51
|
Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms231710001. [PMID: 36077398 PMCID: PMC9456336 DOI: 10.3390/ijms231710001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension is a multifactorial, chronic disease process that leads to pulmonary arterial endothelial dysfunction and smooth muscular hypertrophy, resulting in impaired pliability and hemodynamics of the pulmonary vascular system, and consequent right ventricular dysfunction. Existing treatments target limited pathways with only modest improvement in disease morbidity, and little or no improvement in mortality. Ongoing research has focused on the molecular basis of pulmonary arterial hypertension and is going to be important in the discovery of new treatments and genetic pathways involved. This review focuses on the molecular pathogenesis of pulmonary arterial hypertension.
Collapse
|
52
|
Liu H, Zhang S, Liu Y, Ma J, Chen W, Yin T, Li T, Liang B, Tao L. Knockdown of HSP110 attenuates hypoxia-induced pulmonary hypertension in mice through suppression of YAP/TAZ-TEAD4 pathway. Respir Res 2022; 23:209. [PMID: 35986277 PMCID: PMC9389662 DOI: 10.1186/s12931-022-02124-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance and artery pressure. Vascular remodeling is associated with the excessive cell proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). In this paper, the effects of heat shock protein-110 (HSP110) on PH were investigated.
Methods
The C57BL/6 mice and human PASMCs (HPASMCs) were respectively exposed to hypoxia to establish and simulate PH model in vivo and cell experiment in vitro. To HSP110 knockdown, the hypoxia mice and HPASMCs were infected with adeno-associated virus or adenovirus carring the shRNAs (short hairpin RNAs) for HSP110 (shHSP110). For HSP110 and yes-associated protein (YAP) overexpression, HPASMCs were infected with adenovirus vector carring the cDNA of HSP110 or YAP. The effects of HSP110 on PH development in mice and cell proliferation, migration and autophagy of PASMCs under hypoxia were assessed. Moreover, the regulatory mechanisms among HSP110, YAP and TEA domain transcription factor 4 (TEAD4) were investigated.
Results
We demonstrated that expression of HSP110 was significantly increased in the pulmonary arteries of mice and HPASMCs under hypoxia. Moreover, knockdown of HSP110 alleviated hypoxia-induced right ventricle systolic pressure, vascular wall thickening, right ventricular hypertrophy, autophagy and proliferation of PASMCs in mice. In addition, knockdown of HSP110 inhibited the increases of proliferation, migration and autophagy of HPASMCs that induced by hypoxia in vitro. Mechanistically, HSP110 knockdown inhibited YAP and transcriptional co-activator with PDZ-binding motif (TAZ) activity and TEAD4 nuclear expression under hypoxia. However, overexpression of HSP110 exhibited the opposite results in HPASMCs. Additionally, overexpression of YAP partially restored the effects of shHSP110 on HPASMCs. The interaction of HSP110 and YAP was verified. Moreover, TEAD4 could promote the transcriptional activity of HSP110 by binding to the HSP110 promoter under hypoxia.
Conclusions
Our findings suggest that HSP110 might contribute to the development of PH by regulating the proliferation, migration and autophagy of PASMCs through YAP/TAZ-TEAD4 pathway, which may help to understand deeper the pathogenic mechanism in PH development.
Collapse
|
53
|
Farnesyl diphosphate synthase regulated endothelial proliferation and autophagy during rat pulmonary arterial hypertension induced by monocrotaline. Mol Med 2022; 28:94. [PMID: 35962329 PMCID: PMC9373289 DOI: 10.1186/s10020-022-00511-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The proliferation ability and autophagy level of pulmonary artery endothelial cells (PAECs) play an important role in promoting the development of pulmonary artery hypertension (PAH), and there is still no effective treatment for PAH. Farnesyl diphosphate synthase (FDPS) is a key enzyme in the mevalonate pathway. The intermediate metabolites of this pathway are closely related to the activity of autophagy-associated small G proteins, including Ras-related C3 botulinum toxin substrate 1 (Rac1). Studies have shown that the mevalonate pathway affects the activation levels of different small G proteins, autophagy signaling pathways, vascular endothelial function, and so on. However, the exact relationship between them is still unclear in PAH. Method In vitro, western blotting and mRFP-GFP-LC3 puncta formation assays were used to observe the expression of FDPS and the level of autophagy in PAECs treated with monocrotaline pyrrole (MCTP). In addition, cell proliferation and migration assays were used to assess the effect of FDPS on endothelial function, and Rac1 activity assays were used to evaluate the effect of Rac1 activation on PAEC autophagy via the PI3K/AKT/mTOR signaling pathway. In vivo, the right heart catheterization method, hematoxylin and eosin (H&E) staining and western blotting were used to determine the effect of FDPS on PAEC autophagy and monocrotaline (MCT)-induced PAH. Results We show that the expression of FDPS is increased in the PAH module in vitro and in vivo, concomitant with the induction of autophagy and the activation of Rac1. Our data demonstrate that inhibition of FDPS ameliorates endothelial function and decreases MCT-induced autophagy levels. Mechanistically, we found that FDPS promotes autophagy, Rac1 activity and endothelial disfunction through the PI3K/AKT/mTOR signaling pathway. Conclusion Our study suggests that FDPS contributes to active small G protein-induced autophagy during MCT-induced PAH, which may serve as a potential therapeutic target against PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00511-7.
Collapse
|
54
|
Liu R, Xu C, Zhang W, Cao Y, Ye J, Li B, Jia S, Weng L, Liu Y, Liu L, Zheng M. FUNDC1-mediated mitophagy and HIF1α activation drives pulmonary hypertension during hypoxia. Cell Death Dis 2022; 13:634. [PMID: 35864106 PMCID: PMC9304375 DOI: 10.1038/s41419-022-05091-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Hypoxic pulmonary hypertension (PH) is a progressive disease characterized by hyper-proliferation of pulmonary vascular cells including pulmonary artery smooth muscle cells (PASMCs) and can lead to right heart failure and early death. Selective degradation of mitochondria by mitophagy during hypoxia regulates mitochondrial functions in many cells, however, it is not clear if mitophagy is involved in the pathogenesis of hypoxic PH. By employing the hypoxic mitophagy receptor Fundc1 knockout (KO) and transgenic (TG) mouse models, combined hypoxic PH models, the current study found that mitophagy is actively involved in hypoxic PH through regulating PASMC proliferation. In the pulmonary artery medium from hypoxic PH mice, mitophagy was upregulated, accompanied with the increased active form of FUNDC1 protein and the enhanced binding affinity of FUNDC1 with LC3B. In PASMCs, overexpression of FUNDC1 increased mitophagy and cell proliferation while knockdown of FUNDC1 inhibited hypoxia-induced mitophagy and PASMC proliferation. Stimulation of mitophagy by FUNDC1 in PASMCs elevated ROS production and inhibited ubiquitination of hypoxia inducible factor 1α (HIF1α), and inhibition of mitophagy by FUNDC1 knockdown or knockout abolished hypoxia-induced ROS-HIF1α upregulation. Moreover, Fundc1 TG mice developed severe hemodynamics changes and pulmonary vascular remodeling, and Fundc1 KO mice were much resistant to hypoxic PH. In addition, intraperitoneal injection of a specific FUNDC1 peptide inhibitor to block mitophagy ameliorated hypoxic PH. Our results reveal that during hypoxic PH, FUNDC1-mediated mitophagy is upregulated which activates ROS-HIF1α pathway and promotes PASMC proliferation, ultimately leads to pulmonary vascular remodeling and PH.
Collapse
Affiliation(s)
- Ruxia Liu
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China ,grid.265021.20000 0000 9792 1228Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Chunling Xu
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weilin Zhang
- grid.9227.e0000000119573309State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yangpo Cao
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingjing Ye
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bo Li
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shi Jia
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Weng
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yingying Liu
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Liu
- grid.9227.e0000000119573309State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming Zheng
- grid.11135.370000 0001 2256 9319Ministry of Education Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
55
|
Zhuang C, Chen R, Zheng Z, Lu J, Hong C. Toll-Like Receptor 3 in Cardiovascular Diseases. Heart Lung Circ 2022; 31:e93-e109. [PMID: 35367134 DOI: 10.1016/j.hlc.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 3 (TLR3) is an important member of the innate immune response receptor toll-like receptors (TLRs) family, which plays a vital role in regulating immune response, promoting the maturation and differentiation of immune cells, and participating in the response of pro-inflammatory factors. TLR3 is activated by pathogen-associated molecular patterns and damage-associated molecular patterns, which support the pathophysiology of many diseases related to inflammation. An increasing number of studies have confirmed that TLR3, as a crucial medium of innate immunity, participates in the occurrence and development of cardiovascular diseases (CVDs) by regulating the transcription and translation of various cytokines, thus affecting the structure and physiological function of resident cells in the cardiovascular system, including vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and macrophages. The dysfunction and structural damage of vascular endothelial cells and proliferation of vascular smooth muscle cells are the key factors in the occurrence of vascular diseases such as pulmonary arterial hypertension, atherosclerosis, myocardial hypertrophy, myocardial infarction, ischaemia/reperfusion injury, and heart failure. Meanwhile, cardiomyocytes, fibroblasts, and macrophages are involved in the development of CVDs. Therefore, the purpose of this review was to explore the latest research published on TLR3 in CVDs and discuss current understanding of potential mechanisms by which TLR3 contributes to CVDs. Even though TLR3 is a developing area, it has strong treatment potential as an immunomodulator and deserves further study for clinical translation.
