51
|
Li XD, Cheng YT, Yang YJ, Meng XM, Zhao JL, Zhang HT, Wu YJ, You SJ, Wu YL. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc Res 2012; 84:44-54. [DOI: 10.1016/j.mvr.2012.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/23/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
52
|
Santos MRGA, Celotto AC, Capellini VK, Evora PRB, Piccinato CE, Joviliano EE. The protective effect of cilostazol on isolated rabbit femoral arteries under conditions of ischemia and reperfusion: the role of the nitric oxide pathway. Clinics (Sao Paulo) 2012; 67:171-8. [PMID: 22358243 PMCID: PMC3275114 DOI: 10.6061/clinics/2012(02)13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/14/2011] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/ reperfusion conditions following cilostazol administration. METHODS Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/ Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS Acetylcholine-and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/ Cilostazol/Reperfusion groups. CONCLUSION Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.
Collapse
Affiliation(s)
- Mariana R G A Santos
- Laboratory of Endothelial Function, Department of Surgery and Anatomy, Ribeirão Preto Faculty of Medicine, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
53
|
Hoshovs'ka I, Shymans'ka TV, Rudyk OV, Korkach I, Sahach VF. Mitochondria permeability transition as a target for ischemic preconditioning. ACTA ACUST UNITED AC 2011. [DOI: 10.15407/fz57.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
Weerateerangkul P, Chattipakorn S, Chattipakorn N. Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia-reperfusion injury. Med Sci Monit 2011; 17:RA44-52. [PMID: 21278703 PMCID: PMC3524696 DOI: 10.12659/msm.881385] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nitric oxide (NO), a vasoactive gas that can freely diffuse into the cell, has many physiological effects in various cell types. Since 1986, numerous studies of ischemic preconditioning against ischemia-reperfusion (I/R) injury have been undertaken and the roles of the NO signaling pathway in cardioprotection have been explored. Many studies have confirmed the effect of NO and that its relative signaling pathway is important for preconditioning of the cardioprotective effect. The NO signaling against I/R injury targeted on the mitochondria is believed to be the end-target for cardioprotection. If the NO signaling pathway is disrupted or inhibited, cardioprotection by preconditioning disappears. During preconditioning, signaling is initiated from the sarcolemmal membrane, and then spread into the cytoplasm via many series of enzymes, including nitric oxide synthase (NOS), the NO-producing enzyme, soluble guanylyl cyclase (sGC), and protein kinase G (PKG). Finally, the signal is transmitted into the mitochondria, where the cardioprotective effect occurs. It is now well established that mitochondria act to protect the heart against I/R injury via the opening of the mitochondrial ATP-sensitive K+ channel and the inhibition of mitochondrial permeability transition (MPT). This knowledge may be useful in developing novel strategies for clinical cardioprotection from I/R injury.
Collapse
Affiliation(s)
- Punate Weerateerangkul
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | |
Collapse
|
55
|
Steensrud T, Li J, Dai X, Manlhiot C, Kharbanda RK, Tropak M, Redington A. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am J Physiol Heart Circ Physiol 2010; 299:H1598-603. [PMID: 20802131 DOI: 10.1152/ajpheart.00396.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have previously shown that remote ischemic preconditioning (rIPC) by transient limb ischemia leads to the release of a circulating factor(s) that induces potent myocardial protection. Intra-arterial injection of adenosine into a limb also leads to cardioprotection, but the mechanism of its signal transduction is poorly understood. Eleven groups of rabbits received saline control or rIPC or adenosine administration with additional pretreatment with the nitric oxide (NO) synthase blocker N(G)-nitro-l-arginine methyl ester, the NO donor S-nitroso-N-acetylpenicillamine, its non-NO-donating derivative N-acetylpenicillamine, or femoral nerve section. Blood was then drawn from each animal, and the dialysate of the plasma was used to perfuse a naïve heart from an untreated donor. Infarct size was measured after 30 min of global ischemia and 120 min reperfusion. When compared with that of the control, mean infarct size was significantly smaller in groups treated with rIPC alone (P < 0.01) and intra-arterial adenosine (P < 0.01). Pretreatment with N(G)-nitro-l-arginine methyl ester or N-acetylpenicillamine did not affect the level of protection induced by rIPC (P = not significant, compared with rIPC alone) or intra-arterial adenosine (P = not significant, compared with intra-arterial adenosine alone), but prior femoral nerve transection or pretreatment with S-nitroso-N-acetylpenicillamine abolished the cardioprotective effect of intra-arterial adenosine and rIPC. Intra-arterial adenosine, like rIPC, releases a blood-borne cardioprotective factor(s) that is dependent on an intact femoral nerve and is inhibited by pretreatment with a NO donor. These results may be important when designing or assessing the results of clinical trials of adenosine or rIPC cardioprotection, where NO donors are used as part of therapy.
Collapse
Affiliation(s)
- Tor Steensrud
- Department of Cardio-Thoracic and Vascular Surgery, University Hospital North Norway, Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
56
|
Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2010; 7:1-14. [PMID: 25558187 PMCID: PMC4280830 DOI: 10.2174/1874120701007010001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Minimizing myocardial ischemia-reperfusion injury has broad clinical implications and is a critical mediator of cardiac surgical outcomes. “Ischemic injury” results from a restriction in blood supply leading to a mismatch between oxygen supply and demand of a sufficient intensity and/or duration that leads to cell necrosis, whereas ischemia-reperfusion injury occurs when blood supply is restored after a period of ischemia and is usually associated with apoptosis (i.e. programmed cell death). Compared to vascular endothelial cells, cardiac myocytes are more sensitive to ischemic injury and have received the most attention in preventing myocardial ischemia-reperfusion injury. Many comprehensive reviews exist on various aspects of myocardial ischemia-reperfusion injury. The purpose of this review is to examine the role of vascular endothelial cells in myocardial ischemia-reperfusion injury, and to stimulate further research in this exciting and clinically relevant area. Two specific areas that are addressed include: 1) data suggesting that coronary endothelial cells are critical mediators of myocardial dysfunction after ischemia-reperfusion injury; and 2) the involvement of the mitochondrial permeability transition pore in endothelial cell death as a result of an ischemia-reperfusion insult. Elucidating the cellular signaling pathway(s) that leads to endothelial cell injury and/or death in response to ischemia-reperfusion is a key component to developing clinically applicable strategies that might minimize myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Arun K Singhal
- Cardiothoracic Division, Edward J. Hines Veterans Administration Hospital, and Loyola University, Chicago, IL, USA
| | - J David Symons
- College of Health and Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bharat Jaishy
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yan-Ting Shiu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
57
|
Rus A, del Moral ML, Molina F, Peinado MA. Does inducible NOS have a protective role against hypoxia/reoxygenation injury in rat heart? Cardiovasc Pathol 2010; 20:e17-25. [PMID: 20418118 DOI: 10.1016/j.carpath.2010.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/31/2009] [Accepted: 01/05/2010] [Indexed: 01/17/2023] Open
Abstract
PURPOSE The present study analyzes the role of the nitric oxide (NO) derived from inducible NO synthase (iNOS) under cardiac hypoxia/reoxygenation situations. METHODS For this, we have designed a follow-up study of different parameters of cell and tissue damage in the heart of Wistar rats submitted for 30 min to acute hypobaric hypoxia, with or without prior treatment with the selective iNOS inhibitor N-(3-(aminomethyl)benzyl) acetamidine or 1400W (10 mg/kg). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analyzing NO production (NOx), lipid peroxidation, apoptosis, and protein nitration expression and location. This is the first time-course study which analyzes the effects of the iNOS inhibition by 1400W during hypoxia/reoxygenation in the adult rat heart. RESULTS The results show that when 1400W was administered before the hypoxic episode, NOx levels fell, while both the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. Levels of nitrated proteins expression fell only at 12 h post-hypoxia. CONCLUSIONS The inhibition of iNOS raises the peroxidative and apoptotic level in the hypoxic heart indicating that this isoform may have a protective effect on this organ against hypoxia/reoxygenation injuries, and challenging the conventional wisdom that iNOS is deleterious under these conditions. These findings could help in the design of new treatments based on NO pharmacology against hypoxia/reoxygenation dysfunctions.
Collapse
Affiliation(s)
- Alma Rus
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071, Jaén, Spain
| | | | | | | |
Collapse
|
58
|
Abstract
BACKGROUND The pathogenesis of chronic tendinopathy is unclear but it does not appear to be an inflammatory process. Apoptosis may lead to degenerate tissue through a nitric oxide-mediated pathway. Increased levels of nitric oxide have been demonstrated in Achilles tendinopathy. HYPOTHESIS Nitric oxide-mediated apoptosis is an important mechanism in the development of Achilles tendinopathy. STUDY DESIGN Controlled laboratory study. METHODS Samples were obtained from the Achilles tendons of 14 patients with noninsertional Achilles tendinopathy. Control samples were taken from macroscopically normal tendon correlating with areas of normal tissue on magnetic resonance imaging. Immunohistochemical techniques identified the expression of inducible and endothelial nitric oxide synthase as markers of nitric oxide production. Apoptotic cells were identified using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and the demonstration of caspase-3 activation. RESULTS Significant differences were found between the diseased tendon and the controls for all parameters. The mean caspase-3 cell count for diseased tendon was 51.9 versus 28.3 for the controls (P < .001). The mean TUNEL cell count for diseased tendon was 24.1 compared with 14.8 (P < .001). Inducible nitric oxide synthase (iNOS) densitometry revealed a mean of 26.1 for the diseased tissue versus 15.0 for the controls (P < .001) and the values for endothelial nitric oxide synthase (eNOS) were 48.3 and 23.7, respectively (P = .015). CONCLUSION Apoptosis may play a role in the development of noninsertional Achilles tendinopathy and appears to be related to the presence of raised eNOS and iNOS levels. CLINICAL RELEVANCE A clearer understanding of the tendinopathic process may lead to new treatment strategies aimed at modulating apoptosis.
