems, MS had the best area under the curve (AUC) to predict operative complications (0.75). CONCLUSIONS The novel MS was associated with complications and blood loss. This tool may facilitate standardized reporting of complexity for multiplex series, with special relevance for hereditary cancer syndromes. PATIENT SUMMARY For patients who have one kidney tumor, there are established scoring systems to help patients and surgeons decide on the surgical plan. However currently, for patients with more than one renal tumor, there is no such scoring system. Here, we present the "Multiplex Score" to aid shared-decision-making in cases with more than one renal tumor.
Collapse
|
73
|
Tan D, Miao D, Zhao C, Shi J, Lv Q, Xiong Z, Yang H, Zhang X. Comprehensive analyses of A 12-metabolism-associated gene signature and its connection with tumor metastases in clear cell renal cell carcinoma. BMC Cancer 2023; 23:264. [PMID: 36949462 PMCID: PMC10035225 DOI: 10.1186/s12885-023-10740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The outcomes of patients with clear cell renal cell carcinoma (ccRCC) were dreadful due to lethal local recurrence and distant metastases. Accumulating evidence suggested that ccRCC was considered a metabolic disease and metabolism-associated genes (MAGs) exerted essential functions in tumor metastases. Thus, this study intends to seek whether the dysregulated metabolism promotes ccRCC metastases and explores underlying mechanisms. METHOD Weighted gene co-expression network analysis (WGCNA) was employed based on 2131 MAGs to select genes mostly associated with ccRCC metastases for subsequent univariate Cox regression. On this basis, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression were employed to create a prognostic signature based on the cancer genome atlas kidney renal clear cell carcinoma (TCGA-KIRC) cohort. The prognostic signature was confirmed using E-MTAB-1980 and GSE22541 cohorts. Kaplan-Meier, receiver operating characteristic (ROC) curve, and univariate and multivariate Cox regression were applied to detect the predictability and independence of the signature in ccRCC patients. Functional enrichment analyses, immune cell infiltration examinations, and somatic variant investigations were employed to detect the biological roles of the signature. RESULT A 12-gene-metabolism-associated prognostic signature, termed the MAPS by our team, was constructed. According to the MAPS, patients were divided into low- and high-risk subgroups and high-risk patients displayed inferior outcomes. The MAPS was validated as an independent and reliable biomarker in ccRCC patients for forecasting the prognosis and progression of ccRCC patients. Functionally, the MAPS was closely associated with metabolism dysregulation, tumor metastases, and immune responses in which the high-risk tumors were in an immunosuppressive status. Besides, high-risk patients benefited more from immunotherapy and held a higher tumor mutation burden (TMB) than low-risk patients. CONCLUSION The 12-gene MAPS with prominent biological roles could independently and reliably forecast the outcomes of ccRCC patients, and provide clues to uncover the latent mechanism in which dysregulated metabolism controlled ccRCC metastases.
Collapse
Affiliation(s)
- Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
74
|
Song T, Lv S, Ma X, Zhao X, Fan L, Zou Q, Li N, Yan Y, Zhang W, Sun L. TRIM28 represses renal cell carcinoma cell proliferation by inhibiting TFE3/KDM6A-regulated autophagy. J Biol Chem 2023; 299:104621. [PMID: 36935008 PMCID: PMC10141522 DOI: 10.1016/j.jbc.2023.104621] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Autophagy plays a pivotal role in physiology and pathophysiology, including cancer. Mechanisms of autophagy dysregulation in cancer remain elusive. Loss-of-function of TRIM28, a multi-function protein, is seen in familial kidney malignancy, but the mechanism by which TRIM28 contributes to the etiology of kidney malignancy is unclear. In this study, we show TRIM28 retards kidney cancer cell proliferation through inhibiting autophagy. Mechanistically, we find TRIM28 promotes ubiquitination and proteasome-mediated degradation of transcription factor TFE3, which is critical for autophagic gene expression. Genetic activation of TFE3 due to gene fusion is known to cause human kidney malignancy, but whether and how transcription activation by TFE3 involves chromatin changes is unclear. Here, we find another mode of TFE3 activation in human renal carcinoma. We find that TFE3 is constitutively localized to the cell nucleus in human and mouse kidney cancer, where it increases autophagic gene expression and promotes cell autophagy as well as proliferation. We further uncover that TFE3 interacts with and recruits histone H3K27 demethylase KDM6A for autophagic gene upregulation. We reveal that KDM6A contributes to expression of TFE3 target genes through increasing H3K4me3 rather than demethylating H3K27. Collectively, in this study, we identify a functional TRIM28-TFE3-KDM6A signal axis which plays a critical role in kidney cancer cell autophagy and proliferation.
Collapse
Affiliation(s)
- Tanjing Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Suli Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Xianyun Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Xuefeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Li Fan
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,China
| | - Qingli Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Neng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Yingying Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030
| | - Wen Zhang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,China
| | - Lidong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology,13 Hangkong Road, Wuhan, China 430030; Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
75
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
76
|
Miao D, Wang Q, Shi J, Lv Q, Tan D, Zhao C, Xiong Z, Zhang X. N6-methyladenosine-modified DBT alleviates lipid accumulation and inhibits tumor progression in clear cell renal cell carcinoma through the ANXA2/YAP axis-regulated Hippo pathway. Cancer Commun (Lond) 2023; 43:480-502. [PMID: 36860124 PMCID: PMC10091108 DOI: 10.1002/cac2.12413] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/05/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The mechanism of metabolism reprogramming is an unsolved problem in clear cell renal cell carcinoma (ccRCC). Recently, it was discovered that the Hippo pathway altered tumor metabolism and promoted tumor progression. Thus, this study aimed at identifying key regulators of metabolism reprogramming and the Hippo pathway in ccRCC and pinpointing potential therapeutic targets for ccRCC patients. METHODS Hippo-related gene sets and metabolic gene sets were used to screen potential regulators of the Hippo pathway in ccRCC. Public databases and samples from patients were applied to investigate the association of dihydrolipoamide branched chain transacylase E2 (DBT) with ccRCC and Hippo signaling. The role of DBT was confirmed by gain or loss of function assays in vitro and in vivo. Mechanistic results were yielded by luciferase reporter assay, immunoprecipitation, mass spectroscopy, and mutational studies. RESULTS DBT was confirmed as a Hippo-related marker with significant prognostic predictive value, and its downregulation was caused by methyltransferase-like-3 (METTL3)-mediated N6-methyladenosine (m6 A) modification in ccRCC. Functional studies specified DBT as a tumor suppressor for inhibiting tumor progression and correcting the lipid metabolism disorder in ccRCC. Mechanistic findings revealed that annexin A2 (ANXA2) interacted with the lipoyl-binding domain of DBT to activate Hippo signaling which led to decreased nuclear localization of yes1-associated transcriptional regulator (YAP) and transcriptional repression of lipogenic genes. CONCLUSIONS This study demonstrated a tumor-suppressive role for the DBT/ANXA2/YAP axis-regulated Hippo signaling and suggested DBT as a potential target for pharmaceutical intervention in ccRCC.
