51
|
Rose KM, Huelster HL, Meeks JJ, Faltas BM, Sonpavde GP, Lerner SP, Ross JS, Spiess PE, Grass GD, Jain RK, Kamat AM, Vosoughi A, Wang L, Wang X, Li R. Circulating and urinary tumour DNA in urothelial carcinoma - upper tract, lower tract and metastatic disease. Nat Rev Urol 2023; 20:406-419. [PMID: 36977797 DOI: 10.1038/s41585-023-00725-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Precision medicine has transformed the way urothelial carcinoma is managed. However, current practices are limited by the availability of tissue samples for genomic profiling and the spatial and temporal molecular heterogeneity observed in many studies. Among rapidly advancing genomic sequencing technologies, non-invasive liquid biopsy has emerged as a promising diagnostic tool to reproduce tumour genomics, and has shown potential to be integrated in several aspects of clinical care. In urothelial carcinoma, liquid biopsies such as plasma circulating tumour DNA (ctDNA) and urinary tumour DNA (utDNA) have been investigated as a surrogates for tumour biopsies and might bridge many shortfalls currently faced by clinicians. Both ctDNA and utDNA seem really promising in urothelial carcinoma diagnosis, staging and prognosis, response to therapy monitoring, detection of minimal residual disease and surveillance. The use of liquid biopsies in patients with urothelial carcinoma could further advance precision medicine in this population, facilitating personalized patient monitoring through non-invasive assays.
Collapse
Affiliation(s)
- Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Seth P Lerner
- Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA
- Departments of Urology and Pathology, Upstate Medical University, Syracuse, NY, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Aram Vosoughi
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
52
|
Ingles Garces AH, Porta N, Graham TA, Banerji U. Clinical trial designs for evaluating and exploiting cancer evolution. Cancer Treat Rev 2023; 118:102583. [PMID: 37331179 DOI: 10.1016/j.ctrv.2023.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
The evolution of drug-resistant cell subpopulations causes cancer treatment failure. Current preclinical evidence shows that it is possible to model herding of clonal evolution and collateral sensitivity where an initial treatment could favourably influence the response to a subsequent one. Novel therapy strategies exploiting this understanding are being considered, and clinical trial designs for steering cancer evolution are needed. Furthermore, preclinical evidence suggests that different subsets of drug-sensitive and resistant clones could compete between themselves for nutrients/blood supply, and clones that populate a tumour do so at the expense of other clones. Treatment paradigms based on this clinical application of exploiting cell-cell competition include intermittent dosing regimens or cycling different treatments before progression. This will require clinical trial designs different from the conventional practice of evaluating responses to individual therapy regimens. Next-generation sequencing to assess clonal dynamics longitudinally will improve current radiological assessment of clinical response/resistance and be incorporated into trials exploiting evolution. Furthermore, if understood, clonal evolution can be used to therapeutic advantage, improving patient outcomes based on a new generation of clinical trials.
Collapse
Affiliation(s)
- Alvaro H Ingles Garces
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Nuria Porta
- Clinical Trials and Statistical Unit, The Institute of Cancer Research, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, UK
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK.
| |
Collapse
|
53
|
Bourdeleau P, Couvelard A, Ronot M, Lebtahi R, Hentic O, Ruszniewski P, Cros J, de Mestier L. Spatial and temporal heterogeneity of digestive neuroendocrine neoplasms. Ther Adv Med Oncol 2023; 15:17588359231179310. [PMID: 37323185 PMCID: PMC10262621 DOI: 10.1177/17588359231179310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are initially monoclonal neoplasms that progressively become polyclonal, with very different genotypic and phenotypic characteristics leading to biological differences, including the Ki-67 proliferation index, morphology, or sensitivity to treatments. Whereas inter-patient heterogeneity has been well described, intra-tumor heterogeneity has been little studied. However, NENs present a high degree of heterogeneity, both spatially within the same location or between different lesions, and through time. This can be explained by the emergence of tumor subclones with different behaviors. These subpopulations can be distinguished by the Ki-67 index, but also by the expression of hormonal markers or by differences in the intensity of uptake on metabolic imaging, such as 68Ga-somatostatin receptor and Fluorine-18 fluorodeoxyglucose positron emission tomography. As these features are directly related to prognosis, it seems mandatory to move toward a standardized, improved selection of the tumor areas to be studied to be as predictive as possible. The temporal evolution of NENs frequently leads to changes in tumor grade over time, with impact on prognosis and therapeutic decision-making. However, there is no recommendation regarding systematic biopsy of NEN recurrence or progression, and which lesion to sample. This review aims to summarize the current state of knowledge, the main hypotheses, and the main implications regarding intra-tumor spatial and temporal heterogeneity in digestive NENs.
