51
|
SOS1 inhibitor combinations overcome KRAS inhibitor resistance. NATURE CANCER 2024; 5:1294-1295. [PMID: 39134714 DOI: 10.1038/s43018-024-00801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
|
52
|
Thatikonda V, Lyu H, Jurado S, Kostyrko K, Bristow CA, Albrecht C, Alpar D, Arnhof H, Bergner O, Bosch K, Feng N, Gao S, Gerlach D, Gmachl M, Hinkel M, Lieb S, Jeschko A, Machado AA, Madensky T, Marszalek ED, Mahendra M, Melo-Zainzinger G, Molkentine JM, Jaeger PA, Peng DH, Schenk RL, Sorokin A, Strauss S, Trapani F, Kopetz S, Vellano CP, Petronczki M, Kraut N, Heffernan TP, Marszalek JR, Pearson M, Waizenegger IC, Hofmann MH. Co-targeting SOS1 enhances the antitumor effects of KRAS G12C inhibitors by addressing intrinsic and acquired resistance. NATURE CANCER 2024; 5:1352-1370. [PMID: 39103541 PMCID: PMC11424490 DOI: 10.1038/s43018-024-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Combination approaches are needed to strengthen and extend the clinical response to KRASG12C inhibitors (KRASG12Ci). Here, we assessed the antitumor responses of KRASG12C mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRASG12C inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling. BI-3406 plus adagrasib treatment also delayed the emergence of acquired resistance and elicited antitumor responses from adagrasib-resistant models. Resistance to KRASG12Ci seemed to be driven by upregulation of MRAS activity, which both SOS1i and SHP2i were found to potently inhibit. Knockdown of SHOC2, a MRAS complex partner, partially restored response to KRASG12Ci treatment. These results suggest KRASG12C plus SOS1i to be a promising strategy for treating both KRASG12Ci naive and relapsed KRASG12C-mutant tumors.
Collapse
Affiliation(s)
- Venu Thatikonda
- Boehringer Ingelheim RCV, Vienna, Austria.
- Exscientia, Vienna, Austria.
| | - Hengyu Lyu
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Christopher A Bristow
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Ningping Feng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sisi Gao
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Annette A Machado
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ethan D Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mikhila Mahendra
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jessica M Molkentine
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - David H Peng
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Vellano
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Timothy P Heffernan
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph R Marszalek
- Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) Platform, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
53
|
Jungholm O, Trkulja C, Moche M, Srinivasa SP, Christakopoulou MN, Davidson M, Reymer A, Jardemark K, Fogaça RL, Ashok A, Jeffries G, Ampah-Korsah H, Strandback E, Andréll J, Nyman T, Nouairia G, Orwar O. Novel druggable space in human KRAS G13D discovered using structural bioinformatics and a P-loop targeting monoclonal antibody. Sci Rep 2024; 14:19656. [PMID: 39179604 PMCID: PMC11344056 DOI: 10.1038/s41598-024-70217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
KRAS belongs to a family of small GTPases that act as binary switches upstream of several signalling cascades, controlling proliferation and survival of cells. Mutations in KRAS drive oncogenesis, especially in pancreatic, lung, and colorectal cancers (CRC). Although historic attempts at targeting mutant KRAS with small molecule inhibitors have proven challenging, there are recent successes with the G12C, and G12D mutations. However, clinically important RAS mutations such as G12V, G13D, Q61L, and A146T, remain elusive drug targets, and insights to their structural landscape is of critical importance to develop novel, and effective therapeutic concepts. We present a fully open, P-loop exposing conformer of KRAS G13D by X-ray crystallography at 1.4-2.4 Å resolution in Mg2+-free phosphate and malonate buffers. The G13D conformer has the switch-I region displaced in an upright position leaving the catalytic core fully exposed. To prove that this state is druggable, we developed a P-loop-targeting monoclonal antibody (mAb). The mAb displayed high-affinity binding to G13D and was shown using high resolution fluorescence microscopy to be spontaneously taken up by G13D-mutated HCT 116 cells (human CRC derived) by macropinocytosis. The mAb inhibited KRAS signalling in phosphoproteomic and genomic studies. Taken together, the data propose novel druggable space of G13D that is reachable in the cellular context. It is our hope that these findings will stimulate attempts to drug this fully open state G13D conformer using mAbs or other modalities.
Collapse
Affiliation(s)
- Oscar Jungholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Carolina Trkulja
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Martin Moche
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sreesha P Srinivasa
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | | | - Max Davidson
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
| | - Anna Reymer
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | | | - Gavin Jeffries
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Henry Ampah-Korsah
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Emilia Strandback
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Juni Andréll
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tomas Nyman
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ghada Nouairia
- Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
54
|
Li Y, Yang L, Li X, Zhang X. Inhibition of GTPase KRAS G12D: a review of patent literature. Expert Opin Ther Pat 2024; 34:701-721. [PMID: 38884569 DOI: 10.1080/13543776.2024.2369630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION KRAS is a critical oncogenic protein intricately involved in tumor progression, and the difficulty in targeting KRAS has led it to be classified as an 'undruggable target.' Among the various KRAS mutations, KRASG12D is highly prevalent and represents a promising therapeutic target, yet there are currently no approved inhibitors for it. AREA COVERED This review summarizes numerous patents and literature featuring inhibitors or degraders of KRASG12D through searching relevant information in PubMed, SciFinder and Web of Science databases from 2021 to February 2024, providing an overview of the research progress on inhibiting KRASG12D in terms of design strategies, chemical structures, biological activities, and clinical advancements. EXPERT OPINION Since the approval of AMG510 (Sotorasib), there has been an increasing focus on the inhibition of KRASG12D, leading to numerous reports of related inhibitors and degraders. Among them, MRTX1133, as the first KRASG12D inhibitor to enter clinical trials, has demonstrated excellent tumor suppression in various KRASG12D-bearing human tumor xenograft models. It is important to note, however, that understanding the mechanisms of acquired resistance caused by KRAS inhibition and developing additional combination therapies is crucial. Moreover, seeking covalent inhibition of KRASG12D also holds significant potential.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Le Yang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Xiaoran Li
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
55
|
Fischer B, Uchański T, Sheryazdanova A, Gonzalez S, Volkov AN, Brosens E, Zögg T, Kalichuk V, Ballet S, Versées W, Sablina AA, Pardon E, Wohlkönig A, Steyaert J. Allosteric nanobodies to study the interactions between SOS1 and RAS. Nat Commun 2024; 15:6214. [PMID: 39043660 PMCID: PMC11266648 DOI: 10.1038/s41467-024-50349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/07/2024] [Indexed: 07/25/2024] Open
Abstract
Protein-protein interactions (PPIs) are central in cell metabolism but research tools for the structural and functional characterization of these PPIs are often missing. Here we introduce broadly applicable immunization (Cross-link PPIs and immunize llamas, ChILL) and selection strategies (Display and co-selection, DisCO) for the discovery of diverse nanobodies that either stabilize or disrupt PPIs in a single experiment. We apply ChILL and DisCO to identify competitive, connective, or fully allosteric nanobodies that inhibit or facilitate the formation of the SOS1•RAS complex and modulate the nucleotide exchange rate on this pivotal GTPase in vitro as well as RAS signalling in cellulo. One of these connective nanobodies fills a cavity that was previously identified as the binding pocket for a series of therapeutic lead compounds. The long complementarity-determining region (CDR3) that penetrates this binding pocket serves as pharmacophore for extending the repertoire of potential leads.
Collapse
Affiliation(s)
- Baptiste Fischer
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
- European Institute of Chemistry and Biology (IECB), 2 rue Robert Escarpit, Pessac, France
| | - Tomasz Uchański
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Aidana Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Simon Gonzalez
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Jean Jeener NMR Centre, VUB, Brussels, Belgium
| | - Elke Brosens
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Valentina Kalichuk
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Wim Versées
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Alexandre Wohlkönig
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium.
| |
Collapse
|
56
|
Boileve A, Smolenschi C, Lambert A, Boige V, Tarabay A, Valery M, Fuerea A, Pudlarz T, Conroy T, Hollebecque A, Ducreux M. Role of molecular biology in the management of pancreatic cancer. World J Gastrointest Oncol 2024; 16:2902-2914. [PMID: 39072173 PMCID: PMC11271790 DOI: 10.4251/wjgo.v16.i7.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges in patient management due to a dismal prognosis, increasing incidence, and limited treatment options. In this regard, precision medicine, which personalizes treatments based on tumour molecular characteristics, has gained great interest. However, its widespread implementation is not fully endorsed in current recommendations. This review explores key molecular alterations in PDAC, while emphasizing differences between KRAS-mutated and KRAS-wild-type tumours. It assesses the practical application of precision medicine in clinical settings and outlines potential future directions with respect to PDAC. Actionable molecular targets are examined with the aim of enhancing our understanding of PDAC molecular biology. Insights from this analysis may contribute to a more refined and personalized approach to pancreatic cancer treatment, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Alice Boileve
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | | | - Aurélien Lambert
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | - Valérie Boige
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Anthony Tarabay
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Marine Valery
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Alina Fuerea
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thomas Pudlarz
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| | - Thierry Conroy
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy 54519, France
| | | | - Michel Ducreux
- Department of Medical, Gustave Roussy, Villejuif 94800, France
| |
Collapse
|
57
|
Thein KZ, Myat YM, Park BS, Panigrahi K, Kummar S. Target-Driven Tissue-Agnostic Drug Approvals-A New Path of Drug Development. Cancers (Basel) 2024; 16:2529. [PMID: 39061168 PMCID: PMC11274498 DOI: 10.3390/cancers16142529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The regulatory approvals of tumor-agnostic therapies have led to the re-evaluation of the drug development process. The conventional models of drug development are histology-based. On the other hand, the tumor-agnostic drug development of a new drug (or combination) focuses on targeting a common genomic biomarker in multiple cancers, regardless of histology. The basket-like clinical trials with multiple cohorts allow clinicians to evaluate pan-cancer efficacy and toxicity. There are currently eight tumor agnostic approvals granted by the Food and Drug Administration (FDA). This includes two immune checkpoint inhibitors, and five targeted therapy agents. Pembrolizumab is an anti-programmed cell death protein-1 (PD-1) antibody that was the first FDA-approved tumor-agnostic treatment for unresectable or metastatic microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) solid tumors in 2017. It was later approved for tumor mutational burden-high (TMB-H) solid tumors, although the TMB cut-off used is still debated. Subsequently, in 2021, another anti-PD-1 antibody, dostarlimab, was also approved for dMMR solid tumors in the refractory setting. Patients with fusion-positive cancers are typically difficult to treat due to their rare prevalence and distribution. Gene rearrangements or fusions are present in a variety of tumors. Neurotrophic tyrosine kinase (NTRK) fusions are present in a range of pediatric and adult solid tumors in varying frequency. Larotrectinib and entrectinib were approved for neurotrophic tyrosine kinase (NTRK) fusion-positive cancers. Similarly, selpercatinib was approved for rearranged during transfection (RET) fusion-positive solid tumors. The FDA approved the first combination therapy of dabrafenib, a B-Raf proto-oncogene serine/threonine kinase (BRAF) inhibitor, plus trametinib, a mitogen-activated protein kinase (MEK) inhibitor for patients 6 months or older with unresectable or metastatic tumors (except colorectal cancer) carrying a BRAFV600E mutation. The most recent FDA tumor-agnostic approval is of fam-trastuzumab deruxtecan-nxki (T-Dxd) for HER2-positive solid tumors. It is important to identify and expeditiously develop drugs that have the potential to provide clinical benefit across tumor types.