Collapse
Affiliation(s)
- Christopher J Pearce
- Department of Trauma and Orthopaedic Surgery, Basingstoke and North Hampshire Hospitals, NHS Foundation Trust, Basingstoke, United Kingdom.
| | | | | |
Collapse
|
59
|
Effects of nitrite on modulating ROS generation following ischemia and reperfusion. Adv Drug Deliv Rev 2009; 61:339-50. [PMID: 19385092 DOI: 10.1016/j.addr.2009.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has long been known that the generation of reactive oxygen species (ROS) is a major cause of injury after ischemia/reperfusion. More recently it has emerged that the predominant source of these ROS are the mitochondria, which are specifically damaged during prolonged ischemic episodes. Several strategies have been tested to attenuate mitochondrial damage and reperfusion ROS. Most successful has been ischemic preconditioning, a procedure in which repetitive short periods of ischemia and reperfusion reduce injury from a subsequent prolonged ischemia and reperfusion. Recently, ischemic postconditioning, whereby reperfusion after prolonged ischemia is repetitively interrupted for a short period, has also been shown to equally protect as ischemic preconditioning. Both procedures activate the same down-stream kinase pathways that minimize apoptosis and tissue damage. Endothelial nitric oxide synthase is a target of these kinase pathways and nitric oxide (NO) administration can mimic its protective effect. However, the optimal NO dose is difficult to determine and excess NO levels have been shown to be detrimental. A recently described physiological storage pool of NO, nitrite, has been shown to be a potent mediator of cytoprotection after ischemia/reperfusion that mechanistically reduces mitochondrial ROS generation at reperfusion. Here, we describe the sources, bioactivaton, and mechanisms of action of nitrite and discuss the potential of this simple anion as a therapeutic to protect against ischemia/reperfusion injury.
Collapse
|
60
|
Reynolds CM, Suliman HB, Hollingsworth JW, Welty-Wolf KE, Carraway MS, Piantadosi CA. Nitric oxide synthase-2 induction optimizes cardiac mitochondrial biogenesis after endotoxemia. Free Radic Biol Med 2009; 46:564-72. [PMID: 19073249 PMCID: PMC2666005 DOI: 10.1016/j.freeradbiomed.2008.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/12/2008] [Accepted: 11/06/2008] [Indexed: 11/15/2022]
Abstract
Mitochondrial biogenesis protects metabolism from mitochondrial dysfunction produced by activation of innate immunity by lipopolysaccharide (LPS) or other bacterial products. Here we tested the hypothesis in mouse heart that activation of toll-like receptor-4 (TLR4), which induces early-phase genes that damage mitochondria, also activates mitochondrial biogenesis through induction of nitric oxide synthase (NOS2). We compared three strains of mice: wild type (Wt) C57BL/6J, TLR4(-/-), and NOS2(-/-)for cardiac mitochondrial damage and mitochondrial biogenesis by real-time RT-PCR, Western analysis, immunochemistry, and isoform analysis of myosin heavy chain (MHC) after sublethal heat-killed Escherichia coli (HkEC). After HkEC, Wt mice displayed significant myocardial mtDNA depletion along with enhanced TLR4 and NOS2 gene and protein expression that normalized in 72 h. HkEC generated less cytokine stress in TLR4(-/-)and NOS2(-/-)than Wt mice, NOS2(-/-)mice had mtDNA damage comparable to Wt, and both knockout strains failed to restore mtDNA copy number because of mitochondrial transcriptosome dysfunction. Wt mice also showed the largest beta-MHC isoform switch, but MHC recovery lagged in the NOS2(-/-)and TLR4(-/-)strains. The NOS2(-/-)mice also unexpectedly revealed the codependency of TLR4 expression on NOS2. These findings demonstrate the decisive participation of NOS2 induction by TLR4 in optimization of mitochondrial biogenesis and MHC expression after gram-negative challenge.
Collapse
Affiliation(s)
- Crystal M Reynolds
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
61
|
Cardioprotection: a radical view Free radicals in pre and postconditioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:781-93. [PMID: 19248760 DOI: 10.1016/j.bbabio.2009.02.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 12/13/2022]
Abstract
A series of brief (a few minutes) ischemia/reperfusion cycles (ischemic preconditioning, IP) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Postconditioning (PostC), which is a series of brief (a few seconds) reperfusion/ischemia cycles at reperfusion onset, attenuates also ischemia/reperfusion injury. In recent years the main idea has been that reactive oxygen species (ROS) play an essential, though double-edged, role in cardioprotection: they may participate in reperfusion injury or may play a role as signaling elements of protection in the pre-ischemic phase. It has been demonstrated that preconditioning triggering is redox-sensitive, using either ROS scavengers or ROS generators. We have shown that nitroxyl triggers preconditioning via pro-oxidative, and/or nitrosative stress-related mechanism(s). Several metabolites, including acetylcholine, bradykinin, opioids and phenylephrine, trigger preconditioning-like protection via a mitochondrial K(ATP)-ROS-dependent mechanism. Intriguingly, and contradictory to the above mentioned theory of ROS as an obligatory part of reperfusion-induced damage, some studies suggest the possibility that some ROS at low concentrations could protect ischemic hearts against reperfusion injury. Yet, we demonstrated that ischemic PostC is also a cardioprotective phenomenon that requires the intervention of redox signaling to be protective. Emerging evidence suggests that in a preconditioning scenario a redox signal is required during the first few minutes of myocardial reperfusion following the index ischemic period. Intriguingly, the ROS signaling in the early reperfusion appear crucial to both preconditioning- and postconditioning-induced protection. Therefore, our and others' results suggest that the role of ROS in reperfusion may be reconsidered as they are not only deleterious.
Collapse
|
62
|
Sedoris KC, Ovechkin AV, Gozal E, Roberts AM. Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem 2009; 115:34-46. [PMID: 19267281 DOI: 10.1080/13813450902785267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lung ischemia-reperfusion (IR) injury causes alveolar, epithelial and endothelial cell dysfunction which often results in decreased alveolar perfusion, characteristic of an acute respiratory distress syndrome. Nitric oxide (NO) from endothelium-derived NO synthase (eNOS) helps maintain a low pulmonary vascular resistance. Paradoxically, during acute lung injury, overproduction of NO via inducible NO synthase (iNOS) and oxidative stress lead to reactive oxygen and nitrogen species (ROS and RNS) formation and vascular dysfunction. RNS potentiate vascular and cellular injury by oxidation, by decreasing NO bioavailability, and by regulating NOS isoforms. RNS potentiate their own production by uncoupling NO production through eNOS by oxidation and disruption of Akt-mediated phosphorylation of eNOS. This review focuses on effects of NO which cause vascular dysfunction in the unique environment of the lung and presents a hypothesis for interplay between eNOS and iNOS activation with implications for development of new strategies to treat vascular dysfunction associated with IR.
Collapse
Affiliation(s)
- Kara C Sedoris
- Department of Physiology and Biophysics, University of Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
63
|
Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP. Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol 2008; 94:54-70. [DOI: 10.1113/expphysiol.2008.043554] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
64
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2008. [PMID: 19032583 DOI: 10.1111/j.1530–0277.2008.00828.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2008; 33:206-19. [PMID: 19032583 DOI: 10.1111/j.1530-0277.2008.00828.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
66
|
Landmesser U, Wollert KC, Drexler H. Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 2008; 81:519-27. [PMID: 19019834 DOI: 10.1093/cvr/cvn317] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Left ventricular (LV) remodelling remains an important treatment target in patients after myocardial infarction (MI) and chronic heart failure (CHF). Accumulating evidence has supported the concept that beneficial effects of current pharmacological treatment strategies to improve the prognosis in these patients, such as angiotensin-converting enzyme (ACE) inhibition, angiotensin type 1 receptor blocker therapy, and beta-blocker therapy, are related, at least in part, to their effects on LV remodelling and dysfunction. However, despite modern reperfusion therapy after MI and optimized treatment of patients with CHF, LV remodelling is observed in a substantial proportion of patients and is associated with an adverse clinical outcome. These observations call for novel therapeutic strategies to prevent or even reverse cardiac remodelling. Recent insights from experimental studies have provided new targets for interventions to prevent or reverse LV remodelling, i.e. reduced endothelial nitric oxide (NO) synthase-derived NO availability, activation of cardiac and leukocyte-dependent oxidant stress pathways, inflammatory pathway activation, matrix-metalloproteinase activation, or stem cell transfer and delivery of novel paracrine factors. An important challenge in translating these observations from preclinical studies into clinical treatment strategies relates to the fact that clinical studies are designed on top of established pharmacological therapy, whereas most experimental studies have tested novel interventions without concomitant drug regimens such as ACE inhibitors or beta-blockers. Therefore, animal studies may overestimate the effect of potential novel treatment strategies on LV remodelling and dysfunction, since established pharmacological therapies may act, in part, via identical or similar signalling pathways. Nevertheless, preclinical studies provide essential information for identifying potential novel targets, and their potential drawbacks, and are required for developing novel clinical treatment strategies to prevent or reverse LV remodelling and dysfunction.