Collapse
Affiliation(s)
- Pauline Bourdeleau
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
| | - Anne Couvelard
- Department of Pathology, Beaujon/Bichat Hospitals (APHP.Nord), Université Paris-Cité, Clichy/Paris, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Maxime Ronot
- Department of Radiology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France, and Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Rachida Lebtahi
- Department of Nuclear Medicine, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Olivia Hentic
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
| | - Philippe Ruszniewski
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Jérôme Cros
- Department of Pathology, Beaujon/Bichat Hospitals (APHP.Nord), Université Paris-Cité, Clichy/Paris, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | | |
Collapse
|
54
|
Cecchini M, Zhang JY, Wei W, Sklar J, Lacy J, Zhong M, Kong Y, Zhao H, DiPalermo J, Devine L, Stein SM, Kortmansky J, Johung KL, Bindra RS, LoRusso P, Schalper KA. Quantitative DNA Repair Biomarkers and Immune Profiling for Temozolomide and Olaparib in Metastatic Colorectal Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1132-1139. [PMID: 37387791 PMCID: PMC10305782 DOI: 10.1158/2767-9764.crc-23-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Purpose O6-methylguanine DNA methyltransferase (MGMT)-silenced tumors reveal sensitivity to temozolomide (TMZ), which may be enhanced by PARP inhibitors. Approximately 40% of colorectal cancer has MGMT silencing and we aimed to measure antitumoral and immunomodulatory effects from TMZ and olaparib in colorectal cancer. Experimental Design Patients with advanced colorectal cancer were screened for MGMT promoter hypermethylation using methylation-specific PCR of archival tumor. Eligible patients received TMZ 75 mg/m2 days 1-7 with olaparib 150 mg twice daily every 21 days. Pretreatment tumor biopsies were collected for whole-exome sequencing (WES), and multiplex quantitative immunofluorescence (QIF) of MGMT protein expression and immune markers. Results MGMT promoter hypermethylation was detected in 18/51 (35%) patients, 9 received study treatment with no objective responses, 5/9 had stable disease (SD) and 4/9 had progressive disease as best response. Three patients had clinical benefit: carcinoembryonic antigen reduction, radiographic tumor regression, and prolonged SD. MGMT expression by multiplex QIF revealed prominent tumor MGMT protein from 6/9 patients without benefit, while MGMT protein was lower in 3/9 with benefit. Moreover, benefitting patients had higher baseline CD8+ tumor-infiltrating lymphocytes. WES revealed 8/9 patients with MAP kinase variants (7 KRAS and 1 ERBB2). Flow cytometry identified peripheral expansion of effector T cells. Conclusions Our results indicate discordance between MGMT promoter hypermethylation and MGMT protein expression. Antitumor activity seen in patients with low MGMT protein expression, supports MGMT protein as a predictor of alkylator sensitivity. Increased CD8+ TILs and peripheral activated T cells, suggest a role for immunostimulatory combinations. Significance TMZ and PARP inhibitors synergize in vitro and in vivo in tumors with MGMT silencing. Up to 40% of colorectal cancer is MGMT promoter hypermethylated, and we investigated whether TMZ and olaparib are effective in this population. We also measured MGMT by QIF and observed efficacy only in patients with low MGMT, suggesting quantitative MGMT biomarkers more accurately predict benefit to alkylator combinations.
