51
|
Fernández-García L, Pérez-Rigueiro J, Martinez-Murillo R, Panetsos F, Ramos M, Guinea GV, González-Nieto D. Cortical Reshaping and Functional Recovery Induced by Silk Fibroin Hydrogels-Encapsulated Stem Cells Implanted in Stroke Animals. Front Cell Neurosci 2018; 12:296. [PMID: 30237762 PMCID: PMC6135908 DOI: 10.3389/fncel.2018.00296] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023] Open
Abstract
The restitution of damaged circuitry and functional remodeling of peri-injured areas constitute two main mechanisms for sustaining recovery of the brain after stroke. In this study, a silk fibroin-based biomaterial efficiently supports the survival of intracerebrally implanted mesenchymal stem cells (mSCs) and increases functional outcomes over time in a model of cortical stroke that affects the forepaw sensory and motor representations. We show that the functional mechanisms underlying recovery are related to a substantial preservation of cortical tissue in the first days after mSCs-polymer implantation, followed by delayed cortical plasticity that involved a progressive functional disconnection between the forepaw sensory (FLs1) and caudal motor (cFLm1) representations and an emergent sensory activity in peri-lesional areas belonging to cFLm1. Our results provide evidence that mSCs integrated into silk fibroin hydrogels attenuate the cerebral damage after brain infarction inducing a delayed cortical plasticity in the peri-lesional tissue, this later a functional change described during spontaneous or training rehabilitation-induced recovery. This study shows that brain remapping and sustained recovery were experimentally favored using a stem cell-biomaterial-based approach.
Collapse
Affiliation(s)
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Ricardo Martinez-Murillo
- Department of Translational Neuroscience, Instituto Cajal – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, Madrid, Spain,Neural Plasticity Research Group, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Daniel González-Nieto,
| |
Collapse
|
52
|
Sinke MR, Otte WM, van Meer MP, van der Toorn A, Dijkhuizen RM. Modified structural network backbone in the contralesional hemisphere chronically after stroke in rat brain. J Cereb Blood Flow Metab 2018; 38:1642-1653. [PMID: 28604153 PMCID: PMC6120129 DOI: 10.1177/0271678x17713901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Functional outcome after stroke depends on the local site of ischemic injury and on remote effects within connected networks, frequently extending into the contralesional hemisphere. However, the pattern of large-scale contralesional network remodeling remains largely unresolved. In this study, we applied diffusion-based tractography and graph-based network analysis to measure structural connectivity in the contralesional hemisphere chronically after experimental stroke in rats. We used the minimum spanning tree method, which accounts for variations in network density, for unbiased characterization of network backbones that form the strongest connections in a network. Ultrahigh-resolution diffusion MRI scans of eight post-mortem rat brains collected 70 days after right-sided stroke were compared against scans from 10 control brains. Structural network backbones of the left (contralesional) hemisphere, derived from 42 atlas-based anatomical regions, were found to be relatively stable across stroke and control animals. However, several sensorimotor regions showed increased connection strength after stroke. Sensorimotor function correlated with specific contralesional sensorimotor network backbone measures of global integration and efficiency. Our findings point toward post-stroke adaptive reorganization of the contralesional sensorimotor network with recruitment of distinct sensorimotor regions, possibly through strengthening of connections, which may contribute to functional recovery.
Collapse
Affiliation(s)
- Michel Rt Sinke
- 1 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem M Otte
- 1 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.,2 Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maurits Pa van Meer
- 1 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annette van der Toorn
- 1 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick M Dijkhuizen
- 1 Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
53
|
Hanganu A, Houde JC, Fonov VS, Degroot C, Mejia-Constain B, Lafontaine AL, Soland V, Chouinard S, Collins LD, Descoteaux M, Monchi O. White matter degeneration profile in the cognitive cortico-subcortical tracts in Parkinson's disease. Mov Disord 2018; 33:1139-1150. [PMID: 29683523 DOI: 10.1002/mds.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In Parkinson's disease cognitive impairment is an early nonmotor feature, but it is still unclear why some patients are able to maintain their cognitive performance at normal levels, as quantified by neuropsychological tests, whereas others cannot. The objectives of this study were to perform a cross-sectional study and analyze the white matter changes in the cognitive and motor bundles in patients with Parkinson's disease. METHODS Sixteen Parkinson's disease patients with normal cognitive performance, 19 with mild cognitive impairment (based on their performance of 1.5 standard deviations below the healthy population mean), and 16 healthy controls were compared with respect to their tractography patterns between the cortical cognitive / motor regions and subcortical structures, using high angular resolution diffusion imaging and constrained spherical deconvolution computation. RESULTS Motor bundles showed decreased apparent fiber density in both PD groups, associated with a significant increase in diffusivity metrics, number of reconstructed streamlines, and track volumes, compared with healthy controls. By contrast, in the cognitive bundles, decreased fiber density in both Parkinson's groups was compounded by the absence of changes in diffusivity in patients with normal cognition, whereas patients with cognitive impairment had increased diffusivity metrics, lower numbers of reconstructed streamlines, and lower track volumes. CONCLUSIONS Both PD groups showed similar patterns of white matter neurodegeneration in the motor bundles, whereas cognitive bundles showed a distinct pattern: Parkinson's patients with normal cognition had white matter diffusivity metrics similar to healthy controls, whereas in patients with cognitive impairment white matter showed a neurodegeneration pattern. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexandru Hanganu
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jean-Christophe Houde
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vladimir S Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Clotilde Degroot
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Beatriz Mejia-Constain
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Anne-Louise Lafontaine
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Movement Disorders Unit, McGill University Health Center, Montréal, Quebec, Canada
| | - Valérie Soland
- Unité des Troubles du Mouvement André Barbeau, Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Sylvain Chouinard
- Unité des Troubles du Mouvement André Barbeau, Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Louis D Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Radiology, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| |
Collapse
|
54
|
Motor Improvement of Skilled Forelimb Use Induced by Treatment with Growth Hormone and Rehabilitation Is Dependent on the Onset of the Treatment after Cortical Ablation. Neural Plast 2018; 2018:6125901. [PMID: 29755514 PMCID: PMC5883990 DOI: 10.1155/2018/6125901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that the administration of GH immediately after severe motor cortex injury, in rats, followed by rehabilitation, improved the functionality of the affected limb and reexpressed nestin in the contralateral motor cortex. Here, we analyze whether these GH effects depend on a time window after the injury and on the reexpression of nestin and actin. Injured animals were treated with GH (0.15 mg/kg/day) or vehicle, at days 7, 14, and 35 after cortical ablation. Rehabilitation was applied at short and long term (LTR) after the lesion and then sacrificed. Nestin and actin were analyzed by immunoblotting in the contralateral motor cortex. Giving GH at days 7 or 35 after the lesion, but not 14 days after it, led to a remarkable improvement in the functionality of the affected paw. Contralateral nestin and actin reexpression was clearly higher in GH-treated animals, probably because compensatory brain plasticity was established. GH and immediate rehabilitation are key for repairing brain injuries, with the exception of a critical time period: GH treatment starting 14 days after the lesion. Our data also indicate that there is not a clear plateau in the recovery from a brain injury in agreement with our data in human patients.