Collapse
Affiliation(s)
- Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.,Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|
77
|
The Impact of YRNAs on HNSCC and HPV Infection. Biomedicines 2023; 11:biomedicines11030681. [PMID: 36979661 PMCID: PMC10045647 DOI: 10.3390/biomedicines11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
HPV infection is one of the most important risk factors for head and neck squamous cell carcinoma among younger patients. YRNAs are short non-coding RNAs involved in DNA replication. YRNAs have been found to be dysregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the role of YRNAs in HPV-positive HNSCC using publicly available gene expression datasets from HNSCC tissue, where expression patterns of YRNAs in HPV(+) and HPV(−) HNSCC samples significantly differed. Additionally, HNSCC cell lines were treated with YRNA1-overexpressing plasmid and RNA derived from these cell lines was used to perform a NGS analysis. Additionally, a deconvolution analysis was performed to determine YRNA1’s impact on immune cells. YRNA expression levels varied according to cancer pathological and clinical stages, and correlated with more aggressive subtypes. YRNAs were mostly associated with more advanced cancer stages in the HPV(+) group, and YRNA3 and YRNA1 expression levels were found to be correlated with more advanced clinical stages despite HPV infection status, showing that they may function as potential biomarkers of more advanced stages of the disease. YRNA5 was associated with less-advanced cancer stages in the HPV(−) group. Overall survival and progression-free survival analyses showed opposite results between the HPV groups. The expression of YRNAs, especially YRNA1, correlated with a vast number of proteins and cellular processes associated with viral infections and immunologic responses to viruses. HNSCC-derived cell lines overexpressing YRNA1 were then used to determine the correlation of YRNA1 and the expression of genes associated with HPV infections. Taken together, our results highlight the potential of YRNAs as possible HNSCC biomarkers and new molecular targets.
Collapse
|
78
|
Meng K, Hu Y, Wang D, Li Y, Shi F, Lu J, Wang Y, Cao Y, Zhang CZ, He QY. EFHD1, a novel mitochondrial regulator of tumor metastasis in clear cell renal cell carcinoma. Cancer Sci 2023; 114:2029-2040. [PMID: 36747492 PMCID: PMC10154798 DOI: 10.1111/cas.15749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The biological function of many mitochondrial proteins in mechanistic detail has not been well investigated in clear cell renal cell carcinoma (ccRCC). A seven-mitochondrial-gene signature was generated by Lasso regression analysis to improve the prediction of prognosis of patients with ccRCC, using The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium cohort. Among those seven genes, EFHD1 is less studied and its role in the progression of ccRCC remains unknown. The decreased expression of EFHD1 was validated in clinical samples and was correlated with unfavorable outcome. Overexpression of EFHD1 in ccRCC cells resulted in the reduction of mitochondrial Ca2+ , and the inhibition of cell migration and invasion in vitro and tumor metastasis in vivo. Mechanistically, EFHD1 physically bound to the core mitochondrial calcium transporter (mitochondrial calcium uniporter, MCU) through its N-terminal domain. The interaction between EFHD1 and MCU suppressed the uptake of Ca2+ into mitochondria, and deactivated the Hippo/YAP signaling pathway. Further data revealed that the ectopic expression of EFHD1 upregulated STARD13 to enhance the phosphorylation of YAP protein at Ser-127. The knockdown of STARD13 or the overexpression of MCU partly abrogated the EFHD1-mediated induction of phosphorylation of YAP at Ser-127 and suppression of cell migration. Taken together, the newly identified EFHD1-MCU-STARD13 axis participates in the modulation of the Hippo/YAP pathway and serves as a novel regulator in the progression of ccRCC.
Collapse
Affiliation(s)
- Kun Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuyu Hu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Dingkang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiangli Lu
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
79
|
Botelho AR, Silva HF, Martins IS, Carneiro IC, Carvalho SD, Henrique RM, Tuchin VV, Oliveira LM. Fast calculation of spectral optical properties and pigment content detection in human normal and pathological kidney. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122002. [PMID: 36274538 DOI: 10.1016/j.saa.2022.122002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A fast calculation method was used to obtain the spectral optical properties of human normal and pathological (chromophobe renal cell carcinoma) kidney tissues. Using total transmittance, total reflectance and collimated transmittance spectra acquired from ex vivo kidney samples, the spectral optical properties of both tissues, namely the absorption, the scattering and the reduced scattering coefficients, as well as the scattering anisotropy, dispersion and light penetration depth, were calculated between 200 and 1000 nm. Analysis of the mean absorption coefficient spectra of the kidney tissues showed that both contain melanin and lipofuscin, and that 83 % of the melanin in the normal kidney converts into lipofuscin in the pathological kidney.
Collapse
Affiliation(s)
- Ana R Botelho
- Physics Department, Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal
| | - Hugo F Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Inês S Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Isa C Carneiro
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathological, Cytological and Thanatological Anatomy, Polytechnic of Porto - School of Health (ESS), Porto, Portugal
| | - Sónia D Carvalho
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology, Santa Luzia Hospital (ULSAM), Viana do Castelo, Portugal
| | - Rui M Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Porto University - Institute of Biomedical Sciences Abel Salazar, Porto, Portugal
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation; Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Research Centre of Russian Academy of Sciences," Saratov, Russian Federation
| | - Luís M Oliveira
- Physics Department, Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal; Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal.
| |
Collapse
|
80
|
Nguyen MV, Walia A, Saidian A, Puri D, Meagher MF, Hakimi K, Tanaka H, Patil D, Yasuda Y, Saito K, Dhanji S, Cerrato C, Narasimhan R, Perry J, Master V, Fujii Y, Derweesh IH. Impact of worsening surgically induced chronic kidney disease (CKD-S) in preoperative CKD-naïve patients on survival in renal cell carcinoma. BJU Int 2023; 131:219-226. [PMID: 35876044 DOI: 10.1111/bju.15861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To evaluate effects of worsening surgically induced chronic kidney disease (CKD-S) on oncological and non-oncological survival outcomes in renal cell carcinoma (RCC). PATIENTS AND METHODS We performed a retrospective analysis of patients who underwent partial (PN) or radical nephrectomy (RN) and were free of preoperative CKD (estimated glomerular filtration rate [eGFR] ≥60 mL/min/1.73 m2 ). Patients were stratified by CKD stage at last follow-up: no CKD-S (eGFR ≥60 mL/min/1.73 m2 ), de novo CKD-S 3a (eGFR 45-59 mL/min/1.73 m2 ), CKD-S 3b (eGFR <45 and ≥30 mL/min/1.73 m2 ) and CKD-S 4 (eGFR <30 and ≥15 mL/min/1.73 m2 ). The primary outcome was all-cause mortality (ACM). Secondary outcomes included non-cancer mortality (NCM), cancer-specific mortality (CSM) and de novo CKD-S Stage 3/4. Multivariable analysis (MVA) was utilised to identify risk factors for outcomes. Kaplan-Meier analysis (KMA) was utilised to evaluate overall (OS), non-cancer (NCS), and cancer-specific survival with respect to CKD-S categories. RESULTS We analysed 3239 patients. The mean preoperative and last-follow-up eGFRs were 87.4 and 69.5 mL/min/1.73 m2 , respectively. On last follow-up, 57.9% (n = 1876) had no CKD-S, 18.7% (n = 606) had CKD-S 3a, 15.1% (n = 489) had CKD-S 3b and 8.3% (n = 268) had CKD-S 4. On MVA, de novo CKD-S 3b and 4 were independently associated with ACM (hazard ratios [HRs] 1.3-2.1, P = 0.003-0.001) and NCM (HRs 1.5-2.8, P = 0.021-0.001), but not CSM (P = 0.219-0.909); de novo CKD-S 3a was not predictive for any mortality outcomes (P = 0.102-0.81). RN was independently associated with CKD-S 3-4 (HRs 1.78-1.99, P < 0.001-0.035). Comparing no CKD-S, CKD-S 3a, CKD-S 3b and CKD-S 4, KMA demonstrated worsening outcomes with progressive CKD-S stage: 5-year OS 84% vs 78% vs 71% vs 60% (P < 0.001) and 5-year NCS 93% vs 87% vs 83% vs 72% (P < 0.001). CONCLUSION Development of CKD-S Stage 3b and 4, but not 3a, was associated with worsened ACM and NCM. The decision to proceed with nephron preservation via PN should be individualised based on oncological risk and risk of functional decline to CKD-S 3b or 4, and not CKD-S 3a.