Collapse
Affiliation(s)
- Kyaw Z. Thein
- Division of Hematology and Medical Oncology, Comprehensive Cancer Centers of Nevada—Central Valley, 3730 S Eastern Ave, Las Vegas, NV 89169, USA
- Department of Medicine, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas (UNLV), 4505 S, Maryland Pkwy, Las Vegas, NV 89154, USA
- College of Osteopathic Medicine, Touro University Nevada, Touro College and University System, 874 American Pacific Dr, Henderson, NV 89014, USA
| | - Yin M. Myat
- Belfield Campus, University College Dublin (UCD) School of Medicine, D04 V1W8 Dublin, Ireland;
- Department of Internal Medicine, One Brooklyn Health—Interfaith Medical Center Campus, 1545, Atlantic Avenue, Brooklyn, NY 11213, USA;
| | - Byung S. Park
- OHSU-PSU School of Public Health, Portland, OR 97201, USA;
- Biostatistics Shared Resource, OHSU Knight Cancer Institute, OHSU School of Medicine, Portland, OR 97239, USA
| | - Kalpana Panigrahi
- Department of Internal Medicine, One Brooklyn Health—Interfaith Medical Center Campus, 1545, Atlantic Avenue, Brooklyn, NY 11213, USA;
| | - Shivaani Kummar
- Division of Hematology & Medical Oncology, Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA;
| |
Collapse
|
58
|
Ma X, Sloman DL, Duggal R, Anderson KD, Ballard JE, Bharathan I, Brynczka C, Gathiaka S, Henderson TJ, Lyons TW, Miller R, Munsell EV, Orth P, Otte RD, Palani A, Rankic DA, Robinson MR, Sather AC, Solban N, Song XS, Wen X, Xu Z, Yang Y, Yang R, Day PJ, Stoeck A, Bennett DJ, Han Y. Discovery of MK-1084: An Orally Bioavailable and Low-Dose KRAS G12C Inhibitor. J Med Chem 2024; 67:11024-11052. [PMID: 38924388 DOI: 10.1021/acs.jmedchem.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Oncogenic mutations in the RAS gene account for 30% of all human tumors; more than 60% of which present as KRAS mutations at the hotspot codon 12. After decades of intense pursuit, a covalent inhibition strategy has enabled selective targeting of this previously "undruggable" target. Herein, we disclose our journey toward the discovery of MK-1084, an orally bioavailable and low-dose KRASG12C covalent inhibitor currently in phase I clinical trials (NCT05067283). We leveraged structure-based drug design to identify a macrocyclic core structure, and hypothesis-driven optimization of biopharmaceutical properties to further improve metabolic stability and tolerability.
Collapse
Affiliation(s)
- Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - David L Sloman
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Ruchia Duggal
- Department of Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Kenneth D Anderson
- Department of Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Jeanine E Ballard
- Department of Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Indu Bharathan
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Christopher Brynczka
- Department of Nonclinical Drug Safety, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Symon Gathiaka
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Timothy J Henderson
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Thomas W Lyons
- Department of Process Research and Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Richard Miller
- Department of Discovery Quantitative Biosciences, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Erik V Munsell
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Peter Orth
- Department of Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Ryan D Otte
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Anandan Palani
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Danica A Rankic
- Department of Process Research and Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Michelle R Robinson
- Department of Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Aaron C Sather
- Department of Process Research and Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Nicolas Solban
- Department of Discovery Quantitative Biosciences, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Xuelei Sherry Song
- Department of Discovery Quantitative Biosciences, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Xin Wen
- Department of Process Research and Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Zangwei Xu
- Department of Discovery Quantitative Biosciences, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Yi Yang
- Department of Discovery Quantitative Biosciences, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Ruojing Yang
- Department of Discovery Quantitative Biosciences, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Phil J Day
- Department of Structural Biology, Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Alexander Stoeck
- Department of Discovery Biology, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - David Jonathan Bennett
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Yongxin Han
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| |
Collapse
|
59
|
Oya Y, Imaizumi K, Mitsudomi T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 2024; 194:107886. [PMID: 39047616 DOI: 10.1016/j.lungcan.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed 'undruggable' for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring KRAS G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of KRAS mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C KRAS mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.
Collapse
Affiliation(s)
- Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Japan
| | | | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Izumi City General Hospital, Japan; Kindai University, Faculty of Medicine, Japan.
| |
Collapse
|
60
|
Wu C, Zhong R, Wei T, Jin Y, He C, Li H, Cheng Y. Mechanism of targeting the mTOR pathway to regulate ferroptosis in NSCLC with different EGFR mutations. Oncol Lett 2024; 28:298. [PMID: 38751752 PMCID: PMC11094585 DOI: 10.3892/ol.2024.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR)-activating mutations can be treated with EGFR-tyrosine kinase inhibitors (TKIs). Although EGFR-TKI-targeted drugs bring survival promotion in patients with EGFR mutations, drug resistance is inevitable, so it is urgent to explore new treatments to overcome drug resistance. In addition, wild-type EGFR lacks targeted drugs, and new targeted therapies need to be explored. Ferroptosis is a key research direction for overcoming drug resistance. However, the role and mechanism of regulating ferroptosis in different EGFR-mutant NSCLC types remains unclear. In the present study, H1975 (EGFR T790M/L858R mutant), A549 (EGFR wild-type) and H3255 (EGFR L858R mutant) NSCLC cell lines were used. The expression of ferroptosis markers in these cell lines was detected using western blotting and reverse transcription-quantitative PCR. Cell viability was determined using the MTT assay and reactive oxygen species (ROS) levels were measured using flow cytometry. The results showed that, compared with EGFR wild-type/sensitive mutant cells, EGFR-resistant mutant cells were more sensitive to the ferroptosis inducer, erastin. Furthermore, the mammalian target of rapamycin (mTOR) inhibitor, everolimus (RAD001), induced cell death in all three cell lines in a dose-dependent manner. The ferroptosis inhibitor, ferrostatin-1, could reverse cell death in EGFR-resistant mutant and EGFR wild-type cells induced by RAD001, but could not reverse cell death in EGFR-sensitive mutant cells. Compared with EGFR wild-type/sensitive mutant cells, EGFR-resistant mutant cells were more sensitive to RAD001 combined with erastin. In addition, a high-dose of RAD001 reduced the expression levels of ferritin heavy-chain polypeptide 1 (FTH1), glutathione peroxidase 4 (GPX4) and ferroportin and significantly increased ROS and malondialdehyde (MDA) levels in EGFR-resistant mutant and EGFR wild-type cells. In the present study, GPX4 inhibitor only or combined with RAD001 inhibited the AKT/mTOR pathway in EGFR-resistant mutant cells. Therefore, the results of the present study suggested that inhibition of the mTOR pathway may downregulate the expression of ferroptosis-related proteins in EGFR-resistant and EGFR wild-type NSCLC cells, increase the ROS and MDA levels and ultimately induce ferroptosis.
Collapse
Affiliation(s)
- Chunjiao Wu
- Phase I Clinical Research Ward, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Rui Zhong
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Changchun, Jilin 130000, P.R. China
| | - Tianxue Wei
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Yulong Jin
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Chunying He
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Hui Li
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Changchun, Jilin 130000, P.R. China
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Ying Cheng
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Changchun, Jilin 130000, P.R. China
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
61
|
Hernando-Calvo A, Rossi A, Vieito M, Voest E, Garralda E. Agnostic drug development revisited. Cancer Treat Rev 2024; 128:102747. [PMID: 38763053 DOI: 10.1016/j.ctrv.2024.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
The advent of molecular profiling and the generalization of next generation sequencing in oncology has enabled the identification of patients who could benefit from targeted agents. Since the tumor-agnostic approval of pembrolizumab for patients with MSI-High tumors in 2017, different molecularly-guided therapeutics have been awarded approvals and progressively incorporated in the treatment landscape across multiple tumor types. As the number of tumor-agnostic targets considered druggable expands in the clinic, novel challenges will reshape the drug development field involving all the stakeholders in oncology. In this review, we provide an overview of current tumor-agnostic approvals and discuss promising candidate therapeutics for tumor-agnostic designation and challenges for their broad implementation.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Alice Rossi
- Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Vieito
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Emile Voest
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Elena Garralda
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
62
|
Xu H, Zheng Y, Wu J, Zhang R, Zhao Q, Chen S, Peng W, Cai D, Gao Y, Chen X, Li D, Yuan S, Li G, Nan A. circSORBS1 inhibits lung cancer progression by sponging miR-6779-5p and directly binding RUFY3 mRNA. J Transl Med 2024; 22:590. [PMID: 38915053 PMCID: PMC11197270 DOI: 10.1186/s12967-024-05423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Lung cancer is the primary cause of cancer-related death worldwide, and its global incidence and mortality rates remain high. The differential expression of circular RNAs (circRNAs) can affect the development of cancer, but the mechanisms by which circRNAs regulate lung cancer progression remain unclear. In this study, we identified circSORBS1, a circRNA that has not been previously described in lung cancer and is significantly underexpressed in lung cancer tissues, blood and cell lines, and the low expression of circSORBS1 correlated with tumour grade and prognosis. In vitro and in vivo functional experiments revealed that circSORBS1 overexpression inhibited cell proliferation and migration while enhancing apoptosis. Mechanistically, circSORBS1 acts as a sponge for miR-6779-5p, indirectly inhibiting RUFY3 mRNA degradation. Simultaneously, it binds to RUFY3 mRNA to enhance its stability. This dual regulatory mechanism leads to an increase in RUFY3 protein levels, which ultimately activates the YWHAE/BAD/BCL2 apoptotic signalling pathway and suppresses lung cancer progression. Our findings not only increase the knowledge about the regulatory pattern of circRNA expression but also provide new insights into the mechanisms by which circRNAs regulate lung cancer development.