Collapse
Affiliation(s)
- Chunying Zhuang
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Riken Chen
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhen Zheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Guangzhou, China
| | - Jianmin Lu
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
56
|
Yeh JJ, Syue SH, Sun YF, Yeh YT, Zheng YC, Lin CL, Hsu CY, Kao CH. Hydroxychloroquine on the Pulmonary Vascular Diseases in Interstitial Lung Disease: Immunologic Effects, and Virus Interplay. Biomedicines 2022; 10:biomedicines10061290. [PMID: 35740313 PMCID: PMC9219797 DOI: 10.3390/biomedicines10061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
To investigate the effects of hydroxychloroquine (HCQ) drug use on the risk of pulmonary vascular disease (PVD) in an interstitial lung disease cohort (ILD cohort, ILD+ virus infection), we retrospectively enrolled the ILD cohort with HCQ (HCQ users, N = 4703) and the ILD cohort without HCQ (non-HCQ users, N = 4703) by time-dependence after propensity score matching. Cox models were used to analyze the risk of PVD. We calculated the adjusted hazard ratios (aHRs) and their 95% confidence intervals (CIs) for PVD after adjusting for sex, age, comorbidities, index date and immunosuppressants, such as steroids, etc. Compared with the HCQ nonusers, in HCQ users, the aHRs (95% CIs) for PVD were (2.24 (1.42, 3.54)), and the women’s aHRs for PVD were (2.54, (1.49, 4.35)). The aHRs based on the days of HCQ use for PVD of 28−30 days, 31−120 days, and >120 days were (1.27 (0.81, 1.99)), (3.00 (1.81, 4.87)) and (3.83 (2.46, 5.97)), respectively. The medium or long-term use of HCQ or young women receiving HCQ were associated with a higher aHR for PVD in the ILD cohort. These findings indicated interplay of the primary immunologic effect of ILD, comorbidities, women, age and virus in the HCQ users.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Geriatric Medicine, Chest Medicine and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan;
- College of Medicine, China Medical University, Taichung 406040, Taiwan; (C.-L.L.); (C.Y.H.)
| | - Shih-Hueh Syue
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Yi-Fun Sun
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Yi-Ting Yeh
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Ya-Chi Zheng
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung 406040, Taiwan; (C.-L.L.); (C.Y.H.)
- Management Office for Health Data, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
| | - Chung Y. Hsu
- College of Medicine, China Medical University, Taichung 406040, Taiwan; (C.-L.L.); (C.Y.H.)
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 406040, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Correspondence: or ; Tel.: +886-4-22052121
| |
Collapse
|
57
|
Dhoble S, Patravale V, Weaver E, Lamprou DA, Patravale T. Comprehensive Review on Novel Targets and Emerging Therapeutic Modalities for Pulmonary Arterial Hypertension. Int J Pharm 2022; 621:121792. [PMID: 35513217 DOI: 10.1016/j.ijpharm.2022.121792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is the progressive increase in mean pulmonary arterial pressure (mPAP) (≥ 20 mmHg at rest). Current treatment strategies include the drugs targeting at nitric oxide pathway, endothelin receptors, prostaglandin receptors, thromboxane receptors and phosphodiesterase inhibitors, which provides the symptomatic relief. Despite of these treatments, the mortality amongst the PAH patients remains high due to non-reversal of the condition. This review primarily covers the introduction of PAH and the current treatments of the disease. This is followed by the newer disease targets expressed in the pathobiology of the disease like Rho Kinase Pathway, Vasoactive Intestinal Peptide Pathway, Receptor Tyrosine Kinases, Serotonin signalling pathway, Voltage-gated potassium (Kv) channel pathway. Newer formulation strategies for targeting at these specific receptors were covered and includes nano formulations like liposomes, Micelles, Polymeric Nanoparticles, Solid Lipid Nanoparticles (SLN), Bioresorbable stents, NONOates, Cell-Based Therapies, miRNA therapy for PAH. Novel targets were identified for their role in the pathogenesis of the PAH and needs to be targeted with new molecules or existing molecules effectively. Nanosystems have shown their potential as alternative carriers on the virtue of their better performance than traditional drug delivery systems.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India.
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| | - Tanmay Patravale
- Department of General Surgery, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Belagavi 590 010, India
| |
Collapse
|
58
|
Hu Y, Li Z, Chen G, Li Z, Huang J, Huang H, Xie Y, Chen Q, Zhu W, Wang M, Chen J, Su W, Chen X, Liang D. Hydroxychloroquine Alleviates EAU by Inhibiting Uveitogenic T Cells and Ameliorating Retinal Vascular Endothelial Cells Dysfunction. Front Immunol 2022; 13:859260. [PMID: 35401507 PMCID: PMC8989724 DOI: 10.3389/fimmu.2022.859260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Inflammation triggers the activation of CD4+T cells and the breakdown of blood–retinal barrier, thus contributing to the pathology of experimental autoimmune uveitis (EAU). We explored the anti-inflammatory effect of hydroxychloroquine (HCQ) on EAU and the potential mechanisms active in T cells and retinal vascular endothelial cells (RVECs). Methods C57BL/6J mice were immunized with interphotoreceptor retinoid binding protein 1-20 (IRBP1–20) to induce EAU and then treated with the vehicle or HCQ (100 mg/kg/day). On day 7, 14, 21, 30 and 60 after immunization, clinical scores were evaluated. On day 14, histopathological scores were assessed, and retinas, spleens, and lymph nodes were collected for quantitative polymerase chain reaction or flow cytometry analysis. RVEC dysfunction was induced by tumor necrosis factor α (TNF-α) stimulation. The expression of cytokines, chemokines, adhesion molecules, and lectin-like oxidized LDL receptor-1 (LOX-1)/nuclear factor κB (NF-κB) was measured in RVECs with or without HCQ. Results HCQ treatment protected mice from uveitis, evidenced by reduced expression of inflammatory factors, chemokines, and adhesion molecules in the retina. In systemic immune response, HCQ inhibited the activation of naïve CD4+T cells and frequencies of T effector cells, and promoted T regulatory cells. HCQ decreased IRBP1-20–specific T cell responses and proliferation of CD4+T cells in vitro. Further studies established that TNF-α induced RVECs to express inflammatory cytokines, chemokines, and adhesion molecules, whereas HCQ alleviated the alterations via the LOX-1/NF-κB pathways. Conclusions HCQ alleviates EAU by regulating the Teff/Treg balance and ameliorating RVECs dysfunction via the LOX-1/NF-κB axis. HCQ may be a promising therapeutic candidate for uveitis.
Collapse
Affiliation(s)
- Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
59
|
Gomes MT, Bai Y, Potje SR, Zhang L, Lockett AD, Machado RF. Signal Transduction during Metabolic and Inflammatory Reprogramming in Pulmonary Vascular Remodeling. Int J Mol Sci 2022; 23:2410. [PMID: 35269553 PMCID: PMC8910500 DOI: 10.3390/ijms23052410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.
Collapse
Affiliation(s)
- Marta T. Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Simone R. Potje
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
- Department of Biological Science, Minas Gerais State University (UEMG), Passos 37900-106, Brazil
| | - Lu Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Angelia D. Lockett
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (Y.B.); (S.R.P.); (A.D.L.)
| |
Collapse
|
60
|
Ma M, Fu L, Jia Z, Zhong Q, Huang Z, Wang X, Fan Y, Lin T, Song T. miR-17-5p attenuates kidney ischemia-reperfusion injury by inhibiting the PTEN and BIM pathways. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1545. [PMID: 34790751 PMCID: PMC8576735 DOI: 10.21037/atm-21-4678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Background Kidney ischemia-reperfusion (I/R) injury is an independent risk factor for delayed graft function after kidney transplantation with long-term graft survival deterioration. Previously, we found that the upregulated expression of miR-17-5p exerts a protective effect in kidney I/R injury, but the mechanism has not been clearly studied. Methods A kidney I/R injury model was induced in adult C57BL/6 male mice (20–22 g) by clamping both kidney pedicles for 30 min. The miR-17-5p agomir complex was injected into mice 24 h before surgery via the tail vein at a total injection volume of 10 µL/g body weight. The mice were euthanized on post-I/R injury day 2, and kidney function, apoptosis, autophagy, and related molecules were then detected. Human kidney-2 (HK-2) cells, which underwent hypoxia/reoxygenation, were treated with the miR-17-5p agomir, miR-17-5p antagomir, and small interfering ribonucleic acids (siRNAs). Cell viability, apoptosis, autophagy, and molecules were also examined. Results Autophagy, miR-17-5p expression, and kidney function damage were significantly more increased in the I/R group than in the sham group. In the cultured HK-2 cells underwent hypoxia/reoxygenation, the miR-17-5p agomir directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Bcl-2 like protein 11 (BIM), and attenuated apoptosis and autophagy. Further, miR-17-5p inhibited autophagy by activating the protein kinase B (Akt)/Beclin1 pathway, which was suppressed by siRNAs. Additionally, the administration of miR-17-5p agomir greatly improved kidney function in the I/R mice group by inhibiting autophagy and apoptosis. Conclusions These findings suggest a new possible therapeutic strategy for the prevention and treatment of kidney I/R injury. The upregulation of miR-17-5p expression appears to inhibit apoptosis and autophagy by suppressing PTEN and BIM expression, which in turn upregulates downstream Akt/Beclin1 expression.
Collapse
Affiliation(s)
- Ming Ma
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Fu
- Urology Department, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zihao Jia
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Zhong
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongli Huang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Fan
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Lin
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Turun Song
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
61
|
Exploring Functional Differences between the Right and Left Ventricles to Better Understand Right Ventricular Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993060. [PMID: 34497685 PMCID: PMC8421158 DOI: 10.1155/2021/9993060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The right and left ventricles have traditionally been studied as individual entities. Furthermore, modifications found in diseased left ventricles are assumed to influence on right ventricle alterations, but the connection is poorly understood. In this review, we describe the differences between ventricles under physiological and pathological conditions. Understanding the mechanisms that differentiate both ventricles would facilitate a more effective use of therapeutics and broaden our knowledge of right ventricle (RV) dysfunction. RV failure is the strongest predictor of mortality in pulmonary arterial hypertension, but at present, there are no definitive therapies directly targeting RV failure. We further explore the current state of drugs and molecules that improve RV failure in experimental therapeutics and clinical trials to treat pulmonary arterial hypertension and provide evidence of their potential benefits in heart failure.