Collapse
Affiliation(s)
- Mimi V Nguyen
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Arman Walia
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Ava Saidian
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Dhruv Puri
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Margaret F Meagher
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Kevin Hakimi
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dattatraya Patil
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yosuke Yasuda
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazutaka Saito
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sohail Dhanji
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Clara Cerrato
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Rekha Narasimhan
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - John Perry
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Viraj Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ithaar H Derweesh
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
81
|
Chen X, Yong H, Chen M, Deng C, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. TRIM21 attenuates renal carcinoma lipogenesis and malignancy by regulating SREBF1 protein stability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:34. [PMID: 36694250 PMCID: PMC9875457 DOI: 10.1186/s13046-022-02583-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/24/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of various cancers. Targeting metabolic processes is a very attractive treatment for cancer. Renal cell carcinoma (RCC) is a type of metabolic disease, and the lipidomic profile of RCC is significantly altered compared with that of healthy tissue. However, the molecular mechanism underlying lipid metabolism regulation in RCC is not clear. METHODS The XF long-chain fatty acid oxidative stress test kits were used to assess the dependence on long-chain fatty acids and mitochondrial function after knockdown TRIM21 in RCC cells. The effect of TRIM21 on the lipid content in RCC cells was determined by metabolomics analysis, Oil Red O staining, and cellular Nile red staining. qRT-PCR and western blot were used to explore the relationship between TRIM21 and lipogenesis, and then the key molecule sterol regulatory element binding transcription factor 1 (SREBF1) was identified to interact with TRIM21 by immunoprecipitation, which was also identified in an orthotopic model. Subsequently, the relevance and clinical significance of TRIM21 and SREBF1 were analyzed by The Cancer Genome Atlas (TCGA) database, and 239 tissues were collected from RCC patients. RESULTS TRIM21 silencing attenuated the dependence of RCC cells on fatty acids, and enhanced lipid accumulation in RCC cells. TRIM21 overexpression significantly decreased lipid contents by decreasing the expression of lipogenic enzymes via ubiquitination-mediated degradation of SREBF1. SREBF1 is critical for TRIM21-mediated lipogenesis inhibition in vitro and in vivo. Moreover, TRIM21 expression is negatively correlated with SREBF1 expression, and TRIM21-SREBF1 is a reliable combinational biomarker for RCC prognosis. CONCLUSION The findings from this study reveal a novel pathway through which TRIM21 inhibits the lipid metabolism process of RCC and shed light on the development of targeted metabolic treatment and prognosis diagnosis of RCC.
Collapse
Affiliation(s)
- Xintian Chen
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Hongmei Yong
- grid.417303.20000 0000 9927 0537Department of Oncology, The Second People’s Hospital of Huai’an, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huaian, Jiangsu China
| | - Miaolei Chen
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Chuyin Deng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Pengfei Wang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Sufang Chu
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China
| | - Minle Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Pingfu Hou
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Zhongwei Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| | - Jin Bai
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu Province 221004 Xuzhou, China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou, China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Jiangsu 221004 Xuzhou, China
| |
Collapse
|
82
|
Paragliola RM, Torino F, Barnabei A, Iannantuono GM, Corsello A, Locantore P, Corsello SM. Bone Metabolism Effects of Medical Therapy in Advanced Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15020529. [PMID: 36672478 PMCID: PMC9856493 DOI: 10.3390/cancers15020529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The medical therapy of advanced renal cell carcinoma (RCC) is based on the use of targeted therapies, such as tyrosine kinase inhibitors (TKI) and immune-checkpoint inhibitors (ICI). These therapies are characterized by multiple endocrine adverse events, but the effect on the bone is still less known. Relatively few case reports or small case series have been specifically focused on TKI and ICI effects on bone metabolism. However, the importance to consider these possible side effects is easily intuitable because the bone is one of the most frequent metastatic sites of RCC. Among TKI used in RCC, sunitinib and sorafenib can cause hypophosphatemia with increased PTH levels and low-normal serum calcium levels. Considering ICI, nivolumab and ipilimumab, which can be used in association in a combination strategy, are associated with an increased risk of hypocalcemia, mediated by an autoimmune mechanism targeted on the calcium-sensing receptor. A fearsome complication, reported for TKI and rarely for ICI, is osteonecrosis of the jaw. Awareness of these possible side effects makes a clinical evaluation of RCC patients on anticancer therapy mandatory, especially if associated with antiresorptive therapy such as bisphosphonates and denosumab, which can further increase the risk of these complications.
Collapse
Affiliation(s)
- Rosa Maria Paragliola
- Department of Translational Medicine and Surgery, Unit of Endocrinology, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy
- Unicamillus, Saint Camillus International University of Medical Sciences, via di S. Alessandro 10, I-00131 Rome, Italy
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology Unit, University of Rome Tor Vergata, via Montpellier 1, I-00133 Rome, Italy
| | - Agnese Barnabei
- Endocrinology Unit, P.O.-S. Spirito in Sassia, ASL Roma 1, Lungotevere in Sassia 1, I-00193 Rome, Italy
| | - Giovanni Maria Iannantuono
- Department of Systems Medicine, Medical Oncology Unit, University of Rome Tor Vergata, via Montpellier 1, I-00133 Rome, Italy
| | - Andrea Corsello
- Department of Translational Medicine and Surgery, Unit of Endocrinology, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy
| | - Pietro Locantore
- Department of Translational Medicine and Surgery, Unit of Endocrinology, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy
| | - Salvatore Maria Corsello
- Department of Translational Medicine and Surgery, Unit of Endocrinology, Università Cattolica del Sacro Cuore—Fondazione Policlinico “Gemelli” IRCCS, Largo Gemelli 8, I-00168 Rome, Italy
- Unicamillus, Saint Camillus International University of Medical Sciences, via di S. Alessandro 10, I-00131 Rome, Italy
- Correspondence:
| |
Collapse
|
83
|
Fostier W, Holt G, Sampson J, Rajan N. Folliculin inactivation and cutaneous leiomyosarcoma in Birt-Hogg-Dubé syndrome. Br J Dermatol 2023; 188:571-572. [PMID: 36715612 DOI: 10.1093/bjd/ljac138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Cutaneous leiomyosarcoma (cLMS) is a rare soft tissue sarcoma where the genetic drivers implicated in carcinogenesis are not completely characterized despite extensive genomic profiling. The presentation of cLMS in Birt-Hogg-Dube (BHD) syndrome, which is caused by heterozygous pathogenic variants in FLCN, adds to our mechanistic understanding of the pathogenesis of cLMS and implicates FLCN loss. In this report, we demonstrate loss of heterozygosity (LOH) of FLCN in BHD cLMS, providing novel genetic evidence that a subset of cLMS may be driven by FLCN loss and that cLMS is an infrequent but recurrent element of the BHD phenotype.