Collapse
Affiliation(s)
- Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yue Zheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yihong Gao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xingcai Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Deqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Shengyi Yuan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
63
|
Wang X, Breuer J, Garbe S, Giordano F, Brossart P, Feldmann G, Bisht S. Triple Blockade of Oncogenic RAS Signaling Using KRAS and MEK Inhibitors in Combination with Irradiation in Pancreatic Cancer. Int J Mol Sci 2024; 25:6249. [PMID: 38892436 PMCID: PMC11172716 DOI: 10.3390/ijms25116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1-2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Johanna Breuer
- Institute of Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Stephan Garbe
- Department of Radiology and Radiation Oncology, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Frank Giordano
- Department of Radiology and Radiation Oncology, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Peter Brossart
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Savita Bisht
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| |
Collapse
|
64
|
Nam H, Lee E, Yang H, Lee K, Kwak T, Kim D, Kim H, Yang M, Yang Y, Son S, Nam YH, Minn I. PROMER technology: A new real-time PCR tool enabling multiplex detection of point mutation with high specificity and sensitivity. Biol Methods Protoc 2024; 9:bpae041. [PMID: 38938409 PMCID: PMC11208725 DOI: 10.1093/biomethods/bpae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Real-time polymerase chain reaction (real-time PCR) is a powerful tool for the precise quantification of nucleic acids in various applications. In cancer management, the monitoring of circulating tumor DNA (ctDNA) from liquid biopsies can provide valuable information for precision care, including treatment selection and monitoring, prognosis, and early detection. However, the rare and heterogeneous nature of ctDNA has made its precise detection and quantification challenging, particularly for ctDNA containing hotspot mutations. We have developed a new real-time PCR tool, PROMER technology, which enables the precise and sensitive detection of ctDNA containing cancer-driven single-point mutations. The PROMER functions as both a PRObe and priMER, providing enhanced detection specificity. We validated PROMER technology using synthetic templates with known KRAS point mutations and demonstrated its sensitivity and linearity of quantification. Using genomic DNA from human cancer cells with mutant and wild-type KRAS, we confirmed that PROMER PCR can detect mutant DNA. Furthermore, we demonstrated the ability of PROMER technology to efficiently detect mutation-carrying ctDNA from the plasma of mice with human cancers. Our results suggest that PROMER technology represents a promising new tool for the precise detection and quantification of DNA containing point mutations in the presence of a large excess of wild-type counterpart.
Collapse
Affiliation(s)
- Hwanhee Nam
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Esder Lee
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Hichang Yang
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Kyeyoon Lee
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Taeho Kwak
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Dain Kim
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Hyemin Kim
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Mihwa Yang
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Younjoo Yang
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Seungwan Son
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Young-Hyean Nam
- NuriBio Co., Ltd, Anyang-si, Gyeonggi-Do, 14058, Republic of Korea
| | - Il Minn
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, United States
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States
| |
Collapse
|
65
|
Mausey N, Halford Z. Targeted Therapies for Previously "Undruggable" KRAS-Mutated Non-Small Cell Lung Cancer: A Review of Sotorasib and Adagrasib. Ann Pharmacother 2024; 58:622-635. [PMID: 37700573 DOI: 10.1177/10600280231197459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of the novel KRAS-targeting agents, sotorasib and adagrasib, in treating KRAS G12C-mutated non-small cell lung cancer (NSCLC). DATA SOURCES A comprehensive English-based literature search of PubMed and Clinicaltrials.gov between January 2000 and July 2023 was conducted using the terms sotorasib, Lumakras, AMG 510, adagrasib, Krazati, and MRTX849. STUDY SELECTION AND DATA EXTRACTION Relevant prescribing information, clinical trials, and treatment guidelines were evaluated. DATA SYNTHESIS Sotorasib and adagrasib received accelerated US Food and Drug Administration (FDA) approval following pivotal phase I/II clinical trials. Sotorasib, a first-in-class KRAS inhibitor, demonstrated an overall response rate (ORR) of 41% and a progression-free survival (PFS) of 6.3 months. In a phase III confirmatory trial, sotorasib showed significantly longer PFS compared with docetaxel (5.6 vs. 4.5 months; P = 0.0017). Adagrasib produced an ORR of 42.9% and a PFS of 6.5 months. Both drugs present unique safety profiles, with common toxicities, including diarrhea, musculoskeletal pain, fatigue, and hepatotoxicity. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE With KRAS mutations being among the most common oncogenic alterations in NSCLC, sotorasib and adagrasib offer new therapeutic avenues for this previously "undruggable" target. Current treatment guidelines list sotorasib and adagrasib as second-line options in patients with confirmed KRAS G12C-mutated NSCLC. Additional studies are required to further differentiate the safety and efficacy profiles of these 2 agents and identify their optimal place in therapy. CONCLUSION Sotorasib and adagrasib demonstrated promising outcomes in targeting the constitutively active KRAS G12C oncogenic driver, underscoring the need for further research to optimize their therapeutic application in this high-risk population.
Collapse
|
66
|
Murciano-Goroff YR, Uppal M, Chen M, Harada G, Schram AM. Basket Trials: Past, Present, and Future. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:59-80. [PMID: 38938274 PMCID: PMC11210107 DOI: 10.1146/annurev-cancerbio-061421-012927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Large-scale tumor molecular profiling has revealed that diverse cancer histologies are driven by common pathways with unifying biomarkers that can be exploited therapeutically. Disease-agnostic basket trials have been increasingly utilized to test biomarker-driven therapies across cancer types. These trials have led to drug approvals and improved the lives of patients while simultaneously advancing our understanding of cancer biology. This review focuses on the practicalities of implementing basket trials, with an emphasis on molecularly targeted trials. We examine the biologic subtleties of genomic biomarker and patient selection, discuss previous successes in drug development facilitated by basket trials, describe certain novel targets and drugs, and emphasize practical considerations for participant recruitment and study design. This review also highlights strategies for aiding patient access to basket trials. As basket trials become more common, steps to ensure equitable implementation of these studies will be critical for molecularly targeted drug development.
Collapse
Affiliation(s)
| | - Manik Uppal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Monica Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
67
|
Schulz B, Leitner E, Schreiber T, Lindner T, Schwarz R, Aboutara N, Ma Y, Escobar HM, Palme R, Hinz B, Vollmar B, Zechner D. Sex Matters-Insights from Testing Drug Efficacy in an Animal Model of Pancreatic Cancer. Cancers (Basel) 2024; 16:1901. [PMID: 38791980 PMCID: PMC11120498 DOI: 10.3390/cancers16101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Preclinical studies rarely test the efficacy of therapies in both sexes. The field of oncology is no exception in this regard. In a model of syngeneic, orthotopic, metastasized pancreatic ductal adenocarcinoma we evaluated the impact of sex on pathological features of this disease as well as on the efficacy and possible adverse side effects of a novel, small molecule-based therapy inhibiting KRAS:SOS1, MEK1/2 and PI3K signaling in male and female C57BL/6J mice. Male mice had less tumor infiltration of CD8-positive cells, developed bigger tumors, had more lung metastasis and a lower probability of survival compared to female mice. These more severe pathological features in male animals were accompanied by higher distress at the end of the experiment. The evaluated inhibitors BI-3406, trametinib and BKM120 showed synergistic effects in vitro. This combinatorial therapy reduced tumor weight more efficiently in male animals, although the drug concentrations were similar in the tumors of both sexes. These results underline the importance of sex-specific preclinical research and at the same time provide a solid basis for future studies with the tested compounds.
Collapse
Affiliation(s)
- Benjamin Schulz
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Emily Leitner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Tim Schreiber
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Nadine Aboutara
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Yixuan Ma
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rupert Palme
- Experimental Endocrinology, Department of Biological Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (B.S.)
| |
Collapse
|
68
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
69
|
Perurena N, Situ L, Cichowski K. Combinatorial strategies to target RAS-driven cancers. Nat Rev Cancer 2024; 24:316-337. [PMID: 38627557 DOI: 10.1038/s41568-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Although RAS was formerly considered undruggable, various agents that inhibit RAS or specific RAS oncoproteins have now been developed. Indeed, the importance of directly targeting RAS has recently been illustrated by the clinical success of mutant-selective KRAS inhibitors. Nevertheless, responses to these agents are typically incomplete and restricted to a subset of patients, highlighting the need to develop more effective treatments, which will likely require a combinatorial approach. Vertical strategies that target multiple nodes within the RAS pathway to achieve deeper suppression are being investigated and have precedence in other contexts. However, alternative strategies that co-target RAS and other therapeutic vulnerabilities have been identified, which may mitigate the requirement for profound pathway suppression. Regardless, the efficacy of any given approach will likely be dictated by genetic, epigenetic and tumour-specific variables. Here we discuss various combinatorial strategies to treat KRAS-driven cancers, highlighting mechanistic concepts that may extend to tumours harbouring other RAS mutations. Although many promising combinations have been identified, clinical responses will ultimately depend on whether a therapeutic window can be achieved and our ability to prospectively select responsive patients. Therefore, we must continue to develop and understand biologically diverse strategies to maximize our likelihood of success.
