51
|
Chignon A, Bon-Baret V, Boulanger MC, Bossé Y, Mathieu P. Oxyphospholipids in Cardiovascular Calcification. Arterioscler Thromb Vasc Biol 2020; 41:11-19. [PMID: 33232199 DOI: 10.1161/atvbaha.120.313790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mineralization of cardiovascular structures including blood vessels and heart valves is a common feature. We postulate that ectopic mineralization is a response-to-injury in which signals delivered to cells trigger a chain of events to restore and repair tissues. Maladaptive response to external or internal signals promote the expression of danger-associated molecular patterns, which, in turn, promote, when expressed chronically, a procalcifying gene program. Growing evidence suggest that danger-associated molecular patterns such as oxyphospholipids and small lipid mediators, generated by enzyme activity, are involved in the transition of vascular smooth muscle cells and valve interstitial cells to an osteoblast-like phenotype. Understanding the regulation and the molecular processes underpinning the mineralization of atherosclerotic plaques and cardiac valves are providing valuable mechanistic insights, which could lead to the development of novel therapies. Herein, we provide a focus account on the role oxyphospholipids and their mediators in the development of mineralization in plaques and calcific aortic valve disease.
Collapse
Affiliation(s)
- Arnaud Chignon
- Department of Surgery, Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center (A.C., V.B.-B., M.-C.B., P.M.), Laval University, Canada
| | - Valentin Bon-Baret
- Department of Surgery, Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center (A.C., V.B.-B., M.-C.B., P.M.), Laval University, Canada
| | - Marie-Chloé Boulanger
- Department of Surgery, Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center (A.C., V.B.-B., M.-C.B., P.M.), Laval University, Canada
| | - Yohan Bossé
- Department of Molecular Medicine (Y.B.), Laval University, Canada
| | - Patrick Mathieu
- Department of Surgery, Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center (A.C., V.B.-B., M.-C.B., P.M.), Laval University, Canada
| |
Collapse
|
52
|
Gao C, Hu W, Liu F, Zeng Z, Zhu Q, Fan J, Chen J, Cheng S, Yu K, Qian Y, Ren T, Zhao J, Liu X, Wang J. Aldo-keto reductase family 1 member B induces aortic valve calcification by activating hippo signaling in valvular interstitial cells. J Mol Cell Cardiol 2020; 150:54-64. [PMID: 33045251 DOI: 10.1016/j.yjmcc.2020.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
AIMS Calcific aortic valve disease (CAVD) is a primary cause of cardiovascular mortality; however, its mechanisms are unknown. Currently, no effective pharmacotherapy is available for CAVD. Aldo-keto reductase family 1 member B (Akr1B1) has been identified as a potential therapeutic target for valve interstitial cell calcification. Herein, we hypothesized that inhibition of Akr1B1 can attenuate aortic valve calcification. METHODS AND RESULTS Normal and degenerative tricuspid calcific valves from human samples were analyzed by immunoblotting and immunohistochemistry. The results showed significant upregulation of Akr1B1 in CAVD leaflets. Akr1B1 inhibition attenuated calcification of aortic valve interstitial cells in osteogenic medium. In contrast, overexpression of Akr1B1 aggravated calcification in osteogenic medium. Mechanistically, using RNA sequencing (RNAseq), we revealed that Hippo-YAP signaling functions downstream of Akr1B1. Furthermore, we established that the protein level of the Hippo-YAP signaling effector active-YAP had a positive correlation with Akr1B1. Suppression of YAP reversed Akr1B1 overexpression-induced Runx2 upregulation. Moreover, YAP activated the Runx2 promoter through TEAD1 in a manner mediated by ChIP and luciferase reporter systems. Animal experiments showed that the Akr1B1 inhibitor epalrestat attenuated aortic valve calcification induced by a Western diet in LDLR-/- mice. CONCLUSION This study demonstrates that inhibition of Akr1B1 can attenuate the degree of calcification both in vitro and in vivo. The Akr1B1 inhibitor epalrestat may be a potential treatment option for CAVD.
Collapse
Affiliation(s)
- Chenyang Gao
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Wangxing Hu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Feng Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Zhiru Zeng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Qifeng Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jiaqi Fan
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Kaixiang Yu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jing Zhao
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
53
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
54
|
Zhang P, Wang AP, Yang HP, Ai L, Zhang HJ, Wang YM, Bi YL, Fan HH, Gao J, Zhang HY, Liu JZ. Apelin-13 attenuates high glucose-induced calcification of MOVAS cells by regulating MAPKs and PI3K/AKT pathways and ROS-mediated signals. Biomed Pharmacother 2020; 128:110271. [PMID: 32450527 DOI: 10.1016/j.biopha.2020.110271] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
Vascular calcification (VC) is an inducement of many cardiovascular diseases. Clinic evidences have confirmed that diabetes was the independent risk factor for VC, and the mechanism has not been well explored. Apelin as a ligand molecule is widely found in the cardiovascular system and showed potential in inhibiting VC, but the inhibitory effect and mechanism of apelin-13 against high glucose-induced VC have not been investigated yet. Herein, apelin-13 was employed to inhibit high glucose-induced VC in mouse aortic vascular smooth muscle cells (MOVAS), and the underlying mechanism was explored. The results showed that apelin-13 significantly inhibited high glucose-induced cells proliferation, migration and invasion of MOVAS cells. Apelin-13 also effectively attenuated high glucose-induced calcification by inhibiting alkaline phosphatase (ALP) activity and expression. Further investigation revealed that apelin-13 dramatically suppressed high glucose-induced DNA damage through inhibiting reactive oxide species (ROS) generation. Moreover, apelin-13 also effectively improved high glucose-induced dysfunction of MAPKs and PI3K/AKT. Inhibition of ERK by inhibitor (U0126) significantly blocked high glucose-induced calcification, which further confirmed the significance of MAPKs. Taken together, these results suggested that apelin-13 had the potential to attenuate high glucose-induced calcification of MOVAS cells by inhibiting ROS-mediated DNA damage and regulating MAPKs and PI3K/AKT pathways. Our findings validated the strategy of using apelin-13 maybe a novel way in treating high glucose-mediated VC.
Collapse
MESH Headings
- Alkaline Phosphatase/antagonists & inhibitors
- Alkaline Phosphatase/metabolism
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA Damage/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glucose/toxicity
- Intercellular Signaling Peptides and Proteins/pharmacology
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress/drug effects
- Phosphatidylinositol 3-Kinase/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Vascular Calcification/enzymology
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
Collapse
Affiliation(s)
- Pu Zhang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ai-Ping Wang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Hong-Peng Yang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Lei Ai
- Department of Clinical Laboratory, Taishan Coal Sanitarium of Shandong, Taian, Shandong, 271000, China
| | - Hong-Jun Zhang
- Department of Anesthesiology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, 471003, China
| | - Yong-Mei Wang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Yan-Ling Bi
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Huai-Hai Fan
- Department of Intensive Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Jing Gao
- Department of Stomatology, Taian City Central Hospital, Taian, Shandong, 271000, China.
| | - Huan-Yi Zhang
- Department of Cardiovascular Medicine, Taian City Central Hospital, Taian, Shandong, 271000, China.
| | - Jian-Zhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
55
|
Pedriali G, Morciano G, Patergnani S, Cimaglia P, Morelli C, Mikus E, Ferrari R, Gasbarro V, Giorgi C, Wieckowski MR, Pinton P. Aortic Valve Stenosis and Mitochondrial Dysfunctions: Clinical and Molecular Perspectives. Int J Mol Sci 2020; 21:ijms21144899. [PMID: 32664529 PMCID: PMC7402290 DOI: 10.3390/ijms21144899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
Calcific aortic stenosis is a disorder that impacts the physiology of heart valves. Fibrocalcific events progress in conjunction with thickening of the valve leaflets. Over the years, these events promote stenosis and obstruction of blood flow. Known and common risk factors are congenital defects, aging and metabolic syndromes linked to high plasma levels of lipoproteins. Inflammation and oxidative stress are the main molecular mediators of the evolution of aortic stenosis in patients and these mediators regulate both the degradation and remodeling processes. Mitochondrial dysfunction and dysregulation of autophagy also contribute to the disease. A better understanding of these cellular impairments might help to develop new ways to treat patients since, at the moment, there is no effective medical treatment to diminish neither the advancement of valve stenosis nor the left ventricular function impairments, and the current approaches are surgical treatment or transcatheter aortic valve replacement with prosthesis.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Simone Patergnani
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Paolo Cimaglia
- Cardiovascular Department, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (P.C.); (E.M.)
| | - Cristina Morelli
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44121 Ferrara, Italy;
| | - Elisa Mikus
- Cardiovascular Department, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (P.C.); (E.M.)
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44121 Ferrara, Italy;
| | - Vincenzo Gasbarro
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland;
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
- Correspondence: ; Tel.: +0532-455802
| |
Collapse
|
56
|
Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, Bönner F, Zimmer S, Nickenig G, Jansen F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler Thromb Vasc Biol 2020; 40:885-900. [PMID: 32160774 DOI: 10.1161/atvbaha.119.313067] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aortic valve stenosis is the most prevalent heart valve disease worldwide. Although interventional treatment options have rapidly improved in recent years, symptomatic aortic valve stenosis is still associated with high morbidity and mortality. Calcific aortic valve stenosis is characterized by a progressive fibro-calcific remodeling and thickening of the aortic valve cusps, which subsequently leads to valve obstruction. The underlying pathophysiology is complex and involves endothelial dysfunction, immune cell infiltration, myofibroblastic and osteoblastic differentiation, and, subsequently, calcification. To date, no pharmacotherapy has been established to prevent aortic valve calcification. However, novel promising therapeutic targets have been recently identified. This review summarizes the current knowledge of pathomechanisms involved in aortic valve calcification and points out novel treatment strategies.