Collapse
Affiliation(s)
- Ulf Landmesser
- Deparment of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | |
Collapse
|
67
|
Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AHJ, Khoo KH, Meng TC. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 2008; 283:35265-72. [PMID: 18840608 DOI: 10.1074/jbc.m805287200] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation mediated by cellular nitric oxide (NO) plays a primary role in executing biological functions in cGMP-independent NO signaling. Although S-nitrosylation appears similar to Cys oxidation induced by reactive oxygen species, the molecular mechanism and biological consequence remain unclear. We investigated the structural process of S-nitrosylation of protein-tyrosine phosphatase 1B (PTP1B). We treated PTP1B with various NO donors, including S-nitrosothiol reagents and compound-releasing NO radicals, to produce site-specific Cys S-nitrosylation identified using advanced mass spectrometry (MS) techniques. Quantitative MS showed that the active site Cys-215 was the primary residue susceptible to S-nitrosylation. The crystal structure of NO donor-reacted PTP1B at 2.6 A resolution revealed that the S-NO state at Cys-215 had no discernible irreversibly oxidized forms, whereas other Cys residues remained in their free thiol states. We further demonstrated that S-nitrosylation of the Cys-215 residue protected PTP1B from subsequent H(2)O(2)-induced irreversible oxidation. Increasing the level of cellular NO by pretreating cells with an NO donor or by activating ectopically expressed NO synthase inhibited reactive oxygen species-induced irreversible oxidation of endogenous PTP1B. These findings suggest that S-nitrosylation might prevent PTPs from permanent inactivation caused by oxidative stress.
Collapse
Affiliation(s)
- Yi-Yun Chen
- Institute of Biological Chemistry, National Core Facility for Proteomics Research, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
68
|
McNulty PH, Scott S, Kehoe V, Kozak M, Sinoway LI, Li J. Nitrite consumption in ischemic rat heart catalyzed by distinct blood-borne and tissue factors. Am J Physiol Heart Circ Physiol 2008; 295:H2143-8. [PMID: 18820031 DOI: 10.1152/ajpheart.00050.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nitric oxide (NO) may limit myocardial ischemia-reperfusion injury by slowing the mitochondrial metabolism. We examined whether rat heart contains catalysts potentially capable of reducing nitrite to NO during an episode of regional myocardial ischemia produced by temporary coronary artery occlusion. In intact Sprague-Dawley rats, a 15-min coronary occlusion lowered the nitrite concentration of the myocardial regions exhibiting ischemic glucose metabolism to approximately 50% that of nonischemic regions (185 +/- 223 vs. 420 +/- 203 nmol/l). Nitrite was rapidly repleted during subsequent reperfusion. The heart tissue tested in vitro acquired a substantial ability to consume nitrite when made hypoxic at neutral pH, and this ability was slightly enhanced by simultaneously lowering the pH to 5.5. More than 70% of this activity could be abolished by flushing the coronary circulation with crystalloid to remove trapped erythrocytes. Correspondingly, erythrocytes demonstrated the ability to reduce exogenous nitrite to NO under hypoxic conditions in vitro. In erythrocyte-free heart tissue, the nitrite consumption increased fivefold when the pH was lowered to 5.5. Approximately 40% of this pH-sensitive increase in nitrite consumption could be blocked by the xanthine oxidoreductase inhibitor allopurinol, whereas lowering the Po(2) sufficiently to desaturate myoglobin accelerated it further. We conclude that rat heart contains several factors capable of catalyzing ischemic nitrite reduction; the most potent is contained within erythrocytes and activated by hypoxia, whereas the remainder includes xanthine oxidoreductase and other pH-sensitive factors endogenous to heart tissue, including deoxymyoglobin.
Collapse
Affiliation(s)
- Patrick H McNulty
- Heart and Vascular Institute, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Yamamoto M, Maeda H, Hirose N, Yamamoto M, Nakagawa A, Radhakrishnan G, Gopalrao RK, Sato T, Yamaguchi T, Sasaguri S. Biphasic elevation of bilirubin oxidation during myocardial ischemia reperfusion. Circ J 2008; 72:1520-7. [PMID: 18724033 DOI: 10.1253/circj.cj-07-1079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The time course of oxidative stress involving nitric oxide (NO) after myocardial ischemia reperfusion (MIR) has not been elucidated in detail, so the present study was designed to assess the dynamics of oxidative stress after MIR, urinary excretion of oxidized bilirubin metabolites (ie, biopyrrins) and their generation in various organs. METHODS AND RESULTS Rat models of MIR were created by occluding the left coronary artery for 30 min followed by 48 h of reperfusion. Levels of urinary biopyrrins increased biphasically at 8 h and 24 h after MIR. Biopyrrins were upregulated in the lungs at 8 h after MIR, according to immunohistochemistry and ELISA, and at 24 h biopyrrin expression was increased in the heart and lungs. The NO synthase inhibitor, NG-monomethyl-L-arginine, significantly diminished biopyrrin synthesis in the heart and lungs at 24 h, but not in the lungs at 8 h after MIR. Hemodynamic assessment revealed increased left ventricle end-diastolic pressure, suggesting that lung congestion influences pulmonary biopyrrin formation. CONCLUSIONS The dynamics of urinary biopyrrins might reflect earlier biopyrrin generation in the lungs and delayed formation in both the lungs and heart when NO is involved. Therefore, urinary biopyrrins can serve as a useful marker of systemic oxidative stress after MIR.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Department of Surgery II, Faculty of Medicine, Kochi University, Nankoku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kane TPC, Ismail M, Calder JDF. Topical glyceryl trinitrate and noninsertional Achilles tendinopathy: a clinical and cellular investigation. Am J Sports Med 2008; 36:1160-3. [PMID: 18359821 DOI: 10.1177/0363546508314423] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Topical glyceryl trinitrate (GTN) therapy has been advocated in the treatment of Achilles tendinopathy. The mechanism of action is unknown but may be related to modulation of local nitric oxide levels. HYPOTHESIS Topical GTN therapy for noninsertional Achilles tendinopathy will significantly enhance clinical improvement and will be associated with increased collagen synthesis within the tendon. STUDY DESIGN Randomized controlled clinical trial; Level of evidence, 1. METHODS Forty patients were recruited. Twenty underwent standard nonoperative physical therapy, and 20 underwent physical therapy and topical GTN daily. Clinical outcome was assessed using the Ankle Osteoarthritis Scale (AOS) visual analog score. Patients who failed to improve with conservative measures and who underwent surgical decompression had histological and immunohistochemical examination of samples from the Achilles tendon. RESULTS Glyceryl trinitrate did not offer any additional clinical benefit over standard nonoperative treatment for noninsertional Achilles tendinopathy. After 6 months of treatment, there was no significant difference in scores between the groups for pain (3.0 vs 3.1, P = .42) or disability (2.15 vs 2.25, P = .38). Histological examination did not show any difference in neovascularization, collagen synthesis, or stimulated fibroblasts between the 2 groups. There was no evidence of modulation of nitric oxide synthase, a marker of nitric oxide production, in those tendons treated with GTN. CONCLUSION AND CLINICAL RELEVANCE This study has failed to support the clinical benefit of GTN patches previously described in the literature. In the available tissue samples, there did not appear to be any histological or immunohistochemical change in Achilles tendinopathy treated with GTN compared with those undergoing standard nonoperative therapy.
Collapse
Affiliation(s)
- Timothy P C Kane
- North Hampshire Hospital, Basingstoke, Hampshire, United Kingdom.
| | | | | |
Collapse
|
71
|
Lee SH, Culberson C, Korneszczuk K, Clemens MG. Differential mechanisms of hepatic vascular dysregulation with mild vs. moderate ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1219-26. [PMID: 18325981 DOI: 10.1152/ajpgi.00527.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
72
|
Burwell LS, Brookes PS. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 2008; 10:579-99. [PMID: 18052718 DOI: 10.1089/ars.2007.1845] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During cardiac ischemia-reperfusion (IR) injury, excessive generation of reactive oxygen species (ROS) and overload of Ca(2+) at the mitochondrial level both lead to opening of the mitochondrial permeability transition (PT) pore on reperfusion. This can result in the depletion of ATP, irreversible oxidation of proteins, lipids, and DNA within the cardiomyocyte, and can trigger cell-death pathways. In contrast, mitochondria are also implicated in the cardioprotective signaling processes of ischemic preconditioning (IPC), to prevent IR-related pathology. Nitric oxide (NO*) has emerged as a potent effector molecule for a variety of cardioprotective strategies, including IPC. Whereas NO* is most noted for its activation of the "classic" soluble guanylate cyclase (sGC) signaling pathway, emerging evidence indicates that NO can directly act on mitochondria, independent of the sGC pathway, affording acute cardioprotection against IR injury. These direct effects of NO* on mitochondria are the focus of this review.