Collapse
Affiliation(s)
- William Fostier
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Georgie Holt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Sampson
- Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|
84
|
Li Y, Lih TSM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, Wu Y, Lu RJH, Clark DJ, Kołodziejczak I, Hong R, Chen S, Zhao Y, Chugh S, Caravan W, Naser Al Deen N, Hosseini N, Newton CJ, Krug K, Xu Y, Cho KC, Hu Y, Zhang Y, Kumar-Sinha C, Ma W, Calinawan A, Wyczalkowski MA, Wendl MC, Wang Y, Guo S, Zhang C, Le A, Dagar A, Hopkins A, Cho H, Leprevost FDV, Jing X, Teo GC, Liu W, Reimers MA, Pachynski R, Lazar AJ, Chinnaiyan AM, Van Tine BA, Zhang B, Rodland KD, Getz G, Mani DR, Wang P, Chen F, Hostetter G, Thiagarajan M, Linehan WM, Fenyö D, Jewell SD, Omenn GS, Mehra R, Wiznerowicz M, Robles AI, Mesri M, Hiltke T, An E, Rodriguez H, Chan DW, Ricketts CJ, Nesvizhskii AI, Zhang H, Ding L. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 2023; 41:139-163.e17. [PMID: 36563681 PMCID: PMC9839644 DOI: 10.1016/j.ccell.2022.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
Collapse
Affiliation(s)
- Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jiu-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Iga Kołodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Noshad Hosseini
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yuanwei Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanbyul Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Melissa A Reimers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Russell Pachynski
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian A Van Tine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gilbert S Omenn
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
85
|
Tan SK, Hougen HY, Merchan JR, Gonzalgo ML, Welford SM. Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets. Nat Rev Urol 2023; 20:48-60. [PMID: 36192502 PMCID: PMC10826284 DOI: 10.1038/s41585-022-00654-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Lipid droplet formation is a defining histological feature in clear-cell renal cell carcinoma (ccRCC) but the underlying mechanisms and importance of this biological behaviour have remained enigmatic. De novo fatty acid (FA) synthesis, uptake and suppression of FA oxidation have all been shown to contribute to lipid storage, which is a necessary tumour adaptation rather than a bystander effect. Clinical studies and mechanistic investigations into the roles of different enzymes in FA metabolism pathways have revealed new metabolic vulnerabilities that hold promise for clinical effect. Several metabolic alterations are associated with worse clinical outcomes in patients with ccRCC, as lipogenic genes drive tumorigenesis. Enzymes involved in the intrinsic FA metabolism pathway include FA synthase, acetyl-CoA carboxylase, ATP citrate lyase, stearoyl-CoA desaturase 1, cluster of differentiation 36, carnitine palmitoyltransferase 1A and the perilipin family, and each might be potential therapeutic targets in ccRCC owing to the link between lipid deposition and ccRCC risk. Adipokines and lipid species are potential biomarkers for diagnosis and treatment monitoring in patients with ccRCC. FA metabolism could potentially be targeted for therapeutic intervention in ccRCC as small-molecule inhibitors targeting the pathway have shown promising results in preclinical models.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen Y Hougen
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaime R Merchan
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Mark L Gonzalgo
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.
| |
Collapse
|
86
|
Xiao Z, Zhang M, Shi Z, Zang G, Liang Q, Hao L, Dong Y, Pang K, Wang Y, Han C. Prediction of the Prognosis of Clear Cell Renal Cell Carcinoma by Cuproptosis-Related lncRNA Signals Based on Machine Learning and Construction of ceRNA Network. JOURNAL OF ONCOLOGY 2023; 2023:4643792. [PMID: 36949898 PMCID: PMC10027463 DOI: 10.1155/2023/4643792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 03/14/2023]
Abstract
Background Clear cell renal cell carcinoma's (ccRCC) occurrence and development are strongly linked to the metabolic reprogramming of tumors, and thus far, neither its prognosis nor treatment has achieved satisfying clinical outcomes. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively, provided us with information on the RNA expression of ccRCC patients and their clinical data. Cuproptosis-related genes (CRGS) were discovered in recent massive research. With the help of log-rank testing and univariate Cox analysis, the prognostic significance of CRGS was examined. Different cuproptosis subtypes were identified using consensus clustering analysis, and GSVA was used to further investigate the likely signaling pathways between various subtypes. Univariate Cox, least absolute shrinkage and selection operator (Lasso), random forest (RF), and multivariate stepwise Cox regression analysis were used to build prognostic models. After that, the models were verified by means of the C index, Kaplan-Meier (K-M) survival curves, and time-dependent receiver operating characteristic (ROC) curves. The association between prognostic models and the tumor immune microenvironment as well as the relationship between prognostic models and immunotherapy were next examined using ssGSEA and TIDE analysis. Four online prediction websites-Mircode, MiRDB, MiRTarBase, and TargetScan-were used to build a lncRNA-miRNA-mRNA ceRNA network. Results By consensus clustering, two subgroups of cuproptosis were identified that represented distinct prognostic and immunological microenvironments. Conclusion A prognostic risk model with 13 CR-lncRNAs was developed. The immune microenvironment and responsiveness to immunotherapy are substantially connected with the model, which may reliably predict the prognosis of patients with ccRCC.
Collapse
Affiliation(s)
- Zhiliang Xiao
- 1School of Medicine, Jiangsu University, Zhenjiang, China
| | - Menglei Zhang
- 2Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenduo Shi
- 3Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Guanghui Zang
- 3Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Qing Liang
- 3Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Lin Hao
- 3Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Yang Dong
- 3Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Kun Pang
- 3Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Yabin Wang
- 1School of Medicine, Jiangsu University, Zhenjiang, China
| | - Conghui Han
- 1School of Medicine, Jiangsu University, Zhenjiang, China
- 3Department of Urology, The Affiliated School of Clinical Medicine of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
87
|
Kaushik AK, Tarangelo A, Boroughs LK, Ragavan M, Zhang Y, Wu CY, Li X, Ahumada K, Chiang JC, Tcheuyap VT, Saatchi F, Do QN, Yong C, Rosales T, Stevens C, Rao AD, Faubert B, Pachnis P, Zacharias LG, Vu H, Cai F, Mathews TP, Genovese G, Slusher BS, Kapur P, Sun X, Merritt M, Brugarolas J, DeBerardinis RJ. In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. SCIENCE ADVANCES 2022; 8:eabp8293. [PMID: 36525494 PMCID: PMC9757752 DOI: 10.1126/sciadv.abp8293] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/16/2022] [Indexed: 05/05/2023]
Abstract
Targeting metabolic vulnerabilities has been proposed as a therapeutic strategy in renal cell carcinoma (RCC). Here, we analyzed the metabolism of patient-derived xenografts (tumorgrafts) from diverse subtypes of RCC. Tumorgrafts from VHL-mutant clear cell RCC (ccRCC) retained metabolic features of human ccRCC and engaged in oxidative and reductive glutamine metabolism. Genetic silencing of isocitrate dehydrogenase-1 or isocitrate dehydrogenase-2 impaired reductive labeling of tricarboxylic acid (TCA) cycle intermediates in vivo and suppressed growth of tumors generated from tumorgraft-derived cells. Glutaminase inhibition reduced the contribution of glutamine to the TCA cycle and resulted in modest suppression of tumorgraft growth. Infusions with [amide-15N]glutamine revealed persistent amidotransferase activity during glutaminase inhibition, and blocking these activities with the amidotransferase inhibitor JHU-083 also reduced tumor growth in both immunocompromised and immunocompetent mice. We conclude that ccRCC tumorgrafts catabolize glutamine via multiple pathways, perhaps explaining why it has been challenging to achieve therapeutic responses in patients by inhibiting glutaminase.