Collapse
|
62
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
63
|
Wang J, Li H, Xia T, Feng J, Zhou R. Pulmonary arterial hypertension and flavonoids: A role in treatment. CHINESE J PHYSIOL 2021; 64:115-124. [PMID: 34169916 DOI: 10.4103/cjp.cjp_25_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a high mortality progressive pulmonary vascular disease that can lead to right heart failure. The use of clinical drugs for the treatment of PAH is limited to a great extent because of its single target and high price. Flavonoids are widely distributed in nature, and have been found in fruits, vegetables, and traditional Chinese medicine. They have diverse biological activities and various pharmacological effects such as antitumor, antioxidation, and anti-inflammatory. This review summarizes the progress in pharmacodynamics and mechanism of flavonoids in the treatment of PAH in recent years, in order to provide some theoretical references for relevant researchers.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hailong Li
- The Third People's Hospital of Ningxia, Yinchuan, China
| | - Tian Xia
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jun Feng
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education; Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
64
|
Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, Shi W, Chen Y, Liu J, Qu Z, Li S, Xie X, Li M. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif 2021; 54:e13048. [PMID: 33948998 PMCID: PMC8168414 DOI: 10.1111/cpr.13048] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES High-mobility group box-1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin-related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1-mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues. METHODS Primary cultured PASMCs were obtained from male Sprague-Dawley (SD) rats. We detected RNA levels by qRT-PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed-chest right heart catheterization. RESULTS HMGB1 increased Drp1 phosphorylation and Drp1-dependent mitochondrial fragmentation through extracellular signal-regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1-induced reductions of BMPR2 and Id1, and diminished HMGB1-induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi-1 or blockage of autophagy by chloroquine prevented PAH development in MCT-induced rats PAH model. CONCLUSIONS HMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.
Collapse
Affiliation(s)
- Wei Feng
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jian Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xin Yan
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Limin Chai
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jin Liu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Zhan Qu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| |
Collapse
|
65
|
Zheng D, Wang J, Li G, An L, Qu Y, Zhang Q, Ye W, Zhao X, Zhao Z. S-Allylmercapto-N-acetylcysteine ameliorates elastase-induced chronic obstructive pulmonary disease in mice via regulating autophagy. Biochem Biophys Res Commun 2021; 562:83-88. [PMID: 34044325 DOI: 10.1016/j.bbrc.2021.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 12/31/2022]
Abstract
Autophagy-impairment is involved in the pathological process of chronic obstructive pulmonary disease (COPD), and relates to inflammation and emphysema in lung injury. This study aimed to elucidate the protective effect of S-Allylmercapto-N-acetylcysteine (ASSNAC) against COPD via regulating the autophagy. Firstly, porcine pancreatic elastase (PPE)-induced COPD model in A549 cells was established, and ASSNAC was verified to alleviate the autophagy-impairment from the results of western blotting analysis of LC3BⅡ/Ⅰ and monodansylcadaverine (MDC) staining of autophagosome. Secondly, Balb/c mice were stimulated by PPE to induce the COPD model in vivo. The histological analysis of lung tissues presented that ASSNAC could alleviate the lung injury induced by PPE. Thirdly, the secretions of NO, TNF-α and IL-1β in serum and BALF were reduced by ASSNAC compared with the PPE group. Finally, the mechanism of therapeutic effects of ASSNAC against COPD through regulating the autophagy-impairment was clarified. That is, ASSNAC inhibits the phosphorylation of PI3K/Akt/mTOR signaling pathways. In a word, this research provides a reference for ASSNAC to be an effective drug for pulmonary diseases.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Jinglong Wang
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, PR China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Lulu An
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Ying Qu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Wenhui Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Xin Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong, 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong, 274300, PR China.
| |
Collapse
|
66
|
Bortezomib Inhibits Hypoxia-Induced Proliferation by Suppressing Caveolin-1/SOCE/[Ca 2+] i Signaling Axis in Human PASMCs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5551504. [PMID: 33928148 PMCID: PMC8049800 DOI: 10.1155/2021/5551504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Background Previous studies have demonstrated the ubiquitin-proteasome inhibitor bortezomib (BTZ) can effectively alleviate hypoxia-induced pulmonary hypertension (HPH) by suppressing the intracellular calcium homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Further evaluation showed that the antiproliferation roles of BTZ are mainly mediated by inhibition of the intracellular calcium homeostasis. Caveolin-1 belongs to one of the key regulators of the intracellular calcium homeostasis in PASMCs, which can regulate the store-operated calcium entry (SOCE). However, the effects of BTZ on Caveolin-1 remain unclear. Methods Primarily cultured human PASMCs were used as the cell model. CCK-8 assay was performed to assess the PASMCs proliferation. Western blotting and real-time qPCR were used to detect the mRNA and protein expressions. Fura-2-based fluorescence imaging experiments were used to determine the intracellular calcium concentration ([Ca2+]i). The protein synthesis inhibitor cycloheximide (CHX) was utilized to determine the protein degradation process. Results Firstly, in cultured human PASMCs, treatment of BTZ for 24 or 60 hours significantly downregulates Caveolin-1 at both mRNA and protein levels. Secondly, in the presence CHX, BTZ treatment also leads to downregulated protein expression and fastened protein degradation of Caveolin-1, indicating that BTZ can promote the Caveolin-1 protein degradation, other than the BTZ on Caveolin-1 mRNA transcription. Then, BTZ significantly attenuates the hypoxia-elevated baseline [Ca2+]i, SOCE, and cell proliferation. Conclusion We firstly observed that the ubiquitin-proteasome inhibitor BTZ can inhibit the Caveolin-1 expression at both mRNA transcription and protein degradation processes, providing new mechanistic basis of BTZ on PASMC proliferation.
Collapse
|
67
|
Vitry G, Paulin R, Grobs Y, Lampron MC, Shimauchi T, Lemay SE, Tremblay E, Habbout K, Awada C, Bourgeois A, Nadeau V, Paradis R, Breuils-Bonnet S, Roux-Dalvai F, Orcholski M, Potus F, Provencher S, Boucherat O, Bonnet S. Oxidized DNA Precursors Cleanup by NUDT1 Contributes to Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2021; 203:614-627. [PMID: 33021405 DOI: 10.1164/rccm.202003-0627oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.
Collapse
Affiliation(s)
- Géraldine Vitry
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Marie-Claude Lampron
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Karima Habbout
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Charifa Awada
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Renée Paradis
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | | | - Mark Orcholski
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - François Potus
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| |
Collapse
|
68
|
Mercurio V, Cuomo A, Naranjo M, Hassoun PM. Inflammatory Mechanisms in the Pathogenesis of Pulmonary Arterial Hypertension: Recent Advances. Compr Physiol 2021; 11:1805-1829. [PMID: 33792903 DOI: 10.1002/cphy.c200025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory processes are increasingly recognized in the pathogenesis of the vascular remodeling that characterizes pulmonary arterial hypertension (PAH). Chronic inflammation may contribute to disease progression or serve as a biomarker of PAH severity. Furthermore, inflammatory pathways may represent possible therapeutic targets for novel PAH-specific drugs beyond the currently approved therapies targeting the endothelin, nitric oxide/cyclic GMP, and prostacyclin biological pathways. The main focus of this article is to provide recent advances in the understanding of the role of inflammatory pathways in the pathogenesis of PAH from preclinical studies and current clinical data supporting chronic inflammation in PAH patients and to discuss emerging therapeutic implications. © 2021 American Physiological Society. Compr Physiol 11:1805-1829, 2021.
Collapse
Affiliation(s)
- Valentina Mercurio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Mario Naranjo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
69
|
Ishikawa T, Abe K, Takana-Ishikawa M, Yoshida K, Watanabe T, Imakiire S, Hosokawa K, Hirano M, Hirano K, Tsutsui H. Chronic Inhibition of Toll-Like Receptor 9 Ameliorates Pulmonary Hypertension in Rats. J Am Heart Assoc 2021; 10:e019247. [PMID: 33787285 PMCID: PMC8174358 DOI: 10.1161/jaha.120.019247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Recent accumulating evidence suggests that toll‐like receptor 9 (TLR9) is involved in the pathogenesis of cardiovascular diseases. However, its role in pulmonary hypertension remains uncertain. We hypothesized that TLR9 is involved in the development of pulmonary hypertension. Methods and Results A rat model of monocrotaline‐induced pulmonary hypertension was used to investigate the effects of TLR9 on hemodynamic parameters, vascular remodeling, and survival. Monocrotaline‐exposed rats significantly showed increases in plasma levels of mitochondrial DNA markers, which are recognized by TLR9, TLR9 activation in the lung, and interleukin‐6 mRNA level in the lung on day 14 after monocrotaline injection. Meanwhile, monocrotaline‐exposed rats showed elevated right ventricular systolic pressure, total pulmonary vascular resistance index and vascular remodeling, together with macrophage accumulation on day 21. In the preventive protocol, administration (days −3 to 21 after monocrotaline injection) of selective (E6446) or nonselective TLR9 inhibitor (chloroquine) significantly ameliorated the elevations of right ventricular systolic pressure and total pulmonary vascular resistance index as well as vascular remodeling and macrophage accumulation on day 21. These inhibitors also significantly reduced NF‐κB activation and interleukin‐6 mRNA levels to a similar extent. In the short‐term reversal protocol, E646 treatment (days 14–17 after monocrotaline injection) almost normalized NF‐κB activation and interleukin‐6 mRNA level, and reduced macrophage accumulation. In the prolonged reversal protocol, E6446 treatment (days 14–24 after monocrotaline injection) reversed total pulmonary vascular resistance index and vascular remodeling, and improved survival in monocrotaline‐exposed rats. Conclusions TLR9 is involved in the development of pulmonary hypertension concomitant via activation of the NF‐κB‒IL‐6 pathway. Inhibition of TLR9 may be a novel therapeutic strategy for pulmonary hypertension.