Collapse
Affiliation(s)
- Philip Roger Goody
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Mohammed Rabiul Hosen
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Dominik Christmann
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Sven Thomas Niepmann
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | | | - Matti Adam
- Clinic for Internal Medicine II, University Hospital Cologne, Germany (M.A.)
| | - Florian Bönner
- Clinic for Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Germany (F.B.)
| | - Sebastian Zimmer
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Georg Nickenig
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| | - Felix Jansen
- From the Heart Center Bonn, Department of Medicine II, University Hospital Bonn, Germany (P.R.G., M.R.H., D.C., S.T.N., S.Z., G.N., F.J.)
| |
Collapse
|
57
|
Guardia de Souza e Silva T, do Val de Paulo MEF, da Silva JRM, da Silva Alves A, Britto LRG, Xavier GF, Lopes Sandoval MR. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer's disease. Heliyon 2020; 6:e03281. [PMID: 32055729 PMCID: PMC7005440 DOI: 10.1016/j.heliyon.2020.e03281] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/12/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in cognitive function. Intracerebroventricular injection of streptozotocin (icv-STZ) has been used as an experimental model of Sporadic AD (SAD) in rodents and represents a promising tool for etiopathogenic analysis and evaluation of new therapeutic proposals for AD. The icv-STZ model shows many aspects of SAD abnormalities, resulting in decreased brain glucose and energy metabolism, cognitive impairment, oxidative stress, neuronal loss, and amyloid angiopathy. Royal jelly (RJ), a substance produced by worker honeybees of the Apis mellifera species, has been popularly used for more than 30 years in areas related to health eating and natural medicine. Researches indicate that RJ has a several pharmacological activities, including neuroprotective and improvement of cognitive function. The objective of this study was to investigate the effects of oral treatment with royal jelly during 2 weeks in Wistar rats submitted to icv-STZ on a working memory and neuroprotection, as evaluated by neurogenesis, neurodegeneration and oxidative stress. In this study, icv-STZ injection induced deleterious effects in the hippocampus, associated with cognitive impairments, and developed marked neurodegeneration, besides the reduction of neurogenesis and increased oxidative stress. On the other hand, RJ long-term oral administration induced beneficial effects in animals injured by icv-STZ injection, increasing retention time for working spatial memory, reducing neurodegeneration and oxidative stress level and increasing the proliferation of new neurons in the hippocampus. Thus, RJ promotes beneficial effects on cognitive functions and exhibits a neuroprotective action in the STZ experimental model of SAD.
Collapse
Affiliation(s)
| | | | | | - Adilson da Silva Alves
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, Brazil
| | - Luiz Roberto G. Britto
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, São Paulo, Brazil
| | - Gilberto Fernando Xavier
- Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo, Brazil
| | - Maria Regina Lopes Sandoval
- Laboratory of Pharmacology, Butantan Institute, Avenida Vital Brasil, 1500, cep 05503-900, São Paulo, Brazil
| |
Collapse
|
58
|
Balogh E, Tóth A, Méhes G, Trencsényi G, Paragh G, Jeney V. Hypoxia Triggers Osteochondrogenic Differentiation of Vascular Smooth Muscle Cells in an HIF-1 (Hypoxia-Inducible Factor 1)-Dependent and Reactive Oxygen Species-Dependent Manner. Arterioscler Thromb Vasc Biol 2020; 39:1088-1099. [PMID: 31070451 DOI: 10.1161/atvbaha.119.312509] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective- Vascular calcification is associated with high risk of cardiovascular events and mortality. Osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) is the major cellular mechanism underlying vascular calcification. Because tissue hypoxia is a common denominator in vascular calcification, we investigated whether hypoxia per se triggers osteochondrogenic differentiation of VSMCs. Approach and Results- We studied osteochondrogenic differentiation of human aorta VSMCs cultured under normoxic (21% O2) and hypoxic (5% O2) conditions. Hypoxia increased protein expression of HIF (hypoxia-inducible factor)-1α and its target genes GLUT1 (glucose transporter 1) and VEGFA (vascular endothelial growth factor A) and induced mRNA and protein expressions of osteochondrogenic markers, that is, RUNX2 (runt-related transcription factor 2), SOX9 (Sry-related HMG box-9), OCN (osteocalcin) and ALP (alkaline phosphatase), and induced a time-dependent calcification of the extracellular matrix of VSMCs. HIF-1 inhibition by chetomin abrogated the effect of hypoxia on osteochondrogenic markers and abolished extracellular matrix calcification. Hypoxia triggered the production of reactive oxygen species, which was inhibited by chetomin. Scavenging reactive oxygen species by N-acetyl cysteine attenuated hypoxia-mediated upregulation of HIF-1α, RUNX2, and OCN protein expressions and inhibited extracellular matrix calcification, which effect was mimicked by a specific hydrogen peroxide scavenger sodium pyruvate and a mitochondrial reactive oxygen species inhibitor rotenone. Ex vivo culture of mice aorta under hypoxic conditions triggered calcification which was inhibited by chetomin and N-acetyl cysteine. In vivo hypoxia exposure (10% O2) increased RUNX2 mRNA levels in mice lung and the aorta. Conclusions- Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.
Collapse
Affiliation(s)
- Enikő Balogh
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Andrea Tóth
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology (G.M.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine (G.T.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Paragh
- Department of Internal Medicine (G.P.), Faculty of Medicine, University of Debrecen, Hungary
| | - Viktória Jeney
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
59
|
Li X, Matsumoto T, Takuwa M, Saeed Ebrahim Shaiku Ali M, Hirabashi T, Kondo H, Fujino H. Protective Effects of Astaxanthin Supplementation against Ultraviolet-Induced Photoaging in Hairless Mice. Biomedicines 2020; 8:biomedicines8020018. [PMID: 31973028 PMCID: PMC7168265 DOI: 10.3390/biomedicines8020018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) light induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Astaxanthin (AST), a ketocarotenoid isolated from Haematococcus pluvialis, has been extensively studied owing to its possible effects on skin health as well as UV protection. In addition, AST attenuates the increased generation of reactive oxygen species (ROS) and capillary regression of the skeletal muscle. In this study, we investigated whether AST could protect against UV-induced photoaging and reduce capillary regression in the skin of HR-1 hairless mice. UV light induces wrinkle formation, epidermal thickening, and capillary regression in the dermis of HR-1 hairless mice. The administration of AST reduced the UV-induced wrinkle formation and skin thickening, and increased collagen fibers in the skin. AST supplementation also inhibited the generation of ROS, decreased wrinkle formation, reduced epidermal thickening, and increased the density of capillaries in the skin. We also found an inverse correlation between wrinkle formation and the density of capillaries. An association between photoaging and capillary regression in the skin was also observed. These results suggest that AST can protect against photoaging caused by UV irradiation and the inhibitory effects of AST on photoaging may be associated with the reduction of capillary regression in the skin.
Collapse
|
60
|
Semicarbazide-Sensitive Amine Oxidase Increases in Calcific Aortic Valve Stenosis and Contributes to Valvular Interstitial Cell Calcification. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5197376. [PMID: 32411328 PMCID: PMC7201527 DOI: 10.1155/2020/5197376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/21/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
Introduction Calcific aortic valve stenosis (CAVS) is a common disease associated with aging. Oxidative stress participates in the valve calcification process in CAVS. Semicarbazide-sensitive amine oxidase (SSAO), also referred to as vascular adhesion protein 1 (VAP-1), transforms primary amines into aldehydes, generating hydrogen peroxide and ammonia. SSAO is expressed in calcified aortic valves, but its role in valve calcification has remained largely unexplored. The aims of this study were to characterize the expression and the activity of SSAO during aortic valve calcification and to establish the effects of SSAO inhibition on human valvular interstitial cell (VIC) calcification. Methods Human aortic valves from n = 80 patients were used for mRNA extraction and expression analysis, Western blot, SSAO activity determination, immunohistochemistry, and the isolation of primary VIC cultures. Results SSAO mRNA, protein, and activity were increased with increasing calcification within human aortic valves and localized in the vicinity of the calcified zones. The valvular SSAO upregulation was consistent after stratification of the subjects according to cardiovascular and CAVS risk factors associated with increased oxidative stress: body mass index, diabetes, and smoking. SSAO mRNA levels were significantly associated with poly(ADP-ribose) polymerase 1 (PARP1) in calcified tissue. Calcification of VIC was inhibited in the presence of the specific SSAO inhibitor LJP1586. Conclusion The association of SSAO expression and activity with valvular calcification and oxidative stress as well as the decreased VIC calcification by SSAO inhibition points to SSAO as a possible marker and therapeutic target to be further explored in CAVS.
Collapse
|
61
|
Liu H, Wang L, Pan Y, Wang X, Ding Y, Zhou C, Shah AM, Zhao G, Zhang M. Celastrol Alleviates Aortic Valve Calcification Via Inhibition of NADPH Oxidase 2 in Valvular Interstitial Cells. JACC Basic Transl Sci 2019; 5:35-49. [PMID: 32043019 PMCID: PMC7000868 DOI: 10.1016/j.jacbts.2019.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
The reactive oxygen species–generating enzyme Nox2 is up-regulated in the leaflets of both rabbit and human with CAVD. Nox2 is markedly induced in cultured porcine AVICs after osteogenic stimulation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification. Celastrol, a natural compound capable of inhibiting Nox2 activity, significantly decreased AVIC calcification in vitro, and mitigated the severity of aortic valve fibrosis, calcification, and stenosis in a rabbit model of CAVD in vivo. The protective effects of celastrol may, in part, involve the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway.
This study sought to investigate whether reactive oxygen species (ROS)–generating reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) contributes to calcific aortic valve disease (CAVD) or whether celastrol, a natural Nox2 inhibitor, may provide potential therapeutic target for CAVD. CAVD is an active and cellular-driven fibrocalcific process characterized by differentiation of aortic valvular interstitial cells (AVICs) toward an osteogenic-like phenotype. ROS levels increase in calcified aortic valves, while the sources of ROS and their roles in the pathogenesis of CAVD are elusive. The roles of Nox2 and the effects of celastrol were studied using cultured porcine AVICs in vitro and a rabbit CAVD model in vivo. Nox2 proteins were significantly upregulated in human aortic valves with CAVD. In vitro, Nox2 was markedly induced upon stimulation of AVICs with osteogenic medium, along with the increases in ROS production and calcium nodule formation. Celastrol significantly decreased calcium deposition of AVICs by 35%, with a reduction of ROS generation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification by 39%, the inhibitory effect being similar to celastrol treatment. Mechanistically, either celastrol treatment or knockdown of Nox2 significantly inhibited glycogen synthase kinase 3 beta/β-catenin signaling, leading to attenuation of fibrogenic and osteogenic responses of AVICs. In a rabbit CAVD model, administration of celastrol significantly reduced aortic valve ROS production, fibrosis, calcification, and severity of aortic stenosis, with less left ventricular dilatation and better preserved contractile function. Upregulation of Nox2 is critically involved in CAVD. Celastrol is effective to alleviate CAVD, likely through the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway in AVICs.