Collapse
Affiliation(s)
- Lindsay S Burwell
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
73
|
Guo Y, Li Q, Wu WJ, Tan W, Zhu X, Mu J, Bolli R. Endothelial nitric oxide synthase is not necessary for the early phase of ischemic preconditioning in the mouse. J Mol Cell Cardiol 2008; 44:496-501. [PMID: 18291412 DOI: 10.1016/j.yjmcc.2008.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 12/31/2007] [Accepted: 01/10/2008] [Indexed: 11/28/2022]
Abstract
It has been proposed that constitutive expression of endothelial NO synthase (eNOS) protects against myocardial ischemia/reperfusion injury in the naive (unstressed) state and that eNOS plays a critical role in the early phase of ischemic preconditioning (PC). We addressed these issues using both a genetic approach (i.e., eNOS null [eNOS(-/-)]) mice and a pharmacologic approach (with the NOS inhibitor N(omega)-nitro-l-arginine [L-NA]). We found that in the nonpreconditioned state, both of the available strains of eNOS(-/-) mice (C57BL6 and B6129) exhibited infarct sizes similar to the corresponding wild-type (WT) mice (63.3+/-2.2% [group I, n=15] vs. 59.7+/-1.4% [group VI, n=10] of the risk region and 60.9+/-3.6% [group IX, n=14] vs. 68.2+/-2.5% [group X, n=9], respectively). When WT mice were preconditioned with either one or six cycles of 4-min coronary occlusion (O)/reperfusion (R) 10 min prior to the 30-min O, infarct size was markedly reduced (28.5+/-3.3% [group II, one O/R cycle, n=10] and 19.7+/-2.6% [group III, six O/R cycles, n=7] of the risk region, respectively), indicating the development of a robust early PC effect. In eNOS(-/-) mice preconditioned with the same protocol, the reduction in infarct size was similar (24.9+/-2.9% and 15.3+/-2.4% of the risk region, after one [group VII, n=9] or six O/R cycles [group VIII, n=10], respectively), indicating that the PC effect was intact. When WT mice were pretreated with L-NA 30 min before sham PC (group IV, n=7) or PC (group V, six O/R cycles, n=7), infarct size was not different from untreated control and PC groups. We conclude that, in the mouse, basal eNOS activity does not modulate infarct size in the nonpreconditioned state and is not necessary for the cardioprotective effects of early PC. Early PC is not eNOS-dependent, at least in this species.
Collapse
Affiliation(s)
- Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
|
75
|
Lanteri R, Acquaviva R, Di Giacomo C, Sorrenti V, Li Destri G, Santangelo M, Vanella L, Di Cataldo A. Rutin in rat liver ischemia/reperfusion injury: effect on DDAH/NOS pathway. Microsurgery 2007; 27:245-51. [PMID: 17477412 DOI: 10.1002/micr.20345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) plays a key role in the relationship between microcirculatory disorders and I/R injuries. Our results demonstrated a significant modification in the hepatic function of I/R rats compared with the control group; treatment with rutin reported hepatic damage markers to control value. Levels of plasmatic and hepatic thiol groups decreased in the I/R untreated group, and this decrease was inhibited by rutin treatment. In addition, we observed an increase in the iNOS expression in I/R group compared with control and rutin administration attenuated this increase; in post-ischemic reperfused rutin-treated rats there was a significant increase in eNOS expression compared with the I/R untreated group. In the same experimental conditions an increase in DDAH 1 expression was observed in I/R group only; rutin treatment also counteracted this increased expression. These data suggest that rutin treatment could be useful for preventing oxidative damage associated with hepatic post-ischemic reperfusion injury.
Collapse
Affiliation(s)
- Raffael Lanteri
- Department of Surgical Sciences, Organ Transplantation and Advanced Technologies, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Ando T, Langley RR, Wang Y, Jordan PA, Minagar A, Alexander JS, Jennings MH. Inflammatory cytokines induce MAdCAM-1 in murine hepatic endothelial cells and mediate alpha-4 beta-7 integrin dependent lymphocyte endothelial adhesion in vitro. BMC PHYSIOLOGY 2007; 7:10. [PMID: 17868448 PMCID: PMC2045088 DOI: 10.1186/1472-6793-7-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 09/14/2007] [Indexed: 12/12/2022]
Abstract
Background MAdCAM-1 plays a central role in T-lymphocyte homing to the gut, but its role in chronic liver inflammation remains unknown. Therefore, this study measured MAdCAM-1 expression, regulation, and function in cultured murine hepatic endothelial cells. Methods Cultures of hepatic endothelial cells (HEC) were prepared from mice expressing a temperature-sensitive SV40 large T antigen (H-2Kb-tsA58) under the control of an IFN-γ promoter. Time and dose dependent expression of MAdCAM-1 in response to TNF-α, IL-1β and IFN-γ was studied by immunoblotting. Lymphocyte adhesion was studied using α4β7integrin expressing lymphocytes (TK-1) +/- anti-MAdCAM-1 mAb. Results TNF-α induced MAdCAM-1 dose-and time-dependently with maximum expression at 20 ng/ml and at 48 hours. IL-1β also induced MAdCAM-1 to a lesser extent compared to TNF-α; IFN-γ did not induce MAdCAM-1. TNF-α significantly increased lymphocyte-endothelial adhesion (P < 0.01), which was reversed by anti-MAdCAM-1 antibody. MAdCAM-1 expression was also reduced by N-acetylcysteine and by two NO donors (SperNO, DETANO) suggesting that hepatic endothelial MAdCAM-1 is oxidant and NO regulated. Conclusion MAdCAM-1 is a major determinant of leukocyte recruitment in chronic inflammation and is expressed by HEC in response to IL-1β and TNF-α. This system may provide a useful model for studying inflammatory mechanisms in liver disease and help determine if controlled MAdCAM-1 expression might influence inflammation in liver disease.
Collapse
Affiliation(s)
- Tomoaki Ando
- Nagoya City Medical University, 1-Kawasumi-Mizuho, Nagoya, 467-8601, Japan
| | - Robert R Langley
- Department of Cancer Biology, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuping Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Paul A Jordan
- Department of Gastroenterology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Merilyn H Jennings
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
77
|
Conti A, Miscusi M, Cardali S, Germanò A, Suzuki H, Cuzzocrea S, Tomasello F. Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. ACTA ACUST UNITED AC 2007; 54:205-18. [PMID: 17500094 DOI: 10.1016/j.brainresrev.2007.01.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a unique informational molecule involved in a variety of physiological processes in the central nervous system (SNS). It has been demonstrated that it can exert both protective and detrimental effects in several diseases states of the CNS, including spinal cord injury (SCI). The effects of NO on the spinal cord depend on several factors such as: concentration of produced NO, activity of different synthase isoforms, cellular source of production and time of release. Basically, it has been shown that low NO concentrations may play a role in physiologic processes, whereas large amounts of NO may be detrimental by increasing oxidative stress. However, this does not explain all the discrepancies evidenced studying the effects of NO in SCI models. The analysis of the different synthase isoforms, of their temporal profile of activation and cellular source has shed light on this topic. Two post-injury time intervals can be defined with reference to the NO production: immediately after injury and several hours-to-days later. The initial immediate peak of NO production after injury is due to the up-regulation of the neuronal NO synthase (nNOS) in resident spinal cord cells. The late peak is due primarily to the activity of inducible NOS (nNOS) produced by inflammatory infiltrating cells. High NO levels produced by up-regulated nNOS and iNOS are neurotoxic; the down-regulation of nNOS corresponds temporally to the expression of iNOS. On the bases of the evidence, therapeutic approaches should be aimed: (1) to reduce the NO-elicited damage by inhibition of specific synthases according to the temporal profile of activation; (2) by maintaining physiologic amount of NO to keep the induction of iNOS.
Collapse
Affiliation(s)
- Alfredo Conti
- Department of Neuroscience, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
78
|
Gutkowska J, Paquette A, Wang D, Lavoie JM, Jankowski M. Effect of exercise training on cardiac oxytocin and natriuretic peptide systems in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R267-75. [PMID: 17475680 DOI: 10.1152/ajpregu.00071.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training results in cardiovascular and metabolic adaptations that may be beneficial in menopausal women by reducing blood pressure, insulin resistance, and cholesterol level. The adaptation of the cardiac hormonal systems oxytocin (OT), natriuretic peptides (NPs), and nitric oxide synthase (NOS) in response to exercise training was investigated in intact and ovariectomized (OVX) rats. Ovariectomy significantly augmented body weight (BW), left ventricle (LV) mass, and intra-abdominal fat pad weight and decreased the expression of oxytocin receptor (OTR), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and guanylyl cyclase-A (GC-A), in the right atrium (RA) and LV, indicating estrogenic control of these genes. These effects of ovariectomy were counteracted by 8-wk-long exercise training which decreased fat pad weight (33.4 +/- 2.3 to 23.4 +/- 3.1 g, n = 8, P < 0.05), plasma free fatty acids (0.124 +/- 0.033 to 0.057 +/- 0.010 mM, n = 8, P < 0.01), and plasma triacylglycerol (0.978 +/- 0.174 to 0.588 +/- 0.115 mM, n = 8, P < 0.05). Chronic exercise tended to decrease BW and stimulated ANP (4- to 5-fold) and OTR gene expression in the LV and RA and BNP and inducible NOS (iNOS) mRNA in the LV. In sham-operated rats, exercise augmented ANP expression in the RA, downregulated GC-A mRNA in the LV and RA, but increased its expression threefold in the RA of OVX animals. Endothelial NOS and iNOS expression was enhanced in the left atrium of sham-operated rats. Altogether, these data indicate that in OVX animals, chronic exercise significantly enhances cardiac OT, NPs, and NOS, thus implicating all three hormonal systems in the beneficial effects of exercise training.