Collapse
Affiliation(s)
- Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lisa Situ
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
70
|
Rubinson DA, Tanaka N, Fece de la Cruz F, Kapner KS, Rosenthal MH, Norden BL, Barnes H, Ehnstrom S, Morales-Giron AA, Brais LK, Lemke CT, Aguirre AJ, Corcoran RB. Sotorasib Is a Pan-RASG12C Inhibitor Capable of Driving Clinical Response in NRASG12C Cancers. Cancer Discov 2024; 14:727-736. [PMID: 38236605 PMCID: PMC11061598 DOI: 10.1158/2159-8290.cd-23-1138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
KRASG12C inhibitors, like sotorasib and adagrasib, potently and selectively inhibit KRASG12C through a covalent interaction with the mutant cysteine, driving clinical efficacy in KRASG12C tumors. Because amino acid sequences of the three main RAS isoforms-KRAS, NRAS, and HRAS-are highly similar, we hypothesized that some KRASG12C inhibitors might also target NRASG12C and/or HRASG12C, which are less common but critical oncogenic driver mutations in some tumors. Although some inhibitors, like adagrasib, were highly selective for KRASG12C, others also potently inhibited NRASG12C and/or HRASG12C. Notably, sotorasib was five-fold more potent against NRASG12C compared with KRASG12C or HRASG12C. Structural and reciprocal mutagenesis studies suggested that differences in isoform-specific binding are mediated by a single amino acid: Histidine-95 in KRAS (Leucine-95 in NRAS). A patient with NRASG12C colorectal cancer treated with sotorasib and the anti-EGFR antibody panitumumab achieved a marked tumor response, demonstrating that sotorasib can be clinically effective in NRASG12C-mutated tumors. SIGNIFICANCE These studies demonstrate that certain KRASG12C inhibitors effectively target all RASG12C mutations and that sotorasib specifically is a potent NRASG12C inhibitor capable of driving clinical responses. These findings have important implications for the treatment of patients with NRASG12C or HRASG12C cancers and could guide design of NRAS or HRAS inhibitors. See related commentary by Seale and Misale, p. 698. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
- Douglas A. Rubinson
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Noritaka Tanaka
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ferran Fece de la Cruz
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kevin S. Kapner
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Michael H. Rosenthal
- Dana Farber Cancer Institute and Brigham and Women's Hospital, Department of Radiology, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Haley Barnes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sara Ehnstrom
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alvin A. Morales-Giron
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lauren K. Brais
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew J. Aguirre
- Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
71
|
Podgorica M, Drivet E, Viken JK, Richman A, Vestbøstad J, Szodoray P, Kvam AK, Wik HS, Tjønnfjord GE, Munthe LA, Frietze S, Schjerven H. Transcriptome analysis of primary adult B-cell lineage acute lymphoblastic leukemia identifies pathogenic variants and gene fusions, and predicts subtypes for in depth molecular diagnosis. Eur J Haematol 2024; 112:731-742. [PMID: 38192186 PMCID: PMC10990798 DOI: 10.1111/ejh.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND B-cell acute lymphoblastic leukemia (B-ALL) is classified into subgroups based on known driver oncogenes and molecular lesions, including translocations and recurrent mutations. However, the current diagnostic tests do not identify subtypes or oncogenic lesions for all B-ALL samples, creating a heterogeneous B-ALL group of unknown subtypes. METHODS We sorted primary adult B-ALL cells and performed transcriptome analysis by bulk RNA sequencing (RNA-seq). RESULTS Transcriptomic analysis of an adult B-ALL cohort allowed the classification of four patient samples with subtypes that were not previously revealed by standard gene panels. The leukemia of two patients were of the DUX4 subtype and two were CRLF2+ Ph-like B-ALL. Furthermore, single nucleotide variant analysis detected the oncogenic NRAS-G12D, KRAS-G12D, and KRAS-G13D mutations in three of the patient samples, presenting targetable mutations. Additional oncogenic variants and gene fusions were uncovered, as well as multiple variants in the PDE4DIP gene across five of the patient samples. CONCLUSION We demonstrate that RNA-seq is an effective tool for precision medicine in B-ALL by providing comprehensive molecular profiling of leukemia cells, identifying subtype and oncogenic lesions, and stratifying patients for appropriate therapy.
Collapse
Affiliation(s)
- Mirjam Podgorica
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elsa Drivet
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jonas Krag Viken
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Laboratory Medicine, University of California San Francisco, CA, USA
| | - Alyssa Richman
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Johanne Vestbøstad
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Szodoray
- B Cell Receptor Signaling Group (BCRSG), Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ann Kristin Kvam
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | | | - Geir E. Tjønnfjord
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Ludvig A. Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Hilde Schjerven
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Laboratory Medicine, University of California San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
72
|
Moffat GT, Hu ZI, Meric-Bernstam F, Kong EK, Pavlick D, Ross JS, Murugesan K, Kwong L, De Armas AD, Korkut A, Javle M, Knox JJ. KRAS Allelic Variants in Biliary Tract Cancers. JAMA Netw Open 2024; 7:e249840. [PMID: 38709532 PMCID: PMC11074811 DOI: 10.1001/jamanetworkopen.2024.9840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
Importance Biliary tract cancers (BTCs) contain several actionable molecular alterations, including FGFR2, IDH1, ERBB2 (formerly HER2), and KRAS. KRAS allelic variants are found in 20% to 30% of BTCs, and multiple KRAS inhibitors are currently under clinical investigation. Objectives To describe the genomic landscape, co-sequence variations, immunophenotype, genomic ancestry, and survival outcomes of KRAS-mutated BTCs and to calculate the median overall survival (mOS) for the most common allelic variants. Design, Setting, and Participants This retrospective, multicenter, pooled cohort study obtained clinical and next-generation sequencing data from multiple databases between January 1, 2017, and December 31, 2022. These databases included Princess Margaret Cancer Centre, MD Anderson Cancer Center, Foundation Medicine, American Association for Cancer Research Project GENIE, and cBioPortal for Cancer Genomics. The cohort comprised patients with BTCs who underwent genomic testing. Main Outcome and Measure The main outcome was mOS, defined as date of diagnosis to date of death, which was measured in months. Results A total of 7457 patients (n = 3773 males [50.6%]; mean [SD] age, 63 [5] years) with BTCs and genomic testing were included. Of these patients, 5813 had clinical outcome data available, in whom 1000 KRAS-mutated BTCs were identified. KRAS allelic variants were highly prevalent in perihilar cholangiocarcinoma (28.6%) and extrahepatic cholangiocarcinoma (36.1%). Thirty-six KRAS allelic variants were identified, and the prevalence rates in descending order were G12D (41%), G12V (23%), and Q61H (8%). The variant G12D had the highest mOS of 25.1 (95% CI, 22.0-33.0) months compared with 22.8 (95% CI, 19.6-31.4) months for Q61H and 17.8 (95% CI, 16.3-23.1) months for G12V variants. The majority of KRAS-mutated BTCs (98.9%) were not microsatellite instability-high and had low tumor mutational burden (ranging from a median [IQR] of 1.2 (1.2-2.5) to a mean [SD] of 3.3 [1.3]). Immune profiling through RNA sequencing of KRAS and NRAS-mutated samples showed a pattern toward a more immune-inflamed microenvironment with higher M1 macrophage activation (0.16 vs 0.12; P = .047) and interferon-γ expression compared with wild-type tumors. The G12D variant remained the most common KRAS allelic variant in all patient ancestries. Patients with admixed American ancestry had the highest proportion of G12D variant (45.0%). Conclusions and Relevance This cohort study found that KRAS allelic variants were relatively common and may be potentially actionable genomic alterations in patients with BTCs, especially perihilar cholangiocarcinoma and extrahepatic cholangiocarcinoma. The findings add to the growing data on genomic and immune landscapes of KRAS allelic variants in BTCs and are potentially of value to the planning of specific therapies for this heterogeneous patient group.
Collapse
Affiliation(s)
- Gordon Taylor Moffat
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zishuo Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Funda Meric-Bernstam
- Department of Developmental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Elisabeth Kathleen Kong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Dean Pavlick
- Foundation Medicine Inc, Cambridge, Massachusetts
| | - Jeffrey S. Ross
- Foundation Medicine Inc, Cambridge, Massachusetts
- State University of New York Upstate Medical University, Syracuse
| | | | - Lawrence Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Anaemy Danner De Armas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer J. Knox
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
73
|
Zhang M, Xu W, Luo L, Guan F, Wang X, Zhu P, Zhang J, Zhou X, Wang F, Ye S. Identification and affinity enhancement of T-cell receptor targeting a KRAS G12V cancer neoantigen. Commun Biol 2024; 7:512. [PMID: 38684865 PMCID: PMC11058820 DOI: 10.1038/s42003-024-06209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Neoantigens derived from somatic mutations in Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), the most frequently mutated oncogene, represent promising targets for cancer immunotherapy. Recent research highlights the potential role of human leukocyte antigen (HLA) allele A*11:01 in presenting these altered KRAS variants to the immune system. In this study, we successfully generate and identify murine T-cell receptors (TCRs) that specifically recognize KRAS8-16G12V from three predicted high affinity peptides. By determining the structure of the tumor-specific 4TCR2 bound to KRASG12V-HLA-A*11:01, we conduct structure-based design to create and evaluate TCR variants with markedly enhanced affinity, up to 15.8-fold. This high-affinity TCR mutant, which involved only two amino acid substitutions, display minimal conformational alterations while maintaining a high degree of specificity for the KRASG12V peptide. Our research unveils the molecular mechanisms governing TCR recognition towards KRASG12V neoantigen and yields a range of affinity-enhanced TCR mutants with significant potential for immunotherapy strategies targeting tumors harboring the KRASG12V mutation.
Collapse
Affiliation(s)
- Mengyu Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Wei Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Lingjie Luo
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fenghui Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiangyao Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Pei Zhu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing, 100049, China.
| | - Feng Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
74
|
Ajmal A, Danial M, Zulfat M, Numan M, Zakir S, Hayat C, Alabbosh KF, Zaki MEA, Ali A, Wei D. In Silico Prediction of New Inhibitors for Kirsten Rat Sarcoma G12D Cancer Drug Target Using Machine Learning-Based Virtual Screening, Molecular Docking, and Molecular Dynamic Simulation Approaches. Pharmaceuticals (Basel) 2024; 17:551. [PMID: 38794122 PMCID: PMC11124053 DOI: 10.3390/ph17050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/26/2024] Open
Abstract
Single-point mutations in the Kirsten rat sarcoma (KRAS) viral proto-oncogene are the most common cause of human cancer. In humans, oncogenic KRAS mutations are responsible for about 30% of lung, pancreatic, and colon cancers. One of the predominant mutant KRAS G12D variants is responsible for pancreatic cancer and is an attractive drug target. At the time of writing, no Food and Drug Administration (FDA) approved drugs are available for the KRAS G12D mutant. So, there is a need to develop an effective drug for KRAS G12D. The process of finding new drugs is expensive and time-consuming. On the other hand, in silico drug designing methodologies are cost-effective and less time-consuming. Herein, we employed machine learning algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) for the identification of new inhibitors against the KRAS G12D mutant. A total of 82 hits were predicted as active against the KRAS G12D mutant. The active hits were docked into the active site of the KRAS G12D mutant. Furthermore, to evaluate the stability of the compounds with a good docking score, the top two complexes and the standard complex (MRTX-1133) were subjected to 200 ns MD simulation. The top two hits revealed high stability as compared to the standard compound. The binding energy of the top two hits was good as compared to the standard compound. Our identified hits have the potential to inhibit the KRAS G12D mutation and can help combat cancer. To the best of our knowledge, this is the first study in which machine-learning-based virtual screening, molecular docking, and molecular dynamics simulation were carried out for the identification of new promising inhibitors for the KRAS G12D mutant.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Danial
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Maryam Zulfat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Numan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sidra Zakir
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Chandni Hayat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Arif Ali
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41 Nongye East Rd., Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
75
|
STICKLER SANDRA, RATH BARBARA, HAMILTON GERHARD. Targeting KRAS in pancreatic cancer. Oncol Res 2024; 32:799-805. [PMID: 38686056 PMCID: PMC11055996 DOI: 10.32604/or.2024.045356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 05/02/2024] Open
Abstract
Pancreatic cancer has a dismal prognosis due to late detection and lack of efficient therapies. The Kirsten rat sarcoma virus (KRAS) oncogene is mutated in up to 90% of all pancreatic ductal adenocarcinomas (PDACs) and constitutes an attractive target for therapy. However, the most common KRAS mutations in PDAC are G12D (44%), G12V (34%) and G12R (20%) that are not amenable to treatment by KRAS G12C-directed cysteine-reactive KRAS inhibitors such as Sotorasib and Adagrasib that exhibit clinical efficacy in lung cancer. KRAS G12C mutant pancreatic cancer has been treated with Sotorasib but this mutation is detected only in 2%-3% of PDAC. Recently, the KRAS G12D-directed MRTX1133 inhibitor has entered clinical trials and more of such inhibitors are in development. The other KRAS mutations may be targeted indirectly via inhibition of the cognate guanosine exchange factor (GEF) Son of Sevenless 1 that drives KRAS. These agents seem to provide the means to target the most frequent KRAS mutations in PDAC and to improve patient outcomes.