Collapse
Affiliation(s)
- Tomohito Ishikawa
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Mariko Takana-Ishikawa
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Department of Anesthesiology and Critical Care Medicine Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Keimei Yoshida
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Takanori Watanabe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Satomi Imakiire
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kazuya Hosokawa
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Mayumi Hirano
- Division of Molecular Cardiology Research Institute of Angiocardiology Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology Faculty of Medicine Kagawa University Miki-cho, Kita-gun Kagawa Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
70
|
Wendt TS, Li YJ, Gonzales RJ. Ozanimod, an S1PR 1 ligand, attenuates hypoxia plus glucose deprivation-induced autophagic flux and phenotypic switching in human brain VSM cells. Am J Physiol Cell Physiol 2021; 320:C1055-C1073. [PMID: 33788630 DOI: 10.1152/ajpcell.00044.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle (VSM) cell phenotypic expression and autophagic state are dynamic responses to stress. Vascular pathologies, such as hypoxemia and ischemic injury, induce a synthetic VSM phenotype and autophagic flux resulting in a loss of vascular integrity and VSM cell death respectfully. Both clinical pilot and experimental stroke studies demonstrate that sphingosine-1-phosphate receptor (S1PR) modulation improves stroke outcome; however, specific mechanisms associated with a beneficial outcome at the level of the cerebrovasculature have not been clearly elucidated. We hypothesized that ozanimod, a selective S1PR type 1 ligand, will attenuate VSM synthetic phenotypic expression and autophagic flux in primary human brain VSM cells following acute hypoxia plus glucose deprivation (HGD; in vitro ischemic-like injury) exposure. Cells were treated with ozanimod and exposed to normoxia or HGD. Crystal violet staining, standard immunoblotting, and immunocytochemical labeling techniques assessed cellular morphology, vacuolization, phenotype, and autophagic state. We observed that HGD temporally decreased VSM cell viability and concomitantly increased vacuolization, both of which ozanimod reversed. HGD induced a simultaneous elevation and reduction in levels of pro- and antiautophagic proteins respectfully, and ozanimod attenuated this response. Protein levels of VSM phenotypic biomarkers, smoothelin and SM22, were decreased following HGD. Furthermore, we observed an HGD-induced epithelioid and synthetic morphological appearance accompanied by disorganized cytoskeletal filaments, which was rescued by ozanimod. Thus, we conclude that ozanimod, a selective S1PR1 ligand, protects against acute HGD-induced phenotypic switching and promotes cell survival, in part, by attenuating HGD-induced autophagic flux thus improving vascular patency in response to acute ischemia-like injury.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yu Jing Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
71
|
Egom EEA, Moyou-Somo R, Essame Oyono JL, Kamgang R. Identifying Potential Mutations Responsible for Cases of Pulmonary Arterial Hypertension. APPLICATION OF CLINICAL GENETICS 2021; 14:113-124. [PMID: 33732008 PMCID: PMC7958998 DOI: 10.2147/tacg.s260755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive and devastating disease for which there is an escalating body of genetic and related pathophysiological information on disease pathobiology. Nevertheless, the success to date in identifying susceptibility genes, genetic variants and epigenetic processes has been limited due to PAH clinical multi-faceted variations. A number of germline gene candidates have been proposed but demonstrating consistently the association with PAH has been problematic, at least partly due to the reduced penetrance and variable expressivity. Although the data for bone morphogenetic protein receptor type 2 (BMPR2) and related genes remains undoubtedly the most extensive, recent advanced gene sequencing technologies have facilitated the discovery of further gene candidates with mutations among those with and without familial forms of PAH. An in depth understanding of the multitude of biologic variations associated with PAH may provide novel opportunities for therapeutic intervention in the coming years. This knowledge will irrevocably provide the opportunity for improved patient and family counseling as well as improved PAH diagnosis, risk assessment, and personalized treatment.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.,Reflex Medical Centre Cardiac Diagnostics, Reflex Medical Centre, Mississauga, ON, Canada
| | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
72
|
Preclinical Investigation of Trifluoperazine as a Novel Therapeutic Agent for the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22062919. [PMID: 33805714 PMCID: PMC7998101 DOI: 10.3390/ijms22062919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.
Collapse
|
73
|
Brazão SC, Autran LJ, Lopes RDO, Scaramello CBV, Brito FCFD, Motta NAV. Effects of Chloroquine and Hydroxychloroquine on the Cardiovascular System - Limitations for Use in the Treatment of COVID-19. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
74
|
Wu JH, Tung SY, Ho CC, Su LH, Gan SW, Liao JY, Cho CC, Lin BC, Chiu PW, Pan YJ, Kao YY, Liu YC, Sun CH. A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochim Biophys Acta Gen Subj 2021; 1865:129859. [PMID: 33581251 DOI: 10.1016/j.bbagen.2021.129859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Giardia lamblia differentiates into resistant cysts as an established model for dormancy. Myeloid leukemia factor (MLF) proteins are important regulators of cell differentiation. Giardia possesses a MLF homolog which was up-regulated during encystation and localized to unknown cytosolic vesicles named MLF vesicles (MLFVs). METHODS We used double staining for visualization of potential factors with role in protein metabolism pathway and a strategy that employed a deletion mutant, CDK2m3, to test the protein degradation pathway. We also explored whether autophagy or proteasomal degradation are regulators of Giardia encystation by treatment with MG132, rapamycin, or chloroquine. RESULTS Double staining of MLF and ISCU or CWP1 revealed no overlap between their vesicles. The aberrant CDK2m3 colocalized with MLFVs and formed complexes with MLF. MG132 increased the number of CDK2m3-localized vesicles and its protein level. We further found that MLF colocalized and interacted with a FYVE protein and an ATG8-like (ATG8L) protein, which were up-regulated during encystation and their expression induced Giardia encystation. The addition of MG132, rapamycin, or chloroquine, increased their levels and the number of their vesicles, and inhibited the cyst formation. MLF and FYVE were detected in exosomes released from culture. CONCLUSIONS The MLFVs are not mitosomes or encystation-specific vesicles, but are related with degradative pathway for CDK2m3. MLF, FYVE, and ATG8L play a positive role in encystation and function in protein clearance pathway, which is important for encystation and coordinated with Exosomes. GENERAL SIGNIFICANCE MLF, FYVE, and ATG8L may be involved an encystation-induced protein metabolism during Giardia differentiation.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Soo-Wah Gan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jo-Yu Liao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chao-Cheng Cho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Bo-Chi Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Jiao Pan
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Yun Kao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yu-Chen Liu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.
| |
Collapse
|
75
|
Investigation of the Therapeutic Effects of Chloroquine in Adriamycin-Induced Hepatotoxicity. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study is to investigate the therapeutic effects of Chloroquine (CLQ) against Adriamycin (ADR) induced hepatotoxicity. ADR is a chemotherapeutic agent used in the treatment of many cancer types, but it causes hepatotoxicity. CLQ is used as an anti-inflammatory drug in the treatment of malaria, rheumatoid arthritis, and pneumonia caused by Covid-19. Rats were divided into four groups: Control group, ADR group (2 mg/kg Adriamycin, one in three days for 30 days, i.p.), CLQ group (50 mg/kg Chloroquine, per day for 30 days, i.p.), ADR+CLQ (2 mg/kg Adriamycin, one in three days for 30 days, i.p. and 50 mg/ kg Chloroquine, per day for 30 days, i.p.). Animals were sacrificed, and liver tissues were extracted for further examinations. Histopathological changes in liver tissues were scored and IL-17 immunostaining was performed to determine the expression levels among experimental groups. Bodyweights in the ADR group decreased significantly compared to the Control group and CLQ group. Furthermore, bodyweight in ADR+CLQ group was significantly higher compared to ADR group. The histopathological score was significantly higher in ADR group when compared to Control and CLQ group while CLQ administrations reduced the damage induced by ADR in the ADR+CLQ group. IL-17 immunoreactivity was considerably increased in the ADR group. On the other hand, IL-17 expressions of ADR+CLQ were substantially less compared to ADR group. We suggest that CLQ can be used as a therapeutic agent to reduce the detrimental effects of ADR, thanks to its anti-inflammatory properties.
Collapse
|
76
|
Dunmore BJ, Jones RJ, Toshner MR, Upton PD, Morrell NW. Approaches to treat pulmonary arterial hypertension by targeting bmpr2 - from cell membrane to nucleus. Cardiovasc Res 2021; 117:2309-2325. [PMID: 33399862 DOI: 10.1093/cvr/cvaa350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is estimated to affect between 10-50 people per million worldwide. The lack of cure and devastating nature of the disease means that treatment is crucial to arrest rapid clinical worsening. Current therapies are limited by their focus on inhibiting residual vasoconstriction rather than targeting key regulators of the cellular pathology. Potential disease-modifying therapies may come from research directed towards causal pathways involved in the cellular and molecular mechanisms of disease. It is widely acknowledged, that targeting reduced expression of the critical bone morphogenetic protein type-2 receptor (BMPR2) and its associated signalling pathways is a compelling therapeutic avenue to explore. In this review we highlight the advances that have been made in understanding this pathway and the therapeutics that are being tested in clinical trials and the clinic to treat PAH.
Collapse
Affiliation(s)
- Benjamin J Dunmore
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Rowena J Jones
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Mark R Toshner
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth Hospitals, Cambridge, UK
| |
Collapse
|
77
|
Zhou MY, Cheng L, Chen L, Gu YJ, Wang Y. Calcium-sensing receptor in the development and treatment of pulmonary hypertension. Mol Biol Rep 2021; 48:975-981. [PMID: 33394231 DOI: 10.1007/s11033-020-06065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Calcium-sensing receptor (CaSR) is widely involved in the cell proliferation, differentiation, migration, adhesion and apoptosis, which can affect the vascular remodeling in the humanbody. The main ligand of CaSR is extracellular Ca2+. CaSR has the physiological significance in Ca2+ homeostasis. Pulmonary vascular remodeling is one of the main histopathological changes of pulmonary hypertension (PH). The abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) results in the pulmonary vascular remodeling. CaSR is an important regulator of [Ca2+]i. [Ca2+]i is the main cause of the excessive pulmonary vascular remodeling in patients with PH. In this review, it was conclued that the structure of CaSR was prone to explore the devolopment or the treatment of PH. It was found that the regulation of CaSR with some miRNA could inhibit the proliferation of PASMCs, and that CaSR could affect the occurrence of autophagy in PH. Therefore, CaSR would become a new therapeutic target to PH.