Collapse
Key Words
- AV, aortic valve
- AVIC, aortic valvular interstitial cell
- CAVD, calcific aortic valve disease
- GSK3B, glycogen synthase kinase 3 beta
- HC, high cholesterol
- LV, left ventricular
- Nox2
- Nox2, reduced nicotinamide adenine dinucleotide phosphate oxidase 2
- OGM, osteogenic medium
- OPN, osteopontin
- ROS, reactive oxygen species
- Runx2, runt-related transcription factor 2
- fibrosis
- reactive oxygen species
- stenosis
- tripterine
- valve interstitial cells
- vitD2, vitamin D2
Collapse
Affiliation(s)
- Huibing Liu
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Libo Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yating Pan
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Xuehui Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yuan Ding
- Department of Ultrasonography, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Chaoyuan Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Guoan Zhao
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Min Zhang
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
62
|
Santis AD. Impact of Transcatheter Aortic Valve Implantation on Kidney Function: the "Renovalvular" Interaction in Aortic Stenosis. Arq Bras Cardiol 2019; 113:1112-1113. [PMID: 31800686 PMCID: PMC7021270 DOI: 10.36660/abc.20190753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Antonio de Santis
- Universidade de São Paulo Instituto do Coração - Unidade Clinica de Valvopatia, São Paulo, SP - Brazil
| |
Collapse
|
63
|
Carmo LS, Burdmann EA, Fessel MR, Almeida YE, Pescatore LA, Farias-Silva E, Gamarra LF, Lopes GH, Aloia TPA, Liberman M. Expansive Vascular Remodeling and Increased Vascular Calcification Response to Cholecalciferol in a Murine Model of Obesity and Insulin Resistance. Arterioscler Thromb Vasc Biol 2019; 39:200-211. [PMID: 30580565 DOI: 10.1161/atvbaha.118.311880] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective- We hypothesized that ob/ob mice develop expansive vascular remodeling associated with calcification. Approach and Results- We quantified and investigated mechanisms of vascular remodeling and vascular calcification in ob/ob mice after vitamin D3(VD) stimulation or PBS (control), compared with C57BL/6 mice. Both ob/ob (OBVD [VD-treated ob/ob mice]) and C57BL/6 (C57VD [VD-treated C57BL/6 mice]) received 8×103 IU/day of intraperitoneal VD for 14 days. Control ob/ob (OBCT [PBS-treated ob/ob mice]) and C57BL/6 (C57CT [PBS-treated C57BL/6 mice]) received intraperitoneal PBS for 14 days. Hypervitaminosis D increased the external and internal elastic length in aortae from OBVD, resulting in increased total vascular area and lumen vascular area, respectively, which characterizes expansive vascular remodeling. OBVD decreased the aortic wall thickness, resulting in hypotrophic vascular remodeling. We demonstrated increased collagen deposition, elastolysis, and calcification in aortae from OBVD. Our results showed a positive correlation between expansive vascular remodeling and vascular calcification in OBVD. We demonstrated increased serum calcium levels, augmented Bmp (bone morphogenetic protein)-2 and osteochondrogenic proteins expression in OBVD aortae. Furthermore, aortae from OBVD increased oxidative stress, coincidently with augmented in situ MMP (matrix metalloproteinase) activity and exhibited no VDR (VD receptor) inhibition after VD. Conclusions- Our data provide evidence that obese and insulin-resistant mice (ob/ob) developed expansive hypotrophic vascular remodeling correlated directly with increased vascular calcification after chronic VD stimulation. Positive hypotrophic vascular remodeling and vascular calcification in this mouse model is possibly mediated by the convergence of absence VDR downregulation after VD stimulation, increased reactive oxygen species generation, and MMP activation.
Collapse
Affiliation(s)
- Luciana S Carmo
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil.,the Division of Nephrology, LIM 12, University of São Paulo Medical School, Brazil (L.S.C., E.A.B.)
| | - Emmanuel A Burdmann
- the Division of Nephrology, LIM 12, University of São Paulo Medical School, Brazil (L.S.C., E.A.B.)
| | - Melissa R Fessel
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Youri E Almeida
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Luciana A Pescatore
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Elisangela Farias-Silva
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lionel F Gamarra
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Gabriel H Lopes
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Thiago P A Aloia
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marcel Liberman
- From the Department of IIEP-Research and Teaching Institute (L.S.C., M.R.F., Y.E.A., L.A.P., E.F.-S., L.F.G., G.H.L., T.P.A.A., M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Critical Care Medicine and Cardiology (M.L.), Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
64
|
Chao CT, Yeh HY, Tsai YT, Chuang PH, Yuan TH, Huang JW, Chen HW. Natural and non-natural antioxidative compounds: potential candidates for treatment of vascular calcification. Cell Death Discov 2019; 5:145. [PMID: 31754473 PMCID: PMC6853969 DOI: 10.1038/s41420-019-0225-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients with advanced age, or those with chronic kidney disease and diabetes, accounting for substantial global cardiovascular burden. The pathophysiology of VC involves active mineral deposition by transdifferentiated vascular smooth muscle cells exhibiting osteoblast-like behavior, building upon cores with or without apoptotic bodies. Oxidative stress drives the progression of the cellular phenotypic switch and calcium deposition in the vascular wall. In this review, we discuss potential compounds that shield these cells from the detrimental influences of reactive oxygen species as promising treatment options for VC. A comprehensive summary of the current literature regarding antioxidants for VC is important, as no effective therapy is currently available for this disease. We systematically searched through the existing literature to identify original articles investigating traditional antioxidants and novel compounds with antioxidant properties with regard to their effectiveness against VC in experimental or clinical settings. We uncovered 36 compounds with antioxidant properties against VC pathology, involving mechanisms such as suppression of NADPH oxidase, BMP-2, and Wnt/β-catenin; anti-inflammation; and activation of Nrf2 pathways. Only two compounds have been tested clinically. These findings suggest that a considerable opportunity exists to harness these antioxidants for therapeutic use for VC. In order to achieve this goal, more translational studies are needed.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital BeiHu Branch, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - You-Tien Tsai
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Huan Chuang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hang Yuan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
65
|
Mazzaferro S, Cianciolo G, De Pascalis A, Guglielmo C, Urena Torres PA, Bover J, Tartaglione L, Pasquali M, La Manna G. Bone, inflammation and the bone marrow niche in chronic kidney disease: what do we know? Nephrol Dial Transplant 2019; 33:2092-2100. [PMID: 29733407 DOI: 10.1093/ndt/gfy115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023] Open
Abstract
Recent improvements in our understanding of physiology have altered the way in which bone is perceived: no longer is it considered as simply the repository of divalent ions, but rather as a sophisticated endocrine organ with potential extraskeletal effects. Indeed, a number of pathologic conditions involving bone in different ways can now be reconsidered from a bone-centred perspective. For example, in metabolic bone diseases like osteoporosis (OP) and renal osteodystrophy (ROD), the association with a worse cardiovascular outcome can be tentatively explained by the possible derangements of three recently discovered bone hormones (osteocalcin, fibroblast growth factor 23 and sclerostin) and a bone-specific enzyme (alkaline phosphatase). Further, in recent years the close link between bone and inflammation has been better appreciated and a wide range of chronic inflammatory states (from rheumatoid arthritis to ageing) are being explored to discover the biochemical changes that ultimately lead to bone loss and OP. Also, it has been acknowledged that the concept of the bone-vascular axis may explain, for example, the relationship between bone metabolism and vessel wall diseases like atherosclerosis and arteriosclerosis, with potential involvement of a number of cytokines and metabolic pathways. A very important discovery in bone physiology is the bone marrow (BM) niche, the functional unit where stem cells interact, exchanging signals that impact on their fate as bone-forming cells or immune-competent haematopoietic elements. This new element of bone physiology has been recognized to be dysfunctional in diabetes (so-called diabetic mobilopathy), with possible clinical implications. In our opinion, ROD, the metabolic bone disease of renal patients, will in the future probably be identified as a cause of BM niche dysfunction. An integrated view of bone, which includes the BM niche, now seems necessary in order to understand the complex clinical entity of chronic kidney disease-mineral and bone disorders and its cardiovascular burden. Bone is thus becoming a recurrently considered paradigm for different inter-organ communications that needs to be considered in patients with complex diseases.
Collapse
Affiliation(s)
- Sandro Mazzaferro
- Department of Cardiovascular Respiratory Nephrologic Geriatric and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy.,Nephrology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Antonio De Pascalis
- Nephrology, Dialysis and Renal Transplant Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Chiara Guglielmo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Pablo A Urena Torres
- Ramsay-Générale de Santé, Clinique du Landy, Department of Nephrology and Dialysis and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Jordi Bover
- Fundació Puigvert, Department of Nephrology IIB Sant Pau, RedinRen, Barcelona, Catalonia, Spain
| | - Lida Tartaglione
- Department of Cardiovascular Respiratory Nephrologic Geriatric and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Pasquali
- Nephrology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
66
|
Kostyunin AE, Ovcharenko EA, Barbarash OL. [The renin-angiotensin-aldosterone system as a potential target for therapy in patients with calcific aortic stenosis: a literature review]. ACTA ACUST UNITED AC 2019; 59:4-17. [PMID: 31884936 DOI: 10.18087/cardio.n328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
Calcific aortic valve stenosis (CAVS) is a serious socio-economic problem in developed countries because this disease is the most common indication for aortic valve replacement. Currently, there are no methods for non-invasive treatment of CAVS. Nevertheless, it is assumed that effective drug therapy for CAVS can be developed on the basis of modulators of the renin-angiotensin-aldosterone system (RAAS), which is involved in the pathogenesis of this disease. The purpose of this paper is to compile and analyze current information on the role of RAAS in the CAVS pathophysiology. Recent data on the effectiveness of RAAS inhibition are reviewed.
Collapse
Affiliation(s)
- A E Kostyunin
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - E A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - O L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases
| |
Collapse
|
67
|
Lee A, Wei S, Schwertani A. A Notch more: Molecular players in bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 134:62-68. [DOI: 10.1016/j.yjmcc.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
|
68
|
Chen Y, Zhao X, Wu H. Metabolic Stress and Cardiovascular Disease in Diabetes Mellitus: The Role of Protein O-GlcNAc Modification. Arterioscler Thromb Vasc Biol 2019; 39:1911-1924. [PMID: 31462094 DOI: 10.1161/atvbaha.119.312192] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian cells metabolize glucose primarily for energy production, biomass synthesis, and posttranslational glycosylation; and maintaining glucose metabolic homeostasis is essential for normal physiology of cells. Impaired glucose homeostasis leads to hyperglycemia, a hallmark of diabetes mellitus. Chronically increased glucose in diabetes mellitus promotes pathological changes accompanied by impaired cellular function and tissue damage, which facilitates the development of cardiovascular complications, the major cause of morbidity and mortality of patients with diabetes mellitus. Emerging roles of glucose metabolism via the hexosamine biosynthesis pathway (HBP) and increased protein modification via O-linked β-N-acetylglucosamine (O-GlcNAcylation) have been demonstrated in diabetes mellitus and implicated in the development of diabetic cardiovascular complications. This review will discuss the biological outcomes of the glucose metabolism via the hexosamine biogenesis pathway and protein O-GlcNAcylation in regulating cellular homeostasis, and highlight the regulations and contributions of elevated O-GlcNAcylation to the pathogenesis of diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Yabing Chen
- From the Department of Pathology (Y.C.), University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Division (Y.C.), Birmingham, Alabama
| | - Xinyang Zhao
- Biochemistry (X.Z.), University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), University of Alabama at Birmingham
| |
Collapse
|
69
|
Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2019. [PMID: 29514202 PMCID: PMC5852633 DOI: 10.1093/cvr/cvy010] [Citation(s) in RCA: 726] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular calcification is associated with a significant increase in all-cause mortality and atherosclerotic plaque rupture. Calcification has been determined to be an active process driven in part by vascular smooth muscle cell (VSMC) transdifferentiation within the vascular wall. Historically, VSMC phenotype switching has been viewed as binary, with the cells able to adopt a physiological contractile phenotype or an alternate ‘synthetic’ phenotype in response to injury. More recent work, including lineage tracing has however revealed that VSMCs are able to adopt a number of phenotypes, including calcific (osteogenic, chondrocytic, and osteoclastic), adipogenic, and macrophagic phenotypes. Whilst the mechanisms that drive VSMC differentiation are still being elucidated it is becoming clear that medial calcification may differ in several ways from the intimal calcification seen in atherosclerotic lesions, including risk factors and specific drivers for VSMC phenotype changes and calcification. This article aims to compare and contrast the role of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calcification, including aging, uraemia, mechanical stress, oxidative stress, and inflammation. The review also discusses novel findings that have also brought attention to specific pro- and anti-calcifying proteins, extracellular vesicles, mitochondrial dysfunction, and a uraemic milieu as major determinants of vascular calcification.