Collapse
|
55
|
Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors. CELLULAR AND MOLECULAR APPROACHES TO REGENERATION AND REPAIR 2018. [DOI: 10.1007/978-3-319-66679-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Viale L, Catoira NP, Di Girolamo G, González CD. Pharmacotherapy and motor recovery after stroke. Expert Rev Neurother 2017; 18:65-82. [DOI: 10.1080/14737175.2018.1400910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Luciano Viale
- Centro Asistencial Universitario, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Paola Catoira
- Residencia de Investigación en Salud, Gobierno de la Ciudad Autónoma de Buenos Aires, CABA, Argentina
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| | - Guillermo Di Girolamo
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
- Instituto de Investigaciones Cardiológicas ¨Prof. Dr. Alberto C. Taquini¨, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| | - Claudio Daniel González
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| |
Collapse
|
57
|
Coleman ER, Moudgal R, Lang K, Hyacinth HI, Awosika OO, Kissela BM, Feng W. Early Rehabilitation After Stroke: a Narrative Review. Curr Atheroscler Rep 2017; 19:59. [PMID: 29116473 PMCID: PMC5802378 DOI: 10.1007/s11883-017-0686-6] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Despite current rehabilitative strategies, stroke remains a leading cause of disability in the USA. There is a window of enhanced neuroplasticity early after stroke, during which the brain's dynamic response to injury is heightened and rehabilitation might be particularly effective. This review summarizes the evidence of the existence of this plastic window, and the evidence regarding safety and efficacy of early rehabilitative strategies for several stroke domain-specific deficits. RECENT FINDINGS Overall, trials of rehabilitation in the first 2 weeks after stroke are scarce. In the realm of very early mobilization, one large and one small trial found potential harm from mobilizing patients within the first 24 h after stroke, and only one small trial found benefit in doing so. For the upper extremity, constraint-induced movement therapy appears to have benefit when started within 2 weeks of stroke. Evidence for non-invasive brain stimulation in the acute period remains scant and inconclusive. For aphasia, the evidence is mixed, but intensive early therapy might be of benefit for patients with severe aphasia. Mirror therapy begun early after stroke shows promise for the alleviation of neglect. Novel approaches to treating dysphagia early after stroke appear promising, but the high rate of spontaneous improvement makes their benefit difficult to gauge. The optimal time to begin rehabilitation after a stroke remains unsettled, though the evidence is mounting that for at least some deficits, initiation of rehabilitative strategies within the first 2 weeks of stroke is beneficial. Commencing intensive therapy in the first 24 h may be harmful.
Collapse
Affiliation(s)
- Elisheva R Coleman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA.
| | - Rohitha Moudgal
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathryn Lang
- Department of Rehabilitation Services, University of Cincinnati, Cincinnati, OH, USA
| | - Hyacinth I Hyacinth
- Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA
| | - Brett M Kissela
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St., Suite 2300, Cincinnati, OH, 45267-0525, USA
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
58
|
Hylin MJ, Brenneman MM, Corwin JV. Noradrenergic antagonists mitigate amphetamine-induced recovery. Behav Brain Res 2017; 334:61-71. [PMID: 28756213 DOI: 10.1016/j.bbr.2017.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Brain injury, including that due to stroke, leaves individuals with cognitive deficits that can disrupt daily aspect of living. As of now there are few treatments that shown limited amounts of success in improving functional outcome. The use of stimulants such as amphetamine have shown some success in improving outcome following brain injury. While the pharmacological mechanisms for amphetamine are known; the specific processes responsible for improving behavioral outcome following injury remain unknown. Understanding these mechanisms can help to refine the use of amphetamine as a potential treatment or lead to the use of other methods that share the same pharmacological properties. One proposed mechanism is amphetamine's impact upon noradrenaline (NA). In the current, study noradrenergic antagonists were administered prior to amphetamine to pharmacologically block α- and β-adrenergic receptors. The results demonstrated that the blockade of these receptors disrupted amphetamines ability to induce recovery from hemispatial neglect using an established aspiration lesion model. This suggests that amphetamine's ability to ameliorate neglect deficits may be due in part to noradrenaline. These results further support the role of noradrenaline in functional recovery. Finally, the development of polytherapies and combined therapeutics, while promising, may need to consider the possibility that drug interactions can negate the effectiveness of treatment.
Collapse
Affiliation(s)
- M J Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, United States.
| | - M M Brenneman
- Department of Psychology, Coastal Carolina University, P.O. Box 261954, Conway, SC, United States
| | - J V Corwin
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
59
|
Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother 2017; 17:1091-1107. [PMID: 28847186 DOI: 10.1080/14737175.2017.1373020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Aphasia is among the most debilitating outcomes of stroke. Aphasia is a language disorder occurring in 10-30% of stroke survivors. Speech and Language Therapy (SLT) is the gold standard, mainstay treatment for aphasia, but gains from SLT may be incomplete. Pharmaceutical and noninvasive brain stimulation (NIBS) techniques may augment the effectiveness of SLT. Areas covered: Herein reviewed are studies of the safety and efficacy of these adjunctive interventions for aphasia, including randomized placebo-controlled and open-label trials, as well as case series from Pubmed, using search terms 'pharmacological,' 'tDCS' or 'TMS' combined with 'aphasia' and 'stroke.' Expert commentary: Relatively small studies have included participants with a range of aphasia types and severities, using inconsistent interventions and outcome measures. Results to-date have provided promising, but weak to moderate evidence that medications and/or NIBS can augment the effects of SLT for improving language outcomes. We end with recommendations for future approaches to studying these interventions, with multicenter, double-blind, randomized controlled trials.
Collapse
Affiliation(s)
- Sadhvi Saxena
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Argye E Hillis
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
60
|
Venkat P, Shen Y, Chopp M, Chen J. Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacology 2017; 134:310-322. [PMID: 28867364 DOI: 10.1016/j.neuropharm.2017.08.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/09/2023]
Abstract
Ischemic stroke remains one of most common causes of death and disability worldwide. Stroke triggers a cascade of events leading to rapid neuronal damage and death. Neuroprotective agents that showed promise in preclinical experiments have failed to translate to the clinic. Even after decades of research, tPA remains the only FDA approved drug for stroke treatment. However, tPA is effective when administered 3-4.5 h after stroke onset and the vast majority of stroke patients do not receive tPA therapy. Therefore, there is a pressing need for novel therapies for ischemic stroke. Since stroke induces rapid cell damage and death, neuroprotective strategies that aim to salvage or replace injured brain tissue are challenged by treatment time frames. To overcome the barriers of neuroprotective therapies, there is an increasing focus on neurorestorative therapies for stroke. In this review article, we provide an update on neurorestorative treatments for stroke using cell therapy such as bone marrow derived mesenchymal stromal cells (BMSCs), human umbilical cord blood cells (HUCBCs) and select pharmacological approaches including Minocycline and Candesartan that have been employed in clinical trials. This review article discusses the present understanding of mechanisms of neurorestorative therapies and summarizes ongoing clinical trials. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Yi Shen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Gerontology Institute, Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA; Gerontology Institute, Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| |
Collapse
|
61
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the Alignment of the Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core Recommendations From the Stroke Recovery and Rehabilitation Roundtable Translational Working Group. Neurorehabil Neural Repair 2017; 31:699-707. [DOI: 10.1177/1545968317724285] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S. Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H. Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A. Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E. Schwab
- Institute for Brain Research, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T. Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
62
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable translational working group. Int J Stroke 2017; 12:462-471. [DOI: 10.1177/1747493017711814] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E Schwab
- Institute for Brain Research, University of Zurich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
63
|
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Jieli Chen
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
- Department of Physics, Oakland University, Rochester, MI 48309
| |
Collapse
|
64
|
Calabrò RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, Buda A, La Rosa G, Bramanti A, Bramanti P. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil 2017; 14:53. [PMID: 28592282 PMCID: PMC5463350 DOI: 10.1186/s12984-017-0268-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/01/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many studies have demonstrated the usefulness of repetitive task practice by using robotic-assisted gait training (RAGT) devices, including Lokomat, for the treatment of lower limb paresis. Virtual reality (VR) has proved to be a valuable tool to improve neurorehabilitation training. The aim of our pilot randomized clinical trial was to understand the neurophysiological basis of motor function recovery induced by the association between RAGT (by using Lokomat device) and VR (an animated avatar in a 2D VR) by studying electroencephalographic (EEG) oscillations. METHODS Twenty-four patients suffering from a first unilateral ischemic stroke in the chronic phase were randomized into two groups. One group performed 40 sessions of Lokomat with VR (RAGT + VR), whereas the other group underwent Lokomat without VR (RAGT-VR). The outcomes (clinical, kinematic, and EEG) were measured before and after the robotic intervention. RESULTS As compared to the RAGT-VR group, all the patients of the RAGT + VR group improved in the Rivermead Mobility Index and Tinetti Performance Oriented Mobility Assessment. Moreover, they showed stronger event-related spectral perturbations in the high-γ and β bands and larger fronto-central cortical activations in the affected hemisphere. CONCLUSIONS The robotic-based rehabilitation combined with VR in patients with chronic hemiparesis induced an improvement in gait and balance. EEG data suggest that the use of VR may entrain several brain areas (probably encompassing the mirror neuron system) involved in motor planning and learning, thus leading to an enhanced motor performance. TRIAL REGISTRATION Retrospectively registered in Clinical Trials on 21-11-2016, n. NCT02971371 .