Collapse
Affiliation(s)
- SANDRA STICKLER
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - BARBARA RATH
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| | - GERHARD HAMILTON
- Institute of Pharmacology, Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
76
|
Huang Y, Zheng D, Zhou Z, Wang H, Li Y, Zheng H, Tan J, Wu J, Yang Q, Tian H, Lin L, Li Z, Li T. The research advances in Kirsten rat sarcoma viral oncogene homolog (KRAS)-related cancer during 2013 to 2022: a scientometric analysis. Front Oncol 2024; 14:1345737. [PMID: 38706597 PMCID: PMC11066287 DOI: 10.3389/fonc.2024.1345737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Cancer represents a significant global public health concern. In recent years, the incidence of cancer has been on the rise worldwide due to various factors, including diet, environment, and an aging population. Simultaneously, advancements in tumor molecular biology and genomics have led to a shift from systemic chemotherapy focused on disease sites and morphopathology towards precise targeted therapy for driver gene mutations. Therefore, we propose a comprehensive review aimed at exploring the research hotspots and directions in the field of Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant cancers over the past decade, providing valuable insights for cancer treatment strategies. Specifically, we aim to present an intellectual landscape using data obtained from the Web of Science (WoS) regarding KRAS mutation. Methods Bibliometrix, VOSviewer, CiteSpace, and HistCite were employed to conduct scientometric analyses on national publications, influential authors, highly cited articles, frequent keywords, etc. Results A total of 16,609 publications met the screening criteria and exhibited a consistent annual growth trend overall. Among 102 countries/regions, the United States occupied the vast majority share of the published volume. The journal Oncotarget had the highest circulation among all scientific publications. Moreover, the most seminal articles in this field primarily focus on biology and targeted therapies, with overcoming drug resistance being identified as a future research direction. Conclusion The findings of the thematic analysis indicate that KRAS mutation in lung cancer, the prognosis following B-Raf proto-oncogene, serine/threonine kinase (BRAF) or rat sarcoma (RAS) mutations, and anti-epidermal growth factor receptor (EGFR)-related lung cancer are the significant hotspots in the given field. Considering the significant advancements made in direct targeting drugs like sotorasib, it is anticipated that interest in cancers associated with KRAS mutations will remain steadfast.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tianyu Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
77
|
Chen Y, Liu QP, Xie H, Ding J. From bench to bedside: current development and emerging trend of KRAS-targeted therapy. Acta Pharmacol Sin 2024; 45:686-703. [PMID: 38049578 PMCID: PMC10943119 DOI: 10.1038/s41401-023-01194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most frequently mutated oncogene in human cancers with mutations predominantly occurring in codon 12. These mutations disrupt the normal function of KRAS by interfering with GTP hydrolysis and nucleotide exchange activity, making it prone to the GTP-bound active state, thus leading to sustained activation of downstream pathways. Despite decades of research, there has been no progress in the KRAS drug discovery until the groundbreaking discovery of covalently targeting the KRASG12C mutation in 2013, which led to revolutionary changes in KRAS-targeted therapy. So far, two small molecule inhibitors sotorasib and adagrasib targeting KRASG12C have received accelerated approval for the treatment of non-small cell lung cancer (NSCLC) harboring KRASG12C mutations. In recent years, rapid progress has been achieved in the KRAS-targeted therapy field, especially the exploration of KRASG12C covalent inhibitors in other KRASG12C-positive malignancies, novel KRAS inhibitors beyond KRASG12C mutation or pan-KRAS inhibitors, and approaches to indirectly targeting KRAS. In this review, we provide a comprehensive overview of the molecular and mutational characteristics of KRAS and summarize the development and current status of covalent inhibitors targeting the KRASG12C mutation. We also discuss emerging promising KRAS-targeted therapeutic strategies, with a focus on mutation-specific and direct pan-KRAS inhibitors and indirect KRAS inhibitors through targeting the RAS activation-associated proteins Src homology-2 domain-containing phosphatase 2 (SHP2) and son of sevenless homolog 1 (SOS1), and shed light on current challenges and opportunities for drug discovery in this field.
Collapse
Affiliation(s)
- Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Pei Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Chemical and Environment Engineering, Science and Engineering Building, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
78
|
Linehan A, O’Reilly M, McDermott R, O’Kane GM. Targeting KRAS mutations in pancreatic cancer: opportunities for future strategies. Front Med (Lausanne) 2024; 11:1369136. [PMID: 38576709 PMCID: PMC10991798 DOI: 10.3389/fmed.2024.1369136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Targeting the RAS pathway remains the holy grail of precision oncology. In the case of pancreatic ductal adenocarcinomas (PDAC), 90-92% harbor mutations in the oncogene KRAS, triggering canonical MAPK signaling. The smooth structure of the altered KRAS protein without a binding pocket and its affinity for GTP have, in the past, hampered drug development. The emergence of KRASG12C covalent inhibitors has provided renewed enthusiasm for targeting KRAS. The numerous pathways implicated in RAS activation do, however, lead to the development of early resistance. In addition, the dense stromal niche and immunosuppressive microenvironment dictated by oncogenic KRAS can influence treatment responses, highlighting the need for a combination-based approach. Given that mutations in KRAS occur early in PDAC tumorigenesis, an understanding of its pleiotropic effects is key to progress in this disease. Herein, we review current perspectives on targeting KRAS with a focus on PDAC.
Collapse
Affiliation(s)
- Anna Linehan
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Mary O’Reilly
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Grainne M. O’Kane
- Department of Medical Oncology, St James’s Hospital, Dublin, Ireland
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
79
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
80
|
Ely ZA, Mathey-Andrews N, Naranjo S, Gould SI, Mercer KL, Newby GA, Cabana CM, Rideout WM, Jaramillo GC, Khirallah JM, Holland K, Randolph PB, Freed-Pastor WA, Davis JR, Kulstad Z, Westcott PMK, Lin L, Anzalone AV, Horton BL, Pattada NB, Shanahan SL, Ye Z, Spranger S, Xu Q, Sánchez-Rivera FJ, Liu DR, Jacks T. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat Biotechnol 2024; 42:424-436. [PMID: 37169967 PMCID: PMC11120832 DOI: 10.1038/s41587-023-01783-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.
Collapse
Affiliation(s)
- Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I Gould
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christina M Cabana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel Cervantes Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katie Holland
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Angelo State University, San Angelo, TX, USA
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zachary Kulstad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Huntington, NY, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Brendan L Horton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nimisha B Pattada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Stefani Spranger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
81
|
Budyagan K, Cannon AC, Chatoff A, Snyder NW, Kurimchak AM, Duncan JS, Chernoff J. KRAS mutation-selective requirement for ACSS2 in colorectal adenoma formation. RESEARCH SQUARE 2024:rs.3.rs-3931415. [PMID: 38464238 PMCID: PMC10925460 DOI: 10.21203/rs.3.rs-3931415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Oncogenic KRAS mutations are prevalent in colorectal cancer (CRC) and are associated with poor prognosis and resistance to therapy. There is a substantial diversity of KRAS mutant alleles observed in CRC. Emerging clinical and experimental analysis of common KRAS mutations suggest that each mutation differently influences the clinical properties of a disease and response to therapy. Although there is some evidence to suggest biological differences between mutant KRAS alleles, these are yet to be fully elucidated. One approach to study allelic variation involves the use of isogenic cell lines that express different endogenous Kras mutants. Here, we generated Kras isogenic Apc-/- mouse colon epithelial cell lines using CRISPR-driven genome editing by altering the original G12D Kras allele to G12V, G12R, or G13D. We utilized these cell lines to perform transcriptomic and proteomic analysis to compare different signaling properties between these mutants. Both screens indicate significant differences in pathways relating to cholesterol and lipid regulation that we validated with targeted metabolomic measurements and isotope tracing. We found that these processes are upregulated in G12V lines through increased expression of nuclear SREBP1 and higher activation of mTORC1. G12V cells showed higher expression of ACSS2 and ACSS2 inhibition sensitized G12V cells to MEK inhibition. Finally, we found that ACSS2 plays a crucial role early in the development of G12V mutant tumors, in contrast to G12D mutant tumors. These observations highlight differences between KRAS mutant cell lines in their signaling properties. Further exploration of these pathways may prove to be valuable for understanding how specific KRAS mutants function, and identification of novel therapeutic opportunities in CRC.
Collapse
Affiliation(s)
- Konstantin Budyagan
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexa C. Cannon
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Adam Chatoff
- Department of Cancer & Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Nathaniel W. Snyder
- Department of Cancer & Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Alison M. Kurimchak
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - James S. Duncan
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Chernoff
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
82
|
Li ML, Dai LT, Gao ZY, Yan JT, Xu SM, Tan JH, Huang ZS, Chen SB, Chen XC. Discovery of Novel Coumarin-quinolinium Derivatives as Pan-KRAS Translation Inhibitors by Targeting 5'-UTR RNA G-Quadruplexes. J Med Chem 2024; 67:1961-1981. [PMID: 38272464 DOI: 10.1021/acs.jmedchem.3c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Hyperactivated KRAS mutations fuel tumorigenesis and represent attractive targets for cancer treatment. While covalent inhibitors have shown clinical benefits against the KRASG12C mutant, advancements for non-G12C mutants remain limited, highlighting the urgent demand for pan-KRAS inhibitors. RNA G-quadruplexes (rG4s) in the 5'-untranslated region of KRAS mRNA can regulate KRAS translation, making them promising targets for pan-KRAS inhibitor development. Herein, we designed and synthesized 50 novel coumarin-quinolinium derivatives, leveraging our previously developed rG4-specific ligand, QUMA-1. Notably, several compounds exhibited potent antiproliferative activity against cancer cells as pan-KRAS translation inhibitors. Among them, 15a displayed exceptional capability in stabilizing KRAS rG4s, suppressing KRAS translation, and consequently modulating MAPK and PI3K-AKT pathways. 15a induced cell cycle arrest, prompted apoptosis in KRAS-driven cancer cells, and effectively inhibited tumor growth in a KRAS mutant xenograft model. These findings underscore the potential of 15a as a pan-KRAS translation inhibitor, offering a novel and promising approach to target various KRAS-driven cancers.