Collapse
Affiliation(s)
- Michael Cecchini
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Janie Y. Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Jeffrey Sklar
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Jill Lacy
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Minghao Zhong
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Jassim DiPalermo
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Lesley Devine
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Stacey M. Stein
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Jeremy Kortmansky
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Kimberly L. Johung
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ranjit S. Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia LoRusso
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Kurt A. Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
55
|
Parente P, Grillo F, Vanoli A, Macciomei MC, Ambrosio MR, Scibetta N, Filippi E, Cataldo I, Baron L, Ingravallo G, Cazzato G, Melocchi L, Liserre B, Giordano C, Arborea G, Pilozzi E, Scapinello A, Aquilano MC, Gafà R, Battista S, Dal Santo L, Campora M, Carbone FG, Sartori C, Lazzi S, Hanspeter E, Angerilli V, Mastracci L, Fassan M. The Day-To-Day Practice of MMR and MSI Assessment in Colorectal Adenocarcinoma: What We Know and What We Still Need to Explore. Dig Dis 2023; 41:746-756. [PMID: 37231848 DOI: 10.1159/000531003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The DNA mismatch repair (MMR) system is a highly preserved protein complex recognizing short insertions, short deletions, and single base mismatches during DNA replication and recombination. MMR protein status is identified using immunohistochemistry. Deficit in one or more MMR proteins, configuring deficient MMR status (dMMR), leads to frameshift mutations particularly clustered in microsatellite repeats. Thus, microsatellite instability (MSI) is the epiphenomenon of dMMR. In colorectal cancer (CRC), MMR/MSI status is a biomarker with prognostic and predictive value of resistance to 5-fluorouracil and response to immune checkpoint inhibitor therapy. SUMMARY In this Review, we describe the challenges the practicing pathologist may face in relation to the assessment of MMR/MSI status and any open issues which still need to be addressed, focusing on pre-analytic issues, pitfalls in the interpretation, and technical aspects of the different assays. KEY MESSAGES The current methods of detecting dMMR/MSI status have been optimized for CRCs, and whether these techniques can be applied to all tumor and specimen types is still not fully understood. Following the Food and Drug Administration (FDA), tissue/site agnostic drug approval of pembrolizumab for advanced/metastatic MSI tumors, MMR/MSI status in gastrointestinal tract is a common request from the oncologist. In this setting, several issues still need to be addressed, including criteria for sample adequacy.
Collapse
Affiliation(s)
- Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Grillo
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Pathology Unit, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | | | | | - Nunzia Scibetta
- UOC Anatomia Patologica ARNAS Ospedali Civico e G. Di Gristina, Palermo, Italy
| | | | - Ivana Cataldo
- Surgical Pathology Section University and Hospital Trust of Treviso, Treviso, Italy
| | - Luigi Baron
- Surgical Pathology Unit ASL Napoli 3 Sud, Ospedale S. Leonardo, Naples, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
| | - Laura Melocchi
- Unit of Pathology, Department of Oncology, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| | - Barbara Liserre
- Unit of Pathology, Department of Oncology, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| | - Carla Giordano
- Pathology Unit, Università La Sapienza; Policlinico Umberto I, Rome, Italy
| | - Graziana Arborea
- Department of Pathology, National Institute of Gastroenterology IRCCS "S. de Bellis", Castellana Grotte, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Maria Costanza Aquilano
- Department of Hematology, Oncology and Molecular Medicine, ASST Grande Ospedale Metropolitano/Niguarda, Milan, Italy
| | - Roberta Gafà
- Anatomic Pathology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Serena Battista
- Pathology Department, S. Maria della Misericordia Hospital, Udine, Italy
| | - Luca Dal Santo
- Department of Pathology, Ospedale dell'Angelo, Venice, Italy