Collapse
Affiliation(s)
| | - Antonino Naro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Antonino Leo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Tina Balletta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Antonio Buda
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | | | | |
Collapse
|
65
|
Shah AM, Ishizaka S, Cheng MY, Wang EH, Bautista AR, Levy S, Smerin D, Sun G, Steinberg GK. Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci Rep 2017; 7:46612. [PMID: 28569261 PMCID: PMC5451884 DOI: 10.1038/srep46612] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Stroke induces network-wide changes in the brain, affecting the excitability in both nearby and remotely connected regions. Brain stimulation is a promising neurorestorative technique that has been shown to improve stroke recovery by altering neuronal activity of the target area. However, it is unclear whether the beneficial effect of stimulation is a result of neuronal or non-neuronal activation, as existing stimulation techniques nonspecifically activate/inhibit all cell types (neurons, glia, endothelial cells, oligodendrocytes) in the stimulated area. Furthermore, which brain circuit is efficacious for brain stimulation is unknown. Here we use the optogenetics approach to selectively stimulate neurons in the lateral cerebellar nucleus (LCN), a deep cerebellar nucleus that sends major excitatory output to multiple motor and sensory areas in the forebrain. Repeated LCN stimulations resulted in a robust and persistent recovery on the rotating beam test, even after cessation of stimulations for 2 weeks. Furthermore, western blot analysis demonstrated that LCN stimulations significantly increased the axonal growth protein GAP43 in the ipsilesional somatosensory cortex. Our results demonstrate that pan-neuronal stimulations of the LCN is sufficient to promote robust and persistent recovery after stroke, and thus is a promising target for brain stimulation.
Collapse
Affiliation(s)
- Aatman M Shah
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shunsuke Ishizaka
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Y Cheng
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric H Wang
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex R Bautista
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabrina Levy
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Smerin
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guohua Sun
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
66
|
Hylin MJ, Kerr AL, Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury. Neural Plast 2017; 2017:7125057. [PMID: 28512585 PMCID: PMC5415868 DOI: 10.1155/2017/7125057] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/26/2017] [Indexed: 11/30/2022] Open
Abstract
Injury due to stroke and traumatic brain injury result in significant long-term effects upon behavioral functioning. One central question to rehabilitation research is whether the nature of behavioral improvement observed is due to recovery or the development of compensatory mechanisms. The nature of functional improvement can be viewed from the perspective of behavioral changes or changes in neuroanatomical plasticity that follows. Research suggests that these changes correspond to each other in a bidirectional manner. Mechanisms surrounding phenomena like neural plasticity may offer an opportunity to explain how variables such as experience can impact improvement and influence the definition of recovery. What is more, the intensity of the rehabilitative experiences may influence the ability to recover function and support functional improvement of behavior. All of this impacts how researchers, clinicians, and medical professionals utilize rehabilitation.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Abigail L. Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
67
|
Mostajeran M, Edvinsson L, Warfvinge K, Singh R, Ansar S. Inhibition of mitogen-activated protein kinase 1/2 in the acute phase of stroke improves long-term neurological outcome and promotes recovery processes in rats. Acta Physiol (Oxf) 2017; 219:814-824. [PMID: 26595054 DOI: 10.1111/apha.12632] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023]
Abstract
AIM Extracellular signal-regulated kinase (ERK) 1/2 is activated during acute phase of stroke and contributes to stroke pathology. We have found that acute treatment with MEK1/2 inhibitors decreases infarct size and neurological deficits 2 days after experimental stroke. However, it is not known whether benefits of this inhibition persist long-term. Therefore, the aim of this study was to assess neurological function, infarct size and recovery processes 14 days after stroke in male rats to determine long-term outcome following acute treatment with the MEK1/2 inhibitor U0126. METHODS Transient middle cerebral artery occlusion was induced in male rats. U0126 or vehicle was given at 0 and 24 h of reperfusion. Neurological function was assessed by staircase, 6-point and 28-point neuroscore tests up to 14 days after induction of stroke. At day 14, infarct volumes were determined and recovery processes were evaluated by measuring protein expression of the tyrosine kinase receptor Tie-2 and nestin. Levels of p-ERK1/2 protein were determined. RESULTS Acute treatment with U0126 significantly improved long-term functional recovery, reduced infarct size, and enhanced Tie-2 and nestin protein expression at 14 days post-stroke. There was no residual blockade of p-ERK1/2 at this time point. CONCLUSION It is demonstrated that benefits of early treatment with U0126 persist beyond subacute phase of ischaemic stroke in male rats. Prevention of ERK1/2 activation in the acute phase results in improved long-term functional outcome and enhances later-stage recovery processes. These results expand our understanding of the benefits and promise of using MEK1/2 inhibitors in stroke recovery.
Collapse
Affiliation(s)
- M. Mostajeran
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| | - L. Edvinsson
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| | - K. Warfvinge
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| | - R. Singh
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| | - S. Ansar
- Division of Experimental Vascular Research; Department of Clinical Sciences; Lund University; Lund Sweden
| |
Collapse
|
68
|
Pan R, Cai J, Zhan L, Guo Y, Huang RY, Li X, Zhou M, Xu D, Zhan J, Chen H. Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats. Altern Ther Health Med 2017; 17:173. [PMID: 28351388 PMCID: PMC5371213 DOI: 10.1186/s12906-017-1680-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Loss of neural function is a critical but unsolved issue after cerebral ischemia insult. Neuronal plasticity and remodeling are crucial for recovery of neural functions after brain injury. Buyang Huanwu decoction, which is a classic formula in traditional Chinese medicine, can positively alter synaptic plasticity. This study assessed the effects of Buyang Huanwu decoction in combination with physical exercise on neuronal plasticity in cerebral ischemic rats. METHODS Cerebral ischemic rats were administered Buyang Huanwu decoction and participated in physical exercise after the induction of a permanent middle cerebral artery occlusion. The neurobehavioral functions and infarct volumes were evaluated. The presynaptic (SYN), postsynaptic (GAP-43) and cytoskeletal (MAP-2) proteins in the coronal brain samples were evaluated by immunohistochemistry and western blot analyses. The ultrastructure of the neuronal synaptic junctions in the same region were analyzed using transmission electron microscopy. RESULTS Combination treatment of Buyang Huanwu decoction and physical exercise ameliorated the neurobehavioral deficits (p < 0.05), significantly enhanced the expression levels of SYN, GAP-43 and MAP-2 (p < 0.05), and maintained the synaptic ultrastructure. CONCLUSIONS Buyang Huanwu decoction facilitated neurorehabilitation following a cerebral ischemia insult through an improvement in synaptic plasticity. Graphical abstract The Buyang Huanwu decoction (BYHWD) combined with physical exercise (PE) attenuates synaptic disruption and promotes synaptic plasticity following cerebral ischemia (stroke).
Collapse
|
69
|
In vitro generation of mature midbrain-type dopamine neurons by adjusting exogenous Nurr1 and Foxa2 expressions to their physiologic patterns. Exp Mol Med 2017; 49:e300. [PMID: 28280264 PMCID: PMC5382556 DOI: 10.1038/emm.2016.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/24/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022] Open
Abstract
Developmental information aids stem cell biologists in producing tissue-specific cells. Recapitulation of the developmental profile of a specific cell type in an in vitro stem cell system provides a strategy for manipulating cell-fate choice during the differentiation process. Nurr1 and Foxa2 are potential candidates for genetic engineering to generate midbrain-type dopamine (DA) neurons for experimental and therapeutic applications in Parkinson's disease (PD), as forced expression of these genes in neural stem/precursor cells (NPCs) yields cells with a complete battery of midbrain DA neuron-specific genes. However, simple overexpression without considering their expression pattern in the developing midbrain tends to generate DA cells without adequate neuronal maturation and long-term maintenance of their phenotype in vitro and in vivo after transplantation. We here show that the physiological levels and timing of Nurr1 and Foxa2 expression can be replicated in NPCs by choosing the right vectors and promoters. Controlled expression combined with a strategy for transgene expression maintenance induced generation of fully mature midbrain-type DA neurons. These findings demonstrate the feasibility of cellular engineering for artificial cell-fate specification.