Collapse
MESH Headings
- Adamantane/analogs & derivatives
- Adamantane/therapeutic use
- Animals
- Autophagy/drug effects
- Autophagy/genetics
- Calcium/metabolism
- Calcium Channel Blockers/therapeutic use
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Quinoxalines/therapeutic use
- Receptors, Calcium-Sensing/antagonists & inhibitors
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Ming-Yuan Zhou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lin Cheng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Chen
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Ying-Jian Gu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
78
|
Wong SK. Repurposing New Use for Old Drug Chloroquine against Metabolic Syndrome: A Review on Animal and Human Evidence. Int J Med Sci 2021; 18:2673-2688. [PMID: 34104100 PMCID: PMC8176183 DOI: 10.7150/ijms.58147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are traditional anti-malarial drugs that have been repurposed for new therapeutic uses in many diseases due to their simple usage and cost-effectiveness. The pleiotropic effects of CQ and HCQ in regulating blood pressure, glucose homeostasis, lipid, and carbohydrate metabolism have been previously described in vivo and in humans, thus suggesting their role in metabolic syndrome (MetS) prevention. The anti-hyperglycaemic, anti-hyperlipidaemic, cardioprotective, anti-hypertensive, and anti-obesity effects of CQ and HCQ might be elicited through reduction of inflammatory response and oxidative stress, improvement of endothelial function, activation of insulin signalling pathway, inhibition of lipogenesis and autophagy, as well as regulation of adipokines and apoptosis. In conclusion, the current state of knowledge supported the repurposing of CQ and HCQ usage in the management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
79
|
Dannewitz Prosseda S, Ali MK, Spiekerkoetter E. Novel Advances in Modifying BMPR2 Signaling in PAH. Genes (Basel) 2020; 12:genes12010008. [PMID: 33374819 PMCID: PMC7824173 DOI: 10.3390/genes12010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a disease of the pulmonary arteries, that is characterized by progressive narrowing of the pulmonary arterial lumen and increased pulmonary vascular resistance, ultimately leading to right ventricular dysfunction, heart failure and premature death. Current treatments mainly target pulmonary vasodilation and leave the progressive vascular remodeling unchecked resulting in persistent high morbidity and mortality in PAH even with treatment. Therefore, novel therapeutic strategies are urgently needed. Loss of function mutations of the Bone Morphogenetic Protein Receptor 2 (BMPR2) are the most common genetic factor in hereditary forms of PAH, suggesting that the BMPR2 pathway is fundamentally important in the pathogenesis. Dysfunctional BMPR2 signaling recapitulates the cellular abnormalities in PAH as well as the pathobiology in experimental pulmonary hypertension (PH). Approaches to restore BMPR2 signaling by increasing the expression of BMPR2 or its downstream signaling targets are currently actively explored as novel ways to prevent and improve experimental PH as well as PAH in patients. Here, we summarize existing as well as novel potential treatment strategies for PAH that activate the BMPR2 receptor pharmaceutically or genetically, increase the receptor availability at the cell surface, or reconstitute downstream BMPR2 signaling.
Collapse
Affiliation(s)
- Svenja Dannewitz Prosseda
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (S.D.P.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford, CA 94305, USA
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Md Khadem Ali
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (S.D.P.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford, CA 94305, USA
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (S.D.P.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
80
|
Yucel H, Vollmer O, Canuet M, Enache I, Kessler R, Korganow AS, Riou M. Severe pulmonary arterial hypertension and massive ascites in a patient with systemic lupus erythematosus and secondary Sjogren's syndrome. Lupus 2020; 30:510-513. [PMID: 33655792 DOI: 10.1177/0961203320976982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), is a rare manifestation of systemic lupus erythematosus (SLE), characterized by pulmonary arterial remodeling leading to right ventricular failure and death. To date, optimal management of SLE-associated PAH should be clarified, especially regarding the respective places of immunosuppressants and PAH vasodilator treatments. CASE REPORT We report the case of a 48-year-old woman with SLE and secondary Sjogren syndrome, associated with severe PAH and lupus peritonitis with massive ascites, who showed a remarkable response, both for SLE flare and PAH, to a treatment combining immunosuppressants and pulmonary arterial vasodilator treatment. CONCLUSION This observation highlights the interest of combining immunosuppressive therapy in SLE-PAH, whose modalities in association with PAH treatments should be clarified.
Collapse
Affiliation(s)
- H Yucel
- Service de Pneumologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - O Vollmer
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), France.,Service d'Immunologie clinique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M Canuet
- Service de Pneumologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - I Enache
- Service de Physiologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - R Kessler
- Service de Pneumologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - A S Korganow
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), France.,Service d'Immunologie clinique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M Riou
- Service de Pneumologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Service de Physiologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
81
|
Fan Y, Gu X, Zhang J, Sinn K, Klepetko W, Wu N, Foris V, Solymosi P, Kwapiszewska G, Kuebler WM. TWIST1 Drives Smooth Muscle Cell Proliferation in Pulmonary Hypertension via Loss of GATA-6 and BMPR2. Am J Respir Crit Care Med 2020; 202:1283-1296. [PMID: 32692930 DOI: 10.1164/rccm.201909-1884oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: The bHLH (basic helix-loop-helix) transcription factor TWIST1 (Twist-related protein 1) controls cell proliferation and differentiation in tissue development and disease processes. Recently, endothelial TWIST1 has been linked to pulmonary hypertension (PH) and endothelial-to-mesenchymal transition, yet the role of TWIST1 in smooth muscle cells (SMCs) remains so far unclear.Objectives: To define the role of TWIST1 in SMCs in the pathogenesis of PH.Methods: SMC-specific TWIST1-deficient mice, SMC-specific TWIST1 silencing in rats, mass spectrometry, immunoprecipitation, and chromatin immunoprecipitation were used to delineate the role of SMC TWIST1 in PH.Measurements and Main Results: In pulmonary vessels from patients with PH and rodent PH models, TWIST1 expression was markedly increased and predominantly localized to SMCs. SMC-specific TWIST1 deficiency or silencing attenuated the development of PH and distal vessel muscularization in chronically hypoxic mice and in monocrotaline-treated rats. In vitro, TWIST1 inhibition or silencing prevented pulmonary artery SMC proliferation and migration. Mechanistically, the observed effects were mediated, at least in part, by TWIST1-dependent degradation of GATA-6 (GATA-binding protein 6). BMPR2 (bone morphogenetic protein receptor-2) was identified as a novel downstream target of GATA-6, which directly binds to its promoter. Inhibition of TWIST1 promoted the recruitment of GATA-6 to the BMPR2 promoter and restored BMPR2 functional expression.Conclusions: Our findings identify a key role for SMC TWIST1 in the pathogenesis of lung vascular remodeling and in PH that is partially mediated via reduced GATA-6-dependent BMPR2 expression. Inhibition of SMC TWIST1 may constitute a new therapeutic strategy for the treatment of PH.
Collapse
Affiliation(s)
- Ye Fan
- Department of Respiratory Disease, Xinqiao Hospital, and
| | - Xia Gu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jing Zhang
- Department of Respiratory Disease, Xinqiao Hospital, and
| | - Katharina Sinn
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Walter Klepetko
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na Wu
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasile Foris
- Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Philip Solymosi
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany; and
| |
Collapse
|
82
|
Faraone I, Labanca F, Ponticelli M, De Tommasi N, Milella L. Recent Clinical and Preclinical Studies of Hydroxychloroquine on RNA Viruses and Chronic Diseases: A Systematic Review. Molecules 2020; 25:E5318. [PMID: 33202656 PMCID: PMC7696151 DOI: 10.3390/molecules25225318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The rapid spread of the new Coronavirus Disease 2019 (COVID-19) has actually become the newest challenge for the healthcare system since, to date, there is not an effective treatment. Among all drugs tested, Hydroxychloroquine (HCQ) has attracted significant attention. This systematic review aims to analyze preclinical and clinical studies on HCQ potential use in viral infection and chronic diseases. A systematic search of Scopus and PubMed databases was performed to identify clinical and preclinical studies on this argument; 2463 papers were identified and 133 studies were included. Regarding HCQ activity against COVID-19, it was noticed that despite the first data were promising, the latest outcomes highlighted the ineffectiveness of HCQ in the treatment of viral infection. Several trials have seen that HCQ administration did not improve severe illness and did not prevent the infection outbreak after virus exposure. By contrast, HCQ arises as a first-line treatment in managing autoimmune diseases such as rheumatoid arthritis, lupus erythematosus, and Sjögren syndrome. It also improves glucose and lipid homeostasis and reveals significant antibacterial activity.
Collapse
MESH Headings
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/physiopathology
- Betacoronavirus/pathogenicity
- COVID-19
- Chikungunya Fever/drug therapy
- Chikungunya Fever/epidemiology
- Chikungunya Fever/physiopathology
- Chikungunya Fever/virology
- Chikungunya virus/pathogenicity
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Coronavirus Infections/physiopathology
- Coronavirus Infections/virology
- Drug Administration Schedule
- HIV/pathogenicity
- HIV Infections/drug therapy
- HIV Infections/epidemiology
- HIV Infections/physiopathology
- HIV Infections/virology
- Humans
- Hydroxychloroquine/therapeutic use
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/physiopathology
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/physiopathology
- Pneumonia, Viral/virology
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Severe Acute Respiratory Syndrome/drug therapy
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/physiopathology
- Severe Acute Respiratory Syndrome/virology
- Sjogren's Syndrome/drug therapy
- Sjogren's Syndrome/immunology
- Sjogren's Syndrome/physiopathology
- Zika Virus/pathogenicity
- Zika Virus Infection/drug therapy
- Zika Virus Infection/epidemiology
- Zika Virus Infection/physiopathology
- Zika Virus Infection/virology
Collapse
Affiliation(s)
- Immacolata Faraone
- Department of Science, University of Basilicata, v.le dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (F.L.); (M.P.); (L.M.)