| | - Michela Campora
- U.O.M. Anatomia e Istologia Patologica e Citodiagnostica Ospedale S. Chiara, Trento, Italy
| | | | - Chiara Sartori
- U.O.M. Anatomia e Istologia Patologica e Citodiagnostica Ospedale S. Chiara, Trento, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Ester Hanspeter
- Department of Pathology, Provincial Hospital of Bolzano (SABES-ASDAA), Bolzano-Bozen, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Luca Mastracci
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Pathology Unit, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Matteo Fassan
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| |
Collapse
|
56
|
Boilève A, Faron M, Fodil-Cherif S, Bayle A, Lamartina L, Planchard D, Tselikas L, Kanaan C, Scoazec JY, Ducreux M, Italiano A, Baudin E, Hadoux J. Molecular profiling and target actionability for precision medicine in neuroendocrine neoplasms: real-world data. Eur J Cancer 2023; 186:122-132. [PMID: 37062210 DOI: 10.1016/j.ejca.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Key molecular alterations (MA) of neuroendocrine neoplasm (NEN) of various grade/primaries have been described but the applicability of molecular profiling (MP) for precision medicine in NEN remains to be demonstrated. METHODS We conducted a retrospective study of all patients with metastatic NEN who had MP on tumour tissue at Gustave Roussy. The primary objective was to assess the clinical applicability of MP by evaluating the growth modulator index (GMI) as the primary end-point. RESULTS MPs were obtained in 114 out of 156 eligible patients, including 12% NET-G1, 42% NET-G2, 13% NET-G3 and 35% neuroendocrine carcinoma (NEC). Primary sites were lung/thymus (40%), pancreas (19%), gastro-intestinal (16%), head&neck (10%), unknown (10%) and others (10%) with synchronous metastases in 61% of the patients. Most frequent MA were: MEN1 (25%), PTEN (13%), TP53 (11%) and TSC2 (9%), in neuroendocrine tumour (NET), and TP53 (50%) and RB1 (18%) in NEC. ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) classification of these MA were: I(5%), III(20%), IV(23%), X(27%); a putative actionable MA was identified in 48% patients. Median TMB was 5.7 Mut/Mb, with 3 TMB > 10 and 1 MSI NET. No MA was found in 26% patients. Molecularly matched treatment was administered to 19 patients (4 NEC, 15 NET): immunotherapy (n = 3), tipifarnib (n = 1), NOTCHi (n = 1), EGFRi (n = 2), HER2i (n = 1) and everolimus (n = 11). Overall, 67% of patients had a clinical benefit defined as a GMI over 1.3 with a 78% disease control rate. CONCLUSION We report 48% of NEN with a putative actionable MA of which 35% received molecularly matched treatment, with a clinical benefit in 67% of the cases.
Collapse
|
57
|
Wang ZX, Pan YQ, Li X, Tsubata T, Xu RH. Immunotherapy in gastrointestinal cancers: advances, challenges, and countermeasures. Sci Bull (Beijing) 2023; 68:763-766. [PMID: 37003944 DOI: 10.1016/j.scib.2023.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
58
|
Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 2023; 15:cancers15041022. [PMID: 36831367 PMCID: PMC9954007 DOI: 10.3390/cancers15041022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
About 5 to 15% of all colorectal cancers harbor mismatch repair deficient/microsatellite instability-high status (dMMR/MSI-H) that associates with high tumor mutation burden and increased immunogenicity. As a result, and in contrast to other colorectal cancer phenotypes, a significant subset of dMMR/MSI-H cancer patients strongly benefit from immunotherapy. Yet, a large proportion of these tumors remain unresponsive to any immuno-modulating treatment. For this reason, current efforts are focused on the characterization of resistance mechanisms and the identification of predictive biomarkers to guide therapeutic decision-making. Here, we provide an overview on the new advances related to the diagnosis and definition of dMMR/MSI-H status and focus on the distinct clinical, functional, and molecular cues that associate with dMMR/MSI-H colorectal cancer. We review the development of novel predictive factors of response or resistance to immunotherapy and their potential application in the clinical setting. Finally, we discuss current and emerging strategies applied to the treatment of localized and metastatic dMMR/MSI-H colorectal tumors in the neoadjuvant and adjuvant setting.