Collapse
Affiliation(s)
- Jolanta Gutkowska
- Laboratory of Cardiovascular Biochemistry, CHUM-Hôtel-Dieu Centre de Recherche, 3850 Rue Saint-Urbain, Pavillon Masson, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
79
|
Taylor RP, Olsen ME, Starnes JW. Improved postischemic function following acute exercise is not mediated by nitric oxide synthase in the rat heart. Am J Physiol Heart Circ Physiol 2007; 292:H601-7. [PMID: 16951051 DOI: 10.1152/ajpheart.00094.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mediators of acute exercise-induced preconditioning against ischemia-reperfusion injury are not understood. This study assesses the role of nitric oxide synthase (NOS), a reported mediator of other forms of preconditioning. Male Fischer 344 rats were divided into five groups ( n = 6–7): sedentary (Sed); exercised 2 days on a treadmill at 20 m/min, 6° grade, for 60 min (Run); sedentary, perfused with 100 μM Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) to inhibit NOS (Sed/L-N); exercised, perfused with l-NAME (Run/L-N); and exercised in a 4°C environment, perfused with l-NAME (CRun/L-N). Twenty-four hours following exercise, isolated, perfused working hearts were subjected to 22.5 min of global ischemia plus 30 min of normoxic reperfusion. Left ventricle contents of several putative preconditioning mediators were determined. Postischemic recovery of cardiac output times systolic pressure was better in Run than Sed (78.4 vs. 50.2% of preischemia, P < 0.05). Inhibition of NOS did not abrogate the improved recovery in the exercise groups or alter recovery in Sed. All exercise groups also displayed improved myocardial efficiency (cardiac output times systolic pressure/oxygen consumption) postischemia and less lactate dehydrogenase release ( P < 0.05). l-NAME appeared to lower lactate dehydrogenase release independent of exercise. The only change in antioxidant enzyme activity was a decrease in manganese superoxide dismutase in CRun/L-N ( P < 0.05). Heat shock protein 72 expression increased only in Run and Run/L-N and endothelial NOS only in CRun/L-N ( P < 0.05). Acute exercise-induced preconditioning of the Fischer 344 rat heart is not mediated by NOS and does not require increases in heat shock protein 72 or antioxidant enzymes.
Collapse
Affiliation(s)
- Ryan P Taylor
- Dept. of Kinesiology and Health Education, 1 Univ. Station, D3700, Univ. of Texas, Austin, TX 78712-0360, USA
| | | | | |
Collapse
|
80
|
Zhao X, Chen YR, He G, Zhang A, Druhan LJ, Strauch AR, Zweier JL. Endothelial nitric oxide synthase (NOS3) knockout decreases NOS2 induction, limiting hyperoxygenation and conferring protection in the postischemic heart. Am J Physiol Heart Circ Physiol 2006; 292:H1541-50. [PMID: 17114245 DOI: 10.1152/ajpheart.00264.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although it has been shown that endothelial nitric oxide synthase (eNOS)-derived nitric oxide downregulates mitochondrial oxygen consumption during early reperfusion, its effects on inducible NOS (iNOS) induction and myocardial injury during late reperfusion are unknown. Wild-type (WT) and eNOS(-/-) mice were subjected to 30 min of coronary ligation followed by reperfusion. Expression of iNOS mRNA and protein levels and peroxynitrite production were lower in postischemic myocardium of eNOS(-/-) mice than levels in WT mice 48 h postreperfusion. Significantly improved hemodynamics (+/-dP/dt, left ventricular systolic pressure, mean arterial pressure), increased rate pressure product, and reduced myocardial infarct size (18 +/- 2.5% vs. 31 +/- 4.6%) were found 48 h after reperfusion in eNOS(-/-) mice compared with WT mice. Myocardial infarct size was also significantly decreased in WT mice treated with the specific iNOS inhibitor 1400W (20.5 +/- 3.4%) compared with WT mice treated with PBS (33.9 +/- 5.3%). A marked reperfusion-induced hyperoxygenation state was observed by electron paramagnetic resonance oximetry in postischemic myocardium, but Po(2) values were significantly lower from 1 to 72 h in eNOS(-/-) than in WT mice. Cytochrome c-oxidase activity and NADH dehydrogenase activity were significantly decreased in postischemic myocardium in WT and eNOS(-/-) mice compared with baseline control, respectively, and NADH dehydrogenase activity was significantly higher in eNOS(-/-) than in WT mice. Thus deficiency of eNOS exerted a sustained beneficial effect on postischemic myocardium 48 h after reperfusion with preserved mitochondrial function, which appears to be due to decreased iNOS induction and decreased iNOS-derived peroxynitrite in postischemic myocardium.
Collapse
Affiliation(s)
- Xue Zhao
- Davis Heart and Lung Research Institute and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Gonon AT, Bulhak A, Labruto F, Sjöquist PO, Pernow J. Cardioprotection mediated by rosiglitazone, a peroxisome proliferator-activated receptor gamma ligand, in relation to nitric oxide. Basic Res Cardiol 2006; 102:80-9. [PMID: 16900441 DOI: 10.1007/s00395-006-0613-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 06/23/2006] [Accepted: 07/20/2006] [Indexed: 11/24/2022]
Abstract
UNLABELLED Activation of peroxisome proliferator-activated receptor (PPAR) gamma protects from myocardial ischemia/reperfusion injury. The aim of the study was to investigate whether the cardioprotective effect of PPARgamma is related to nitric oxide (NO). METHODS Wild type (WT) and endothelial NO synthase (eNOS) knockout (KO) mice received 3 mg/kg of the PPARgamma agonist rosiglitazone or vehicle (n = 6-9 in each group) i. p. 45 min before anesthesia. The hearts were isolated, perfused in a Langendorff mode and subjected to global ischemia and 30 min reperfusion. The hearts of another two groups of WT mice received the NOS inhibitor L-NNA (100 micromol/l) or vehicle in addition to pre-treatment with vehicle or rosiglitazone. RESULTS In the WT heart, rosiglitazone increased the recovery of left ventricular function and coronary flow following ischemia in comparison with the vehicle group.L-NNA did not affect recovery per se but significantly blunted the improvement in the recovery of left ventricular function induced by rosiglitazone. In the KO group rosiglitazone suppressed the recovery of myocardial function following ischemia. Expression of eNOS was not affected, but phosphorylated eNOS was significantly increased by rosiglitazone in the WT hearts (P < 0.05). CONCLUSION These results suggest that the cardioprotective effect of the PPARgamma agonist rosiglitazone is mediated via NO by phosphorylation of eNOS.
Collapse
Affiliation(s)
- Adrian T Gonon
- Dept. of Cardiology, Karolinska University Hospital, Solna, 17176, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
82
|
Persichini T, Cantoni O, Suzuki H, Colasanti M. Cross-talk between constitutive and inducible NO synthase: an update. Antioxid Redox Signal 2006; 8:949-54. [PMID: 16771684 DOI: 10.1089/ars.2006.8.949] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is expressed upon exposure of some cell types to bacterial lipopolysaccharides (LPS) and/or a variety of proinflammatory cytokines. The authors present an overview of some of the recent findings further supporting the notion that this response takes place after an early decline in constitutive nitric oxide (NO) levels (i.e., NO released by constitutive NOS, cNOS). This response is indeed critical for allowing activation of the transcription factor NF-kappaB. Thus, generation of NO by cNOS represents a limiting factor for iNOS expression. Some of the physiological and pathological implications of the cross-talk between these two NOS isoforms are discussed. In addition, the results of recent studies are summarized, suggesting possible mechanisms whereby LPS and/or proinflammatory cytokines may cause inhibition of cNOS.
Collapse
|
83
|
Du XJ, Fang L, Kiriazis H. Sex dimorphism in cardiac pathophysiology: experimental findings, hormonal mechanisms, and molecular mechanisms. Pharmacol Ther 2006; 111:434-75. [PMID: 16439025 DOI: 10.1016/j.pharmthera.2005.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 11/30/2022]
Abstract
The higher cardiovascular risk in men and post-menopausal women implies a protective action of estrogen. A large number of experimental studies have provided strong support to this concept. However, the recent clinical trials with negative outcomes regarding hormone replacement therapy call for "post hoc" reassessment of existing information, models, and research strategies as well as a summary of recent findings. Sex steroid hormones, in particular estrogen, regulate numerous processes that are related to the development and progression of cardiovascular disease through a variety of signaling pathways. Use of genetically modified models has resulted in interesting information on diverse actions mediated by steroid receptors. By focusing on experimental findings, we have reviewed hormonal, cellular, and signaling mechanisms responsible for sex dimorphism and actions of hormone replacement therapy and addressed current limitations and future directions of experimental research.