Collapse
|
70
|
Thompson CK, Walenski M, Chen Y, Caplan D, Kiran S, Rapp B, Grunewald K, Nunez M, Zinbarg R, Parrish TB. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia. Neural Plast 2017; 2017:2361691. [PMID: 28357141 PMCID: PMC5357554 DOI: 10.1155/2017/2361691] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 01/12/2023] Open
Abstract
Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere), no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI) analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0-6 mm), with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function.
Collapse
Affiliation(s)
- Cynthia K. Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - YuFen Chen
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Speech, Language, and Hearing, College of Health & Rehabilitation, Boston University, Boston, MA, USA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin Grunewald
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Mia Nunez
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Richard Zinbarg
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Todd B. Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| |
Collapse
|
71
|
Carey JR, Chappuis DM, Finkelstein MJ, Frost KL, Leuty LK, McNulty AL, Oddsson LIE, Seifert EM, Kimberley TJ. Importance and Difficulties of Pursuing rTMS Research in Acute Stroke. Phys Ther 2017; 97:310-319. [PMID: 28426872 PMCID: PMC5803765 DOI: 10.1093/ptj/pzx005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 12/11/2016] [Indexed: 12/19/2022]
Abstract
Although much research has been done on repetitive transcranial magnetic stimulation (rTMS) in chronic stroke, only sparse research has been done in acute stroke despite the particularly rich potential for neuroplasticity in this stage. We attempted a preliminary clinical trial in one active, high-quality inpatient rehabilitation facility (IRF) in the -United States. But after enrolling only 4 patients in the grant period, the study was stopped because of low enrollment. The purpose of this paper is to offer a perspective describing the important physiologic rationale for including rTMS in the early phase of stroke, the reasons for our poor patient enrollment in our attempted study, and recommendations to help future studies succeed. We conclude that, if scientists and clinicians hope to enhance stroke outcomes, more attention must be directed to leveraging conventional rehabilitation with neuromodulation in the acute phase of stroke when the capacity for neuroplasticity is optimal. Difficulties with patient enrollment must be addressed by reassessing traditional inclusion and exclusion criteria. Factors that shorten patients' length of stay in the IRF must also be reassessed at all policy-making levels to make ethical decisions that promote higher functional outcomes while retaining cost consciousness.
Collapse
Affiliation(s)
- James R. Carey
- J. R. Carey, PT, PhD, Division of Physical Therapy and Division of Rehabilitation Science, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455 (USA). Address all correspondence to Dr Carey at:
| | - Diane M. Chappuis
- D. M. Chappuis, MD, Physical Medicine and Rehabilitation, Courage Kenny Rehabilitation Institute, Minneapolis, Minnesota
| | | | - Kate L. Frost
- K. L. Frost, Graduate Program in Rehabilitation Science, University of Minnesota
| | - Lynette K. Leuty
- L. K. Leuty, PT, DPT, Physical Medicine and Rehabilitation, Courage Kenny Rehabilitation Institute
| | - Allison L. McNulty
- A. L. McNulty, PT, DPT, Physical Medicine and Rehabilitation, Courage Kenny Rehabilitation Institute
| | - Lars I. E. Oddsson
- L.I.E. Oddsson, PhD, Division of -Rehabilitation Science, University of -Minnesota
| | - Erin M. Seifert
- E. M. Seifert, PT, DPT, Physical Medicine and Rehabilitation, Courage Kenny Rehabilitation Institute
| | - Teresa J. Kimberley
- T. J. Kimberley, PT, PhD, Division of Physical Therapy and Division of Rehabilitation Science, University of Minnesota
| |
Collapse
|
72
|
Law HCH, Szeto SSW, Quan Q, Zhao Y, Zhang Z, Krakovska O, Lui LT, Zheng C, Lee SMY, Siu KWM, Wang Y, Chu IK. Characterization of the Molecular Mechanisms Underlying the Chronic Phase of Stroke in a Cynomolgus Monkey Model of Induced Cerebral Ischemia. J Proteome Res 2017; 16:1150-1166. [PMID: 28102082 DOI: 10.1021/acs.jproteome.6b00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stroke is one of the main causes of mortality and long-term disability worldwide. The pathophysiological mechanisms underlying this disease are not well understood, particularly in the chronic phase after the initial ischemic episode. In this study, a Macaca fascicularis stroke model consisting of two sample groups, as determined by MRI-quantified infarct volumes as a measure of the stroke severity 28 days after the ischemic episode, was evaluated using qualitative and quantitative proteomics analyses. By using multiple online multidimensional liquid chromatography platforms, 8790 nonredundant proteins were identified that condensed to 5223 protein groups at 1% global false discovery rate (FDR). After the application of a conservative criterion (5% local FDR), 4906 protein groups were identified from the analysis of cerebral cortex. Of the 2068 quantified proteins, differential proteomic analyses revealed that 31 and 23 were dysregulated in the elevated- and low-infarct-volume groups, respectively. Neurogenesis, synaptogenesis, and inflammation featured prominently as the cellular processes associated with these dysregulated proteins. Protein interaction network analysis revealed that the dysregulated proteins for inflammation and neurogenesis were highly connected, suggesting potential cross-talk between these processes in modulating the cytoskeletal structure and dynamics in the chronic phase poststroke. Elucidating the long-term consequences of brain tissue injuries from a cellular prospective, as well as the molecular mechanisms that are involved, would provide a basis for the development of new potentially neurorestorative therapies.
Collapse
Affiliation(s)
- Henry C H Law
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Yun Zhao
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Olga Krakovska
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada
| | - Leong Ting Lui
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Chengyou Zheng
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Simon M-Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Avenue Padre Tomás Pereira S.J., Taipa, Macau 999078, China
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
73
|
Imaging the Transformation of Ipsilateral Internal Capsule Following Focal Cerebral Ischemia in Rat by Diffusion Kurtosis Imaging. J Stroke Cerebrovasc Dis 2017; 26:42-48. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
|
74
|
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci 2016; 10:584. [PMID: 28082858 PMCID: PMC5186786 DOI: 10.3389/fnins.2016.00584] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Marc W Slutzky
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical CenterDurham, NC, USA; Department of Neurobiology, Duke University Medical CenterDurham, NC, USA; Research and Surgery Services, Durham Veterans Affairs Medical CenterDurham, NC, USA
| |
Collapse
|
75
|
Gibbs WS, Weber RA, Schnellmann RG, Adkins DL. Disrupted mitochondrial genes and inflammation following stroke. Life Sci 2016; 166:139-148. [PMID: 27693381 DOI: 10.1016/j.lfs.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
AIMS Determine the subacute time course of mitochondria disruption, cell death, and inflammation in a rat model of unilateral motor cortical ischemic stroke. MAIN METHODS Rats received unilateral ischemia of the motor cortex and were tested on behavioral tasks to determine impairments. Animals were euthanized at 24h, 72h and 144h and mRNA expression of key mitochondria proteins and indicators of inflammation, apoptosis and potential regenerative processes in ipsilesion cortex and striatum, using RT-qPCR. Mitochondrial proteins were examined at 144h using immunoblot analysis. KEY FINDINGS Rats with stroke induced-behavioral deficits had sustained, 144h post-lesion, decreases in mitochondrial-encoded electron transport chain proteins NADH dehydrogenase subunit-1 and cytochrome c oxidase subunit-1 (mRNA and protein) and mitochondrial DNA content in perilesion motor and sensory cortex. Uncoupling-protein-2 gene expression, but not superoxide dismutase-2, remained elevated in ipsilateral cortex and striatum at this time. Cortical inflammatory cytokine, interleukin-6, was increased early and was followed by increased macrophage marker F4/80 after stroke. Cleaved caspase-3 activation was elevated in cortex and growth associated protein-43 was elevated in the cortex and striatum six days post-lesion. SIGNIFICANCE We identified a relationship between three disrupted pathways, (1) sustained loss of mitochondrial proteins and mitochondrial DNA copy number in the cortex linked to decreased mitochondrial gene transcription; (2) early inflammatory response mediated by interleukin- 6 followed by macrophages; (3) apoptosis in conjunction with the activation of regenerative pathways. The stroke-induced spatial and temporal profiles lay the foundation to target pharmacological therapeutics to these three pathways.