Collapse
|
59
|
Ros J, Balconi F, Baraibar I, Saoudi Gonzalez N, Salva F, Tabernero J, Elez E. Advances in immune checkpoint inhibitor combination strategies for microsatellite stable colorectal cancer. Front Oncol 2023; 13:1112276. [PMID: 36816981 PMCID: PMC9932591 DOI: 10.3389/fonc.2023.1112276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors have reshaped the prognostic of several tumor types, including metastatic colorectal tumors with microsatellite instability (MSI). However, 90-95% of metastatic colorectal tumors are microsatellite stable (MSS) in which immunotherapy has failed to demonstrate meaningful clinical results. MSS colorectal tumors are considered immune-cold tumors. Several factors have been proposed to account for this lack of response to immune checkpoint blockade including low levels of tumor infiltrating lymphocytes, low tumor mutational burden, a high rate of WNT/β-catenin pathway mutations, and liver metastases which have been associated with immunosuppression. However, studies with novel combinations based on immune checkpoint inhibitors are showing promising activity in MSS colorectal cancer. Here, we review the underlying biological facts that preclude immunotherapy activity, and detail the different immune checkpoint inhibitor combinations evaluated, along with novel immune-based therapies, to overcome innate mechanisms of resistance in MSS colorectal cancer.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Balconi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari, Italy
| | - Iosune Baraibar
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Francesc Salva
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,*Correspondence: Elena Elez,
| |
Collapse
|
60
|
Oh CR, Kim JE, Lee JS, Kim SY, Kim TW, Choi J, Kim J, Park IJ, Lim SB, Park JH, Kim JH, Choi MK, Cha Y, Baek JY, Beom SH, Hong YS. Preoperative Chemoradiotherapy With Capecitabine With or Without Temozolomide in Patients With Locally Advanced Rectal Cancer: A Prospective, Randomised Phase II Study Stratified by O 6-Methylguanine DNA Methyltransferase Status: KCSG-CO17-02. Clin Oncol (R Coll Radiol) 2023; 35:e143-e152. [PMID: 36376167 DOI: 10.1016/j.clon.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
AIMS To evaluate the clinical efficacy of adding temozolomide (TMZ) to preoperative capecitabine (CAP)-based chemoradiotherapy in patients with locally advanced rectal cancer (LARC) and validate O6-methylguanine DNA methyltransferase (MGMT) methylation status as a predictive marker for TMZ combined regimens. MATERIALS AND METHODS LARC patients with clinical stage II (cT3-4N0) or III (cTanyN+) disease were enrolled. They were stratified into unmethylated MGMT (uMGMT) and methylated MGMT (mMGMT) groups by methylation-specific polymerase chain reaction before randomisation and were then randomly assigned (1:1) to one of four treatment arms: uMGMT/CAP (arm A), uMGMT/TMZ + CAP (arm B), mMGMT/CAP (arm C) and mMGMT/TMZ + CAP (arm D). The primary end point was the pathological complete response (pCR) rate. RESULTS Between November 2017 and July 2020, 64 patients were randomised. Slow accrual caused early study termination. After excluding four ineligible patients, 60 were included in the full analysis set. The pCR rate was 15.0% (9/60), 0%, 14.3%, 18.8% and 26.7% for the entire cohort, arms A, B, C and D, respectively (P = 0.0498 between arms A and D). The pCR rate was 9.7% in the CAP group (arms A + C), 20.7% in the TMZ + CAP group (arms B + D), 6.9% in the uMGMT group (arms A + B) and 22.6% in the mMGMT group (arms C + D). Grade 1-2 nausea or vomiting was significantly more frequent in the TMZ + CAP treatment groups (arms B + D) than in the CAP treatment groups (arms A + C, P < 0.001) with no difference in grade 3 adverse events. There were no grade 4 or 5 adverse events. CONCLUSION The addition of TMZ to CAP-based chemoradiotherapy tended to improve pCR rates, particularly in those with mMGMT LARC. MGMT status may warrant further investigation as a predictive biomarker for chemotherapeutic agents and radiotherapy.
Collapse
Affiliation(s)
- C R Oh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - J E Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J S Lee
- Clinical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - S Y Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - T W Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - I J Park
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - S-B Lim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J-H Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - J H Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - M K Choi
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Y Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - J Y Baek
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - S-H Beom
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y S Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
61
|
Bando H, Ohtsu A, Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2023; 20:306-322. [PMID: 36670267 DOI: 10.1038/s41575-022-00736-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/22/2023]
Abstract
In the era of targeted therapy based on genomic alterations, the treatment strategy for metastatic colorectal cancer (mCRC) has been changing. Before systemic treatment initiation, determination of tumour genomic status for KRAS and NRAS, BRAFV600E mutations, ERBB2, and microsatellite instability and/or mismatch repair (MMR) status is recommended. In patients with deficient MMR and BRAFV600E mCRC, randomized phase III trials have established the efficacy of pembrolizumab as first-line therapy and the combination of encorafenib and cetuximab as second-line or third-line therapy. In addition, new agents have been actively developed in other rare molecular fractions such as ERBB2 alterations and KRASG12C mutations. In March 2022, the combination of pertuzumab and trastuzumab for ERBB2-positive mCRC was approved in Japan, thereby combining real-world evidence from the SCRUM-Japan Registry. As the populations are highly fragmented owing to rare genomic alterations, various strategies in clinical development are expected. Clinical development of a tumour-agnostic approach, such as NTRK fusion and tumour mutational burden, has successfully introduced corresponding drugs to clinical practice. Considering the difficulty of randomized trials owing to cost-benefit and rarity, a promising solution could be real-world evidence utilized as an external control from the molecular-based disease registry.