Collapse
Affiliation(s)
- Xiao-Jun Du
- Experimental Cardiology Laboratory, Baker Heart Research Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | |
Collapse
|
84
|
Hayasaki T, Kaikita K, Okuma T, Yamamoto E, Kuziel WA, Ogawa H, Takeya M. CC Chemokine Receptor-2 Deficiency Attenuates Oxidative Stress and Infarct Size Caused by Myocardial Ischemia-Reperfusion in Mice. Circ J 2006; 70:342-51. [PMID: 16501303 DOI: 10.1253/circj.70.342] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Monocyte chemoattractant protein-1 (MCP-1) and its major receptor, CC chemokine receptor 2 (CCR2), have been shown to contribute to left ventricular remodeling after myocardial infarction. However, it is unknown whether CCR2 deficiency protects the myocardium after myocardial ischemia-reperfusion. The purpose of the present study was to investigate the effects of CCR2 deficiency on myocardial ischemia-reperfusion injury in mice. METHODS AND RESULTS Experiments were performed in CCR2(-/-) and wild-type mice subjected to 45 min of ischemia followed by reperfusion. Macrophage infiltration in ischemic lesions was markedly reduced in CCR2(-/-) mice compared with wild-type mice (p<0.01). The infarct size was significantly reduced in CCR2(-/-) mice compared with wild-type mice at 3 days after reperfusion (p<0.001). In situ zymography revealed augmented gelatinolytic activity at 3 days after reperfusion in wild-type mice, but significantly less activity in CCR2(-/-) mice. NADPH oxidase activity, the intensity of nitrotyrosine staining and expression of inducible nitric oxide synthase and thioredoxin-1 were significantly increased in ischemic myocardium in wild-type mice compared with CCR2(-/-) mice, indicating a role for CCR2 in oxidative stress after ischemia-reperfusion. CONCLUSIONS Inhibition of the MCP-1/CCR2 pathway may be a useful strategy for attenuating myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Takanori Hayasaki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
85
|
Pevni D, Frolkis I, Shapira I, Schwartz D, Schwartz IF, Chernichovski T, Lev-Ran O, Sharony R, Uretzky G. Ischaemia or reperfusion: which is a main trigger for changes in nitric oxide mRNA synthases expression? Eur J Clin Invest 2005; 35:546-50. [PMID: 16128860 DOI: 10.1111/j.1365-2362.2005.01553.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate alterations in endothelial nitric oxide synthase and inducible nitric oxide synthase mRNA expressions and nitric oxide release in the myocardium during ischaemia/reperfusion and determine whether these changes are ischaemic and/or reperfusion dependent. MATERIALS AND METHODS Isolated rat hearts were perfused by a modified Langendorff system. Following 1 h of global cardioplegic ischaemia, left ventricle haemodynamic parameters were recorded at baseline and during 30 min of reperfusion. Levels of endothelial, inducible nitric oxide synthases mRNA expression and nitric oxide release were measured at baseline, after ischaemia and at 30 min of reperfusion. RESULTS Global cardioplegic ischaemia caused a significant depression of left ventricular function and a decrease of coronary flow. Postischaemic intensities of the endothelial nitric oxide synthase mRNA bands were significantly lower than at baseline (P < 0.01). There were no significant differences in endothelial nitric oxide synthase mRNA band intensities immediately after ischaemia compared to the end of reperfusion, nor between the intensities of inducible nitric oxide synthase mRNA bands at baseline, at end of ischaemia and at end of reperfusion. Nitric oxide in the myocardial effluent was below detectable levels at all measured points. CONCLUSION Ischaemic injury causes down-regulation of endothelial nitric oxide synthase mRNA expression, which is then associated with reduction of coronary flow during reperfusion, representing one possible mechanism of ischaemia/reperfusion injury. We did not find expected elevations of inducible nitric oxide synthase mRNA expression during ischaemia or reperfusion and we suggest that ischaemia/reperfusion injury is not associated with nitric oxide overproduction.
Collapse
Affiliation(s)
- D Pevni
- Department of Cardiothoracic Surgery, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Khanna A, Cowled PA, Fitridge RA. Nitric Oxide and Skeletal Muscle Reperfusion Injury: Current Controversies (Research Review). J Surg Res 2005; 128:98-107. [PMID: 15961106 DOI: 10.1016/j.jss.2005.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/13/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) has been implicated in a large number of disease processes, including ischemia-reperfusion injury following the restoration of oxygenated blood to previously ischemic muscle, which is a recognized significant complication of vascular surgery. Altered metabolism of NO is implicated in the endothelial dysfunction that forms part of the pathophysiology of ischemia-reperfusion injury. However, NO can demonstrate either protective or cytotoxic effects during reperfusion injury. The use of transgenic mice, either NO synthase (NOS) gene knockout animals, or animals that over-express NOS isoforms, along with direct NO measurements and NO donor or inhibitor studies, have all demonstrated a role for NO in skeletal muscle reperfusion injury. There appears to be an initial stimulation of NO production in the first 20-min of ischemia, with a gradual decline through early reperfusion and a second higher peak of NO commencing in the later stages of reperfusion. The absolute levels of NO in the reperfused tissue and its regulation by the subtle interplay with superoxide and the subsequent production of the highly toxic peroxynitrite anion, are important factors in determining whether NO, in the context of ischemia-reperfusion injury, has damaging or protective effects in the body.
Collapse
Affiliation(s)
- Achal Khanna
- Department of Surgery, The University of Adelaide, The Queen Elizabeth Hospital, Adelaide, South Australia
| | | | | |
Collapse
|
87
|
Abou-Agag LH, Khoo NK, Binsack R, White CR, Darley-Usmar V, Grenett HE, Booyse FM, Digerness SB, Zhou F, Parks DA. Evidence of cardiovascular protection by moderate alcohol: role of nitric oxide. Free Radic Biol Med 2005; 39:540-8. [PMID: 16043025 DOI: 10.1016/j.freeradbiomed.2005.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 03/11/2005] [Accepted: 04/06/2005] [Indexed: 12/28/2022]
Abstract
Epidemiological evidence indicates that moderate alcohol consumption reduces the incidence of heart disease. Endothelial nitric oxide synthase (eNOS) is a key regulator of vascular homeostasis and myocardial functions through the controlled production of nitric oxide (*NO). These studies were conducted to determine if the apparent alcohol-associated cardioprotection is mediated, in part, through modulation of the eNOS protein and activity in the cardiovascular system. Rats were fed alcohol and eNOS protein and *NO production were evaluated at the end of 8 weeks. Myocardial and vascular function was assessed ex vivo in a subset of animals. Moderate alcohol improved postischemic myocardial systolic and diastolic function and attenuated the postischemic reduction in coronary vascular resistance. Moderate alcohol also enhanced maximum vascular relaxation by 26 +/- 0.2% and increased plasma *NO production concomitant with a greater than 2.5-fold increase in eNOS protein. Higher levels of alcohol impaired maximum vascular relaxation by 22 +/- 0.1%. These results suggest that moderate alcohol improves postischemic myocardial functions and increases *NO production by vascular endothelium. An increase in *NO may explain, at least in part, the cardioprotective benefits of moderate alcohol consumption.
Collapse
Affiliation(s)
- Laila H Abou-Agag
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Shin SJ, Qi WN, Cai Y, Rizzo M, Goldner RD, Nunley JA, Chen LE. Inhibition of inducible nitric oxide synthase promotes recovery of motor function in rats after sciatic nerve ischemia and reperfusion. J Hand Surg Am 2005; 30:826-35. [PMID: 16039380 DOI: 10.1016/j.jhsa.2005.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effects of inhibition of inducible nitric oxide synthase (iNOS) on the recovery of motor function in the rat sciatic nerve after ischemia and reperfusion injury. METHODS A 10-mm segment of the sciatic nerve from 169 rats had 2 hours of ischemia followed by up to 42 days of reperfusion. The animals were divided into 2 groups that received either iNOS inhibitor 1400W or the same volume of sterile water subcutaneously. A walking track test was used to evaluate the motor functional recovery during reperfusion. Statistical analysis was performed for the measurements of the sciatic functional index (SFI) by using 2-way analysis of variance; 1-way analysis of variance was used for the post hoc analysis of specific values at each time point of the SFI measurement. RESULTS 1400W-treated rats had earlier motor functional recovery than controls, with a significantly improved SFI between days 11 and 28. Histology showed less axonal degeneration and earlier regeneration of nerve fibers in the 1400W group than in the controls. Inducible NOS messenger RNA and protein were up-regulated during the first 3 days of reperfusion but there was a down-regulation of neuronal NOS and up-regulation of endothelial NOS in control animals. 1400W treatment attenuated the increase of iNOS but had no effect on neuronal NOS and endothelial NOS. CONCLUSIONS Our results indicate that early inhibition of iNOS appears to be critical for reducing or preventing ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Women's University Mokdong Hospital, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
89
|
Griol-Charhbili V, Messadi-Laribi E, Bascands JL, Heudes D, Meneton P, Giudicelli JF, Alhenc-Gelas F, Richer C. Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia. FASEB J 2005; 19:1172-4. [PMID: 15860541 DOI: 10.1096/fj.04-3508fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tissue kallikrein (TK), a major kinin-forming enzyme, is synthesized in the heart and arteries. We tested the hypothesis that TK plays a protective role in myocardial ischemia by performing ischemia-reperfusion (IR) injury, with and without ischemic preconditioning (IPC) or ACE inhibitor (ramiprilat) pretreatment, in vivo in littermate wild-type (WT) or TK-deficient (TK-/-) mice. IR induced similar infarcts in WT and TK-/-. IPC reduced infarct size by 65% in WT, and by 40% in TK-/- (P<0.05, TK-/- vs WT). Ramiprilat also reduced infarct size by 29% in WT, but in TK-/- its effect was completely suppressed. Pretreatment of WT with a B2, but not a B1, kinin receptor antagonist reproduced the effects of TK deficiency. However, B2 receptor-deficient mice (B2-/-) unexpectedly responded to IPC or ramiprilat like WT mice. But pretreatment of the B2-/- mice with a B1 antagonist suppressed the cardioprotective effects of IPC and ramiprilat. In B2-/-, B1 receptor gene expression was constitutively high. In WT and TK-/- mice, both B2 and B1 mRNA levels increased several fold during IR, and even more during IPC+IR. Thus TK and the B2 receptor play a critical role in the cardioprotection afforded by two experimental maneuvers of potential clinical relevance, IPC and ACE inhibition, during ischemia.