Collapse
Affiliation(s)
- Andrew L Durham
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| | - Mei Y Speer
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Marta Scatena
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Catherine M Shanahan
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| |
Collapse
|
70
|
Feng H, Wang JY, Yu B, Cong X, Zhang WG, Li L, Liu LM, Zhou Y, Zhang CL, Gu PL, Wu LL. Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α Inhibits Vascular Calcification Through Sirtuin 3-Mediated Reduction of Mitochondrial Oxidative Stress. Antioxid Redox Signal 2019; 31:75-91. [PMID: 30829051 DOI: 10.1089/ars.2018.7620] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: Vascular calcification is associated with cardiovascular death in patients with chronic kidney disease (CKD). Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays an important role in various cardiovascular diseases. However, its role in vascular calcification remains unknown. Results: Adenine-induced rat CKD model was used to induce arterial medial calcification. The level of PGC-1α decreased in abdominal aorta of CKD rats. Overexpression of PGC-1α significantly ameliorated calcium deposition in rat abdominal aorta, isolated carotid rings, and cultured vascular smooth muscle cells (VSMCs). Mitochondrial reactive oxygen species (mtROS) increased in calcifying aorta and VSMCs. Upregulation of PGC-1α inhibited, whereas PGC-1α depletion promoted β-glycerophosphate-induced mtROS production and calcium deposition. Moreover, PGC-1α increased superoxide dismutase 1 (SOD1) and SOD2 contents in vivo and in vitro, whereas SOD2 deletion eliminated PGC-1α-mediated mtROS change and promoted calcium deposition. Mechanistically, sirtuin 3 (SIRT3) expression declined in calcifying aorta and VSMCs, while PGC-1α overexpression restored SIRT3 expression. Inhibition of SIRT3 by 3-TYP or siRNA (small interfering RNA) reduced PGC-1α-induced upregulation of SOD1 and SOD2, and abolished the protective effect of PGC-1α on calcification of VSMCs. Importantly, PGC-1α was reduced in calcified femoral arteries in CKD patients. In phosphate-induced human umbilical arterial calcification, upregulation of PGC-1α attenuated calcium nodule formation, while this protective effect was abolished by SIRT3 inhibitor. Innovation: We showed for the first time that PGC-1α is an important endogenous regulator against vascular calcification. Induction of PGC-1α could be a potential strategy to treat vascular calcification in CKD patients. Conclusions: PGC-1α protected against vascular calcification by SIRT3-mediated mtROS reduction.
Collapse
Affiliation(s)
- Han Feng
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jin-Yu Wang
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Bo Yu
- 2 Division of Constitutive and Regenerative Sciences, School of Dentistry, University of California, Los Angeles, California
| | - Xin Cong
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Wei-Guang Zhang
- 3 Department of Human Anatomy, Peking University School of Basic Medical Sciences, Beijing, China
| | - Li Li
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Li-Mei Liu
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yun Zhou
- 4 Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Cheng-Lin Zhang
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Pei-Liang Gu
- 3 Department of Human Anatomy, Peking University School of Basic Medical Sciences, Beijing, China
| | - Li-Ling Wu
- 1 Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
71
|
Development of calcific aortic valve disease: Do we know enough for new clinical trials? J Mol Cell Cardiol 2019; 132:189-209. [PMID: 31136747 DOI: 10.1016/j.yjmcc.2019.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD), previously thought to represent a passive degeneration of the valvular extracellular matrix (VECM), is now regarded as an intricate multistage disorder with sequential yet intertangled and interacting underlying processes. Endothelial dysfunction and injury, initiated by disturbed blood flow and metabolic disorders, lead to the deposition of low-density lipoprotein cholesterol in the VECM further provoking macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines. Such changes in the valvular homeostasis induce differentiation of normally quiescent valvular interstitial cells (VICs) into synthetically active myofibroblasts producing excessive quantities of the VECM and proteins responsible for its remodeling. As a result of constantly ongoing degradation and re-deposition, VECM becomes disorganised and rigid, additionally potentiating myofibroblastic differentiation of VICs and worsening adaptation of the valve to the blood flow. Moreover, disrupted and excessively vascularised VECM is susceptible to the dystrophic calcification caused by calcium and phosphate precipitating on damaged collagen fibers and concurrently accompanied by osteogenic differentiation of VICs. Being combined, passive calcification and biomineralisation synergistically induce ossification of the aortic valve ultimately resulting in its mechanical incompetence requiring surgical replacement. Unfortunately, multiple attempts have failed to find an efficient conservative treatment of CAVD; however, therapeutic regimens and clinical settings have also been far from the optimal. In this review, we focused on interactions and transitions between aforementioned mechanisms demarcating ascending stages of CAVD, suggesting a predisposing condition (bicuspid aortic valve) and drug combination (lipid-lowering drugs combined with angiotensin II antagonists and cytokine inhibitors) for the further testing in both preclinical and clinical trials.
Collapse
|
72
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
73
|
Bonetti A, Marchini M, Ortolani F. Ectopic mineralization in heart valves: new insights from in vivo and in vitro procalcific models and promising perspectives on noncalcifiable bioengineered valves. J Thorac Dis 2019; 11:2126-2143. [PMID: 31285908 DOI: 10.21037/jtd.2019.04.78] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ectopic calcification of native and bioprosthetic heart valves represents a major public health problem causing severe morbidity and mortality worldwide. Valve procalcific degeneration is known to be caused mainly by calcium salt precipitation onto membranes of suffering non-scavenged cells and dead-cell-derived products acting as major hydroxyapatite nucleators. Although etiopathogenesis of calcification in native valves is still far from being exhaustively elucidated, it is well known that bioprosthesis mineralization may be primed by glutaraldehyde-mediated toxicity for xenografts, cryopreservation-related damage for allografts and graft immune rejection for both. Instead, mechanical valves, which are free from calcification, are extremely thrombogenic, requiring chronic anticoagulation therapies for transplanted patients. Since surgical substitution of failed valves is still the leading therapeutic option, progressive improvements in tissue engineering techniques are crucial to attain readily available valve implants with good biocompatibility, proper functionality and long-term durability in order to meet the considerable clinical demand for valve substitutes. Bioengineered valves obtained from acellular non-valvular scaffolds or decellularized native valves are proving to be a compelling alternative to mechanical and bioprosthetic valve implants, as they appear to permit repopulation by the host's own cells with associated tissue remodelling, growth and repair, besides showing less propensity to calcification and adequate hemodynamic performances. In this review, insights into valve calcification onset as revealed by in vivo and in vitro procalcific models are updated as well as advances in the field of valve bioengineering.
Collapse
|
74
|
Xie L, Mao M, Wang C, Zhang L, Pan Z, Shi J, Duan X, Jia S, Jiang B. Potential Biomarkers for Primary Open-Angle Glaucoma Identified by Long Noncoding RNA Profiling in the Aqueous Humor. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:739-752. [DOI: 10.1016/j.ajpath.2018.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
|
75
|
Manno G, Bentivegna R, Morreale P, Nobile D, Santangelo A, Novo S, Novo G. Chronic inflammation: A key role in degeneration of bicuspid aortic valve. J Mol Cell Cardiol 2019; 130:59-64. [PMID: 30885747 DOI: 10.1016/j.yjmcc.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) is the most common congenital valvular heart defect resulting from abnormal aortic cusp formation during heart development, where two of the three normal and equal sized cusps fuse into a single large cusp resulting in a two cusps aortic valve. Over the past years, much interest has been given in understanding the pathogenesis of BAV and its complications. In this review, we focused on the role of inflammation, involved in the degeneration of BAV and the development of its complications. ROLE OF INFLAMMATION From a pathophysiological point of view, BAV may rapidly progress into aortic stenosis (AS) and is related to aortopathy. Several histopathologic studies have demonstrated that the development and progression of alterations in bicuspid aortic valve are related to an active process that includes: oxidative stress, shear stress, endothelial dysfunction, disorganized tissue architecture, inflammatory cells and cytokines. These factors are closely related one to each other, constituting the basis of the structural and functional alterations of the BAV. CONCLUSION Chronic inflammation plays a key role in the degeneration of BAV. Severe aortic stenosis in bicuspid aortic valves is associated with a more aggressive inflammatory process, increased inflammatory cells infiltration and neovascularization when compared to tricuspid AS. These findings might help to explain the more frequent onset and rapid progression of AS and the heavy aortic valve calcification seen in patients with BAV.
Collapse
Affiliation(s)
- G Manno
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy.
| | - R Bentivegna
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - P Morreale
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - D Nobile
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - A Santangelo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - S Novo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy
| | - G Novo
- Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (PROMISE) "G. D'Alessandro", Italy; Cardiology Unit, University Hospital P. Giaccone, Palermo, Italy.
| |
Collapse
|
76
|
Mathieu P, Boulanger MC. Autotaxin and Lipoprotein Metabolism in Calcific Aortic Valve Disease. Front Cardiovasc Med 2019; 6:18. [PMID: 30881959 PMCID: PMC6405425 DOI: 10.3389/fcvm.2019.00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is a complex trait disorder characterized by calcific remodeling of leaflets. Genome-wide association (GWA) study and Mendelian randomization (MR) have highlighted that LPA, which encodes for apolipoprotein(a) [apo(a)], is causally associated with CAVD. Apo(a) is the protein component of Lp(a), a LDL-like particle, which transports oxidized phospholipids (OxPLs). Autotaxin (ATX), which is encoded by ENPP2, is a member of the ecto-nucleotidase family of enzymes, which is, however, a lysophospholipase. As such, ATX converts phospholipids into lysophosphatidic acid (LysoPA), a metabolite with potent and diverse biological properties. Studies have recently underlined that ATX is enriched in the Lp(a) lipid fraction. Functional experiments and data obtained in mouse models suggest that ATX mediates inflammation and mineralization of the aortic valve. Recent findings also indicate that epigenetically-driven processes lower the expression of phospholipid phosphatase 3 (PLPP3) and increased LysoPA signaling and inflammation in the aortic valve during CAVD. These recent data thus provide novel insights about how lipoproteins mediate the development of CAVD. Herein, we review the implication of lipoproteins in CAVD and examine the role of ATX in promoting the osteogenic transition of valve interstitial cells (VICs).