Collapse
Affiliation(s)
- Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
62
|
Anandappa G, Overman MJ. Harnessing the therapeutic vulnerability of MMR heterogeneity in colorectal cancer. Cell Rep Med 2023; 4:100908. [PMID: 36652917 PMCID: PMC9873932 DOI: 10.1016/j.xcrm.2022.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In a recent issue of Cancer Cell, Amodio and colleagues report an interesting method of modulating immunosurveillance in colorectal tumors with DNA mismatch repair (MMR) heterogeneity.1 By pharmacologically enriching the MMR deficient (MMRd) component using 6-thioguanine, they demonstrate improved tumor control in murine models.
Collapse
Affiliation(s)
- Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Corresponding author
| |
Collapse
|
63
|
Amodio V, Lamba S, Chilà R, Cattaneo CM, Mussolin B, Corti G, Rospo G, Berrino E, Tripodo C, Pisati F, Bartolini A, Aquilano MC, Marsoni S, Mauri G, Marchiò C, Abrignani S, Di Nicolantonio F, Germano G, Bardelli A. Genetic and pharmacological modulation of DNA mismatch repair heterogeneous tumors promotes immune surveillance. Cancer Cell 2023; 41:196-209.e5. [PMID: 36584674 PMCID: PMC9833846 DOI: 10.1016/j.ccell.2022.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/23/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
Patients affected by colorectal cancer (CRC) with DNA mismatch repair deficiency (MMRd), often respond to immune checkpoint blockade therapies, while those with mismatch repair-proficient (MMRp) tumors generally do not. Interestingly, a subset of MMRp CRCs contains variable fractions of MMRd cells, but it is unknown how their presence impacts immune surveillance. We asked whether modulation of the MMRd fraction in MMR heterogeneous tumors acts as an endogenous cancer vaccine by promoting immune surveillance. To test this hypothesis, we use isogenic MMRp (Mlh1+/+) and MMRd (Mlh1-/-) mouse CRC cells. MMRp/MMRd cells mixed at different ratios are injected in immunocompetent mice and tumor rejection is observed when at least 50% of cells are MMRd. To enrich the MMRd fraction, MMRp/MMRd tumors are treated with 6-thioguanine, which leads to tumor rejection. These results suggest that genetic and pharmacological modulation of the DNA mismatch repair machinery potentiate the immunogenicity of MMR heterogeneous tumors.
Collapse
Affiliation(s)
- Vito Amodio
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Simona Lamba
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Rosaria Chilà
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Chiara M Cattaneo
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Giorgio Corti
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Giuseppe Rospo
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy; Department of Medical Sciences, University of Torino, Torino, Italy
| | - Claudio Tripodo
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90127 Palermo, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L., 20139, Milan, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Maria Costanza Aquilano
- Department of Hematology, Oncology, and Molecular Medicine, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20162 Milan, Italy
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy; Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', 20122 Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy
| | - Giovanni Germano
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy.
| | - Alberto Bardelli
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; Candiolo Cancer Institute, FPO - IRCCS, 10060 Candiolo, TO, Italy.
| |
Collapse
|
64
|
Porciello N, Franzese O, D’Ambrosio L, Palermo B, Nisticò P. T-cell repertoire diversity: friend or foe for protective antitumor response? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:356. [PMID: 36550555 PMCID: PMC9773533 DOI: 10.1186/s13046-022-02566-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Profiling the T-Cell Receptor (TCR) repertoire is establishing as a potent approach to investigate autologous and treatment-induced antitumor immune response. Technical and computational breakthroughs, including high throughput next-generation sequencing (NGS) approaches and spatial transcriptomics, are providing unprecedented insight into the mechanisms underlying antitumor immunity. A precise spatiotemporal variation of T-cell repertoire, which dynamically mirrors the functional state of the evolving host-cancer interaction, allows the tracking of the T-cell populations at play, and may identify the key cells responsible for tumor eradication, the evaluation of minimal residual disease and the identification of biomarkers of response to immunotherapy. In this review we will discuss the relationship between global metrics characterizing the TCR repertoire such as T-cell clonality and diversity and the resultant functional responses. In particular, we will explore how specific TCR repertoires in cancer patients can be predictive of prognosis or response to therapy and in particular how a given TCR re-arrangement, following immunotherapy, can predict a specific clinical outcome. Finally, we will examine current improvements in terms of T-cell sequencing, discussing advantages and challenges of current methodologies.