Collapse
|
90
|
Duranski MR, Greer JJM, Dejam A, Jaganmohan S, Hogg N, Langston W, Patel RP, Yet SF, Wang X, Kevil CG, Gladwin MT, Lefer DJ. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest 2005; 115:1232-40. [PMID: 15841216 PMCID: PMC1077170 DOI: 10.1172/jci22493] [Citation(s) in RCA: 511] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 03/08/2005] [Indexed: 12/23/2022] Open
Abstract
Nitrite represents a circulating and tissue storage form of NO whose bioactivation is mediated by the enzymatic action of xanthine oxidoreductase, nonenzymatic disproportionation, and reduction by deoxyhemoglobin, myoglobin, and tissue heme proteins. Because the rate of NO generation from nitrite is linearly dependent on reductions in oxygen and pH levels, we hypothesized that nitrite would be reduced to NO in ischemic tissue and exert NO-dependent protective effects. Solutions of sodium nitrite were administered in the setting of hepatic and cardiac ischemia-reperfusion (I/R) injury in mice. In hepatic I/R, nitrite exerted profound dose-dependent protective effects on cellular necrosis and apoptosis, with highly significant protective effects observed at near-physiological nitrite concentrations. In myocardial I/R injury, nitrite reduced cardiac infarct size by 67%. Consistent with hypoxia-dependent nitrite bioactivation, nitrite was reduced to NO, S-nitrosothiols, N-nitros-amines, and iron-nitrosylated heme proteins within 1-30 minutes of reperfusion. Nitrite-mediated protection of both the liver and the heart was dependent on NO generation and independent of eNOS and heme oxygenase-1 enzyme activities. These results suggest that nitrite is a biological storage reserve of NO subserving a critical function in tissue protection from ischemic injury. These studies reveal an unexpected and novel therapy for diseases such as myocardial infarction, organ preservation and transplantation, and shock states.
Collapse
Affiliation(s)
- Mark R Duranski
- Department of Physiology, Louisiana State University Health Sciences Center, Shreveport, 71130, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Duranski MR, Greer JJM, Dejam A, Jaganmohan S, Hogg N, Langston W, Patel RP, Yet SF, Wang X, Kevil CG, Gladwin MT, Lefer DJ. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest 2005. [PMID: 15841216 DOI: 10.1172/jci200522493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nitrite represents a circulating and tissue storage form of NO whose bioactivation is mediated by the enzymatic action of xanthine oxidoreductase, nonenzymatic disproportionation, and reduction by deoxyhemoglobin, myoglobin, and tissue heme proteins. Because the rate of NO generation from nitrite is linearly dependent on reductions in oxygen and pH levels, we hypothesized that nitrite would be reduced to NO in ischemic tissue and exert NO-dependent protective effects. Solutions of sodium nitrite were administered in the setting of hepatic and cardiac ischemia-reperfusion (I/R) injury in mice. In hepatic I/R, nitrite exerted profound dose-dependent protective effects on cellular necrosis and apoptosis, with highly significant protective effects observed at near-physiological nitrite concentrations. In myocardial I/R injury, nitrite reduced cardiac infarct size by 67%. Consistent with hypoxia-dependent nitrite bioactivation, nitrite was reduced to NO, S-nitrosothiols, N-nitros-amines, and iron-nitrosylated heme proteins within 1-30 minutes of reperfusion. Nitrite-mediated protection of both the liver and the heart was dependent on NO generation and independent of eNOS and heme oxygenase-1 enzyme activities. These results suggest that nitrite is a biological storage reserve of NO subserving a critical function in tissue protection from ischemic injury. These studies reveal an unexpected and novel therapy for diseases such as myocardial infarction, organ preservation and transplantation, and shock states.
Collapse
Affiliation(s)
- Mark R Duranski
- Department of Physiology, Louisiana State University Health Sciences Center, Shreveport, 71130, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Nakao A, Neto JS, Kanno S, Stolz DB, Kimizuka K, Liu F, Bach FH, Billiar TR, Choi AM, Otterbein LE, Murase N. Protection against ischemia/reperfusion injury in cardiac and renal transplantation with carbon monoxide, biliverdin and both. Am J Transplant 2005; 5:282-91. [PMID: 15643987 DOI: 10.1111/j.1600-6143.2004.00695.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both carbon monoxide (CO) and biliverdin, products of heme degradation by heme oxygenase, have been shown to attenuate ischemia/reperfusion (I/R) injury. We hypothesized in this study that dual-treatment with CO and biliverdin would induce enhanced protective effects against cold I/R injury. Heterotopic heart and orthotopic kidney transplantation were performed in syngeneic Lewis rats after 24-h cold preservation in UW solution. While monotherapy with CO (20 ppm) or biliverdin (50 mg/kg, ip) did not alter the survival of heart grafts, dual-treatment increased survival to 80% from 0% in untreated recipients, with a significant decrease of myocardial injury and improved cardiac function. Similarly, dual-treatment significantly improved glomerular filtration rates of renal grafts and prolonged recipient survival compared to untreated controls. I/R injury-induced up-regulation of pro-inflammatory mediators (e.g. TNF-alpha, iNOS) and extravasation of inflammatory infiltrates were significantly less with dual-treatment than untreated controls. In addition, dual-treatment was effective in decreasing lipid peroxidation and improving graft blood flow through the distinctive action of biliverdin and CO, respectively. The study shows that the addition of byproducts of heme degradation with different mechanisms of action provides enhanced protection against transplant-associated cold I/R injury of heart and kidney grafts.
Collapse
Affiliation(s)
- Atsunori Nakao
- Thomas E. Starzl Transplantation Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Qi WN, Chen LE, Zhang L, Eu JP, Seaber AV, Urbaniak JR. Reperfusion injury in skeletal muscle is reduced in inducible nitric oxide synthase knockout mice. J Appl Physiol (1985) 2004; 97:1323-8. [PMID: 15180976 DOI: 10.1152/japplphysiol.00380.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) participates in many pathological events, and selective inhibition of iNOS has been shown to reduce ischemia-reperfusion (I/R) injury in different tissues. To further confirm its role in this injury process, I/R injury was observed in denervated cremaster muscles of iNOS-deficient (iNOS−/−) and wild-type mice. After 3-h ischemia and 90-min reperfusion, blood flow in reperfused muscle was 80 ± 8.5% (mean ± SE) of baseline at 10-min reperfusion and completely returned to the preischemia baseline after 20 min in iNOS−/− mice. In contrast, blood flow was 32 ± 7.4% at 10 min and increased to 60 ± 20% of the baseline level at 90 min in wild-type mice ( P < 0.001 vs. iNOS−/− mice at all time points). The increased muscle blood flow in iNOS−/− mice was associated with significantly less vasospasm in all three sizes of arterial vessel size categories. The weight ratio to the contralateral muscle not subjected to I/R was greater in wild-type mice (173 ± 11%) than in iNOS−/− mice (117 ± 3%; P < 0.01). Inflammation and neutrophil extravasation were also more severe in wild-type mice. Western blot analysis demonstrated an absence of iNOS protein band in iNOS−/− mice and upregulation of iNOS protein expression in wild-type mice. Our results confirm the importance of iNOS in I/R injury. Upregulated iNOS exacerbates I/R injury and appears to be a therapeutic target in protection of tissues against this type of injury.
Collapse
Affiliation(s)
- Wen-Ning Qi
- Orthopaedic Research Laboratory, Duke Univ. Medical Center, Box 3093, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
94
|
Richard C, Gao J, LaFleur B, Christman BW, Anderson J, Brown N, Reese J. Patency of the preterm fetal ductus arteriosus is regulated by endothelial nitric oxide synthase and is independent of vasa vasorum in the mouse. Am J Physiol Regul Integr Comp Physiol 2004; 287:R652-60. [PMID: 15142832 DOI: 10.1152/ajpregu.00049.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patency of the fetal ductus arteriosus (DA) is maintained in an environment of low relative oxygen tension and a preponderance of vasodilating forces. In addition to prostaglandins, nitric oxide (NO), a potent vasodilator in the pulmonary and systemic vasculatures, has been implicated in regulation of the fetal DA. To further define the contribution of NO to DA patency, the expression and function of NO synthase (NOS) isoforms were examined in the mouse DA on days 17–19 of pregnancy and after birth. Our results show that endothelial NOS (eNOS) is the predominant isoform expressed in the mouse DA and is localized in the DA endothelium by in situ hybridization. Despite rapid constriction of the DA after birth, eNOS expression levels were unchanged throughout the fetal and postnatal period. Pharmacological inhibition of prostaglandin vs. NO synthesis in vivo showed that the preterm fetal DA on day 16 is more sensitive to NOS inhibition than the mature fetal DA on day 19, whereas prostaglandin inhibition results in marked DA constriction on day 19 but minimal effects on the day 16 DA. Combined prostaglandin and NO inhibition caused additional DA constriction on day 16. The contribution of vasa vasorum to DA regulation was also examined. Immunoreactive platelet endothelial cell adhesion molecule and lacZ tagged FLK1 localized to DA endothelial cells but revealed the absence of vasa vasorum within the DA wall. Similarly, there was no evidence of vasa vasorum by vascular casting. These studies indicate that eNOS is the primary source of NO in the mouse DA and that vasomotor tone of the preterm fetal mouse DA is regulated by eNOS-derived NO and is potentiated by prostaglandins. In contrast to other species, mechanisms for DA patency and closure appear to be independent of any contribution of the vasa vasorum.