Collapse
Affiliation(s)
- Akash K. Kaushik
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amy Tarangelo
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsey K. Boroughs
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mukundan Ragavan
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yuanyuan Zhang
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiangyi Li
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristen Ahumada
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jui-Chung Chiang
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Faeze Saatchi
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quyen N. Do
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cissy Yong
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Tracy Rosales
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aparna D. Rao
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brandon Faubert
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Panayotis Pachnis
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G. Zacharias
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu Vu
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P. Mathews
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara S. Slusher
- Department of Neurology and Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Payal Kapur
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Matthew Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - James Brugarolas
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
88
|
Zhou Z, Zhou Y, Liu D, Yang Q, Tang M, Liu W. Prognostic and immune correlation evaluation of a novel cuproptosis-related genes signature in hepatocellular carcinoma. Front Pharmacol 2022; 13:1074123. [PMID: 36588699 PMCID: PMC9795230 DOI: 10.3389/fphar.2022.1074123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the world's malignant tumors with high morbidity and mortality. Cuproptosis is a novel form of cell death. However, the prognostic evaluation and immune relevance of cuproptosis-related genes (CRGs) in HCC are largely unknown. In our study, we constructed a prognostic model of CRGs in HCC and performed immune infiltration, functional analysis, immune checkpoint and drug sensitivity analysis. Systematically elaborated the prognostic and immune correlation of CRGs in HCC. The results showed that 15 CRGs were up-regulated or down-regulated in HCC, and the mutation frequency of CRGs reached 10.33% in HCC, with CDKN2A having the highest mutation frequency. These 19 CRGs were mainly involved in the mitochondrion, immune response and metabolic pathways. Five selected genes (CDKN2A, DLAT, DLST, GLS, PDHA1) were involved in constructing a prognostic CRGs model that enables the overall survival in HCC patients to be predicted with moderate to high accuracy. Prognostic CRGs, especially CDKN2A, the independent factor of HCC prognosis, may be closely associated with immune-cell infiltration, tumor mutation burden (TMB), microsatellite instability(MSI), and immune checkpoints. CD274, CTLA4, LAG3, PDCD1, PDCD1LG2 and SIGLEC15 may be identified as potential therapeutic targets and CD274 correlated highly with prognostic genes. Quantitative Real-Time PCR (qRT-PCR) and immunohistochemical were performed to validate the mRNA and protein expression levels of CDKN2A in adjacent normal tissues and HCC tissues, and the results were consistent with gene difference analysis. In conclusion, CRGs, especially CDKN2A, may serve as potential prognostic predictors in HCC patients and provide novel insights into cancer therapy.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Otolaryngology Head and Neck, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yusong Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongbo Liu
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qingping Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mengjie Tang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Wei Liu,
| |
Collapse
|
89
|
Keiner C, Meagher M, Patil D, Saito K, Walia A, Liu F, Dutt R, Miller N, Dhanji S, Saidian A, Wan F, Yasuda Y, Fujii Y, Tanaka H, Master V, Derweesh I. Association of neutrophil-lymphocyte ratio, platelet-lymphocyte ratio, and De Ritis ratio with mortality in renal cell carcinoma: A multicenter analysis. Front Oncol 2022; 12:995991. [PMID: 36505802 PMCID: PMC9731093 DOI: 10.3389/fonc.2022.995991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Several markers of inflammation have been associated with oncologic outcomes. Prognostic markers are not well-defined for renal cell carcinoma (RCC). We sought to investigate the association of preoperative neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and De Ritis ratio with mortality in RCC. Methods Multi-center retrospective analysis of patients undergoing surgery for RCC. Primary outcome of interest was all-cause mortality (ACM). Secondary outcomes were non-cancer mortality (NCM) and cancer-specific mortality (CSM). Elevated NLR was defined as ≥2.27, elevated PLR as ≥165, and elevated De Ritis ratio as ≥ 2.72. Multivariable cox regression analysis (MVA) was conducted to elucidate risk factors for primary and secondary outcomes, and Kaplan-Meier analysis (KMA) was used to evaluate survival outcomes comparing elevated and non-elevated NLR, PLR, and De Ritis ratio. Results 2656 patients were analyzed (874 patients had elevated NLR; 480 patients had elevated PLR and 932 patients had elevated De Ritis). Elevated NLR was a significant predictor of ACM (HR 1.32, 95% CI: 1.07-1.64, p=0.003) and NCM (HR 1.79, 95% CI: 1.30-2.46, p<0.001) in MVA. Elevated De Ritis was a significant predictor of ACM (HR 2.04, 95% CI: 1.65-2.52), NCM (HR 1.84, 95% CI: 1.33-2.55, p<0.001), and CSM (HR 1.97, 95% CI:1.48-2.63, p<0.001). KMA revealed significant difference in 5-year overall survival (OS) (48% vs. 68%, p<0.001), non-cancer survival (NCS) (69% vs. 87%, p<0.001), and cancer-specific survival (CSS) (60% vs. 73%, p<0.001) for elevated versus non-elevated NLR. For PLR, there was a difference in 5-year OS (51% vs. 61%, p<0.001) and CSS (60% vs. 73%, p<0.001) with KMA. Conclusions Elevated NLR was independently associated with worse ACM and NCM, while elevated De Ritis was predictive for CSM in addition to ACM and NCM. These differences may be useful in refining risk stratification with respect to cancer-related and non-cancer mortality in RCC patients and deserve further investigation.