Collapse
Affiliation(s)
- Nicla Porciello
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Ornella Franzese
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Lorenzo D’Ambrosio
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Belinda Palermo
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
65
|
Alouani E, Rousseau B, Andre T, Marabelle A. Immunotherapy advances in cancers with mismatch repair or proofreading deficiencies. NATURE CANCER 2022; 3:1414-1417. [PMID: 36539500 DOI: 10.1038/s43018-022-00497-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Emily Alouani
- Digestive Medical Oncology Department, IUCT-Rangueil, Toulouse Hospital University, Toulouse, France
| | - Benoit Rousseau
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thierry Andre
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, INSERM 938, SIRIC CURAMUS, Paris, France
| | - Aurelien Marabelle
- Université Paris Saclay, Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), INSERM U1015 & CIC1428, Villejuif, France.
| |
Collapse
|
66
|
Lote H, Starling N, Pihlak R, Gerlinger M. Advances in immunotherapy for MMR proficient colorectal cancer. Cancer Treat Rev 2022; 111:102480. [DOI: 10.1016/j.ctrv.2022.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/02/2022]
|
67
|
Sartore-Bianchi A, Agostara AG, Patelli G, Mauri G, Pizzutilo EG, Siena S. Application of histology-agnostic treatments in metastatic colorectal cancer. Dig Liver Dis 2022; 54:1291-1303. [PMID: 35701319 DOI: 10.1016/j.dld.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Cancer treatment is increasingly focused on targeting molecular alterations identified across different tumor histologies. While some oncogenic drivers such as microsatellite instability (MSI) and NTRK fusions are actionable with the very same approach regardless of tumor type ("histology-agnostic"), others require histology-specific therapeutic adjustment ("histology-tuned") by means of adopting specific inhibitors and ad hoc combinations. Among histology-agnostic therapies, pembrolizumab or dostarlimab demonstrated comparable activity in MSI metastatic colorectal cancer (mCRC) as in other tumors with MSI status (ORR 38% vs 40% and 36% vs 39%, respectively), while entrectinib or larotrectinib proved effective in NTRK rearranged mCRC even though less dramatically than in the overall population (ORR 20% vs 57%, and 50% vs 78%, respectively). Histology-tuned approaches in mCRC are those targeting BRAFV600E mutations and ERBB2 amplification, highlighting the need of simultaneous anti-EGFR blockade or careful choice of companion inhibitors in this tumor type. Anti-RET and anti-ALK therapies emerged as a potential histology-agnostic indications, while anti-KRASG12C strategies could develop as future histology-tuned therapies. Targeting of ERBB2 mutations and NRG1 fusion provided discrepant results. In conclusion, agnostic targets such as MSI and NTRK fusions are already exploitable in mCRC, while the plethora of emerging histology-tuned targets represent a challenging opportunity requiring concurrent evolution of molecular diagnostic tools.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Gianluca Mauri
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| |
Collapse
|
68
|
Guo XW, Li SQ, Lei RE, Ding Z, Hu BL, Lin R. Tumor-infiltrating immune cells based TMEscore and related gene signature is associated with the survival of CRC patients and response to fluoropyrimidine-based chemotherapy. Front Oncol 2022; 12:953321. [PMID: 36110947 PMCID: PMC9468757 DOI: 10.3389/fonc.2022.953321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTumor-infiltrating immune cells (TIICs) are associated with chemotherapy response. This study aimed to explore the prognostic value of a TIIC-related tumor microenvironment score (TMEscore) in patients with colorectal cancer (CRC) who underwent chemotherapy and construct a TMEscore-related gene signature to determine its predictive value.MethodsGene profiles of patients who underwent fluoropyrimidine-based chemotherapy were collected, and their TIIC fractions were calculated and clustered. Differentially expressed genes (DEGs) between clusters were used to calculate the TMEscore. The association between the TMEscore, chemotherapy response, and survival rate was analyzed. Machine learning methods were used to identify key TMEscore-related genes, and a gene signature was constructed to verify the predictive value.ResultsTwo clusters based on the TIIC fraction were identified, and the TMEscore was calculated based on the DEGs of the two clusters. The TMEscore was higher in patients who responded to chemotherapy than in those who did not, and was associated with the survival rate of patients who underwent chemotherapy. Three machine learning methods, support vector machine (SVM), decision tree (DT), and Extreme Gradient Boosting (XGBoost), identified three TMEscore-related genes (ADH1C, SLC26A2, and NANS) associated with the response to chemotherapy. A TMEscore-related gene signature was constructed, and three external cohorts validated that the gene signature could predict the response to chemotherapy. Five datasets and clinical samples showed that the expression of the three TMEscore-related genes was increased in tumor tissues compared to those in control tissues.ConclusionsThe TIIC-based TMEscore was associated with the survival of CRC patients who underwent fluoropyrimidine-based chemotherapy, and predicted the response to chemotherapy. The TMEscore-related gene signature had a better predictive value for response to chemotherapy than for survival.