Collapse
Affiliation(s)
- Mao-Lin Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Le-Tian Dai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhuo-Yu Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jia-Tong Yan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiu-Cai Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
83
|
Chhichholiya Y, Singh HV, Vashistha R, Singh S, Munshi A. Deciphering the role of KRAS gene in oncogenesis: Focus on signaling pathways, genetic alterations in 3'UTR, KRAS specific miRNAs and therapeutic interventions. Crit Rev Oncol Hematol 2024; 194:104250. [PMID: 38143047 DOI: 10.1016/j.critrevonc.2023.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer is a significant cause of death after cardiovascular disease. The genomic, epigenetic and environmental factors have been found to be the risk factor for the disease. The most important genes that develop cancer are oncogenes and tumor suppressor genes. Among oncogenes, KRAS has emerged as a significant player in the development of many cancers. Dysregulation of the RAS signaling pathway either on account of mutation in significant genes involved in the pathway or aberrant expression of different miRNAs targeting these genes including KRAS. The focus is also on the alterations in 3'UTR of the KRAS gene sequence as well as the changes in the miRNA encoding genes especially the one targeting the KRAS gene. Efforts are also being put in to target the dysregulated KRAS gene as a therapeutic approach to treat different cancers. However, there are some challenges like resistance to KRAS inhibitors that need to be addressed.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harsh Vikram Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
84
|
Weng C, Faure AJ, Escobedo A, Lehner B. The energetic and allosteric landscape for KRAS inhibition. Nature 2024; 626:643-652. [PMID: 38109937 PMCID: PMC10866706 DOI: 10.1038/s41586-023-06954-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Thousands of proteins have been validated genetically as therapeutic targets for human diseases1. However, very few have been successfully targeted, and many are considered 'undruggable'. This is particularly true for proteins that function via protein-protein interactions-direct inhibition of binding interfaces is difficult and requires the identification of allosteric sites. However, most proteins have no known allosteric sites, and a comprehensive allosteric map does not exist for any protein. Here we address this shortcoming by charting multiple global atlases of inhibitory allosteric communication in KRAS. We quantified the effects of more than 26,000 mutations on the folding of KRAS and its binding to six interaction partners. Genetic interactions in double mutants enabled us to perform biophysical measurements at scale, inferring more than 22,000 causal free energy changes. These energy landscapes quantify how mutations tune the binding specificity of a signalling protein and map the inhibitory allosteric sites for an important therapeutic target. Allosteric propagation is particularly effective across the central β-sheet of KRAS, and multiple surface pockets are genetically validated as allosterically active, including a distal pocket in the C-terminal lobe of the protein. Allosteric mutations typically inhibit binding to all tested effectors, but they can also change the binding specificity, revealing the regulatory, evolutionary and therapeutic potential to tune pathway activation. Using the approach described here, it should be possible to rapidly and comprehensively identify allosteric target sites in many proteins.
Collapse
Affiliation(s)
- Chenchun Weng
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andre J Faure
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Escobedo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
85
|
Nussinov R, Jang H. Direct K-Ras Inhibitors to Treat Cancers: Progress, New Insights, and Approaches to Treat Resistance. Annu Rev Pharmacol Toxicol 2024; 64:231-253. [PMID: 37524384 DOI: 10.1146/annurev-pharmtox-022823-113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Here we discuss approaches to K-Ras inhibition and drug resistance scenarios. A breakthrough offered a covalent drug against K-RasG12C. Subsequent innovations harnessed same-allele drug combinations, as well as cotargeting K-RasG12C with a companion drug to upstream regulators or downstream kinases. However, primary, adaptive, and acquired resistance inevitably emerge. The preexisting mutation load can explain how even exceedingly rare mutations with unobservable effects can promote drug resistance, seeding growth of insensitive cell clones, and proliferation. Statistics confirm the expectation that most resistance-related mutations are in cis, pointing to the high probability of cooperative, same-allele effects. In addition to targeted Ras inhibitors and drug combinations, bifunctional molecules and innovative tri-complex inhibitors to target Ras mutants are also under development. Since the identities and potential contributions of preexisting and evolving mutations are unknown, selecting a pharmacologic combination is taxing. Collectively, our broad review outlines considerations and provides new insights into pharmacology and resistance.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA;
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA;
| |
Collapse
|
86
|
Nilewski C, Labadie S, Wei B, Malhotra S, Do S, Gazzard L, Liu L, Shao C, Murray J, Izrayelit Y, Gustafson A, Endres NF, Ma F, Ye X, Zou J, Evangelista M. Structure-Based Design and Evaluation of Reversible KRAS G13D Inhibitors. ACS Med Chem Lett 2024; 15:21-28. [PMID: 38229748 PMCID: PMC10788945 DOI: 10.1021/acsmedchemlett.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024] Open
Abstract
Oncogenic KRAS mutations were identified decades ago, yet the selective inhibition of specific KRAS mutant proteins represents an ongoing challenge. Recent progress has been made in targeting certain P-loop mutant proteins, in particular KRAS G12C, for which the covalent inhibition of the GDP state via the Switch II pocket is now a clinically validated strategy. Inhibition of other KRAS mutant proteins such as KRAS G13D, on the other hand, still requires clinical validation. The remoteness of the D13 residue relative to the Switch II pocket in combination with the solvent exposure and conformational flexibility of the D13 side chain, as well as the difficulties of targeting carboxylate residues covalently, renders this specific protein particularly challenging to target selectively. In this report, we describe the design and evaluation of potent and KRAS G13D-selective reversible inhibitors. Subnanomolar binding to the GDP state Switch II pocket and biochemical selectivity over WT KRAS are achieved by leveraging a salt bridge with D13.
Collapse
Affiliation(s)
- Christian Nilewski
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sharada Labadie
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Binqing Wei
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sushant Malhotra
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven Do
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lewis Gazzard
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Li Liu
- Pharmaron-Beijing
Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Cheng Shao
- Pharmaron-Beijing
Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Jeremy Murray
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yevgeniy Izrayelit
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Amy Gustafson
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas F. Endres
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fang Ma
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xin Ye
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Zou
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Marie Evangelista
- Genentech
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
87
|
Chen Y, Liu S, Tan S, Zheng Y, Chen Y, Yang C, Lin S, Mi Y, Li W. KRAS mutations promote the intratumoral colonization of enterotoxigenic bacteroides fragilis in colorectal cancer through the regulation of the miRNA3655/SURF6/IRF7/IFNβ axis. Gut Microbes 2024; 16:2423043. [PMID: 39523457 PMCID: PMC11556274 DOI: 10.1080/19490976.2024.2423043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
KRAS mutations are associated with poor prognosis in colorectal cancer (CRC). Although the association between the gut microbiota and CRC has been extensively documented, it is unclear whether KRAS mutations can regulate the gut microbiota. Metagenomics has identified changes in the diversity of the gut microbiota in CRC due to KRAS mutations. Specifically, KRAS mutations positively correlate with the abundance of the bacteroides. Understanding how to regulate the classic carcinogenic bacterium within the bacteroides, such as enterotoxigenic bacteroides fragilis (ETBF), to enhance treatment efficacy of tumors is a key focus of research. Mechanistically, we found that the reduction of miR3655 is indispensable for KRAS mutation-promoted proliferation of CRC and the abundance of ETBF. miR3655 targets SURF6 to inhibit its transcription. Further transcriptomic sequencing revealed that SURF6 promotes intratumoral colonization of ETBF in CRC by inhibiting the nuclear translocation and transcription levels of the IRF7, affecting the activation of the IFNβ promoter. Regulating miR3655 and SURF6 can promote IFNβ secretion in CRC, directly killing ETBF. These data indicate that KRAS mutations affect the intratumoral colonization of ETBF in CRC through the miR3655/SURF6/IRF7/IFNβ axis. This provides new potential strategies for treating CRC associated with KRAS mutations or high levels of ETBF.
Collapse
Affiliation(s)
- Yizhen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Shaolin Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Song Tan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Yuanyuan Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Key Laboratory of Geriatrics Diseases, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Yifan Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Changshun Yang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Shengtao Lin
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Yulong Mi
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| | - Weihua Li
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
88
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K, Li W. Nanomedicine Combats Drug Resistance in Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308977. [PMID: 37968865 DOI: 10.1002/adma.202308977] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Indexed: 11/17/2023]
Abstract
Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Xiaohai Song
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Haonan Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Jiankun Hu
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kai Xiao
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Zhongwei Gu
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Weimin Li
- Department of Radiology, Department of Respiratory, Huaxi MR Research Center (HMRRC) and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Precision Medicine Key Laboratory of Sichuan Province, Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
89
|
Xia Y, Zhang S, Luo H, Wang Y, Jiang Y, Jiang J, Yuan S. Repositioning of Montelukast to inhibit proliferation of mutated KRAS pancreatic cancer through a novel mechanism that interfere the binding between KRAS and GTP/GDP. Eur J Pharmacol 2023; 961:176157. [PMID: 37939992 DOI: 10.1016/j.ejphar.2023.176157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic cancer is one of the most lethal cancer types with 5-year survival rate of ∼10.8%. Various KRAS mutations exist in ∼85% pancreatic cancer cell lines. Mutated KRAS is a major cause that leads cancer cell proliferation. Chemotherapy is still the major treatment for pancreatic cancer. Alternatively, repositioning old drug to inhibit mutated KRAS may be a cost-effective way for pancreatic cancer treatment. In this study, we choose mutated KRAS (G12D) as a target. Based on mutated KRAS GTP binding domain (hydrolyze GTP to GDP), we perform virtual screening on FDA-approved drugs. Montelukast shows strong binding affinity to mutated KRAS as well as interfering both GTP and GDP binding to mutated KRAS. Furthermore, Montelukast shows very strong anti-proliferation effect on mutated KRAS pancreatic cancer cells both in vitro and in vivo. Our results support repositioning of Montelukast as single agent for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yannan Xia
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Shujie Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Hongyi Luo
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Yumeng Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Yuanyuan Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China
| | - Jingwei Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China; Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, China.