Collapse
Affiliation(s)
- Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Research Center, Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Department of Surgery, Research Center, Quebec Heart and Lung Institute, Laval University, Quebec, QC, Canada
| |
Collapse
|
77
|
Ali MS, Wang X, Lacerda CMR. The effect of physiological stretch and the valvular endothelium on mitral valve proteomes. Exp Biol Med (Maywood) 2019; 244:241-251. [PMID: 30722697 PMCID: PMC6425102 DOI: 10.1177/1535370219829006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT This work is important to the field of heart valve pathophysiology as it provides new insights into molecular markers of mechanically induced valvular degeneration as well as the protective role of the valvular endothelium. These discoveries reported here advance our current knowledge of the valvular endothelium and how its removal essentially takes valve leaflets into an environmental shock. In addition, it shows that static conditions represent a mild pathological state for valve leaflets, while 10% cyclic stretch provides valvular cell quiescence. These findings impact the field by informing disease stages and by providing potential new drug targets to reverse or slow down valvular change before it affects cardiac function.
Collapse
Affiliation(s)
- Mir S Ali
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Carla MR Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| |
Collapse
|
78
|
Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ. Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. Eur J Nucl Med Mol Imaging 2018; 46:251-265. [PMID: 30302506 PMCID: PMC6267660 DOI: 10.1007/s00259-018-4176-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in developed countries and atherosclerosis is the major cause of cardiovascular disease. Atherosclerotic lesions obstruct blood flow in the arterial vessel wall and can rupture leading to the formation of occlusive thrombi. Conventional diagnostic tools are still of limited value for identifying the vulnerable arterial plaque and for predicting its risk of rupture and of releasing thromboembolic material. Knowledge of the molecular and biological processes implicated in the process of atherosclerosis will advance the development of imaging probes to differentiate the vulnerable plaque. The development of imaging probes with high sensitivity and specificity in identifying high-risk atherosclerotic vessel wall changes and plaques is crucial for improving knowledge-based decisions and tailored individual interventions. Arterial PET imaging with 18F-FDG has shown promising results in identifying inflammatory vessel wall changes in numerous studies and clinical trials. However, due to its limited specificity in general and its intense physiological uptake in the left ventricular myocardium that impair imaging of the coronary arteries, different PET tracers for the molecular imaging of atherosclerosis have been evaluated. This review describes biological, chemical and medical expertise supporting a translational approach that will enable the development of new or the evaluation of existing PET tracers for the identification of vulnerable atherosclerotic plaques for better risk prediction and benefit to patients.
Collapse
Affiliation(s)
- Jan Bucerius
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229 HX, Maastricht, The Netherlands. .,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), 6200 MD, Maastricht, The Netherlands. .,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.
| | - Ingrid Dijkgraaf
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), 6200 MD, Maastricht, The Netherlands.,Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229 HX, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Leon J Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), 6200 MD, Maastricht, The Netherlands. .,Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
79
|
Wang ZQ, Jing LL, Yan JC, Sun Z, Bao ZY, Shao C, Pang QW, Geng Y, Zhang LL, Li LH. Role of AGEs in the progression and regression of atherosclerotic plaques. Glycoconj J 2018; 35:443-450. [PMID: 29987432 DOI: 10.1007/s10719-018-9831-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
The formation of advanced glycation end-products(AGEs) is an important cause of metabolic memory in diabetic patients and a key factor in the formation of atherosclerosis(AS) plaques in patients with diabetes mellitus. Related studies showed that AGEs could disrupt hemodynamic steady-state and destroy vascular wall integrity through the endothelial barrier damage, foam cell(FC) formation, apoptosis, calcium deposition and other aspects. At the same time, AGEs could initiate oxidative stress and inflammatory response cascade via receptor-depended and non-receptor-dependent pathways, promoting plaques to develop from a steady state to a vulnerable state and eventually tend to rupture and thrombosis. Numerous studies have confirmed that these pathological processes mentioned above could lead to acute coronary heart disease(CHD) and other acute cardiovascular and cerebrovascular events. However, the specific role of AGEs in the progression and regression of AS plaques has not yet been fully elucidated. In this paper, the formation, source, metabolism, physical and chemical properties of AGEs and their role in the migration of FCs and plaque calcification are briefly described, we hope to provide new ideas for the researchers that struggling in this field.
Collapse
Affiliation(s)
- Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Le-le Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jin-Chuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zheng-Yang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi-Wen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yue Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Li-Li Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Li-Hua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
80
|
Mourino-Alvarez L, Baldan-Martin M, Sastre-Oliva T, Martin-Lorenzo M, Maroto AS, Corbacho-Alonso N, Rincon R, Martin-Rojas T, Lopez-Almodovar LF, Alvarez-Llamas G, Vivanco F, Padial LR, de la Cuesta F, Barderas MG. A comprehensive study of calcific aortic stenosis: from rabbit to human samples. Dis Model Mech 2018; 11:dmm.033423. [PMID: 29752279 PMCID: PMC6031362 DOI: 10.1242/dmm.033423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 12/22/2022] Open
Abstract
The global incidence of calcific aortic stenosis (CAS) is increasing owing, in part, to a growing elderly population. The condition poses a great challenge to public health, because of the multiple comorbidities of these older patients. Using a rabbit model of CAS, we sought to characterize protein alterations associated with calcified valve tissue that can be ultimately measured in plasma as non-invasive biomarkers of CAS. Aortic valves from healthy and mild stenotic rabbits were analyzed by two-dimensional difference gel electrophoresis, and selected reaction monitoring was used to directly measure the differentially expressed proteins in plasma from the same rabbits to corroborate their potential as diagnostic indicators. Similar analyses were performed in plasma from human subjects, to examine the suitability of these diagnostic indicators for transfer to the clinical setting. Eight proteins were found to be differentially expressed in CAS tissue, but only three were also altered in plasma samples from rabbits and humans: transitional endoplasmic reticulum ATPase, tropomyosin α-1 chain and L-lactate dehydrogenase B chain. Results of receiver operating characteristic curves showed the discriminative power of the scores, which increased when the three proteins were analyzed as a panel. Our study shows that a molecular panel comprising three proteins related to osteoblastic differentiation could have utility as a serum CAS indicator and/or therapeutic target. Summary: Using a rabbit model of calcific aortic stenosis, we have defined a molecular panel of three proteins related to osteoblastic differentiation. Additionally, this panel has been confirmed in human samples.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Montserrat Baldan-Martin
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Aroa Sanz Maroto
- Department of Immunology, IIS-Fundacion Jimenez Diaz, 28040 Madrid, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Raul Rincon
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Gloria Alvarez-Llamas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Fernando Vivanco
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | - Fernando de la Cuesta
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Maria Gonzalez Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| |
Collapse
|
81
|
Wang D, Wei L, Yang Y, Liu H. Dietary supplementation with ketoacids protects against CKD-induced oxidative damage and mitochondrial dysfunction in skeletal muscle of 5/6 nephrectomised rats. Skelet Muscle 2018; 8:18. [PMID: 29855350 PMCID: PMC5984473 DOI: 10.1186/s13395-018-0164-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background A low-protein diet supplemented with ketoacids (LPD + KA) maintains the nutritional status of patients with chronic kidney disease (CKD). Oxidative damage and mitochondrial dysfunction associated with the upregulation of p66SHC and FoxO3a have been shown to contribute to muscle atrophy. This study aimed to determine whether LPD + KA improves muscle atrophy and attenuates the oxidative stress and mitochondrial damage observed in CKD rats. Methods 5/6 nephrectomy rats were randomly divided into three groups and fed with either 22% protein (normal-protein diet; NPD), 6% protein (low-protein diets; LPD) or 5% protein plus 1% ketoacids (LPD + KA) for 24 weeks. Sham-operated rats with NPD intake were used as the control. Results KA supplementation improved muscle atrophy and function in CKD + LPD rats. It also reduced the upregulation of genes related to the ubiquitin-proteasome system and 26S proteasome activity, as well as protein and mitochondrial oxidative damage in the muscles of CKD + LPD rats. Moreover, KA supplementation prevented the drastic decrease in activities of mitochondrial electron transport chain complexes, mitochondrial respiration, and content in the muscles of CKD + LPD rats. Furthermore, KA supplementation reversed the elevation in p66Shc and FoxO3a expression in the muscles of CKD + LPD rats. Conclusions Our results showed that KA supplementation to be beneficial to muscle atrophy in CKD + LPD, which might be associated with improvement of oxidative damage and mitochondrial dysfunction through suppression of p66Shc and FoxO3a.
Collapse
Affiliation(s)
- Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China. .,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, 518033, Guangdong, China. .,Department of Nephrology, Ruikang Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530011, Guangxi, China.
| | - Lianbo Wei
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Huan Liu
- Department of Nephrology, Ruikang Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530011, Guangxi, China
| |
Collapse
|
82
|
Shen J, Zhang N, Lin YN, Xiang P, Liu XB, Shan PF, Hu XY, Zhu W, Tang YL, Webster KA, Cai R, Schally AV, Wang J, Yu H. Regulation of Vascular Calcification by Growth Hormone-Releasing Hormone and Its Agonists. Circ Res 2018; 122:1395-1408. [PMID: 29618597 DOI: 10.1161/circresaha.117.312418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.
Collapse
Affiliation(s)
- Jian Shen
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Ning Zhang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yi-Nuo Lin
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - PingPing Xiang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Xian-Bao Liu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | | | - Xin-Yang Hu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Wei Zhu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yao-Liang Tang
- Vascular Biology Center, Georgia Regents University, Augusta (Y.-l.T.)
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
| | - Renzhi Cai
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Andrew V Schally
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Jian'an Wang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Hong Yu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| |
Collapse
|
83
|
Lanham SA, Cagampang FR, Oreffo ROC. The influence of a high fat diet on bone and soft tissue formation in Matrix Gla Protein knockout mice. Sci Rep 2018; 8:3635. [PMID: 29483527 PMCID: PMC5827663 DOI: 10.1038/s41598-018-21650-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Studies suggest bone growth and development are influenced by maternal nutrition, during intrauterine and early postnatal life. This study assessed the role of MGP and a maternal high fat diet on vitamin K-dependent proteins' gene expression and their impact on bone formation. Knockout (KO) offspring were smaller than wild type (WT) littermates, yet possessed the same volume of intrascapular brown adipose tissue. The total proportion of body fat was reduced, but only in animals on a control diet. Lung air volume was observed to be comparable in both KO and WT animals on the same diet. The degree of aortic calcification was reduced in KO animals maintained on a HF diet. KO females on the high fat diet showed reduced cortical bone volume and thickness in the femur and tibia. Gene expression levels of GGCX and VKOR were reduced in control fed KO animals suggesting a potential link between gene expression levels of MGP, GGCX, and VKOR and total volumes of bone, calcified soft tissue, and iBAT; with implications for modulation of body length and mass. Our results confirm the important role for vitamin K in bone and calcified soft tissue, but now extend this role to include iBAT.