Collapse
Affiliation(s)
- Whitney S Gibbs
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston SC, United States
| | - Rachel A Weber
- Department of Neuroscience, Medical University of South Carolina, Charleston SC, United States
| | - Rick G Schnellmann
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States; Department of Pharmacy & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.
| | - DeAnna L Adkins
- Department of Neuroscience, Medical University of South Carolina, Charleston SC, United States; Center of Biomedical Imaging, Medical University of South Carolina, Charleston SC, United States; Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
76
|
Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells. Cell Transplant 2016; 26:243-257. [PMID: 27677799 DOI: 10.3727/096368916x693031] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b-), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b- significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes.
Collapse
|
77
|
Muir KW. Clinical trial design for stem cell therapies in stroke: What have we learned? Neurochem Int 2016; 106:108-113. [PMID: 27623094 DOI: 10.1016/j.neuint.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023]
Abstract
Stem cells of various sources have been investigated in a series of small, safety and feasibility-focused studies over the past 15 years. Understanding of mechanisms of action has evolved and the trial paradigms have become focused on two different approaches - one being an early subacute delivery of cells to reduce acute tissue injury and modify the tissue environment in a direction favourable to reparative processes (for example by being anti-inflammatory, anti-apoptotic, and encouraging endogenous stem cell mobilisation); the other exploring later delivery of cells during the recovery phase after stroke to modulate the local environment in favour of angiogenesis and neurogenesis. The former approach has generally investigated intravenous or intra-arterial delivery of cells with an expected paracrine mode of action and no expected engraftment within the brain. The latter has explored direct intracerebral implantation adjacent to the infarct. Several relevant trials have been conducted, including two controlled trials of intravenously delivered bone marrow-derived cells in the early subacute stage, and two small single-arm phase 1 trials of intracerebrally implanted cells. The findings of these studies and their implications for future trial design are considered.
Collapse
Affiliation(s)
- Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| |
Collapse
|
78
|
Expressions of miR-132, miR-134, and miR-485 in rat primary motor cortex during transhemispheric functional reorganization after contralateral seventh cervical spinal nerve root transfer following brachial plexus avulsion injuries. Neuroreport 2016; 27:12-7. [PMID: 26544683 DOI: 10.1097/wnr.0000000000000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The transfer of a contralateral healthy seventh cervical spinal nerve root (cC7) to the recipient nerve in the injured side is considered a promising procedure for restoration of the physiological functions of an injured hand after brachial plexus root avulsion injury (BPAI). Growing evidence shows that transhemispheric cortical reorganization plays an important role in the functional recovery of the injured arm after cC7 nerve transfer surgery. However, the molecular mechanism underlying the transhemispheric cortical reorganization after cC7 transfer remains elusive. In the present study, we investigated the expression of miR-132, miR-134, and miR-485 in the rat primary motor cortex after cC7 transfer following BPAI by quantitative PCR. The results demonstrated the dynamic alteration in the expression of miR-132, miR-134, and miR-485 in the primary motor cortex of rats after cC7 transfer following BPAI. It indicates that microRNAs are involved in the dynamic transhemispheric functional reorganization after cC7 root transfer following BPAI. Together, this study is the first to provide evidence for the involvement of microRNAs during dynamic transhemispheric functional reorganization after cC7 transfer following BPAI. The results are useful for understanding the mechanism underlying transhemispheric functional reorganization after contralateral seventh cervical spinal nerve root transfer following BPAI.
Collapse
|
79
|
Abstract
ABSTRACT:Despite much progress in stroke prevention and acute intervention, recovery and rehabilitation have traditionally received relatively little scientific attention. There is now increasing interest in the development of stroke recovery drugs and innovative rehabilitation techniques to promote functional recovery after completed stroke. Experimental work over the past two decades indicates that pharmacologic intervention to enhance recovery may be possible in the subacute stage, days to weeks poststroke, after irreversible injury has occurred. This paper discusses the concept of “rehabilitation pharmacology” and reviews the growing literature from animal studies and pilot clinical trials on noradrenergic pharmacotherapy, a new experimental strategy in stroke rehabilitation. Amphetamine, a monoamine agonist that increases brain norepinephrine levels, is the most extensively studied drug shown to promote recovery of function in animal models of focal brain injury. Further research is needed to investigate the mechanisms and clinical efficacy of amphetamine and other novel therapeutic interventions on the recovery process.
Collapse
|
80
|
Takaya S, Liu H, Greve DN, Tanaka N, Leveroni C, Cole AJ, Stufflebeam SM. Altered anterior-posterior connectivity through the arcuate fasciculus in temporal lobe epilepsy. Hum Brain Mapp 2016; 37:4425-4438. [PMID: 27452151 DOI: 10.1002/hbm.23319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
How the interactions between cortices through a specific white matter pathway change during cognitive processing in patients with epilepsy remains unclear. Here, we used surface-based structural connectivity analysis to examine the change in structural connectivity with Broca's area/the right Broca's homologue in the lateral temporal and inferior parietal cortices through the arcuate fasciculus (AF) in 17 patients with left temporal lobe epilepsy (TLE) compared with 17 healthy controls. Then, we investigated its functional relevance to the changes in task-related responses and task-modulated functional connectivity with Broca's area/the right Broca's homologue during a semantic classification task of a single word. The structural connectivity through the AF pathway and task-modulated functional connectivity with Broca's area decreased in the left midtemporal cortex. Furthermore, task-related response decreased in the left mid temporal cortex that overlapped with the region showing a decrease in the structural connectivity. In contrast, the region showing an increase in the structural connectivity through the AF overlapped with the regions showing an increase in task-modulated functional connectivity in the left inferior parietal cortex. These structural and functional changes in the overlapping regions were correlated. The results suggest that the change in the structural connectivity through the left frontal-temporal AF pathway underlies the altered functional networks between the frontal and temporal cortices during the language-related processing in patients with left TLE. The left frontal-parietal AF pathway might be employed to connect anterior and posterior brain regions during language processing and compensate for the compromised left frontal-temporal AF pathway. Hum Brain Mapp 37:4425-4438, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigetoshi Takaya
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hesheng Liu
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Douglas N Greve
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Naoaki Tanaka
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Catherine Leveroni
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew J Cole
- Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven M Stufflebeam
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
81
|
Hasbani MJ, Underhill SM, De Erausquin G, Goldberg MP. Synapse Loss and Regeneration: A Mechanism for Functional Decline and Recovery after Cerebral Ischemia? Neuroscientist 2016. [DOI: 10.1177/107385840000600208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known of the mechanisms governing functional recovery after ischemic brain injury, and there is no clinical therapy established to restore neurologic function after ischemic injury is complete. Even so, pronounced spontaneous recovery of function is often observed in a subset of patients. Resolution of neurological deficits after ischemia must occur through replacement of lost tissue via production of new neurons, or through changes in the structure, function, or connectivity of surviving neurons. This review focuses on the neuronal synapse as a potential locus for functional recovery. Selective disruption of synaptic elements is a characteristic feature of hypoxic-ischemic brain injury, such as that seen in ischemic stroke or cardiac arrest. Ischemic damage to synapses occurs even in the absence of neuronal loss, and therefore might underlie the clinical disability observed in patients following mild or transient ischemia. We review evidence that recovery of lost synapses occurs after ischemic injury and that this recovery may be a necessary step for restoration of neurological function. The process of synapse loss and recovery can be examined in neuronal cultures and experimental stroke models. Such studies may help to gain a better understanding of the extracellular factors and intracellular cascades that facilitate recovery of synapses, and may result in therapeutic approaches to improve function after cerebral ischemia.