- Spinoff BioActiPlant s.r.l., University of Basilicata, v.le dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Fabiana Labanca
- Department of Science, University of Basilicata, v.le dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (F.L.); (M.P.); (L.M.)
| | - Maria Ponticelli
- Department of Science, University of Basilicata, v.le dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (F.L.); (M.P.); (L.M.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, v.le dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (F.L.); (M.P.); (L.M.)
| |
Collapse
|
83
|
Abstract
Acute Respiratory Distress Syndrome is a severe disorder affecting thousands of individuals worldwide. The available medical countermeasures do not sufficiently suppress the unacceptable high mortality rates associated with those in need. Thus, intense efforts aim to delineate the function of the lung endothelium, so to deliver new therapeutic approaches against this disease. The present manuscript attempts to shed light on the interrelations between the unfolded protein response and autophagy towards lung disease, to deliver a new line of possible therapeutic approaches against the ferocious Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
84
|
Huang J, Zhang L, Fang Y, Jiang W, Du J, Zhu J, Hu M, Shen B. Differentially expressed transcripts and associated protein pathways in basilar artery smooth muscle cells of the high-salt intake-induced hypertensive rat. PeerJ 2020; 8:e9849. [PMID: 33083107 PMCID: PMC7566752 DOI: 10.7717/peerj.9849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
The pathology of cerebrovascular disorders, such as hypertension, is associated with genetic changes and dysfunction of basilar artery smooth muscle cells (BASMCs). Long-term high-salt diets have been associated with the development of hypertension. However, the molecular mechanisms underlying salt-sensitive hypertension-induced BASMC modifications have not been well defined, especially at the level of variations in gene transcription. Here, we utilized high-throughput sequencing and subsequent signaling pathway analyses to find a two–fold change or greater upregulated expression of 203 transcripts and downregulated expression of 165 transcripts in BASMCs derived from rats fed a high-salt diet compared with those from control rats. These differentially expressed transcripts were enriched in pathways involved in cellular, morphological, and structural plasticity, autophagy, and endocrine regulation. These transcripts changes in the BASMCs derived from high-salt intake–induced hypertensive rats may provide critical information about multiple cellular processes and biological functions that occur during the development of cerebrovascular disorders and provide potential new targets to help control or block the development of hypertension.
Collapse
Affiliation(s)
- Junhao Huang
- Guangzhou Sport University, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou, Guangdong, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wan Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinhang Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min Hu
- Guangzhou Sport University, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou, Guangdong, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
85
|
Toshner M, Spiekerkoetter E, Bogaard H, Hansmann G, Nikkho S, Prins KW. Repurposing of medications for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020941494. [PMID: 33282182 PMCID: PMC7682234 DOI: 10.1177/2045894020941494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
This manuscript on drug repurposing incorporates the broad experience of members of the Pulmonary Vascular Research Institute's Innovative Drug Development Initiative as an open debate platform for academia, the pharmaceutical industry and regulatory experts surrounding the future design of clinical trials in pulmonary hypertension. Drug repurposing, use of a drug in a disease for which it was not originally developed, in pulmonary arterial hypertension has been a remarkable success story, as highlighted by positive large phase 3 clinical trials using epoprostenol, bosentan, iloprost, and sildenafil. Despite the availability of multiple therapies for pulmonary arterial hypertension, mortality rates have modestly changed. Moreover, pulmonary arterial hypertension patients are highly symptomatic and frequently end up on parental therapy and lung transplant waiting lists. Therefore, an unmet need for new treatments exists and drug repurposing may be an important avenue to address this problem.
Collapse
Affiliation(s)
- Mark Toshner
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Edda Spiekerkoetter
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Harm Bogaard
- Department of Pulmonary Medicine, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Sylvia Nikkho
- Bayer Pharmaceuticals, Clinical Development Pulmonology, Berlin, Germany
| | - Kurt W. Prins
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
86
|
Kaymak E, Akin AT, Tufan E, Başaran KE, Taheri S, Özdamar S, Yakan B. The effect of chloroquine on the TRPC1, TRPC6, and CaSR in the pulmonary artery smooth muscle cells in hypoxia-induced experimental pulmonary artery hypertension. J Biochem Mol Toxicol 2020; 35:e22636. [PMID: 32956540 DOI: 10.1002/jbt.22636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a constant high pulmonary artery pressure and the remodeling of the vessel. Chloroquine (CLQ) has been observed to inhibit calcium influx. The aim of this study is to investigate the effect of CLQ on transient receptor cationic proteins (TRPC1 and TRPC6) and extracellular calcium-sensitive receptor (CaSR) in a hypoxic PAH model. In this study, 8- to 12-week-old 32 male Wistar albino rats, weighing 200 to 300 g, were used. The rats were studied in four groups, including normoxy control, n = 8; normoxy CLQ (50 mg/kg/28 d), n = 8; hypoxia (HX; 10% oxygen/28 d) control, n = 8; and HX (10% oxygen/28 d) + CLQ (50 mg/kg), N = 8. Pulmonary arterial medial wall thickness, pulmonary arteriole wall, TRPC1, TRPC6, and CaSR expressions were evaluated by immunohistochemistry, polymerase chain reaction, and enzyme-linked immunosorbent assay methods. At the end of the experiment, a statistically significant increase in the medial wall thickness was observed in the hypoxic group as compared with the control group. However, in the HX + CLQ group, there was a statistically significant decrease in the vessel medial wall as compared with the HX group. In the TRPC1-, TRPC6-, and CaSR-immunopositive cell numbers, messenger RNA expressions and biochemical results showed an increase in the HX group, whereas they were decreased in the HX + CLQ group. The inhibitory effect of CLQ on calcium receptors in arterioles was observed in PAH.
Collapse
Affiliation(s)
- Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Esra Tufan
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | | | - Serpil Taheri
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
87
|
Yamanaka R, Hoshino A, Fukai K, Urata R, Minami Y, Honda S, Fushimura Y, Hato D, Iwai-Kanai E, Matoba S. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am J Physiol Heart Circ Physiol 2020; 319:H1087-H1096. [PMID: 32946259 DOI: 10.1152/ajpheart.00314.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yamanaka R, Hoshino A, Fukai K, Urata R, Minami Y, Honda S, Fushimura Y, Hato D, Iwai-Kanai E, Matoba S. TIGAR reduces smooth muscle cell autophagy to prevent pulmonary hypertension. Am J Physiol Heart Circ Physiol 319: H1087-H1096, 2020. First published September 18, 2020; doi:10.1152/ajpheart.00314.2020.-Pulmonary arterial hypertension (PAH) is a refractory disease. Its prognosis remains poor; hence, establishment of novel therapeutic targets is urgent. TP53-induced glycolysis and apoptosis regulator (TIGAR) is a downstream target of p53 and exhibits functions inhibiting autophagy and reactive oxygen species (ROS). Recently, p53 was shown to suppress PAH progression. Because inhibition of autophagy and ROS is known to improve PAH, we examined the effect of TIGAR on PAH progression. We compared pulmonary hypertension (PH) development between TIGAR-deficient knockout (KO) and wild-type (WT) mice using a hypoxia-induced PH model. Human pulmonary artery smooth muscle cells (PASMCs) were used for in vitro experiments with small interfering RNA (siRNA) to investigate the possible molecular mechanisms. From the analysis of right ventricular pressure, right ventricular weight, and mortality rate, we concluded that the hypoxia-induced PH development was remarkably higher in TIGAR KO than in WT mice. Pathological investigation revealed that medial thickening of the pulmonary arterioles and cell proliferation were increased in TIGAR KO mice. Autophagy and ROS activity were also increased in TIGAR KO mice. TIGAR knockdown by siRNA increased cell proliferation and migration, exacerbated autophagy, and increased ROS generation during hypoxia. Autophagy inhibition by chloroquine and ROS inhibition by N-acetylcysteine attenuated the proliferation and migration of PASMCs caused by TIGAR knockdown and hypoxia exposure. TIGAR suppressed the proliferation and migration of PASMCs via inhibiting autophagy and ROS and, therefore, improved hypoxia-induced PH. Thus, TIGAR might be a promising therapeutic target for PAH.NEW & NOTEWORTHY Pulmonary arterial hypertension is a refractory disease. TP53-induced glycolysis and apoptosis regulator (TIGAR) is a downstream target of p53 and exhibits functions inhibiting autophagy and reactive oxygen species (ROS). By using TIGAR-deficient knockout mice and human pulmonary artery smooth muscle cells, we found that TIGAR suppressed the proliferation and migration of PASMCs via inhibiting autophagy and ROS and, therefore, improved hypoxia-induced PH. TIGAR will be a promising therapeutic target for PAH.
Collapse
Affiliation(s)
- Ryoetsu Yamanaka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Kuniyoshi Fukai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Ryota Urata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Yoshito Minami
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Sakiko Honda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Yohei Fushimura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Daichi Hato
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| | - Eri Iwai-Kanai
- Faculty of Health Care, Tenri Health Care University, Tenri, Nara, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan
| |
Collapse
|
88
|
Xin W, Zhang M, Yu Y, Li S, Ma C, Zhang J, Jiang Y, Li Y, Zheng X, Zhang L, Zhao X, Pei X, Zhu D. BCAT1 binds the RNA-binding protein ZNF423 to activate autophagy via the IRE1-XBP-1-RIDD axis in hypoxic PASMCs. Cell Death Dis 2020; 11:764. [PMID: 32938905 PMCID: PMC7494854 DOI: 10.1038/s41419-020-02930-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Abnormal functional changes in pulmonary artery smooth muscle cells are the main causes of many lung diseases. Among, autophagy plays a crucial role. However, the specific molecular regulatory mechanism of autophagy in PASMCs remains unclear. Here, we first demonstrate that BCAT1 played a key role in the autophagy of hypoxic PASMCs and hypoxic model rats. BCAT1-induced activation and accumulation of the autophagy signaling proteins BECN1 and Atg5 by the endoplasmic reticulum (ER) stress pathway. Interestingly, we discovered that BCAT1 bound IRE1 on the ER to activate expression of its downstream pathway XBP-1-RIDD axis to activate autophagy. More importantly, we identified an RNA-binding protein, zinc finger protein 423, which promoted autophagy by binding adenylate/uridylate (AU)-rich elements in the BCAT1 mRNA 3′-untranslated region. Overall, our results identify BCAT1 as a potential therapeutic target for the clinical treatment of lung diseases and reveal a novel posttranscriptional regulatory mechanism and signaling pathway in hypoxia-induced PASMC autophagy.