| | - Shengtao Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, China.
| |
Collapse
|
90
|
Yang N, Fan Z, Sun S, Hu X, Mao Y, Jia C, Cai X, Xu T, Li B, Li Y, Han L, Wei T, Qian X, Qin W, Li P, Zheng Z, Li S. Discovery of highly potent and selective KRAS G12C degraders by VHL-recruiting PROTACs for the treatment of tumors with KRAS G12C-Mutation. Eur J Med Chem 2023; 261:115857. [PMID: 37852032 DOI: 10.1016/j.ejmech.2023.115857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Although several covalent KRASG12C inhibitors have made great progress in the treatment of KRASG12C-mutant cancer, their clinical applications are limited by adaptive resistance, motivating novel therapeutic strategies. Through drug design and structure optimization, a series of highly potent and selective KRASG12C Proteolysis Targeting Chimeras (PROTACs) were developed by incorporating AMG510 and VHL ligand VH032. Among them, degrader YN14 significantly inhibited KRASG12C-dependent cancer cells growth with nanomolar IC50 and DC50 values, and > 95 % maximum degradation (Dmax). Molecular dynamics (MD) simulation showed that YN14 induced a stable KRASG12C: YN14: VHL ternary complex with low binding free energy (ΔG). Notably, YN14 led to tumor regression with tumor growth inhibition (TGI%) rates more than 100 % in the MIA PaCa-2 xenograft model with well-tolerated dose-schedules. We also found that KRASG12C degradation exhibited advantages in overcoming adaptive KRASG12C feedback resistance over KRASG12C inhibition. Furthermore, combination of RTKs, SHP2, or CDK9 inhibitors with YN14 exhibited synergetic efficacy in KRASG12C-mutant cancer cells. Overall, these results demonstrated that YN14 holds exciting prospects for the treatment of tumors with KRASG12C-mutation and boosted efficacy could be achieved for greater clinical applications via drug combination.
Collapse
Affiliation(s)
- Ning Yang
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Zhiya Fan
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206, China
| | - Shiyang Sun
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Xiaotong Hu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Yaqiu Mao
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Changkai Jia
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Xu Cai
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Tingting Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Bingkun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Yi Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Luobing Han
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Ting Wei
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| | - Xiaohong Qian
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206, China
| | - Weijie Qin
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206, China.
| | - Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China.
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China.
| | - Song Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology Institution, Beijing, 100850, China
| |
Collapse
|
91
|
Xiao X, Feng J, Ma J, Xia X, Liu X, Zhang J, Ding C, Pang X, Zhang A. Design, Synthesis, and Pharmacological Evaluation of Multisubstituted Pyrido[4,3- d]pyrimidine Analogues Bearing Deuterated Methylene Linkers as Potent KRAS G12D Inhibitors. J Med Chem 2023; 66:15524-15549. [PMID: 37921024 DOI: 10.1021/acs.jmedchem.3c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The breakthrough in drug development of KRASG12C inhibitors provides inspiration for targeting alternative KRAS mutations, especially the most prevalent KRASG12D variant. Based on the structural analysis of MRTX1133 in complex with KRASG12D, a comprehensive structure-activity study was conducted, which led to the discovery of several compounds (22, 28, and 31) that showed higher potency in suppressing the clonogenic growth of KRASG12D-dependent cancer cells. These new compounds markedly and selectively inhibited the binding of RBD peptide to GTP-bound KRASG12D with IC50 values between 0.48 and 1.21 nM. These new inhibitors were found to have dose-dependent anti-tumor efficacy in the AsPC-1 xenograft mouse models with a tumor growth inhibition of approximately 70% at a dose of 20 mg/kg twice daily (i.p.). Despite the non-optimal pharmacokinetic properties similar to those of MRTX1133, the high in vitro and in vivo potency of these new inhibitors call for further profiling.
Collapse
Affiliation(s)
- Xuanzheng Xiao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Ma
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinting Xia
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaogu Liu
- Southern Medical University Affiliated Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jian Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210,China
| | - Chunyong Ding
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ao Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210,China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| |
Collapse
|
92
|
Karamitopoulou E. Emerging Prognostic and Predictive Factors in Pancreatic Cancer. Mod Pathol 2023; 36:100328. [PMID: 37714333 DOI: 10.1016/j.modpat.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic cancer is a lethal disease with increasing incidence and high recurrence rates and is currently resistant to conventional therapies. Moreover, it displays extensive morphologic and molecular intratumoral and intertumoral heterogeneity and a mostly low mutational burden, failing to induce significant antitumor immunity. Thus, immunotherapy has shown limited effect in pancreatic cancer, except in rare tumors with microsatellite instability, constituting <1% of the cases. Currently, new methods, including single-cell and single-nucleus RNA sequencing, have refined and expanded the 2-group molecular classification based on bulk RNA sequencing (classical and basal-like subtypes), identifying hybrid forms and providing us with a comprehensive map of the tumor cell subsets that drive gene expression during tumor evolution, simultaneously giving us insight into therapy resistance and metastasis. Additionally, deeper profiling of the tumor microenvironment of pancreatic cancer by using spatial analyses and multiplex imaging techniques has improved our understanding of the heterogeneous distribution of both adaptive and innate immune components with their protumor and antitumor properties. By integrating host immune response patterns, as defined by spatial transcriptomic and proteomic analysis and multiplex immunofluorescence, with molecular and morphologic features of the tumors, we can increasingly understand the genetic, immunologic, and morphologic background of pancreatic cancer and recognize the potential predictors for different treatment modalities.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland; Pathology Institute Enge, Zurich, Switzerland.
| |
Collapse
|
93
|
Hamilton G, Stickler S, Rath B. Integration of signaling pathway and bromodomain and extra-terminal domain inhibition for the treatment of mutant Kirsten rat sarcoma viral oncogene homolog cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1027-1038. [PMID: 38023987 PMCID: PMC10651355 DOI: 10.37349/etat.2023.00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Mutant Kirsten rat sarcoma viral oncogene homolog (KRAS) is now a drugable oncogenic driver and the KRAS G12C variant responds clinically to sotorasib and adagrasib that covalently block the cysteine of the active center and inhibit downstream signaling and proliferation. Unfortunately, progression-free survival (PFS) of lung cancer patients is only 5-6 months and no survival advantage has been found for sotorasib in comparison to docetaxel chemotherapy. Increased responses to KRAS inhibitors are tested in combination with the son of sevenless 1 (SOS1) inhibitors, upstream and downstream signaling modulators as well as chemotherapeutics. Some of these approaches are limited by toxicity to normal tissues and by diverse mechanisms of resistance. In essence, most of these attempts are directed to the inhibition of proliferation by impairment of the signal transduction pathways. The final target of KRAS-mediated growth stimulation is MYC in the cell nucleus that stimulates transcription of a host of genes. In detail, MYC alters genomic enhancer and super-enhancers of transcription that are frequently deregulated in cancer. Such enhancers can be targeted by bromodomain and extra-terminal (BET) inhibitors (BETi) or degraders and this review discusses whether integrated SOS1 inhibition and BET targeting of MYC synergizes against mutant KRAS tumor growth. BET degraders in the form of proteolysis-targeting chimeras (PROTACs) combined with BAY-293-mediated SOS1 inhibition revealed marked cytotoxic synergy against mutant KRAS cancer cells and may constitute a promising option for clinical treatment.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sandra Stickler
- Department of Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Barbara Rath
- Department of Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
94
|
Wurm AA, Brilloff S, Kolovich S, Schäfer S, Rahimian E, Kufrin V, Bill M, Carrero ZI, Drukewitz S, Krüger A, Hüther M, Uhrig S, Oster S, Westphal D, Meier F, Pfütze K, Hübschmann D, Horak P, Kreutzfeldt S, Richter D, Schröck E, Baretton G, Heining C, Möhrmann L, Fröhling S, Ball CR, Glimm H. Signaling-induced systematic repression of miRNAs uncovers cancer vulnerabilities and targeted therapy sensitivity. Cell Rep Med 2023; 4:101200. [PMID: 37734378 PMCID: PMC10591033 DOI: 10.1016/j.xcrm.2023.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Targeted therapies are effective in treating cancer, but success depends on identifying cancer vulnerabilities. In our study, we utilize small RNA sequencing to examine the impact of pathway activation on microRNA (miRNA) expression patterns. Interestingly, we discover that miRNAs capable of inhibiting key members of activated pathways are frequently diminished. Building on this observation, we develop an approach that integrates a low-miRNA-expression signature to identify druggable target genes in cancer. We train and validate our approach in colorectal cancer cells and extend it to diverse cancer models using patient-derived in vitro and in vivo systems. Finally, we demonstrate its additional value to support genomic and transcriptomic-based drug prediction strategies in a pan-cancer patient cohort from the National Center for Tumor Diseases (NCT)/German Cancer Consortium (DKTK) Molecularly Aided Stratification for Tumor Eradication (MASTER) precision oncology trial. In conclusion, our strategy can predict cancer vulnerabilities with high sensitivity and accuracy and might be suitable for future therapy recommendations in a variety of cancer subtypes.
Collapse
Affiliation(s)
- Alexander A Wurm
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| | - Silke Brilloff
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sofia Kolovich
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silvia Schäfer
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Elahe Rahimian
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Vida Kufrin
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Marius Bill
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Zunamys I Carrero
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Stephan Drukewitz
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Alexander Krüger
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Melanie Hüther
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sebastian Uhrig
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Sandra Oster
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany
| | - Katrin Pfütze
- German Cancer Consortium (DKTK), Heidelberg, Germany; Sample Processing Laboratory, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Peter Horak
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Kreutzfeldt
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Evelin Schröck
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany
| | - Gustavo Baretton
- German Cancer Consortium (DKTK), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Lino Möhrmann
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Technische Universität Dresden, Faculty of Biology, Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
95
|
Lu D, Chen Y, Jiang M, Wang J, Li Y, Ma K, Sun W, Zheng X, Qi J, Jin W, Chen Y, Chai Y, Zhang CWH, Liang H, Tan S, Gao GF. KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors. Nat Commun 2023; 14:6389. [PMID: 37828002 PMCID: PMC10570350 DOI: 10.1038/s41467-023-42010-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
KRAS mutations are broadly recognized as promising targets for tumor therapy. T cell receptors (TCRs) can specifically recognize KRAS mutant neoantigens presented by human lymphocyte antigen (HLA) and mediate T cell responses to eliminate tumor cells. In the present study, we identify two TCRs specific for the 9-mer KRAS-G12V mutant neoantigen in the context of HLA-A*11:01. The TCR-T cells are constructed and display cytokine secretion and cytotoxicity upon co-culturing with varied tumor cells expressing the KRAS-G12V mutation. Moreover, 1-2C TCR-T cells show anti-tumor activity in preclinical models in female mice. The 9-mer KRAS-G12V mutant peptide exhibits a distinct conformation from the 9-mer wildtype peptide and its 10-mer counterparts. Specific recognition of the G12V mutant by TCR depends both on distinct conformation from wildtype peptide and on direct interaction with residues from TCRs. Our study reveals the mechanisms of presentation and TCR recognition of KRAS-G12V mutant peptide and describes TCRs with therapeutic potency for tumor immunotherapy.