Collapse
Affiliation(s)
- M. Josh Hasbani
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne M. Underhill
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel De Erausquin
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Mark P. Goldberg
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
82
|
Abstract
A prevailing view in neuroscience is that the mature CNS has relatively little capacity to respond adaptively to injury. Recent data indicating a high degree of structural plasticity in the adult brain provides an impetus to reexamine how central neurons react to trauma. An analysis of both in vivo and in vitro experimental studies demonstrates that certain brain neurons may have an intrinsic ability to respond to structural injury by an attempt at regenerative sprouting. Indeed, aberrant sprouting following neuronal injury may be the cause of epilepsy following brain trauma and may underlie the neuronal changes stimulated by plaque formation in Alzheimer’s disease. An understanding of the stereotypical reaction to injury of different CNS neurons, as well as the role of nonneuronal cells, may provide new avenues for therapeutic intervention for a range of neurodegenerative diseases and “acquired” forms of CNS injury.
Collapse
|
83
|
Abstract
Basic fibroblast growth factor (bFGF) is a polypeptide with potent trophic effects on brain cells. In particular, bFGF promotes the survival and outgrowth of brain neurons, and protects neurons against toxic processes that are important contributors to cell death after cerebral ischemia (stroke). Recent studies in animal models have suggested two potential uses of exogenously administered bFGF for the treatment of stroke: 1) intra venous bFGF to reduce infarct size in acute stroke, and 2) intracisternal bFGF to enhance neurological recovery in chronic stroke. Human clinical trials of the first of these applications are currently in progress. NEUROSCIENTIST 3:247-250,1997
Collapse
Affiliation(s)
- David A. Lin
- CNS Growth Factor Research Laboratory Department of
Neurology Massachusetts General Hospital and Harvard Medical School Boston,
Massachusetts
| | - Seth P. Finklestein
- CNS Growth Factor Research Laboratory Department of
Neurology Massachusetts General Hospital and Harvard Medical School Boston,
Massachusetts
| |
Collapse
|
84
|
Julkunen P, Määttä S, Säisänen L, Kallioniemi E, Könönen M, Jäkälä P, Vanninen R, Vaalto S. Functional and structural cortical characteristics after restricted focal motor cortical infarction evaluated at chronic stage - Indications from a preliminary study. Clin Neurophysiol 2016; 127:2775-2784. [PMID: 27417053 DOI: 10.1016/j.clinph.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To assess the inter-hemispheric differences in neuronal function and structure of the motor cortex in a small group of chronic stroke patients having suffered a restricted ischemic lesion affecting hand motor representation. GABAergic intracortical inhibition, known to be affected by stroke lesion, was also investigated. METHODS Eight patients exhibiting little or no motor impairment were studied using transcranial magnetic stimulation (TMS) and diffusion weighted imaging (DWI) >15months from diagnosis. Resting motor threshold (MT) for 50μV and 2mV motor evoked potentials, and short-interval intracortical inhibition (SICI) were measured from hand muscles. Apparent diffusion coefficients (ADCs) were analyzed from the DWI for the primary motor cortex (M1), the supplementary motor area (SMA) and thalamus for reflecting changes in neuronal organization. RESULTS The MTs did not differ between the affected (AH) and unaffected hemisphere (UH) in 50μV responses, while the MTs for 2mV responses were higher (p=0.018) in AH. SICI was weakened in AH (p=0.008). ADCs were higher in the affected M1 compared to the unaffected M1 (p=0.018) while there were no inter-hemispheric differences in SMA or thalamus. CONCLUSIONS Inter-hemispheric asymmetry and neuronal organization demonstrated abnormalities in the M1. However, no confident inference can be made whether the observed alterations in neurophysiological and imaging measures have causal role for motor rehabilitation in these patients. SIGNIFICANCE Neurophysiological changes persist and are detectable using TMS years after stroke even though clinical symptoms have normalized.
Collapse
Affiliation(s)
- Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Neurophysiology, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Neurophysiology, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Pekka Jäkälä
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland; Department of Neurology, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Selja Vaalto
- Department of Clinical Neurophysiology, Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
85
|
Kim SJ, Lee HJ, Hwang SW, Pyo H, Yang SP, Lim MH, Park GL, Kim EJ. Clinical Characteristics of Proper Robot-Assisted Gait Training Group in Non-ambulatory Subacute Stroke Patients. Ann Rehabil Med 2016; 40:183-9. [PMID: 27152266 PMCID: PMC4855110 DOI: 10.5535/arm.2016.40.2.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/14/2015] [Indexed: 11/16/2022] Open
Abstract
Objective To identify the clinical characteristics of proper robot-assisted gait training group using exoskeletal locomotor devices in non-ambulatory subacute stroke patients. Methods A total of 38 stroke patients were enrolled in a 4-week robotic training protocol (2 sessions/day, 5 times/week). All subjects were evaluated for their general characteristics, Functional Ambulatory Classification (FAC), Fugl-Meyer Scale (FMS), Berg Balance Scale (BBS), Modified Rankin Scale (MRS), Modified Barthel Index (MBI), and Mini-Mental Status Examination (MMSE) at 0, 2, and 4 weeks. Statistical analysis were performed to determine significant clinical characteristics for improvement of gait function after robot-assisted gait training. Results Paired t-test showed that all functional parameters except MMSE were improved significantly (p<0.05). The duration of disease and baseline BBS score were significantly (p<0.05) correlated with FAC score in multiple regression models. Receiver operating characteristic (ROC) curve showed that a baseline BBS score of '9' was a cutoff value (AUC, 0.966; sensitivity, 91%–100%; specificity, 85%). By repeated-measures ANOVA, the differences in improved walking ability according to time were significant between group of patients who had baseline BBS score of '9' and those who did not have baseline BBS score of '9' Conclusion Our results showed that a baseline BBS score above '9' and a short duration of disease were highly correlated with improved walking ability after robot-assisted gait training. Therefore, baseline BBS and duration of disease should be considered clinically for gaining walking ability in robot-assisted training group.
Collapse
Affiliation(s)
- Soo Jeong Kim
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Korea
| | - Hye Jin Lee
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Korea
| | - Seung Won Hwang
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Korea
| | - Hannah Pyo
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Korea
| | - Sung Phil Yang
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Korea
| | - Mun-Hee Lim
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Korea
| | - Gyu Lee Park
- Korea National Rehabilitation Research Institute, National Rehabilitation Center, Seoul, Korea
| | - Eun Joo Kim
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Korea
| |
Collapse
|
86
|
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16:859-71. [PMID: 27011289 DOI: 10.1517/14712598.2016.1170804] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. AREAS COVERED The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. EXPERT OPINION While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification.
Collapse
Affiliation(s)
- Antoine Monsel
- a Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care , La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre and Marie Curie (UPMC) Univ Paris 06 , Paris , France
| | - Ying-Gang Zhu
- b Department of Pulmonary Disease , Huadong Hospital, Fudan University , Shanghai , China
| | - Varun Gudapati
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Hyungsun Lim
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Jae W Lee
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
87
|
Barios JA, Pisarchyk L, Fernandez-Garcia L, Barrio LC, Ramos M, Martinez-Murillo R, Gonzalez-Nieto D. Long-term dynamics of somatosensory activity in a stroke model of distal middle cerebral artery oclussion. J Cereb Blood Flow Metab 2016; 36:606-20. [PMID: 26661150 PMCID: PMC4794092 DOI: 10.1177/0271678x15606139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022]
Abstract
A constant challenge in experimental stroke is the use of appropriate tests to identify signs of recovery and adverse effects linked to a particular therapy. In this study, we used a long-term longitudinal approach to examine the functional brain changes associated with cortical infarction in a mouse model induced by permanent ligation of the middle cerebral artery (MCA). Sensorimotor function and somatosensory cortical activity were evaluated with fault-foot and forelimb asymmetry tests in combination with somatosensory evoked potentials. The stroke mice exhibited both long-term deficits in the functional tests and impaired responses in the infarcted and intact hemispheres after contralateral and ipsilateral forepaw stimulation. In the infarcted hemisphere, reductions in the amplitudes of evoked responses were detected after contralateral and ipsilateral stimulation. In the intact hemisphere, and similar to cortical stroke patients, a gradual hyperexcitability was observed after contralateral stimulation but no parallel evidence of a response was detected after ipsilateral stimulation. Our results suggest the existence of profound and persistent changes in the somatosensory cortex in this specific mouse cortical stroke model. The study of evoked potentials constitutes a feasible and excellent tool for evaluating the fitness of the somatosensory cortex in relation to functional recovery after preclinical therapeutic intervention.