Collapse
Affiliation(s)
- Charissa Richard
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Beneficial actions of nitric oxide (NO) in failing myocardium have frequently been overshadowed by poorly documented negative inotropic effects mainly derived from in vitro cardiac preparations. NO's beneficial actions include control of myocardial energetics and improvement of left ventricular (LV) diastolic distensibility. In isolated cardiomyocytes, administration of NO increases their diastolic cell length consistent with a rightward shift of the passive length-tension relation. This shift is explained by cGMP-induced phosphorylation of troponin I, which prevents calcium-independent diastolic cross-bridge cycling and concomitant diastolic stiffening of the myocardium. Similar improvements in diastolic stiffness have been observed in isolated guinea pig hearts, in pacing-induced heart failure dogs, and in patients with dilated cardiomyopathy or aortic stenosis and have been shown to result in higher LV preload reserve and stroke work. NO also controls myocardial energetics through its effects on mitochondrial respiration, oxygen consumption, and substrate utilization. The effects of NO on diastolic LV performance appear to be synergistic with its effects on myocardial energetics through prevention of myocardial energy wastage induced by LV contraction against late-systolic reflected arterial pressure waves and through prevention of diastolic LV stiffening, which is essential for the maintenance of adequate subendocardial coronary perfusion. A drop in these concerted actions of NO on diastolic LV distensibility and on myocardial energetics could well be instrumental for the relentless deterioration of failing myocardium.
Collapse
Affiliation(s)
- Walter J Paulus
- Institute for Cardiovascular Research, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | |
Collapse
|
96
|
Palomba L, Persichini T, Mazzone V, Colasanti M, Cantoni O. Inhibition of nitric-oxide synthase-I (NOS-I)-dependent nitric oxide production by lipopolysaccharide plus interferon-gamma is mediated by arachidonic acid. Effects on NFkappaB activation and late inducible NOS expression. J Biol Chem 2004; 279:29895-901. [PMID: 15148326 DOI: 10.1074/jbc.m312768200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous results have indicated that lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma) inhibits nitric-oxide synthase (NOS)-I activity in glial cells. We report here that arachidonic acid (AA) plays a pivotal role in this response, which was consistently reproduced in different glial cell lines and in primary rat astrocytes. This notion was established using pharmacological inhibitors of phospholipase A2 (PLA2), cytosolic PLA2 (cPLA2) antisense oligonucleotides, and AA add-back experiments. This approach not only allowed the demonstration that AA promotes inhibition of NOS-I activity but also produced novel experimental evidence that LPS/IFNgamma itself is a potential stimulus for NOS-I. Indeed, LPS/IFNgamma fails to generate nitric oxide (NO) via NOS-I activation simply because it activates the AA-dependent signal that impedes NOS-I activity. Otherwise, LPS/IFNgamma promotes NO formation, sensitive to exogenous AA, in cells in which cPLA2 is pharmacologically inhibited or genetically depleted. Because NO suppresses the NFkappaB-dependent NOS-II expression, inactivation of NOS-I by the LPS/IFNgamma-induced AA pathway provides optimal conditions for NFkappaB activation and subsequent NOS-II expression. Inhibition of cPLA2 activity, while reducing the availability of AA, consistently inhibited NFkappaB activation and NOS-II mRNA induction and delayed NO formation. These responses were promptly reestablished by addition of exogenous AA. Finally, we have demonstrated that the LPS/IFNgamma-dependent tyrosine phosphorylation of NOS-I and inhibition of its activity are mediated by endogenous AA.
Collapse
Affiliation(s)
- Letizia Palomba
- Istituto di Farmacologia e Farmacognosia, Università di Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy
| | | | | | | | | |
Collapse
|
97
|
Chong ZZ, Kang JQ, Maiese K. Essential cellular regulatory elements of oxidative stress in early and late phases of apoptosis in the central nervous system. Antioxid Redox Signal 2004; 6:277-87. [PMID: 15025929 DOI: 10.1089/152308604322899341] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The generation of reactive oxygen species and subsequent oxidative stress in the central nervous system is now considered to be one of the primary etiologies of a host of neurodegenerative disorders, such as Alzheimer disease, Parkinson disease, and cerebral ischemia. On a cellular level, oxidative stress leads to an apoptotic early phase that involves cellular membrane phosphatidylserine (PS) exposure and a late phase that pertains to the degradation of genomic DNA. The translocation of membrane PS from the inner cellular membrane to the surface is a critical component for both microglial activation and cellular disposal of injured cells. During oxidative stress, this early phase of apoptosis is intimately controlled by neuronal PS exposure and microglial PS receptor expression. The late phase of apoptosis that involves a loss of genomic DNA integrity can result as a function of an ill-fated attempt to enter the cell cycle in postmitotic neurons. By using a cascade of pathways that involve cysteine proteases to modulate programmed cell death, protein kinase B (Akt) surfaces as a key regulatory element of both extrinsic pathways of inflammation and intrinsic pathways of cellular integrity. Further understanding of the cellular mechanisms modulating neuronal cellular integrity and phagocytic cell disposal during oxidative stress may form the basis for the future development of cytoprotective strategies in the nervous system.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Center for Molecular Medicine and Genetics, and Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
98
|
Marfella R, Di Filippo C, Esposito K, Nappo F, Piegari E, Cuzzocrea S, Berrino L, Rossi F, Giugliano D, D'Amico M. Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 2004; 53:454-62. [PMID: 14747298 DOI: 10.2337/diabetes.53.2.454] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigated the role of inducible nitric oxide synthase (iNOS) on ischemic myocardial damage and angiogenic process in genetically deficient iNOS (iNOS(-/-)) mice and wild-type littermates (iNOS(+/+)), with and without streptozotocin-induced (70 mg/kg intravenously) diabetes. After ischemia (25 min) and reperfusion (120 min), both iNOS(+/+) and iNOS(-/-) diabetic mice (blood glucose 22 mmol/l) had myocardial infarct size greater than their respective nondiabetic littermates (P < 0.01). Myocardial infarct size (P < 0.05), apoptotic index (P < 0.005), and tissue levels of tumor necrosis factor (P < 0.01), interleukin-6 (P < 0.01), and interleukin-18 (P < 0.01) were higher in nondiabetic iNOS(-/-) mice compared with nondiabetic iNOS(+/+) mice. As compared with diabetic iNOS(-/-) mice, diabetic iNOS(+/+) mice showed a greater infarct size (P < 0.01) associated with the highest tissue levels of nitrotyrosine and proinflammatory cytokines, as well as apoptosis. The beneficial role of iNOS in modulating defensive responses against ischemia/reperfusion injury seems to be abolished in diabetic mice.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Xu Z, Ji X, Boysen PG. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol 2003; 286:H1433-40. [PMID: 14656708 DOI: 10.1152/ajpheart.00882.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether cGMP-dependent protein kinase (PKG) and mitochondrial ATP-sensitive potassium (K(ATP)) channels are involved in S-nitroso-N-acetyl penicillamine (SNAP)-induced reactive oxygen species (ROS) generation. SNAP significantly increased ROS generation in cardiomyocytes. This increase was suppressed by both 5-hydroxydecanoate (5-HD) and glibenclamide. Direct opening of mitochondrial K(ATP) channels with diazoxide led to ROS generation. The increased ROS generation was reversed by N-(2-mercaptopropionyl)glycine (MPG), a scavenger of ROS. Myxothiazol partially suppressed the ROS generation. KT-5823, an inhibitor of PKG, prevented ROS generation, indicating that PKG is required for ROS generation. In addition, 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), an activator of PKG, induced ROS generation. The effect of 8-BrcGMP was reversed by either 5-HD or MPG. YC-1, an activator of guanylyl cyclase, also increased ROS production, which was reversed by 5-HD. Neither LY-294002 nor wortmannin, the inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), affected SNAP's action. In a whole heart study, SNAP significantly reduced infarct size. The anti-infarct effect of SNAP was abrogated by either MPG or 5-HD. This effect was also blocked by PD-98059, an ERK inhibitor, but not by LY-294002. A Western blotting study showed that SNAP significantly enhanced phosphorylation of ERK, which was reversed by MPG. These results suggest that SNAP-induced ROS generation is mediated by activation of PKG and mitochondrial K(ATP) channels and that opening of mitochondrial K(ATP) channels is the downstream event of PKG activation. ROS and mitochondrial K(ATP) channels participate in the anti-infarct effect of SNAP. Moreover, phosphorylation of ERK is the downstream signaling event of ROS and plays a role in the cardioprotection of SNAP.
Collapse
Affiliation(s)
- Zhelong Xu
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC 27599-7010, USA.
| | | | | |
Collapse
|
100
|
Wink DA, Miranda KM, Katori T, Mancardi D, Thomas DD, Ridnour L, Espey MG, Feelisch M, Colton CA, Fukuto JM, Pagliaro P, Kass DA, Paolocci N. Orthogonal properties of the redox siblings nitroxyl and nitric oxide in the cardiovascular system: a novel redox paradigm. Am J Physiol Heart Circ Physiol 2003; 285:H2264-76. [PMID: 12855429 DOI: 10.1152/ajpheart.00531.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous formation of nitric oxide (NO) and related nitrogen oxides in the vascular system is critical to regulation of multiple physiological functions. An imbalance in the production or availability of these species can result in progression of disease. Nitrogen oxide research in the cardiovascular system has primarily focused on the effects of NO and higher oxidation products. However, nitroxyl (HNO), the one-electron-reduction product of NO, has recently been shown to have unique and potentially beneficial pharmacological properties. HNO and NO often induce discrete biological responses, providing an interesting redox system. This article discusses the emerging aspects of HNO chemistry and attempts to provide a framework for the distinct effects of NO and HNO in vivo.
Collapse
Affiliation(s)
- David A Wink
- Tumor Biology Section, Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm. B3-B69, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|