Collapse
Affiliation(s)
- Wei Xin
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Min Zhang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Yang Yu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Songlin Li
- College of Pharmacy, Harbin University of Commerce, Harbin, 150076, P.R. China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Junting Zhang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Yuan Jiang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Yiying Li
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xiaodong Zheng
- Department of Genetic and Cell Biology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Xuzhong Pei
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China
| | - Daling Zhu
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China. .,Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P.R. China. .,State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Daqing, 163319, P.R. China. .,Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, P.R. China.
| |
Collapse
|
89
|
Li HP, Liu JT, Chen YX, Wang WB, Han Y, Yao QP, Qi YX. Suppressed nuclear envelope proteins activate autophagy of vascular smooth muscle cells during cyclic stretch application. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118855. [PMID: 32926941 DOI: 10.1016/j.bbamcr.2020.118855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
Dysfunctions of vascular smooth muscle cells (VSMCs) play crucial roles in vascular remodeling in hypertension, which correlates with pathologically elevated cyclic stretch due to increased arterial pressure. Recent researches reported that autophagy, a life-sustaining process, was increased in hypertension. However, the mechanobiological mechanism of VSMC autophagy and its potential roles in vascular remodeling are still unclear. Using renal hypertensive rats in vivo and FX5000 stretch application Unit in vitro, the autophagy of VSMCs was detected. The results showed that LC3II remarkably enhanced in hypertensive rats and 15% cyclic stretch (mimic the pathologically increased mechanical stretch in hypertension), and the activity of mammalian target of rapamycin (mTOR) was suppressed in 15% cyclic stretch. Administration of autophagy inhibitors, bafilomycin A1 and chloroquine, repressed VSMC proliferation efficiently, but did not affect the degradation of two important nuclear envelope (NE) proteins, lamin A/C and emerin. Using RNA interference to decline the expression of lamin A/C and emerin, respectively, we discovered that autophagy was upregulated under both static and 5% cyclic stretch conditions, accompanying with the decreased mTOR activity. During 15% cyclic stretch application, mTOR inhibition was responsible for autophagy elevation. Chloroquine administration in vivo inhibited the expression of PCNA (marker of proliferation) of abdominal aorta in hypertensive rats. Altogether, these results demonstrated that pathological cyclic stretch suppresses the expression of lamin A/C and emerin which subsequently represses mTOR pathway so as to induce autophagy activation. Blocking autophagic flux may be a practicable way to relieve the pathological vascular remodeling in hypertensive.
Collapse
Affiliation(s)
- Hai-Peng Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Ting Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan-Xiu Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bin Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
90
|
Yang Y, Lin F, Xiao Z, Sun B, Wei Z, Liu B, Xue L, Xiong C. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: An update. Biomed Pharmacother 2020; 129:110355. [DOI: 10.1016/j.biopha.2020.110355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
|
91
|
Zhan X, Dowell S, Shen Y, Lee DL. Chloroquine to fight COVID-19: A consideration of mechanisms and adverse effects? Heliyon 2020; 6:e04900. [PMID: 32935064 PMCID: PMC7480339 DOI: 10.1016/j.heliyon.2020.e04900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 outbreak emerged in December 2019 and has rapidly become a global pandemic. A great deal of effort has been made to find effective drugs against this disease. Chloroquine (CQ) and hydroxychloroquine (HCQ) were widely adopted in treating COVID-19, but the results were contradictive. CQ/HCQ have been used to prevent and treat malaria and are efficacious anti-inflammatory agents in rheumatoid arthritis and systemic lupus erythematosus. These drugs have potential broad-spectrum antiviral properties, but the underlying mechanisms are speculative. In this review, we re-evaluated the treatment outcomes and current hypothesis for the working mechanisms of CQ/HCQ as COVID-19 therapy with a special focus on disruption of Ca2+ signaling. In so doing, we attempt to show how the different hypotheses for CQ/HCQ action on coronavirus may interact and reinforce each other. The potential toxicity is also noted due to its action on Ca2+ and hyperpolarization-activated cyclic nucleotide-gated channels in cardiac myocytes and neuronal cells. We propose that intracellular calcium homeostasis is an alternative mechanism for CQ/HCQ pharmacology, which should be considered when evaluating the risks and benefits of therapy in these patients and other perspective applications.
Collapse
Affiliation(s)
- Xiping Zhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059
| | - Sharon Dowell
- Department of Internal Medicine, Division of Rheumatology, Howard University Hospital, 2041 Georgia Avenue, Washington, DC 20060
| | - Ying Shen
- Department of Physiology, Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dexter L. Lee
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059
| |
Collapse
|
92
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
93
|
Lee H, Han JH, Kim S, Kim S, Cho DH, Woo CH. Anti-malarial Drugs Reduce Vascular Smooth Muscle Cell Proliferation via Activation of AMPK and Inhibition of Smad3 Signaling. J Lipid Atheroscler 2020; 8:267-276. [PMID: 32821717 PMCID: PMC7379117 DOI: 10.12997/jla.2019.8.2.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Objective The aim of this study was to investigate the effects of 2 anti-malarial drugs, chloroquine (CQ) and hydroxychloroquine (HCQ), on inhibition of vascular smooth muscle cell (VSMC) proliferation both in vivo and in vitro via Adenosine monophosphate-activated protein kinase (AMPK) activation. Methods Protein and mRNA levels were determined by western blot analysis and real-time reverse transcription-polymerase chain reaction in primary rat VSMCs treated with CQ and HCQ, respectively. Cell proliferation was measured by flow cytometry and cell counting. Mice carotid arteries were ligated and treated with CQ or HCQ every other day for 3 weeks. Pathological changes of carotid arteries were visualized by both microscopy and fluorescence microscopy. Results CQ and HCQ increase AMPK phosphorylation in VSMCs. Both CQ and HCQ decrease platelet-derived growth factor-induced VSMC proliferation and cell cycle progression in an AMPK-dependent manner. In addition, CQ and HCQ inhibit Smad3 phosphorylation and VSMC proliferation induced by transforming growth factor-β1. Moreover, CQ and HCQ diminished neointimal proliferation in a mouse model of carotid artery ligation-induced neointima formation. Conclusion The results demonstrated that CQ and HCQ inhibit cell proliferation and cell cycle progression in VSMCs via the AMPK-dependent signaling pathway. Carotid artery ligation-induced intima thickness was reduced in mouse arteries treated with CQ or HCQ, suggesting a role for antimalarial drugs in treating atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Heejung Lee
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Jung-Hwa Han
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Sujin Kim
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Suji Kim
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Du-Hyong Cho
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| | - Chang-Hoon Woo
- Department of Pharmacology and Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
94
|
Xing F, Zhang Q, Gao L, Zheng G. Fabrication of a fluorescent probe for in-situ and ratiometric visualization of autophagy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118428. [PMID: 32388419 DOI: 10.1016/j.saa.2020.118428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
In situ and real-time visualization of autophagy process is of vital importance for fundamental researches in biology. However, fluorescent probes for autophagy were rarely reported, which greatly hindered the study on autophagy. In this work, a fluorescent probe was rationally designed and fabricated for the ratiometric visualization of autophagy. The probe targeted non-lysosome organelles in healthy cells, and gave blue emission. During autophagy, the organelles together with the probe were delivered into acid lysosomes, and gave red fluorescence. In this way, the autophagy process could be monitored in ratiometric manner. The starvation induced autophagy was successfully visualized by means of the probe, and the inhibition effect of chloroquine to autophagy was also observed. We expect that the probe can serve as a powerful tool for the investigation of autophagy and relative areas.
Collapse
Affiliation(s)
- Fei Xing
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 West Road of Nan, Xinzhuang, Jinan 250022, PR China
| | - Qilong Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 West Road of Nan, Xinzhuang, Jinan 250022, PR China
| | - Lingfeng Gao
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 West Road of Nan, Xinzhuang, Jinan 250022, PR China
| | - Gengxiu Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 West Road of Nan, Xinzhuang, Jinan 250022, PR China.
| |
Collapse
|
95
|
Potus F, Mai V, Lebret M, Malenfant S, Breton-Gagnon E, Lajoie AC, Boucherat O, Bonnet S, Provencher S. Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 319:L277-L288. [PMID: 32551862 PMCID: PMC7414237 DOI: 10.1152/ajplung.00195.2020] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
In the last few months, the number of cases of a new coronavirus-related disease (COVID-19) rose exponentially, reaching the status of a pandemic. Interestingly, early imaging studies documented that pulmonary vascular thickening was specifically associated with COVID-19 pneumonia, implying a potential tropism of the virus for the pulmonary vasculature. Moreover, SARS-CoV-2 infection is associated with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, DNA damage, and lung coagulopathy promoting endothelial dysfunction and microthrombosis. These features are strikingly similar to what is seen in pulmonary vascular diseases. Although the consequences of COVID-19 on the pulmonary circulation remain to be explored, several viruses have been previously thought to be involved in the development of pulmonary vascular diseases. Patients with preexisting pulmonary vascular diseases also appear at increased risk of morbidity and mortality. The present article reviews the molecular factors shared by coronavirus infection and pulmonary vasculature defects, and the clinical relevance of pulmonary vascular alterations in the context of COVID-19.