Collapse
Affiliation(s)
- S A Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - F R Cagampang
- Maternal, Pregnancy, and Child Research Group, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
84
|
Zhang Z, Jiang W, Yang H, Lin Q, Qin X. The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo. Exp Cell Res 2018; 362:324-331. [DOI: 10.1016/j.yexcr.2017.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 01/20/2023]
|
85
|
Iacobini C, Fantauzzi CB, Pugliese G, Menini S. Role of Galectin-3 in Bone Cell Differentiation, Bone Pathophysiology and Vascular Osteogenesis. Int J Mol Sci 2017; 18:ijms18112481. [PMID: 29160796 PMCID: PMC5713447 DOI: 10.3390/ijms18112481] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 01/15/2023] Open
Abstract
Galectin-3 is expressed in various tissues, including the bone, where it is considered a marker of chondrogenic and osteogenic cell lineages. Galectin-3 protein was found to be increased in the differentiated chondrocytes of the metaphyseal plate cartilage, where it favors chondrocyte survival and cartilage matrix mineralization. It was also shown to be highly expressed in differentiating osteoblasts and osteoclasts, in concomitance with expression of osteogenic markers and Runt-related transcription factor 2 and with the appearance of a mature phenotype. Galectin-3 is expressed also by osteocytes, though its function in these cells has not been fully elucidated. The effects of galectin-3 on bone cells were also investigated in galectin-3 null mice, further supporting its role in all stages of bone biology, from development to remodeling. Galectin-3 was also shown to act as a receptor for advanced glycation endproducts, which have been implicated in age-dependent and diabetes-associated bone fragility. Moreover, its regulatory role in inflammatory bone and joint disorders entitles galectin-3 as a possible therapeutic target. Finally, galectin-3 capacity to commit mesenchymal stem cells to the osteoblastic lineage and to favor transdifferentiation of vascular smooth muscle cells into an osteoblast-like phenotype open a new area of interest in bone and vascular pathologies.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, La Sapienza University, 00185 Rome, Italy.
| | | | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, La Sapienza University, 00185 Rome, Italy.
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
86
|
Xue Y, St. Hilaire C, Hortells L, Phillippi JA, Sant V, Sant S. Shape-Specific Nanoceria Mitigate Oxidative Stress-Induced Calcification in Primary Human Valvular Interstitial Cell Culture. Cell Mol Bioeng 2017; 10:483-500. [PMID: 30319717 PMCID: PMC6178984 DOI: 10.1007/s12195-017-0495-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Lack of effective pharmacological treatment makes valvular calcification a significant clinical problem in patients with valvular disease and bioprosthetic/mechanical valve replacement therapies. Elevated levels of reactive oxygen species (ROS) in valve tissue have been identified as a prominent hallmark and driving factor for valvular calcification. However, the therapeutic value of ROS-modulating agents for valvular calcification remains elusive. We hypothesized that ROS-modulating shape-specific cerium oxide nanoparticles (CNPs) will inhibit oxidative stress-induced valvular calcification. CNPs are a class of self-regenerative ROS-modulating agents, which can switch between Ce3+ and Ce4+ in response to oxidative microen-vironment. In this work, we developed oxidative stress-induced valve calcification model using two patient-derived stenotic valve interstitial cells (hVICs) and investigated the therapeutic effect of shape-specific CNPs to inhibit hVIC calcification. METHODS Human valvular interstitial cells (hVICs) were obtained from a normal healthy donor and two patients with calcified aortic valves. hVICs were characterized for their phenotypic (mesenchymal, myofibroblast and osteoblast) marker expression by qRT-PCR and antioxidant enzymes activity before and after exposure to hydrogen peroxide (H2O2)-induced oxidative stress. Four shape-specific CNPs (sphere, short rod, long rod, and cube) were synthesized via hydrothermal or ultra-sonication method and characterized for their biocompatibility in hVICs by alamarBlue® assay, and ROS scavenging ability by DCFH-DA assay. H2O2 and inorganic phosphate (Pi) were co-administrated to induce hVIC calcification in vitro as demonstrated by Alizarin Red S staining and calcium quantification. The effect of CNPs on inhibiting H2O2-induced hVIC calcification was evaluated. RESULTS hVICs isolated from calcified valves exhibited elevated osteoblast marker expression and decreased antioxidant enzyme activities compared to the normal hVICs. Due to the impaired antioxidant enzyme activities, acute H2O2-induced oxidative stress resulted in higher ROS levels and osteoblast marker expression in both diseased hVICs when compared to the normal hVICs. Shape-specific CNPs exhibited shape-dependent abiotic ROS scavenging ability, and excellent cytocompatibility. Rod and sphere CNPs scavenged H2O2-induced oxidative stress in hVICs in a shape- and dose-dependent manner by lowering intracellular ROS levels and osteoblast marker expression. Further, CNPs also enhanced activity of antioxidant enzymes in hVICs to combat oxidative stress. Cube CNPs were not effective ROS scavengers. The addition of H2O2 in the Pi-induced calcification model further increased calcium deposition in vitro in a time-dependent manner. Co-administration of rod CNPs with Pi and H2O2 mitigated calcification in the diseased hVICs. CONCLUSIONS We demonstrated that hVICs derived from calcified valves exhibited impaired antioxidant defense mechanisms and were more susceptible to oxidative stress than normal hVICs. CNPs scavenged H2O2-induced oxidative stress in hVICs in a shape-dependent manner. The intrinsic ROS scavenging ability of CNPs and their ability to induce cellular antioxidant enzyme activities may confer protection from oxidative stress-exacerbated calcification. CNPs represent promising antioxidant therapy for treating valvular calcification and deserve further investigation.
Collapse
Affiliation(s)
- Yingfei Xue
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261 USA
| | - Cynthia St. Hilaire
- Department of Medicine, Division of Cardiology & Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Luis Hortells
- Department of Medicine, Division of Cardiology & Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Julie A. Phillippi
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261 USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15219 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261 USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261 USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261 USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 USA
- 808A Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
87
|
Mathieu P, Arsenault BJ, Boulanger MC, Bossé Y, Koschinsky ML. Pathobiology of Lp(a) in calcific aortic valve disease. Expert Rev Cardiovasc Ther 2017; 15:797-807. [DOI: 10.1080/14779072.2017.1367286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, QC, Canada
| | - Benoit J. Arsenault
- Quebec Heart and Lung Institute/Department of Medicine, Laval University, Quebec, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, QC, Canada
| | - Yohan Bossé
- Quebec Heart and Lung Institute/Department of Molecular Medicine, Laval University, Quebec, QC, Canada
| | | |
Collapse
|
88
|
Maranhão RC, Guido MC, de Lima AD, Tavares ER, Marques AF, Tavares de Melo MD, Nicolau JC, Salemi VM, Kalil-Filho R. Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats. Int J Nanomedicine 2017; 12:3767-3784. [PMID: 28553113 PMCID: PMC5440040 DOI: 10.2147/ijn.s129324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Acute myocardial infarction (MI) is accompanied by myocardial inflammation, fibrosis, and ventricular remodeling that, when excessive or not properly regulated, may lead to heart failure. Previously, lipid core nanoparticles (LDE) used as carriers of the anti-inflammatory drug methotrexate (MTX) produced an 80-fold increase in the cell uptake of MTX. LDE-MTX treatment reduced vessel inflammation and atheromatous lesions induced in rabbits by cholesterol feeding. The aim of the study was to investigate the effects of LDE-MTX on rats with MI, compared with commercial MTX treatment. Materials and methods Thirty-eight Wistar rats underwent left coronary artery ligation and were treated with LDE-MTX, or with MTX (1 mg/kg intraperitoneally, once/week, starting 24 hours after surgery) or with LDE without drug (MI-controls). A sham-surgery group (n=12) was also included. Echocardiography was performed 24 hours and 6 weeks after surgery. The animals were euthanized and their hearts were analyzed for morphometry, protein expression, and confocal microscopy. Results LDE-MTX treatment achieved a 40% improvement in left ventricular (LV) systolic function and reduced cardiac dilation and LV mass, as shown by echocardiography. LDE-MTX reduced the infarction size, myocyte hypertrophy and necrosis, number of inflammatory cells, and myocardial fibrosis, as shown by morphometric analysis. LDE-MTX increased antioxidant enzymes; decreased apoptosis, macrophages, reactive oxygen species production; and tissue hypoxia in non-infarcted myocardium. LDE-MTX increased adenosine bioavailability in the LV by increasing adenosine receptors and modulating adenosine catabolic enzymes. LDE-MTX increased the expression of myocardial vascular endothelium growth factor (VEGF) associated with adenosine release; this correlated not only with an increase in angiogenesis, but also with other parameters improved by LDE-MTX, suggesting that VEGF increase played an important role in the beneficial effects of LDE-MTX. Overall effects of commercial MTX were minor, and did not improve LV function or infarction size. Both treatments did not induce any toxicity. Conclusion The remarkable improvement in heart function and reduction in infarction size achieved by LDE-MTX supports future clinical trials.
Collapse
Affiliation(s)
- Raul C Maranhão
- Laboratory of Metabolism and Lipids.,Faculty of Pharmaceutical Sciences
| | | | | | | | | | - Marcelo D Tavares de Melo
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Jose C Nicolau
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Vera Mc Salemi
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| | - Roberto Kalil-Filho
- Heart Failure Unit, Clinical Cardiology Division, Heart Institute (InCor), Medical School Hospital, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
89
|
Beloqui O, Moreno MU, San José G, Pejenaute Á, Cortés A, Landecho MF, Díez J, Fortuño A, Zalba G. Increased phagocytic NADPH oxidase activity associates with coronary artery calcification in asymptomatic men. Free Radic Res 2017; 51:389-396. [PMID: 28427294 DOI: 10.1080/10715762.2017.1321745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vascular calcification is a common feature in atherosclerosis and associates with cardiovascular events. Oxidative stress may be involved in the pathogenesis of vascular calcification. Previous studies have shown that the phagocytic NADPH oxidase is associated with atherosclerosis. The objective of the present study was to investigate the association between phagocytic NADPH oxidase-mediated superoxide production and coronary artery calcium (CAC). NADPH oxidase-mediated superoxide production was determined by chemiluminescence and CAC by computed tomography in 159 asymptomatic men free of overt clinical atherosclerosis. Multivariate linear regression analyses were used to assess the relationship between CAC and NADPH oxidase-mediated superoxide production. Compared with individuals in the lowest score of CAC (= 0 Agatston units), those in the upper score (>400 Agatston units) showed higher superoxide production (p < 0.05). In correlation analysis, superoxide production positively (p < 0.01) correlated with CAC, which in multivariate analysis remained significant after adjusting for age, HDL-cholesterol, triglycerides, body mass index, smoking, arterial hypertension and diabetes mellitus. In conclusion, in a population of men without clinically overt atherosclerotic disease, increased NADPH oxidase-mediated superoxide production associated with enhanced CAC. Albeit descriptive, these findings suggest a potential involvement of phagocytic NADPH oxidase-mediated oxidative stress in CAC.