Collapse
Affiliation(s)
- Juan A Barios
- Unit of Cellular and Animal models, Experimental Neurology Laboratory, Center for Biomedical Technology, Universidad Politécnica, Madrid, Spain
| | - Liudmila Pisarchyk
- Unit of Cellular and Animal models, Experimental Neurology Laboratory, Center for Biomedical Technology, Universidad Politécnica, Madrid, Spain
| | - Laura Fernandez-Garcia
- Unit of Cellular and Animal models, Experimental Neurology Laboratory, Center for Biomedical Technology, Universidad Politécnica, Madrid, Spain
| | - Luis C Barrio
- Unit of Experimental Neurology, Hospital Universitario Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Milagros Ramos
- Unit of Cellular and Animal models, Experimental Neurology Laboratory, Center for Biomedical Technology, Universidad Politécnica, Madrid, Spain Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ricardo Martinez-Murillo
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal (CSIC), Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Unit of Cellular and Animal models, Experimental Neurology Laboratory, Center for Biomedical Technology, Universidad Politécnica, Madrid, Spain Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
88
|
Flores G, Flores-Gómez GD, de Jesús Gomez-Villalobos M. Neuronal changes after chronic high blood pressure in animal models and its implication for vascular dementia. Synapse 2016; 70:198-205. [DOI: 10.1002/syn.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/08/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla. 14 Sur 6301; Puebla 72570 México
| | - Gabriel D. Flores-Gómez
- Departamento de Ciencias de la Salud; Licenciatura en Medicina. Universidad de las Américas Puebla; Puebla Cholula México
| | | |
Collapse
|
89
|
Yoon KJ, Lee YT, Chae SW, Park CR, Kim DY. Effects of anodal transcranial direct current stimulation (tDCS) on behavioral and spatial memory during the early stage of traumatic brain injury in the rats. J Neurol Sci 2016; 362:314-20. [PMID: 26944170 DOI: 10.1016/j.jns.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/10/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive technique to modulate the neural membrane potential. Its effects in the early stage of traumatic brain injury (TBI) have rarely been investigated. This study assessed the effects of anodal tDCS on behavioral and spatial memory in a rat model of traumatic brain injury. Thirty six rats underwent lateral fluid percussion and were then randomly assigned to one of three groups: control (n=12), five-day tDCS over peri-lesional cortex at one (1W, n=12), or two (2W, n=12) weeks post-injury. The Barnes maze (BM) and Rotarod (RR) tests were evaluated in a blind manner on day 1, week 3 and week 5 post-injury. After three weeks, both the 1W and 2W groups showed significant improvements in the BM ratio (P<0.05), whereas only group 2W obtained a significant improvement in the RR ratio compared with the control group (P<0.05). However, there were no significant differences between any of the groups at five weeks after TBI. Immunohistochemistry revealed that only group 2W had a significantly higher brain-derived neurotrophic factor (BDNF) expression in the peri-lesional cortex, which was significantly correlated with the improvement of the Rotarod test at 3-week post-injury. However, BDNF expression in the ipsi-lesional hippocampus was not significantly different among the three groups. Group 1W tended to have increased choline/creatine ratios, as measured by magnetic resonance spectroscopy in the peri-lesional cortex, than the control group (P=0.051). Neither regimen aggravated the lesion volume or brain edema measured by MRI. These beneficial effects were not observed with either regimen at five weeks post-injury. In conclusions, anodal tDCS ameliorated behavioral and spatial memory function in the early phase after TBI when it is delivered two weeks post-injury. Earlier stimulation (one week post-injury) improves spatial memory only. However, the beneficial effects did not persist after cessation of the anodal stimulation.
Collapse
Affiliation(s)
- Kyung Jae Yoon
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Republic of Korea; Medical Research Institute, Regenerative & Neuroscience Lab, Kangbuk Samsung Hospital, Sungkyunkwan University, Republic of Korea
| | - Yong-Taek Lee
- Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Republic of Korea; Medical Research Institute, Regenerative & Neuroscience Lab, Kangbuk Samsung Hospital, Sungkyunkwan University, Republic of Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Republic of Korea
| | - Chae Ri Park
- Asan Institute for Life Science, University of Ulsan College of Medicine, Republic of Korea
| | - Dae Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.
| |
Collapse
|
90
|
From disorders of consciousness to early neurorehabilitation using assistive technologies in patients with severe brain damage. Curr Opin Neurol 2015; 28:587-94. [DOI: 10.1097/wco.0000000000000264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
91
|
Curado MR, Cossio EG, Broetz D, Agostini M, Cho W, Brasil FL, Yilmaz O, Liberati G, Lepski G, Birbaumer N, Ramos-Murguialday A. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training. PLoS One 2015; 10:e0140161. [PMID: 26495971 PMCID: PMC4619686 DOI: 10.1371/journal.pone.0140161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/19/2015] [Indexed: 02/08/2023] Open
Abstract
Background Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Methods Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Results Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Conclusions Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.
Collapse
Affiliation(s)
- Marco Rocha Curado
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
- International Max Planck Research School for Neural & Behavioral Sciences, Tübingen, Germany
- * E-mail:
| | - Eliana Garcia Cossio
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
- International Max Planck Research School for Neural & Behavioral Sciences, Tübingen, Germany
| | - Doris Broetz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
| | - Manuel Agostini
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
| | - Woosang Cho
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
| | - Fabricio Lima Brasil
- Edmond and Lily Safra International Institute of Neuroscience, Institute Santos Dumond, Natal, Brazil
| | - Oezge Yilmaz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
- International Max Planck Research School for Neural & Behavioral Sciences, Tübingen, Germany
| | - Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Guilherme Lepski
- Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
- Ospedale San Camillo, IRCCS, Venice, Italy
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
- TECNALIA Health Technologies, San Sebastian, Spain
| |
Collapse
|
92
|
Huynh W, Vucic S, Krishnan AV, Lin CSY, Kiernan MC. Exploring the Evolution of Cortical Excitability Following Acute Stroke. Neurorehabil Neural Repair 2015; 30:244-57. [PMID: 26150146 DOI: 10.1177/1545968315593804] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Evolution of changes in intracortical excitability following stroke, particularly in the contralesional hemisphere, is being increasingly recognized in relation to maximizing the potential for functional recovery. OBJECTIVE The present study utilized a prospective longitudinal design over a 12-month period from stroke onset, to investigate the evolution of intracortical excitability involving both motor cortices and their relationship to recovery, and whether such changes were influenced by baseline stroke characteristics. METHODS Thirty-one patients with acute unilateral ischemic stroke were recruited from a tertiary hospital stroke unit. Comprehensive clinical assessments and cortical excitability were undertaken at stroke onset using a novel threshold-tracking paired-pulse transcranial magnetic stimulation technique, and repeated at 3-, 6-, and 12-month follow-up in 17 patients who completed the longitudinal assessment. RESULTS Shortly following stroke, short-interval intracortical inhibition (SICI) was significantly reduced in both lesioned and contralesional hemispheres that correlated with degree of recovery over the subsequent 3 months. Over the follow-up period, ipsilesional SICI remained reduced in all patient groups, while SICI over the contralesional hemisphere remained reduced only in the groups with cortical stroke or more baseline functional impairment. CONCLUSIONS The current study has demonstrated that evolution of intracortical excitability, particularly over the contralesional hemisphere, may vary between patients with differing baseline stroke and clinical characteristics, suggesting that ongoing contralesional network recruitment may be necessary for those patients who have significant disruptions to the integrity of ipsilesional motor pathways. Results from the present series have implications for the development of neuromodulatory brain stimulation protocols to harness and thereby facilitate stroke recovery.