Collapse
Affiliation(s)
- Cathrine Keiner
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Margaret Meagher
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Dattatraya Patil
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kazutaka Saito
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arman Walia
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Franklin Liu
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Raksha Dutt
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Nathan Miller
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Sohail Dhanji
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Ava Saidian
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States
| | - Fang Wan
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Yasuda
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Viraj Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ithaar Derweesh
- Department of Urology, UC San Diego School of Medicine, La Jolla, CA, United States,*Correspondence: Ithaar Derweesh,
| |
Collapse
|
90
|
Sun Y, Jin D, Zhang Z, Jin D, Xue J, Duan L, Zhang Y, Kang X, Lian F. The critical role of the Hippo signaling pathway in kidney diseases. Front Pharmacol 2022; 13:988175. [PMID: 36483738 PMCID: PMC9723352 DOI: 10.3389/fphar.2022.988175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/03/2022] [Indexed: 09/14/2023] Open
Abstract
The Hippo signaling pathway is involved in cell growth, proliferation, and apoptosis, and it plays a key role in regulating organ size, tissue regeneration, and tumor development. The Hippo signaling pathway also participates in the occurrence and development of various human diseases. Recently, many studies have shown that the Hippo pathway is closely related to renal diseases, including renal cancer, cystic kidney disease, diabetic nephropathy, and renal fibrosis, and it promotes the transformation of acute kidney disease to chronic kidney disease (CKD). The present paper summarizes and analyzes the research status of the Hippo signaling pathway in different kidney diseases, and it also summarizes the expression of Hippo signaling pathway components in pathological tissues of kidney diseases. In addition, the present paper discusses the positive therapeutic significance of traditional Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating kidney diseases. This article introduces new targets and ideas for drug development, clinical diagnosis, and treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - JiaoJiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - LiYun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - YuQing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoMin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - FengMei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
91
|
Feng X, Hong T, Liu W, Xu C, Li W, Yang B, Song Y, Li T, Li W, Zhou H, Yin C. Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma. Front Endocrinol (Lausanne) 2022; 13:1054358. [PMID: 36465636 PMCID: PMC9716136 DOI: 10.3389/fendo.2022.1054358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
SIMPLE SUMMARY Studies have shown that about 30% of kidney cancer patients will have metastasis, and lymph node metastasis (LNM) may be related to a poor prognosis. Our retrospective study aims to provide a reliable machine learning-based model to predict the occurrence of LNM in kidney cancer. We screened the pathological grade, liver metastasis, M staging, primary site, T staging, and tumor size from the training group (n=39016) formed by the SEER database and the validation group (n=771) formed by the medical center. Independent predictors of LNM in cancer patients. Using six different algorithms to build a prediction model, it is found that the prediction performance of the XGB model in the training group and the validation group is significantly better than any other machine learning model. The results show that prediction tools based on machine learning can accurately predict the probability of LNM in patients with kidney cancer and have satisfactory clinical application prospects. BACKGROUND Lymph node metastasis (LNM) is associated with the prognosis of patients with kidney cancer. This study aimed to provide reliable machine learning-based (ML-based) models to predict the probability of LNM in kidney cancer. METHODS Data on patients diagnosed with kidney cancer were extracted from the Surveillance, Epidemiology and Outcomes (SEER) database from 2010 to 2017, and variables were filtered by least absolute shrinkage and selection operator (LASSO), univariate and multivariate logistic regression analyses. Statistically significant risk factors were used to build predictive models. We used 10-fold cross-validation in the validation of the model. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the model. Correlation heat maps were used to investigate the correlation of features using permutation analysis to assess the importance of predictors. Probability density functions (PDFs) and clinical utility curves (CUCs) were used to determine clinical utility thresholds. RESULTS The training cohort of this study included 39,016 patients, and the validation cohort included 771 patients. In the two cohorts, 2544 (6.5%) and 66 (8.1%) patients had LNM, respectively. Pathological grade, liver metastasis, M stage, primary site, T stage, and tumor size were independent predictive factors of LNM. In both model validation, the XGB model significantly outperformed any of the machine learning models with an AUC value of 0.916.A web calculator (https://share.streamlit.io/liuwencai4/renal_lnm/main/renal_lnm.py) were built based on the XGB model. Based on the PDF and CUC, we suggested 54.6% as a threshold probability for guiding the diagnosis of LNM, which could distinguish about 89% of LNM patients. CONCLUSIONS The predictive tool based on machine learning can precisely indicate the probability of LNM in kidney cancer patients and has a satisfying application prospect in clinical practice.
Collapse
Affiliation(s)
- Xiaowei Feng
- Department of Neuro Rehabilitation, Shaanxi Provincial Rehabilitation Hospital, Xi ‘an, China
| | - Tao Hong
- Department of Cardiac Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Wencai Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chan Xu
- Department of Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Wanying Li
- Department of Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
| | - Bing Yang
- Life Science Department, Tianjin Prosel Biological Technology Co., Ltd, Tianjin, China
| | - Yang Song
- Department of Gastroenterology and Hepatology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ting Li
- Department of Cell Biology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wenle Li
- Department of Neuro Rehabilitation, Shaanxi Provincial Rehabilitation Hospital, Xi ‘an, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Fujian, China
| | - Hui Zhou
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR China
| |
Collapse
|
92
|
Agudelo JP, Upadhyay D, Zhang D, Zhao H, Nolley R, Sun J, Agarwal S, Bok RA, Vigneron DB, Brooks JD, Kurhanewicz J, Peehl DM, Sriram R. Multiparametric Magnetic Resonance Imaging and Metabolic Characterization of Patient-Derived Xenograft Models of Clear Cell Renal Cell Carcinoma. Metabolites 2022; 12:1117. [PMID: 36422257 PMCID: PMC9692472 DOI: 10.3390/metabo12111117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
Patient-derived xenografts (PDX) are high-fidelity cancer models typically credentialled by genomics, transcriptomics and proteomics. Characterization of metabolic reprogramming, a hallmark of cancer, is less frequent. Dysregulated metabolism is a key feature of clear cell renal cell carcinoma (ccRCC) and authentic preclinical models are needed to evaluate novel imaging and therapeutic approaches targeting metabolism. We characterized 5 PDX from high-grade or metastatic ccRCC by multiparametric magnetic resonance imaging (MRI) and steady state metabolic profiling and flux analysis. Similar to MRI of clinical ccRCC, T2-weighted images of orthotopic tumors of most PDX were homogeneous. The increased hyperintense (cystic) areas observed in one PDX mimicked the cystic phenotype typical of some RCC. The negligible hypointense (necrotic) areas of PDX grown under the highly vascularized renal capsule are beneficial for preclinical studies. Mean apparent diffusion coefficient (ADC) values were equivalent to those of ccRCC in human patients. Hyperpolarized (HP) [1-13C]pyruvate MRI of PDX showed high glycolytic activity typical of high-grade primary and metastatic ccRCC with considerable intra- and inter-tumoral variability, as has been observed in clinical HP MRI of ccRCC. Comparison of steady state metabolite concentrations and metabolic flux in [U-13C]glucose-labeled tumors highlighted the distinctive phenotypes of two PDX with elevated levels of numerous metabolites and increased fractional enrichment of lactate and/or glutamate, capturing the metabolic heterogeneity of glycolysis and the TCA cycle in clinical ccRCC. Culturing PDX cells and reimplanting to generate xenografts (XEN), or passaging PDX in vivo, altered some imaging and metabolic characteristics while transcription remained like that of the original PDX. These findings show that PDX are realistic models of ccRCC for imaging and metabolic studies but that the plasticity of metabolism must be considered when manipulating PDX for preclinical studies.