Collapse
Affiliation(s)
- Oscar Beloqui
- a Department of Internal Medicine , Clínica Universidad de Navarra , Pamplona , Spain.,b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| | - María U Moreno
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain
| | - Gorka San José
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain
| | - Álvaro Pejenaute
- d Department of Biochemistry and Genetics , University of Navarra , Pamplona , Spain
| | - Adriana Cortés
- d Department of Biochemistry and Genetics , University of Navarra , Pamplona , Spain
| | - Manuel F Landecho
- a Department of Internal Medicine , Clínica Universidad de Navarra , Pamplona , Spain.,b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain
| | - Javier Díez
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain.,e Deparment of Cardiology and Cardiac Surgery , Clínica Universidad de Navarra , Pamplona , Spain
| | - Ana Fortuño
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain
| | - Guillermo Zalba
- b IdiSNA, Navarra Institute for Health Research , Pamplona , Spain.,c Division of Cardiovascular Pathophysiology , Program of Cardiovascular Diseases Centre for Applied Medical Research University of Navarra , Pamplona , Spain.,d Department of Biochemistry and Genetics , University of Navarra , Pamplona , Spain
| |
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW Lipoprotein(a) [Lp(a)] is the strongest independent genetic risk factor for both myocardial infarction and aortic stenosis. It has also been associated with other forms of atherosclerotic cardiovascular disease (CVD) including ischemic stroke. Its levels are genetically determined and remain fairly stable throughout life. Elevated Lp(a), above 50 mg/dl, affects one in five individuals worldwide. RECENT FINDINGS Herein, we review the recent epidemiologic and genetic evidence supporting the causal role of Lp(a) in CVD, highlight recommendations made by European and Canadian guidelines regarding Lp(a) and summarize the rapidly evolving field of Lp(a)-lowering therapies including antisense therapies and Proprotein Convertase Subtilisin/Kexin Type 9 inhibitors. SUMMARY With novel therapies on the horizon, Lp(a) is poised to gain significant clinical relevance and its lowering could have a significant impact on the burden of CVD. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Mehdi Afshar
- aDepartment of Medicine, McGill University bPreventive and Genomic Cardiology, McGill University Health Center and Research Institute cDepartment of Clinical Epidemiology, McGill University Health Center, Montreal, Quebec, Canada
| | | |
Collapse
|
91
|
Cunha TF, Bechara LRG, Bacurau AVN, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR, Scavone C, Ferreira JCB, Brum PC. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol (1985) 2017; 122:817-827. [DOI: 10.1152/japplphysiol.00182.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy.
Collapse
Affiliation(s)
- Telma F. Cunha
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luiz R. G. Bechara
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline V. N. Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Paulo R. Jannig
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Paulo M. Dourado
- Heart Institute, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | - Cristóforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | | | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
92
|
Cui L, Li Z, Chang X, Cong G, Hao L. Quercetin attenuates vascular calcification by inhibiting oxidative stress and mitochondrial fission. Vascul Pharmacol 2016; 88:21-29. [PMID: 27932069 DOI: 10.1016/j.vph.2016.11.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/27/2016] [Accepted: 11/20/2016] [Indexed: 02/01/2023]
Abstract
Vascular calcification is a strong independent predictor of increased cardiovascular morbidity and mortality and has a high prevalence among patients with chronic kidney disease. The present study investigated the effects of quercetin on vascular calcification caused by oxidative stress and abnormal mitochondrial dynamics both in vitro and in vivo. Calcifying vascular smooth muscle cells (VSMCs) treated with inorganic phosphate (Pi) exhibited mitochondrial dysfunction, as demonstrated by decreased mitochondrial potential and ATP production. Disruption of mitochondrial structural integrity was also observed in a rat model of adenine-induced aortic calcification. Increased production of reactive oxygen species, enhanced expression and phosphorylation of Drp1, and excessive mitochondrial fragmentation were also observed in Pi-treated VSMCs. These effects were accompanied by mitochondria-dependent apoptotic events, including release of cytochrome c from the mitochondria into the cytosol and subsequent activation of caspase-3. Quercetin was shown to block Pi-induced apoptosis and calcification of VSMCs by inhibiting oxidative stress and decreasing mitochondrial fission by inhibiting the expression and phosphorylation of Drp1. Quercetin also significantly ameliorated adenine-induced aortic calcification in rats. In summary, our findings suggest that quercetin attenuates calcification by reducing apoptosis of VSMCs by blocking oxidative stress and inhibiting mitochondrial fission.
Collapse
Affiliation(s)
- Lei Cui
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| | - Zhong Li
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xueying Chang
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guangting Cong
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lirong Hao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
93
|
Ennezat PV, Bruneval P, Czitrom D, Gueffet JP, Piriou N, Trochu JN, Patra O, Blanchard-Lemoine B, du Fretay XH, Nazeyrollas P, Assoun B, Jobic Y, Brochet E, Bogino E, Roudaut R, Augier C, Greffe L, Petit-Eisenmann H, Dambrin C, Chavanon O, Guillou L, Grisoli D, Morera P, Banfi C, Remadi JP, Fabre O, Vincentelli A, Lantuejoul S, Ikoli JF, Copin MC, Malergue MC, Maréchaux S, Tribouilloy C. Drug-induced aortic valve stenosis: An under recognized entity. Int J Cardiol 2016; 220:429-34. [PMID: 27390966 DOI: 10.1016/j.ijcard.2016.06.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/14/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND We have been intrigued by the observation that aortic stenosis (AS) may be associated with characteristic features of mitral drug-induced valvular heart disease (DI-VHD) in patients exposed to valvulopathic drugs, thus suggesting that beyond restrictive heart valve regurgitation, valvulopathic drugs may be involved in the pathogenesis of AS. METHODS Herein are reported echocardiographic features, and pathological findings encountered in a series of patients suffering from both AS (mean gradient >15mmHg) and mitral DI-VHD after valvulopathic drugs exposure. History of rheumatic fever, chest radiation therapy, systemic disease or bicuspid aortic valve disease were exclusion criteria. RESULTS Twenty-five (19 females, mean age 62years) patients having both AS and typical features of mitral DI-VHD were identified. Mean transaortic pressure gradient was 32+/-13mmHg. Aortic regurgitation was ≥ mild in 24 (96%) but trivial in one. Known history of aortic valve regurgitation following drug initiation prior the development of AS was previously diagnosed in 17 patients (68%). Six patients underwent aortic valve replacement and 3 both aortic and mitral valve replacement. In the 9 patients with pathology analysis, aortic valvular endocardium was markedly thickened by dense non-inflammatory fibrosis, a characteristic feature of DI-VHD. CONCLUSION The association between AS and typical mitral DI-VHD after valvulopathic drug exposure may not be fortuitous. Aortic regurgitation was usually associated to AS and preceded AS in most cases but may be lacking. Pathology demonstrated the potential role of valvulopathic drugs in the development of AS.
Collapse
Affiliation(s)
- Pierre-Vladimir Ennezat
- Department of Cardiology and Cardiovascular Surgery, Centre Hospitalier Universitaire de Grenoble, France.
| | - Patrick Bruneval
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris-Descartes University, France
| | - Daniel Czitrom
- Department of Cardiology and Cardiovascular Surgery, Institut Mutualiste Montsouris, Paris, France
| | - Jean-Pierre Gueffet
- Department of Cardiology and Vascular Diseases, Institut du Thorax, Centre Hospitalo Universitaire de Nantes, France
| | - Nicolas Piriou
- Department of Cardiology and Vascular Diseases, Institut du Thorax, Centre Hospitalo Universitaire de Nantes, France
| | - Jean Noël Trochu
- Department of Cardiology and Vascular Diseases, Institut du Thorax, Centre Hospitalo Universitaire de Nantes, France
| | - Odile Patra
- Nouvelles Cliniques Nantaises, Nantes, France
| | | | | | - Pierre Nazeyrollas
- Department of Cardiology, Centre Hospitalier Universitaire de Reims, France
| | - Bernard Assoun
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Yannick Jobic
- Department of Cardiology, Centre Hospitalier Universitaire de Brest, France
| | - Eric Brochet
- Department of Cardiology, Centre Hospitalier Universitaire Bichat, Paris, France
| | - Emmanuel Bogino
- Echocardiography laboratory, Clinique Saint-Augustin, Bordeaux, France
| | - Raymond Roudaut
- Department of Cardiology, Centre Hospitalier Universitaire de Bordeaux, France
| | - Caroline Augier
- Department of Cardiology and Cardiovascular Surgery, Centre Hospitalier Universitaire de Grenoble, France
| | - Lorraine Greffe
- Department of Cardiology, Centre Hospitalier Victor Provo de Roubaix, France
| | | | - Camille Dambrin
- Department of Cardiovascular Surgery, Centre Hospitalier Universitaire de Toulouse, France
| | - Olivier Chavanon
- Department of Cardiology and Cardiovascular Surgery, Centre Hospitalier Universitaire de Grenoble, France
| | - Louis Guillou
- Department of Cardiovascular Surgery, Clinique Saint Martin, Caen, France
| | - Dominique Grisoli
- Department of Cardiovasculaire Surgery, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - Pierre Morera
- Department of Cardiovasculaire Surgery, Centre Hospitalier Universitaire La Timone, Marseille, France
| | - Carlo Banfi
- Division of Cardiovascular Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Jean Paul Remadi
- Department of Cardiovascular Surgery, Centre Hospitalier Universitaire d'Amiens, France
| | - Olivier Fabre
- GCS-Artois Cardiovascular surgery, Hôpital privé de Bois Bernard, Centre Hospitalier de Lens, France
| | - André Vincentelli
- Department of Cardiovascular Surgery, Centre Hospitalier Régional Universitaire de Lille, France
| | - Sylvie Lantuejoul
- Department of Biopathology-MESOPATH, Centre de Lutte Contre le Cancer Léon Bérard, Lyon, France
| | - Jean-Fortuné Ikoli
- Department of Pathology, Centre Hospitalier Universitaire d'Amiens, France
| | - Marie-Christine Copin
- Department of Pathology, Université de Lille, CHU de Lille, Faculté de Médecine, F-59000 Lille, France
| | - Marie-Christine Malergue
- Department of Cardiology and Cardiovascular Surgery, Institut Mutualiste Montsouris, Paris, France
| | - Sylvestre Maréchaux
- Department of Cardiology, Groupement des Hôpitaux de l'Institut Catholique de Lille, Faculté libre de médecine / Université Catholique de Lille, France and INSERM U 1088, Amiens, France
| | - Christophe Tribouilloy
- Department of Cardiology, Centre Hospitalier Universitaire d'Amiens and INSERM U 1088, Amiens, France
| |
Collapse
|
94
|
Byon CH, Heath JM, Chen Y. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 2016; 9:244-253. [PMID: 27591403 PMCID: PMC5011184 DOI: 10.1016/j.redox.2016.08.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS), which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2) exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC) undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.