Collapse
Affiliation(s)
- William Huynh
- Brain and Mind Research Institute, University of Sydney, New South Wales, Australia Prince of Wales Clinical School, University of New South Wales, New South Wales, Australia
| | - Steve Vucic
- Western Clinical School, University of Sydney, New South Wales, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, New South Wales, Australia
| | - Cindy S-Y Lin
- University of New South Wales, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Research Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
93
|
Merlo L, Cimino F, Angileri FF, La Torre D, Conti A, Cardali SM, Saija A, Germanò A. Alteration in synaptic junction proteins following traumatic brain injury. J Neurotrauma 2015; 31:1375-85. [PMID: 24661152 DOI: 10.1089/neu.2014.3385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. Synaptic junction proteins may be involved in post-TBI alterations, leading to synaptic loss or disrupted plasticity. A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.
Collapse
Affiliation(s)
- Lucia Merlo
- 1 Department of Neurosciences, University of Messina , Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Murata Y, Higo N, Oishi T, Isa T. Increased expression of the growth-associated protein-43 gene after primary motor cortex lesion in macaque monkeys. Neurosci Res 2015; 98:64-9. [PMID: 25959053 DOI: 10.1016/j.neures.2015.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
We recently showed that changes of brain activity in the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of macaque monkeys were responsible for recovery of manual dexterity after lesioning M1. To investigate whether axonal remodeling is associated with M1 lesion-induced changes in brain activity, we assessed gene expression of growth-associated protein-43 (GAP-43) in motor and premotor cortices. Increased expression was observed in the PMv during the period just after recovery and in the perilesional M1 during the plateau phase of recovery. Time-dependent and brain region-specific remodeling may play a role in functional recovery after lesioning M1.
Collapse
Affiliation(s)
- Yumi Murata
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Noriyuki Higo
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba, Ibaraki 305-8568, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Takao Oishi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Tadashi Isa
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences (NIPS), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
95
|
Zou S, Wu X, Zhu B, Yu J, Yang B, Shi J. The pooled incidence of post-stroke seizure in 102 008 patients. Top Stroke Rehabil 2015; 22:460-7. [PMID: 25920619 DOI: 10.1179/1074935715z.00000000062] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Post-stroke seizures and epilepsy may worsen the recovery and increase the disability of stroke patients during their daily lives. However, few meta-analysis studies have been conducted on post-stroke seizures incidence. We carried on a meta-analysis on the incidence rate of post-stroke seizures and associated factors. METHODS We searched the Medline, Embase, Web of Science, Science Citation Index, and Cochrane Library electronic databases (1990-2013) to identify observational studies of post-stroke seizures. Two authors independently extracted the related information from all included studies. We calculated the pooled incidence by meta-analysis using the software R version 12.3. RESULTS A total of 34 longitudinal cohort studies involving 102 008 patients were included in our meta-analysis. The pooled incidence rate of post-stroke seizures was found to be 0.07 [95% confidence interval (CI), 0.05-0.09] while the rate of post-stroke epilepsy (PSE) was 0.05 (95% CI, 0.04-0.06). The incidence of post-stroke seizures in hemorrhagic stroke (0.10, 0.08-0.13) was much higher than in ischemic stroke (0.06, 0.04-0.08) and when the cortical region was involved (0.15, 0.10-0.21). CONCLUSIONS Our meta-analysis showed that seizures occurred in about 6.93% of people with stroke. Seizures occurred more commonly after hemorrhagic stroke and when stroke occurred in the cortical region.
Collapse
Affiliation(s)
- Safeng Zou
- Department of Rehabilitation, Dalian Municipal Central Hospital , Dalian, China
| | | | | | | | | | | |
Collapse
|
96
|
Xu Y, Du S, Yu X, Han X, Hou J, Guo H. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats. Neural Regen Res 2015; 9:2053-8. [PMID: 25657721 PMCID: PMC4316468 DOI: 10.4103/1673-5374.147930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Shiwei Du
- Department of Neurosurgery, General Hospital of Armed Police Forces, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Xiao Han
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Jincai Hou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Hao Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| |
Collapse
|
97
|
Abstract
Reorganization of the cortex post stroke is dependent not only on the lesion site but also on remote brain areas that have structural connections with the area damaged by the stroke. Motor recovery is largely dependent on the intact cortex adjacent to the infarct, which points out the importance of preserving the penumbral areas. There appears to be a priority setting with contralateral and ipsilateral motor pathways, with ipsilateral (unaffected hemisphere) pathways only becoming prominent after more severe strokes where functional contralateral (affected hemisphere) pathways are unable to recover. Ipsilateral or unaffected hemisphere motor pathway activation is therefore associated with a worse prognosis.
Collapse
Affiliation(s)
- Robert Teasell
- Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care and the University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
98
|
Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Fuentes B, Vallejo-Cremades MT, Sanz-Cuesta BE, Díez-Tejedor E. Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats. J Transl Med 2015; 13:46. [PMID: 25637958 PMCID: PMC4322805 DOI: 10.1186/s12967-015-0406-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background Rat adipose tissue-derived-mesenchymal stem cells (rAD-MSCs) have proven to be safe in experimental animal models of stroke. However, in order to use human AD-MSCs (hAD-MSCs) as a treatment for stroke patients, a proof of concept is needed. We analyzed whether the xenogeneic hAD-MSCs were as safe and effective as allogeneic rAD-MSCs in permanent Middle Cerebral Artery Occlusion (pMCAO) in rats. Methods Sprague–Dawley rats were randomly divided into three groups, which were intravenously injected with xenogeneic hAD-MSCs (2 × 106), allogeneic rAD-MSCs (2 × 106) or saline (control) at 30 min after pMCAO. Behavior, cell implantation, lesion size and cell death were evaluated. Brain markers such as GFAP (glial fibrillary acid protein), VEGF (vascular endothelial growth factor) and SYP (synaptophysin) and tumor formation were analyzed. Results Compared to controls, recovery was significantly better at 24 h and continued to be so at 14 d after IV administration of either hAD-MSCs or rAD-MSCs. No reduction in lesion size or migration/implantation of cells in the damaged brain were observed in the treatment groups. Nevertheless, cell death was significantly reduced with respect to the control group in both treatment groups. VEGF and SYP levels were significantly higher, while those of GFAP were lower in the treated groups. At three months, there was no tumor formation. Conclusions hAD-MSCs and rAD-MSCs were safe and without side effects or tumor formation. Both treatment groups showed equal efficacy in terms of functional recovery and decreased ischemic brain damage (cell death and glial scarring) and resulted in higher angiogenesis and synaptogenesis marker levels.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Berta Rodríguez-Frutos
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Jaime Ramos-Cejudo
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Laura Otero-Ortega
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Blanca Fuentes
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María Teresa Vallejo-Cremades
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Borja Enrique Sanz-Cuesta
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
99
|
Gadd45b Mediates Axonal Plasticity and Subsequent Functional Recovery After Experimental Stroke in Rats. Mol Neurobiol 2014; 52:1245-1256. [DOI: 10.1007/s12035-014-8909-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/28/2014] [Indexed: 01/25/2023]
|
100
|
Felling RJ, Song H. Epigenetic mechanisms of neuroplasticity and the implications for stroke recovery. Exp Neurol 2014; 268:37-45. [PMID: 25263580 DOI: 10.1016/j.expneurol.2014.09.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 01/06/2023]
Abstract
Ischemic stroke is a devastating brain injury and an important cause of neurologic disability worldwide and across the lifespan. Despite the physical, social, and economic burdens of this disease there is only a single approved medicine for the treatment of acute stroke, and its use is unfortunately limited to the small fraction of patients presenting within the narrow therapeutic window. Following stroke, there is a period of plasticity involving cell genesis, axon growth, and synaptic modulation that is essential to spontaneous recovery. Treatments focusing on neuroprotection and enhancing recovery have been the focus of intense preclinical studies, but translation of these treatments into clinical use has been disappointing thus far. The important role of epigenetic mechanisms in disease states is becoming increasingly apparent, including in ischemic stroke. These regulators of gene expression are poised to be critical mediators of recovery following stroke. In this review we discuss evidence for the role of epigenetics in neuroplasticity and the implications for stroke recovery.
Collapse
Affiliation(s)
- Ryan J Felling
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Baltimore, MD 21286, USA.
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Baltimore, MD 21286, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|