Collapse
Affiliation(s)
- Xian-Wen Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong-E Lei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ding
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bang-li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Bang-li Hu, ; Rong Lin,
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bang-li Hu, ; Rong Lin,
| |
Collapse
|
69
|
Gambardella V, Martinelli E, Tarazona N, Cervantes A. In the literature: July 2022. ESMO Open 2022; 7:100556. [PMID: 35961192 PMCID: PMC9434400 DOI: 10.1016/j.esmoop.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- V Gambardella
- Department of Medical Oncology, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - E Martinelli
- Medical Oncology, Department of Precision Medicine, Università Della Campania 'L. Vanvitelli', Naples, Italy
| | - N Tarazona
- Department of Medical Oncology, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - A Cervantes
- Department of Medical Oncology, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
70
|
Damato A, Rotolo M, Caputo F, Borghi E, Iachetta F, Pinto C. New Potential Immune Biomarkers in the Era of Precision Medicine: Lights and Shadows in Colorectal Cancer. Life (Basel) 2022; 12:1137. [PMID: 36013315 PMCID: PMC9410155 DOI: 10.3390/life12081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic alterations in CRC have shown a negative predictive and prognostic role in specific target therapies. The onset of immunotherapy has also undergone remarkable therapeutic innovation, although limited to a small subgroup of patients, the MSI-H/dMMR, which represents only 5% of CRC. Research is moving forward to identify whether other biomarkers can predict response to ICIs, despite various limitations regarding expression and identification methods. For this purpose, TMB, LAG3, and PD-L1 expression have been retrospectively evaluated in several solid tumors establishing the rationale to design clinical trials with concurrent inhibition of LAG3 and PD-1 results in a significant advantage in PFS and OS in advanced melanoma patients. Based on these data, there are clinical trials ongoing in the CRC as well. This review aims to highlight what is already known about genetic mutations and genomic alterations in CRC, their inhibition with targeted therapies and immune checkpoints inhibitors, and new findings useful to future treatment strategies.
Collapse
Affiliation(s)
- Angela Damato
- Medical Oncology, Comprehensive Cancer Center, Azienda USL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy; (M.R.); (F.C.); (E.B.); (F.I.); (C.P.)
| | | | | | | | | | | |
Collapse
|
71
|
Willis JA, Overman MJ. Inducing Hypermutability to Promote Anti–PD-1 Therapy Response. Cancer Discov 2022; 12:1612-1614. [PMID: 35791694 PMCID: PMC10373529 DOI: 10.1158/2159-8290.cd-22-0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Summary:
The lack of clinical activity from various immune-checkpoint blockade approaches in mismatch repair– proficient (MMRp) colorectal cancer has demonstrated a critical need for novel approaches. In this issue, Crisafulli and colleagues provide proof of concept for the induction of hypermutability through the use of temozolomide as a potential pathway for enabling a productive anti–PD-1 immune response in MMRp colorectal cancer.
See related article by Crisafulli et al., p. 1656 (1) .
Collapse
Affiliation(s)
- Jason A. Willis
- 1Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- 2Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J. Overman
- 1Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|