Collapse
Affiliation(s)
- François Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Vicky Mai
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Marius Lebret
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Simon Malenfant
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Emilie Breton-Gagnon
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Annie C Lajoie
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quebec City, Quebec, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec Research Centre, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
96
|
Mubagwa K. Cardiac effects and toxicity of chloroquine: a short update. Int J Antimicrob Agents 2020; 56:106057. [PMID: 32565195 PMCID: PMC7303034 DOI: 10.1016/j.ijantimicag.2020.106057] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
There is currently increased interest in the use of the antimalarial drugs chloroquine and hydroxychloroquine for the treatment of other diseases, including cancer and viral infections such as coronavirus disease 2019 (COVID-19). However, the risk of cardiotoxic effects tends to limit their use. In this review, the effects of these drugs on the electrical and mechanical activities of the heart as well as on remodelling of cardiac tissue are presented and the underlying molecular and cellular mechanisms are discussed. The drugs can have proarrhythmic as well as antiarrhythmic actions resulting from their inhibition of ion channels, including voltage-dependent Na+ and Ca2+ channels, background and voltage-dependent K+ channels, and pacemaker channels. The drugs also exert a vagolytic effect due at least in part to a muscarinic receptor antagonist action. They also interfere with normal autophagy flux, an effect that could aggravate ischaemia/reperfusion injury or post-infarct remodelling. Most of the toxic effects occur at high concentrations, following prolonged drug administration or in the context of drug associations.
Collapse
Affiliation(s)
- Kanigula Mubagwa
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo.
| |
Collapse
|
97
|
Long L, Yang X, Southwood M, Moore S, Crosby A, Upton PD, Dunmore BJ, Morrell NW. Targeting translational read-through of premature termination mutations in BMPR2 with PTC124 for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020935783. [PMID: 32733669 PMCID: PMC7372630 DOI: 10.1177/2045894020935783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension is a fatal disorder of the lung circulation in which accumulation of vascular cells progressively obliterates the pulmonary arterioles. This results in sustained elevation in pulmonary artery pressure leading eventually to right heart failure. Approximately, 80% of familial and 20% of sporadic idiopathic pulmonary arterial hypertension cases are caused by mutations in the bone morphogenetic protein receptor type 2 (BMPR2). Nonsense mutations in BMPR2 are amongst the most common mutations found, where the insertion of a premature termination codon causes mRNA degradation via activation of the nonsense-mediated decay pathway leading to a state of haploinsufficiency. Ataluren (PTC124), a compound that permits ribosomal read-through of premature stop codons, has been previously reported to increase BMPR2 protein expression in cells derived from pulmonary arterial hypertension patients harbouring nonsense mutations. In this study, we characterised the effects of PTC124 on a range of nonsense BMPR2 mutations, focusing on the R584X mutation both in vitro and in vivo. Treatment with PTC124 partially restored BMPR2 protein expression in blood outgrowth endothelial cells isolated from a patient harbouring the R584X mutation. Furthermore, a downstream bone morphogenetic protein signalling target, Id1, was rescued by PTC124 treatment. Mutant cells also exhibited increased lipopolysaccharide-induced permeability, which was reversed by PTC124 treatment. Increased proliferation and apoptosis in R584X blood outgrowth endothelial cells were also significantly reduced by PTC124. Moreover, oral PTC124 increased lung BMPR2 protein expression in mice harbouring the R584X mutation (Bmpr2 +/R584X ). Our findings provide support for future experimental medicine studies of PTC124 in pulmonary arterial hypertension patients with specific nonsense BMPR2 mutations.
Collapse
Affiliation(s)
- Lu Long
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Xudong Yang
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mark Southwood
- Pathology Research, Royal Papworth
Hospital NHS Foundation Trust, Cambridge, UK
| | - Stephen Moore
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexi Crosby
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Paul D. Upton
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Benjamin J. Dunmore
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK,Nicholas W. Morrell, Division of Respiratory
Medicine, Department of Medicine, Box 157, Addenbrooke's Hospital, Hills Road,
Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
98
|
Zhai C, Feng W, Shi W, Wang J, Zhang Q, Yan X, Wang Q, Li S, Liu L, Pan Y, Zhu Y, Chai L, Li C, Liu P, Chen Y, Li M. Sphingosine-1-phosphate promotes pulmonary artery smooth muscle cells proliferation by stimulating autophagy-mediated E-cadherin/CDH1 down-regulation. Eur J Pharmacol 2020; 884:173302. [PMID: 32659302 DOI: 10.1016/j.ejphar.2020.173302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
It has been shown that sphingosine-1-phosphate (S1P) is elevated in patients with pulmonary arterial hypertension (PAH) and promotes the proliferation of pulmonary artery smooth muscle cells (PASMCs). Meanwhile, S1P has been found to induce the activation of autophagy in several types of human diseases including cancers. However, it is still unclear whether activation of autophagy mediates S1P-induced PASMCs proliferation, and detailed mechanisms responsible for these processes are indefinite. The aims of this study are to address these issues. S1P dose- and time-dependently reduced the expression of E-cadherin/CDH1 and stimulated PASMCs proliferation; this was accompanied with the elevation of TNF receptor-associated factor 2 (TRAF2), up-regulation and ubiquitination of BECN1 and the activation of autophagy. Prior silencing TRAF2 or BECN1 using siRNA or pre-incubation of cells with autophagy inhibitor chloroquine phosphate (CQ) suppressed S1P-induced autophagy activation and subsequent CDH1 degradation and further PASMCs proliferation. Taken together, our study indicates that S1P promotes the activation of autophagy by accelerating TRAF2-mediated BECN1 up-regulation and ubiquitination, which in turn results in CDH1 reduction and contributes to PASMCs proliferation.
Collapse
Affiliation(s)
- Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Cong Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Pengtao Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
99
|
Gomez-Puerto MC, Sun XQ, Schalij I, Orriols M, Pan X, Szulcek R, Goumans MJ, Bogaard HJ, Zhou Q, ten Dijke P. MnTBAP Reverses Pulmonary Vascular Remodeling and Improves Cardiac Function in Experimentally Induced Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4130. [PMID: 32531895 PMCID: PMC7312610 DOI: 10.3390/ijms21114130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by obstructed pulmonary vasculatures. Current therapies for PAH are limited and only alleviate symptoms. Reduced levels of BMPR2 are associated with PAH pathophysiology. Moreover, reactive oxygen species, inflammation and autophagy have been shown to be hallmarks in PAH. We previously demonstrated that MnTBAP, a synthetic metalloporphyrin with antioxidant and anti-inflammatory activity, inhibits the turn-over of BMPR2 in human umbilical vein endothelial cells. Therefore, we hypothesized that MnTBAP might be used to treat PAH. Human pulmonary artery endothelial cells (PAECs), as well as pulmonary microvascular endothelial (MVECs) and smooth muscle cells (MVSMCs) from PAH patients, were treated with MnTBAP. In vivo, either saline or MnTBAP was given to PAH rats induced by Sugen 5416 and hypoxia (SuHx). On PAECs, MnTBAP was found to increase BMPR2 protein levels by blocking autophagy. Moreover, MnTBAP increased BMPR2 levels in pulmonary MVECs and MVSMCs isolated from PAH patients. In SuHx rats, MnTBAP reduced right ventricular (RV) afterload by reversing pulmonary vascular remodeling, including both intima and media layers. Furthermore, MnTBAP improved RV function and reversed RV dilation in SuHx rats. Taken together, these data highlight the importance of MnTBAP as a potential therapeutic treatment for PAH.
Collapse
Affiliation(s)
- Maria Catalina Gomez-Puerto
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.C.G.-P.); (M.O.); (M.-J.G.); (P.t.D.)
| | - Xiao-Qing Sun
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (X.-Q.S.); (I.S.); (X.P.); (R.S.)
| | - Ingrid Schalij
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (X.-Q.S.); (I.S.); (X.P.); (R.S.)
| | - Mar Orriols
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.C.G.-P.); (M.O.); (M.-J.G.); (P.t.D.)
| | - Xiaoke Pan
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (X.-Q.S.); (I.S.); (X.P.); (R.S.)
| | - Robert Szulcek
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (X.-Q.S.); (I.S.); (X.P.); (R.S.)
| | - Marie-José Goumans
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.C.G.-P.); (M.O.); (M.-J.G.); (P.t.D.)
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (X.-Q.S.); (I.S.); (X.P.); (R.S.)
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.C.G.-P.); (M.O.); (M.-J.G.); (P.t.D.)
| |
Collapse
|
100
|
Liu Y, Li J, Han Y, Chen Y, Liu L, Lang J, Yang C, Luo H, Ning J. Advanced glycation end-products suppress autophagy by AMPK/mTOR signaling pathway to promote vascular calcification. Mol Cell Biochem 2020; 471:91-100. [PMID: 32514882 DOI: 10.1007/s11010-020-03769-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Vascular calcification is closely linked to patients in diabetes mellitus and chronic kidney disease. Advanced glycation end-products (AGEs) are associated with osteogenic differentiation of vascular smooth muscle cell (VSMC), vascular calcification, and autophagy that takes part in the process. However, the underlying mechanism of the effects of AGEs on the phenotypic transition and autophagy of VSMCs is not clearly understood. In this study, we cultured the rat VSMC line (A7R5) and thoracic aorta organ with bovine serum albumin (BSA) or AGEs (AGEs-BSA) and detected proteins expression by Western blotting or immunofluorescence. Autophagosome was observed by transmission electron microscopy (TEM). The mineralization and calcific nodules were identified by Alizarin Red S and Von Kossa staining. AGEs significantly downregulated p-AMPKα expression and upregulated p-mTOR expression and then increased the expression of osteoblastic differentiation, while suppressing autophagy in a time-dependent pattern. Pretreatment with autophagy activator rapamycin and AMPK activator AICAR both upregulated the autophagy level and downregulated the effects of AGEs on osteoblastic differentiation of VSMCs. Moreover, the result from rat thoracic aorta culture also confirmed that AGEs promote vascular calcification in a time-dependent manner. Thus, our study showed that AGEs quicken vascular calcification and suppress autophagy associated with AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Jing Li
- Department of Endocrinology, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Yuting Han
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuying Chen
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Lixuan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Jiangli Lang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Hengcong Luo
- Department of Endocrinology, The Third Affiliated Hospital, Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China.
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|