Collapse
Affiliation(s)
- Dan Lu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yuan Chen
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Min Jiang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Keke Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Wenqiao Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xing Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Jin
- YKimmu (Beijing) Biotechnology Co., Ltd, Beijing, China
| | - Yu Chen
- YKimmu (Beijing) Biotechnology Co., Ltd, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Hao Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
- Beijing Life Science Academy, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
96
|
Liu L, Song Z, Fan G, Lou L, Wang Y, Zhang X, Xiong XF. Discovery of novel indazole derivatives as SOS1 agonists that activate KRAS signaling. Bioorg Med Chem 2023; 93:117457. [PMID: 37688996 DOI: 10.1016/j.bmc.2023.117457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
KRAS serves as a vital regulator for cellular signaling and drives tumor pathogenesis after mutation. Despite extensive research efforts spanning several decades, targeting KRAS is still challenging due to the multiple KRAS mutations and the emergence of drug resistance. Interfering the interactions between KRAS and SOS1 is one of the promising approaches for modulating KRAS functions. Herein, we discovered small-molecule SOS1 agonists with novel indazole scaffold. Through structure-based optimization, compound 11 was identified with high SOS1 activation potency (p-ERK EC50 = 1.53 μM). In HeLa cells, compound 11 enhances cellular RAS-GTP levels and exhibits biphasic modulation of ERK1/2 phosphorylation through an on-target mechanism and presents the therapeutic potential to modulate RAS signaling by activating SOS1.
Collapse
Affiliation(s)
- Lu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China
| | - Zhendong Song
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China
| | - Guangjin Fan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China
| | - Linlin Lou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China.
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China.
| |
Collapse
|
97
|
Nasioudis D, Fernandez ML, Wong N, Powell DJ, Mills GB, Westin S, Fader AN, Carey MS, Simpkins F. The spectrum of MAPK-ERK pathway genomic alterations in gynecologic malignancies: Opportunities for novel therapeutic approaches. Gynecol Oncol 2023; 177:86-94. [PMID: 37657193 DOI: 10.1016/j.ygyno.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE To investigate the incidence of MAPK/ERK pathway genomic alterations among patients with gynecologic malignancies. METHODS We accessed the American Association of Cancer Research Genomics Evidence of Neoplasia Information Exchange publicly available dataset (v13.0). Patients with malignant tumors of the ovary, uterus, and cervix were identified. Following stratification by tumor site and histology, we examined the prevalence of MAPK/ERK pathway gene alterations (somatic mutation, and/or structural chromosome alterations). We included the following RAS-MAPK pathway genes known to be implicated in the dysregulation of the pathway; KRAS, NRAS, BRAF, HRAS, MAP2K1, RAF1, PTPN11, NF1, and ARAF. Data from the OncoKB database, as provided by cBioPortal, were utilized to determine pathogenic gene alterations. RESULTS We identified a total of 10,233 patients with gynecologic malignancies; 48.2% (n = 4937) with ovarian, 45.2% (n = 4621) with uterine and 6.6% (n = 675) with cervical cancer respectively. The overall incidence of MAPK pathway gene alterations was 21%; the most commonly altered gene was KRAS (13%), followed by NF1 (7%), NRAS (1.3%), and BRAF (1.2%). The highest incidence was observed among patients with mucinous ovarian (71%), low-grade serous ovarian (48%), endometrioid ovarian (37%), and endometrioid endometrial carcinoma (34%). CONCLUSIONS Approximately 1 in 5 patients with a gynecologic tumor harbor a MAPK/ERK pathway genomic alteration. Novel treatment strategies capitalizing on these alterations are warranted.
Collapse
Affiliation(s)
- Dimitrios Nasioudis
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Llaurado Fernandez
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nelson Wong
- Department of Experimental Therapeutics, BC Cancer, BC, Canada
| | - Daniel J Powell
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shannon Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda N Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark S Carey
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Fiona Simpkins
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
98
|
Baltanás FC, García-Navas R, Rodríguez-Ramos P, Calzada N, Cuesta C, Borrajo J, Fuentes-Mateos R, Olarte-San Juan A, Vidaña N, Castellano E, Santos E. Critical requirement of SOS1 for tumor development and microenvironment modulation in KRAS G12D-driven lung adenocarcinoma. Nat Commun 2023; 14:5856. [PMID: 37730692 PMCID: PMC10511506 DOI: 10.1038/s41467-023-41583-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
The impact of genetic ablation of SOS1 or SOS2 is evaluated in a murine model of KRASG12D-driven lung adenocarcinoma (LUAD). SOS2 ablation shows some protection during early stages but only SOS1 ablation causes significant, specific long term increase of survival/lifespan of the KRASG12D mice associated to markedly reduced tumor burden and reduced populations of cancer-associated fibroblasts, macrophages and T-lymphocytes in the lung tumor microenvironment (TME). SOS1 ablation also causes specific shrinkage and regression of LUAD tumoral masses and components of the TME in pre-established KRASG12D LUAD tumors. The critical requirement of SOS1 for KRASG12D-driven LUAD is further confirmed by means of intravenous tail injection of KRASG12D tumor cells into SOS1KO/KRASWT mice, or of SOS1-less, KRASG12D tumor cells into wildtype mice. In silico analyses of human lung cancer databases support also the dominant role of SOS1 regarding tumor development and survival in LUAD patients. Our data indicate that SOS1 is critically required for development of KRASG12D-driven LUAD and confirm the validity of this RAS-GEF activator as an actionable therapeutic target in KRAS mutant LUAD.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain.
- Institute of Biomedicine of Seville (IBiS)/"Virgen del Rocío" University Hospital/CSIC/University of Seville and Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.
| | - Rósula García-Navas
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Pablo Rodríguez-Ramos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Nuria Calzada
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Cristina Cuesta
- Lab 5. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Javier Borrajo
- Departament of Biomedical Sciences and Diagnostic, University of Salamanca, 37007, Salamanca, Spain
| | - Rocío Fuentes-Mateos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Andrea Olarte-San Juan
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Nerea Vidaña
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain
| | - Esther Castellano
- Lab 5. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Eugenio Santos
- Lab 1. Cancer Research Center, Institute of Cancer Molecular and Cellular Biology, CSIC-University of Salamanca and CIBERONC, 37007, Salamanca, Spain.
| |
Collapse
|
99
|
Kong Y, Luo Y, Zheng S, Yang J, Zhang D, Zhao Y, Zheng H, An M, Lin Y, Ai L, Diao X, Lin Q, Chen C, Chen R. Mutant KRAS Mediates circARFGEF2 Biogenesis to Promote Lymphatic Metastasis of Pancreatic Ductal Adenocarcinoma. Cancer Res 2023; 83:3077-3094. [PMID: 37363990 PMCID: PMC10502454 DOI: 10.1158/0008-5472.can-22-3997] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Circular RNAs (circRNA) contribute to cancer stemness, proliferation, and metastasis. The biogenesis of circRNAs can be impacted by the genetic landscape of tumors. Herein, we identified a novel circRNA, circARFGEF2 (hsa_circ_0060665), which was upregulated in KRASG12D pancreatic ductal adenocarcinoma (PDAC) and positively associated with KRASG12D PDAC lymph node (LN) metastasis. CircARFGEF2 overexpression significantly facilitated KRASG12D PDAC LN metastasis in vitro and in vivo. Mechanistically, circARFGEF2 biogenesis in KRASG12D PDAC was significantly activated by the alternative splicing factor QKI-5, which recruited U2AF35 to facilitate spliceosome assembly. QKI-5 bound the QKI binding motifs and neighboring reverse complement sequence in intron 3 and 6 of ARFGEF2 pre-mRNA to facilitate circARFGEF2 biogenesis. CircARFGEF2 sponged miR-1205 and promoted the activation of JAK2, which phosphorylated STAT3 to trigger KRASG12D PDAC lymphangiogenesis and LN metastasis. Importantly, circARFGEF2 silencing significantly inhibited LN metastasis in the KrasG12D/+Trp53R172H/+Pdx-1-Cre (KPC) mouse PDAC model. These findings provide insight into the mechanism and metastasis-promoting function of mutant KRAS-mediated circRNA biogenesis. SIGNIFICANCE Increased splicing-mediated biogenesis of circARFGEF2 in KRAS-mutant pancreatic ductal adenocarcinoma activates JAK2-STAT3 signaling and triggers lymph node metastasis, suggesting circARFGEF2 could be a therapeutic target to inhibit pancreatic cancer progression.
Collapse
Affiliation(s)
- Yao Kong
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yuming Luo
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shangyou Zheng
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jiabin Yang
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Dingwen Zhang
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Yue Zhao
- Department of Tumor Intervention, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, P.R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Le Ai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiayao Diao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qing Lin
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Rufu Chen
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
100
|
Qunaj L, May MS, Neugut AI, Herzberg BO. Prognostic and therapeutic impact of the KRAS G12C mutation in colorectal cancer. Front Oncol 2023; 13:1252516. [PMID: 37790760 PMCID: PMC10543081 DOI: 10.3389/fonc.2023.1252516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
KRAS G12C mutations are critical in the pathogenesis of multiple cancer types, including non-small cell lung (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and colorectal (CRC) cancers. As such, they have increasingly become a target of novel therapies in the management of these malignancies. However, the therapeutic success of KRAS G12C inhibitors to date has been far more limited in CRC and PDAC than NSCLC. In this review, we briefly summarize the biochemistry of KRAS targeting and treatment resistance, highlight differences in the epidemiology of various G12C-mutated cancers, and provide an overview of the published data on KRAS G12C inhibitors for various indications. We conclude with a summary of ongoing clinical trials in G12C-mutant CRC and a discussion of future directions in the management of this disease. KRAS G12C mutation, targeted therapies, colorectal cancer, non-small cell lung cancer, pancreatic cancer, drug development.
Collapse
Affiliation(s)
- Lindor Qunaj
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
| | - Michael S. May
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
| | - Alfred I. Neugut
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Benjamin O. Herzberg
- Division of Hematology and Oncology, Department of Medicine, Columbia University, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|