Collapse
Affiliation(s)
- Joao Piraquive Agudelo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Deepti Upadhyay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dalin Zhang
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Rosalie Nolley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jinny Sun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - James D. Brooks
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
93
|
Bian C, Zheng Z, Su J, Wang H, Chang S, Xin Y, Jiang X. Targeting Mitochondrial Metabolism to Reverse Radioresistance: An Alternative to Glucose Metabolism. Antioxidants (Basel) 2022; 11:2202. [PMID: 36358574 PMCID: PMC9686736 DOI: 10.3390/antiox11112202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy failure and poor tumor prognosis are primarily attributed to radioresistance. Improving the curative effect of radiotherapy and delaying cancer progression have become difficult problems for clinicians. Glucose metabolism has long been regarded as the main metabolic process by which tumor cells meet their bioenergetic and anabolic needs, with the complex interactions between the mitochondria and tumors being ignored. This misconception was not dispelled until the early 2000s; however, the cellular molecules and signaling pathways involved in radioresistance remain incompletely defined. In addition to being a key metabolic site that regulates tumorigenesis, mitochondria can influence the radiation effects of malignancies by controlling redox reactions, participating in oxidative phosphorylation, producing oncometabolites, and triggering apoptosis. Therefore, the mitochondria are promising targets for the development of novel anticancer drugs. In this review, we summarize the internal relationship and related mechanisms between mitochondrial metabolism and cancer radioresistance, thus exploring the possibility of targeting mitochondrial signaling pathways to reverse radiation insensitivity. We suggest that attention should be paid to the potential value of mitochondria in prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
94
|
Hong P, Huang W, Du H, Hu D, Cao Q, Wang Y, Zhang H, Tong S, Li Z, Tong M. Prognostic value and immunological characteristics of a novel cuproptosis-related long noncoding RNAs risk signature in kidney renal clear cell carcinoma. Front Genet 2022; 13:1009555. [PMID: 36406128 PMCID: PMC9669974 DOI: 10.3389/fgene.2022.1009555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Background: Cuproptosis has been found as a novel cell death mode significantly associated with mitochondrial metabolism, which may be significantly associated with the occurrence and growth of tumors. LncRNAs take on critical significance in regulating the development of kidney renal clear cell carcinoma (KIRC), whereas the correlation between cuproptosis-related LncRNAs (CRLs) and KIRC is not clear at present. Therefore, this study built a prognosis signature based on CRLs, which can achieve accurate prediction of the outcome of KIRC patients. Methods: The TCGA database provided the expression profile information and relevant clinical information of KIRC patients. Univariate Cox, Lasso, and multivariate Cox were employed for building a risk signature based on CRLs. Kaplan-Meier (K-M) survival analysis and time-dependent receiver operating characteristic (ROC) curve were employed for the verification and evaluation of the reliability and accuracy of risk signature. Then, qRT-PCR analysis of risk LncRNAs was conducted. Finally, the possible effect of the developed risk signature on the microenvironment for tumor immunization was speculated in accordance with ssGSEA and ESTIMATE algorithms. Results: A prognosis signature composed of APCDD1L-DT, MINCR, AL161782.1, and AC026401.3 was built based on CRLs. As revealed by the results of the K-M survival study, the OS rate and progression-free survival rate of highrisk KIRC patients were lower than those of lowrisk KIRC patients, and the areas under ROC curves of 1, 3, and 5 years were 0.828, 0.780, and 0.794, separately. The results of the immune analysis showed that there were significant differences in the status of immunization and the microenvironment of tumor between groups at low-risk and at high-risk. The qRT-PCR results showed that the relative expression level of MINCR and APCDD1L-DT were higher in 786-O and 769-P tumor cells than in HK-2 cells, which were normal renal tubular epithelial cells. Conclusion: The developed risk signature takes on critical significance in the prediction of the prognosis of patients with KIRC, and it can bring a novel direction for immunotherapy and clinical drug treatment of KIRC. In addition, 4 identified risk LncRNAs (especially APCDD1L-DT and MINCR) can be novel targets for immunotherapy of KIRC patients.
Collapse
Affiliation(s)
- Peng Hong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Weichao Huang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Huifang Du
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ding Hu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Qingfei Cao
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Yinjie Wang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Huashan Zhang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Siqiao Tong
- The First Clinical College of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Zizhi Li
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| | - Ming Tong
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
95
|
Jiang D, Wu T, Shi N, Shan Y, Wang J, Jiang H, Wu Y, Wang M, Li J, Liu H, Chen M. Development of genomic instability-associated long non-coding RNA signature: A prognostic risk model of clear cell renal cell carcinoma. Front Oncol 2022; 12:1019011. [PMID: 36387102 PMCID: PMC9651086 DOI: 10.3389/fonc.2022.1019011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/23/2022] [Indexed: 09/08/2024] Open
Abstract
Purpose Renal clear cell carcinoma (ccRCC) is the most lethal of all pathological subtypes of renal cell carcinoma (RCC). Genomic instability was recently reported to be related to the occurrence and development of kidney cancer. The biological roles of long non-coding RNAs (lncRNAs) in tumorigenesis have been increasingly valued, and various lncRNAs were found to be oncogenes or cancer suppressors. Herein, we identified a novel genomic instability-associated lncRNA (GILncs) model for ccRCC patients to predict the overall survival (OS). Methods The Cancer Genome Atlas (TCGA) database was utilized to obtain full transcriptome data, somatic mutation profiles, and clinical characteristics. The differentially expressed lncRNAs between the genome-unstable-like group (GU) and the genome-stable-like group (GS) were defined as GILncs, with |logFC| > 1 and an adjusted p-value< 0.05 for a false discovery rate. All samples were allocated into GU-like or GS-like types based on the expression of GILncs observed using hierarchical cluster analyses. A genomic instability-associated lncRNA signature (GILncSig) was constructed using parameters of the included lncRNAs. Quantitative real-time PCR analysis was used to detect the in vitro expression of the included lncRNAs. Validation of the risk model was performed by the log-rank test, time-dependent receiver operating characteristic (ROC) curves analysis, and multivariate Cox regression analysis. Results Forty-six lncRNAs were identified as GILncs. LINC00460, AL139351.1, and AC156455.1 were employed for GILncSig calculation based on the results of Cox analysis. GILncSig was confirmed as an independent predictor for OS of ccRCC patients. Additionally, it presented a higher efficiency and accuracy than other RCC prognostic models reported before. Conclusion GILncSig score was qualified as a critical indicator, independent of other clinical factors, for prognostic prediction of ccRCC patients.