Collapse
Affiliation(s)
| | - Jack M Heath
- Department of Pathology, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, Birmingham, AL 35294, USA; University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
95
|
Abstract
Calcific aortic stenosis (AS) is the most prevalent heart valve disorder in developed countries. It is characterized by progressive fibro-calcific remodelling and thickening of the aortic valve leaflets that, over years, evolve to cause severe obstruction to cardiac outflow. In developed countries, AS is the third-most frequent cardiovascular disease after coronary artery disease and systemic arterial hypertension, with a prevalence of 0.4% in the general population and 1.7% in the population >65 years old. Congenital abnormality (bicuspid valve) and older age are powerful risk factors for calcific AS. Metabolic syndrome and an elevated plasma level of lipoprotein(a) have also been associated with increased risk of calcific AS. The pathobiology of calcific AS is complex and involves genetic factors, lipoprotein deposition and oxidation, chronic inflammation, osteoblastic transition of cardiac valve interstitial cells and active leaflet calcification. Although no pharmacotherapy has proved to be effective in reducing the progression of AS, promising therapeutic targets include lipoprotein(a), the renin-angiotensin system, receptor activator of NF-κB ligand (RANKL; also known as TNFSF11) and ectonucleotidases. Currently, aortic valve replacement (AVR) remains the only effective treatment for severe AS. The diagnosis and staging of AS are based on the assessment of stenosis severity and left ventricular systolic function by Doppler echocardiography, and the presence of symptoms. The introduction of transcatheter AVR in the past decade has been a transformative therapeutic innovation for patients at high or prohibitive risk for surgical valve replacement, and this new technology might extend to lower-risk patients in the near future.
Collapse
Affiliation(s)
- Brian R Lindman
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marie-Annick Clavel
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Patrick Mathieu
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Bernard Iung
- Cardiology Department, AP-HP, Bichat Hospital, Paris, France
- Paris-Diderot University, DHU Fire, Paris, France
| | - Patrizio Lancellotti
- University of Liège Hospital, GIGA Cardiovascular Sciences, Department of Cardiology, Heart Valve Clinic and CHU Sart Tilman, Liège, Belgium
- Grupo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - Catherine M Otto
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | - Philippe Pibarot
- Québec Heart and Lung Institute, Department of Medicine, Laval University, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| |
Collapse
|
96
|
Torre M, Hwang DH, Padera RF, Mitchell RN, VanderLaan PA. Osseous and chondromatous metaplasia in calcific aortic valve stenosis. Cardiovasc Pathol 2016; 25:18-24. [DOI: 10.1016/j.carpath.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022] Open
|
97
|
Vendrov AE, Vendrov KC, Smith A, Yuan J, Sumida A, Robidoux J, Runge MS, Madamanchi NR. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease. Antioxid Redox Signal 2015; 23:1389-409. [PMID: 26054376 PMCID: PMC4692134 DOI: 10.1089/ars.2014.6221] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS Increased oxidative stress and vascular inflammation are implicated in increased cardiovascular disease (CVD) incidence with age. We and others demonstrated that NOX1/2 NADPH oxidase inhibition, by genetic deletion of p47phox, in Apoe(-/-) mice decreases vascular reactive oxygen species (ROS) generation and atherosclerosis in young age. The present study examined whether NOX1/2 NADPH oxidases are also pivotal to aging-associated CVD. RESULTS Both aged (16 months) Apoe(-/-) and Apoe(-/-)/p47phox(-/-) mice had increased atherosclerotic lesion area, aortic stiffness, and systolic dysfunction compared with young (4 months) cohorts. Cellular and mitochondrial ROS (mtROS) levels were significantly higher in aortic wall and vascular smooth muscle cells (VSMCs) from aged wild-type and p47phox(-/-) mice. VSMCs from aged mice had increased mitochondrial protein oxidation and dysfunction and increased vascular cell adhesion molecule 1 expression, which was abrogated with (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) treatment. NOX4 expression was increased in the vasculature and mitochondria of aged mice and its suppression with shRNA in VSMCs from aged mice decreased mtROS levels and improved function. Increased mtROS levels were associated with enhanced mitochondrial NOX4 expression in aortic VSMCs from aged subjects, and NOX4 expression levels in arterial wall correlated with age and atherosclerotic severity. Aged Apoe(-/-) mice treated with MitoTEMPO and 2-(2-chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione had decreased vascular ROS levels and atherosclerosis and preserved vascular and cardiac function. INNOVATION AND CONCLUSION These data suggest that NOX4, but not NOX1/2, and mitochondrial oxidative stress are mediators of CVD in aging under hyperlipidemic conditions. Regulating NOX4 activity/expression and using mitochondrial antioxidants are potential approaches to reducing aging-associated CVD.
Collapse
Affiliation(s)
- Aleksandr E Vendrov
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Kimberly C Vendrov
- 2 Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | - Alberto Smith
- 3 Cardiovascular Division, Academic Department of Surgery, National Institute for Health Research Biomedical Research Center at Guy's and St Thomas' National Health Service Foundation Trust , King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Jinling Yuan
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Arihiro Sumida
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Jacques Robidoux
- 4 Department of Pharmacology and Toxicology, The East Carolina Diabetes and Obesity Institute, East Carolina University , Greenville, North Carolina
| | - Marschall S Runge
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| | - Nageswara R Madamanchi
- 1 Department of Medicine, McAllister Heart Institute, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
98
|
Thanassoulis G. Lipoprotein (a) in calcific aortic valve disease: from genomics to novel drug target for aortic stenosis. J Lipid Res 2015; 57:917-24. [PMID: 26685327 DOI: 10.1194/jlr.r051870] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
Calcific aortic stenosis (AS) is the most common form of valve disease in the Western world and affects over 2.5 million individuals in North America. Despite the large burden of disease, there are no medical treatments to slow the development of AS, due at least in part to our incomplete understanding of its causes. The Cohorts for Heart and Aging Research in Genetic Epidemiology extra-coronary calcium consortium reported a genome-wide association study demonstrating that genetic variants in LPA are strongly associated with aortic valve (AV) calcium and clinical AS. Using a Mendelian randomization study design, it was demonstrated that the effect of this genetic variant is mediated by plasma lipoprotein (a) [Lp(a)], directly implicating elevations in Lp(a) as a cause of AV calcium and progression to AS. This discovery has sparked intense interest in Lp(a) as a modifiable cause for AV disease. Herein, we will review the mounting epidemiological and genetic findings in support of Lp(a)-mediated valve disease, discuss potential mechanisms underlying this observation, and outline the steps to translate this discovery to a much needed novel preventive and/or therapeutic strategy for AV disease.
Collapse
Affiliation(s)
- George Thanassoulis
- Preventive and Genomic Cardiology, McGill University Health Center and Research Institute and Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
99
|
Lin CP, Huang PH, Lai CF, Chen JW, Lin SJ, Chen JS. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR-/- Mice Fed with High Fat Diet via Down-regulation of Tumor Necrosis Factor-α and TNF Receptor 1. PLoS One 2015; 10:e0143686. [PMID: 26625143 PMCID: PMC4666466 DOI: 10.1371/journal.pone.0143686] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
Simvastatin (SIM) is anti-inflammatory. We used low density lipoprotein receptor knockout (LDLR-/-) mice and human aortic smooth muscle cells (HASMCs) as model systems to study the effect of SIM on arterial calcification and to explore the potential mechanisms contributing to this protective effect. High-fat diet (HFD) caused the LRLR -/- to develop dyslipidemia, diabetics, atherosclerosis and aortic smooth muscle calcification. SIM, N-acetyl cysteine (NAC, a ROS scavenger) and apocynin (APO, a NADPH oxidase inhibitor) did not significantly retard the development of dyslipidemia or diabetic. However, those treatments were still effective in attenuating the HFD-induced atherosclerosis and aortic smooth muscle calcification. These findings suggest that the protective effect of SIM against aortic calcification is not contributed by the cholesterol lowering effect. SIM, NAC and APO were found to attenuate the HFD induced elevation of serum TNF-α, soluble TNFR1 (sTNFR1), 3-nitro-tyrosine. We hypothesized that the pro-inflammatory cytokine, oxidative stress and TNFR1 played a role in inducing aortic calcification. We used HASMC to investigate the role of TNF-α, oxidative stress and TNFR1 in inducing aortic calcification and to elucidate the mechanism contributes the protective effect of SIM against aortic calcification. We demonstrated that treating HASMC with TNF-α induced cell Ca deposit and result in an increase in ALP, NADPH oxidase activity, NF-kB subunit p65, BMP2, MSX2, and RUNX2 expression. SIM suppressed the TNF-α induced activation of NADPH oxidase subunit p47, the above-mentioned bone markers and TNFR1 expression. Furthermore, p65, p47 and TNFR1 siRNAs inhibited the TNF-α-mediated stimulation of BMP-2, MSX2, RUNX2 expression. SIM, APO, and NAC either partially inhibit or completely block the TNF-α induced H2O2 or superoxide production. These results suggest that SIM may, independent of its cholesterol-lowering effect, suppresses the progression of vascular diseases through the inhibition of the inflammation mediators TNF-α and TNFR1.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Division of Central Laboratory, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine and Institute of Biotechnology in Medicine, Taipei, Taiwan
- * E-mail:
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Jaw-Wen Chen
- Division of Cardiology, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
100
|
A review of the effect of diet on cardiovascular calcification. Int J Mol Sci 2015; 16:8861-83. [PMID: 25906474 PMCID: PMC4425113 DOI: 10.3390/ijms16048861] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular (CV) calcification is known as sub-clinical atherosclerosis and is recognised as a predictor of CV events and mortality. As yet there is no treatment for CV calcification and conventional CV risk factors are not consistently correlated, leaving clinicians uncertain as to optimum management for these patients. For this reason, a review of studies investigating diet and serum levels of macro- and micronutrients was carried out. Although there were few human studies of macronutrients, nevertheless transfats and simple sugars should be avoided, while long chain ω-3 fats from oily fish may be protective. Among the micronutrients, an intake of 800 μg/day calcium was beneficial in those without renal disease or hyperparathyroidism, while inorganic phosphorus from food preservatives and colas may induce calcification. A high intake of magnesium (≥380 mg/day) and phylloquinone (500 μg/day) proved protective, as did a serum 25(OH)D concentration of ≥75 nmol/L. Although oxidative damage appears to be a cause of CV calcification, the antioxidant vitamins proved to be largely ineffective, while supplementation of α-tocopherol may induce calcification. Nevertheless other antioxidant compounds (epigallocatechin gallate from green tea and resveratrol from red wine) were protective. Finally, a homocysteine concentration >12 µmol/L was predictive of CV calcification, although a plasma folate concentration of >39.4 nmol/L could both lower homocysteine and protect against calcification. In terms of a dietary programme, these recommendations indicate avoiding sugar and the transfats and preservatives found in processed foods and drinks and adopting a diet high in oily fish and vegetables. The micronutrients magnesium and vitamin K may be worthy of further investigation as a treatment option for CV calcification.
Collapse
|