Collapse
Affiliation(s)
- Dongfang Jiang
- Department of Urology, Danyang People’s Hospital, Danyang, China
| | - Tiange Wu
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Naipeng Shi
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yong Shan
- Department of Urology, The Second People's Hospital of Taizhou, Taizhou, China
| | - Jinfeng Wang
- Department of Urology, Yancheng Third People’s Hospital, Yancheng, China
| | - Hua Jiang
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yuqing Wu
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Mengxue Wang
- Department of Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Jian Li
- Department of Urology, Jinhu County People’s Hospital, Huaian, China
| | - Hui Liu
- Department of Urology, Binhai County People’s Hospital, Yancheng, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
96
|
Huang CC, Liu HY, Hsu TW, Lee WC. Updates on the Pivotal Roles of Mitochondria in Urothelial Carcinoma. Biomedicines 2022; 10:biomedicines10102453. [PMID: 36289714 PMCID: PMC9599371 DOI: 10.3390/biomedicines10102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are important organelles responsible for energy production, redox homeostasis, oncogenic signaling, cell death, and apoptosis. Deregulated mitochondrial metabolism and biogenesis are often observed during cancer development and progression. Reports have described the crucial roles of mitochondria in urothelial carcinoma (UC), which is a major global health challenge. This review focuses on research advances in the role of mitochondria in UC. Here, we discuss the pathogenic roles of mitochondria in UC and update the mitochondria-targeted therapies. We aim to offer a better understanding of the mitochondria-modulated pathogenesis of UC and hope that this review will allow the development of novel mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Chiang-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tsuen-Wei Hsu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8306)
| |
Collapse
|
97
|
The role of nutrition in harnessing the immune system: a potential approach to prevent cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:245. [PMID: 36180759 DOI: 10.1007/s12032-022-01850-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Cancer is a vital barrier to increase the life expectancy and the foremost cause of death globally. The initial diagnosis and proper management of cancer can expand the survival rate of individuals. This review provides an in-depth investigation of cancer causes symptoms, types of cancer, and worldwide distribution of cancer. The relation between nutrition (i.e., various food items) and cancer is also emphasized to offer a framework of nutrition management in different cancer types. The microbiota is closely associated with the occurrence of cancer. Thus, genomics of intestinal microbes and nutrigenomics have been discussed based on the reported meta-analysis studies. A dramatic increase in cancer rates has been observed due to intake of alcohol, microbial infections, and deficiency of nutrition. Malnutrition is a substantial problem in cancer patients linked with improper treatment and increased morbidity. The detail studies of cancer and nutrigenomics are an eminent approach to comprehend the relation between microbes and the consumption of certain food types which can further reduce the cancer risk. The incorporation of specific nutrients and probiotics improved the gut microbial health, increased life expectancy, and also decreased the incidence of tumorigenesis in individuals.
Collapse
|
98
|
The comparison of cancer gene mutation frequencies in Chinese and U.S. patient populations. Nat Commun 2022; 13:5651. [PMID: 36163440 PMCID: PMC9512793 DOI: 10.1038/s41467-022-33351-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Knowing the mutation frequency of cancer genes in China is crucial for reducing the global health burden. We integrate the tumor epidemiological statistics with cancer gene mutation rates identified in 11,948 cancer patients to determine their weighted proportions within a Chinese cancer patient cohort. TP53 (51.4%), LRP1B (13.4%), PIK3CA (11.6%), KRAS (11.1%), EGFR (10.6%), and APC (10.5%) are identified as the top mutated cancer genes in China. Additionally, 18 common cancer types from both China and U.S. cohorts are analyzed and classified into three patterns principally based upon TP53 mutation rates: TP53-Top, TP53-Plus, and Non-TP53. Next, corresponding similarities and prominent differences are identified upon comparing the mutational profiles from both cohorts. Finally, the potential population-specific and environmental risk factors underlying the disparities in cancer gene mutation rates between the U.S. and China are analyzed. Here, we show and compare the mutation rates of cancer genes in Chinese and U.S. population cohorts, for a better understanding of the associated etiological and epidemiological factors, which are important for cancer prevention and therapy.
Collapse
|
99
|
Metabolic Adaptation as Potential Target in Papillary Renal Cell Carcinomas Based on Their In Situ Metabolic Characteristics. Int J Mol Sci 2022; 23:ijms231810587. [PMID: 36142502 PMCID: PMC9503093 DOI: 10.3390/ijms231810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolic characteristics of kidney cancers have mainly been obtained from the most frequent clear cell renal cell carcinoma (CCRCC) studies. Moreover, the bioenergetic perturbances that affect metabolic adaptation possibilities of papillary renal cell carcinoma (PRCC) have not yet been detailed. Therefore, our study aimed to analyze the in situ metabolic features of PRCC vs. CCRCC tissues and compared the metabolic characteristics of PRCC, CCRCC, and normal tubular epithelial cell lines. The protein and mRNA expressions of the molecular elements in mammalian target of rapamycin (mTOR) and additional metabolic pathways were analyzed in human PRCC cases compared to CCRCC. The metabolic protein expression pattern, metabolite content, mTOR, and metabolic inhibitor sensitivity of renal carcinoma cell lines were also studied and compared with tubular epithelial cells, as “normal” control. We observed higher protein expressions of the “alternative bioenergetic pathway” elements, in correlation with the possible higher glutamine and acetate consumption in PRCC cells instead of higher glycolytic and mTOR activity in CCRCCs. Increased expression of certain metabolic pathway markers correlates with the detected differences in metabolite ratios, as well. The lower lactate/pyruvate, lactate/malate, and higher pyruvate/citrate intracellular metabolite ratios in PRCC compared to CCRCC cell lines suggest that ACHN (PRCC) have lower Warburg glycolytic capacity, less pronounced pyruvate to lactate producing activity and shifted OXPHOS phenotype. However, both studied renal carcinoma cell lines showed higher mTOR activity than tubular epithelial cells cultured in vitro, the metabolite ratio, the enzyme expression profiles, and the higher mitochondrial content also suggest increased importance of mitochondrial functions, including mitochondrial OXPHOS in PRCCs. Additionally, PRCC cells showed significant mTOR inhibitor sensitivity and the used metabolic inhibitors increased the effect of rapamycin in combined treatments. Our study revealed in situ metabolic differences in mTOR and metabolic protein expression patterns of human PRCC and CCRCC tissues as well as in cell lines. These underline the importance in the development of specific new treatment strategies, new mTOR inhibitors, and other anti-metabolic drug combinations in PRCC therapy.
Collapse
|
100
|
Effects of Genistein on Common Kidney Diseases. Nutrients 2022; 14:nu14183768. [PMID: 36145144 PMCID: PMC9506319 DOI: 10.3390/nu14183768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/16/2022] Open
Abstract
Genistein is a naturally occurring phytoestrogen (soy or soybean products) that is classified as an isoflavone, and its structure is similar to that of endogenous estrogens; therefore, genistein can exert an estrogen-like effect via estrogen receptors. Additionally, genistein is a tyrosine kinase inhibitor, which enables it to block abnormal cell growth and proliferation signals through the inhibition of tyrosine kinase. Genistein is also an angiogenesis inhibitor and an antioxidant. Genistein has effects on kidney cells, some of the kidney’s physiological functions, and a variety of kidney diseases. First, genistein exerts a protective effect on normal cells by reducing the inflammatory response, inhibiting apoptosis, inhibiting oxidative stress, inhibiting remodeling, etc., but after cell injury, the protective effect of genistein decreases or even has the opposite effect. Second, genistein can regulate renin intake to maintain blood pressure balance, regulate calcium uptake to regulate Ca2+ and Pi balances, and reduce vasodilation to promote diuresis. Third, genistein has beneficial effects on a variety of kidney diseases (including acute kidney disease, kidney cancer, and different chronic kidney diseases), such as reducing symptoms, delaying disease progression, and improving prognosis. Therefore, this paper reviews animal and human studies on the protective effects of genistein on the kidney in vivo and in vitro to provide a reference for clinical research in the future.
Collapse
|