51
|
Yoon CH, Kim TW, Koh SJ, Choi YE, Hur J, Kwon YW, Cho HJ, Kim HS. Gata6 in pluripotent stem cells enhance the potential to differentiate into cardiomyocytes. BMB Rep 2018; 51:85-91. [PMID: 29335067 PMCID: PMC5836562 DOI: 10.5483/bmbrep.2018.51.2.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 01/15/2023] Open
Abstract
Pluripotent stem cell (PSC) variations can cause significant differences in the efficiency of cardiac differentiation. This process is unpredictable, as there is not an adequate indicator at the undifferentiated stage of the PSCs. We compared global gene expression profiles of two PSCs showing significant differences in cardiac differentiation potential. We identified 12 up-regulated genes related to heart development, and we found that 4 genes interacted with multiple genes. Among these genes, Gata6 is the only gene that was significantly induced at the early stage of differentiation of PSCs to cardiomyocytes. Gata6 knock-down in PSCs decreased the efficiency of cardiomyocyte production. In addition, we analyzed 6 mESC lines and 3 iPSC lines and confirmed that a positive correlation exists between Gata6 levels and efficiency of differentiation into cardiomyocytes. In conclusion, Gata6 could be utilized as a biomarker to select the best PSC lines to produce PSC-derived cardiomyocytes for therapeutic purposes. [BMB Reports 2018; 51(2): 85-91].
Collapse
Affiliation(s)
- Chang-Hwan Yoon
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Tae-Won Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Seok-Jin Koh
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Young-Eun Choi
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 03080, Korea
| | - Jin Hur
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 03080, Korea
| | - Yoo-Wook Kwon
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyun-Jai Cho
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyo-Soo Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
52
|
Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018; 9:201. [PMID: 30053890 PMCID: PMC6062943 DOI: 10.1186/s13287-018-0947-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of global morbidity and mortality. Heart failure remains a major contributor to this mortality. Despite major therapeutic advances over the past decades, a better understanding of molecular and cellular mechanisms of CVD as well as improved therapeutic strategies for the management or treatment of heart failure are increasingly needed. Loss of myocardium is a major driver of heart failure. An attractive approach that appears to provide promising results in reducing cardiac degeneration is stem cell therapy (SCT). In this review, we describe different types of stem cells, including embryonic and adult stem cells, and we provide a detailed discussion of the properties of induced pluripotent stem cells (iPSCs). We also present and critically discuss the key methods used for converting somatic cells to pluripotent cells and iPSCs to cardiomyocytes (CMs), along with their advantages and limitations. Integrating and non-integrating reprogramming methods as well as characterization of iPSCs and iPSC-derived CMs are discussed. Furthermore, we critically present various methods of differentiating iPSCs to CMs. The value of iPSC-CMs in regenerative medicine as well as myocardial disease modeling and cardiac regeneration are emphasized.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, “Attikon” Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christopher Rao
- Department of Surgery, Queen Elizabeth Hospital, Woolwich, London, UK
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hassan Dehaini
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
53
|
Li H, Gao J, Shang Y, Hua Y, Ye M, Yang Z, Ou C, Chen M. Folic Acid Derived Hydrogel Enhances the Survival and Promotes Therapeutic Efficacy of iPS Cells for Acute Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24459-24468. [PMID: 29974744 DOI: 10.1021/acsami.8b08659] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stem cell therapy has obtained extensive consensus to be an effective method for post myocardial infarction (MI) intervention. Induced pluripotent stem (iPS) cells, which are able to differentiate into multiple cell types, have the potential to generate cardiovascular lineage cells for myocardial repair after ischemic damage, but their poor retention rate significantly hinders the therapeutic efficacy. In the present study, we developed a supramolecular hydrogel which is formed by the self-assembly of folic acid (FA)-modified peptide via a biocompatible method (glutathione reduction) and suitable for cell encapsulation and transplantation. The iPS cells labeled with CM-Dil were transplanted into the MI hearts of mice with or without FA hydrogel encapsulation. The results corroborated that the FA hydrogel significantly improved the retention and survival of iPS cells in MI hearts post injection, leading to augmentation of the therapeutic efficacy of iPS cells including better cardiac function and much less adverse heart remodeling, by subsequent differentiation toward cardiac cells and stimulation of neovascularization. This study reported a novel supramolecular hydrogel based on FA-peptides capable of improving the therapeutic capacity of iPS cells, which held big potential in the treatment of MI.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Yongquan Hua
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Min Ye
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Caiwen Ou
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| | - Minsheng Chen
- Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases , Southern Medical University, and Zhujiang Hospital of Southern Medical University , Guangzhou 510280 , P. R. China
| |
Collapse
|
54
|
Sustained release of basic fibroblast growth factor using gelatin hydrogel improved left ventricular function through the alteration of collagen subtype in a rat chronic myocardial infarction model. Gen Thorac Cardiovasc Surg 2018; 66:641-647. [PMID: 29982930 DOI: 10.1007/s11748-018-0969-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/30/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Chronic myocardial infarction (CMI) tends to be resistant to treatments possibly due to extensive solid fibrotic scar, hypoxia mediated by poorly vascularized environment, and/or inflammation and apoptosis. Here we aimed to testify the therapeutic effects of sustained release of basic fibroblast growth factor (bFGF) using gelatin hydrogel (GH) in a rat chronic MI model and to elucidate the therapeutic mechanism including the alteration of extracellular matrix component. METHODS CMI model rats are prepared by the permanent ligation of proximal left anterior descending coronary artery. After 4 weeks, GH sheets (GHSs) with bFGF (100 µg) (bFGF group) or with phosphate-buffered saline (Vehicle group) were implanted to the CMI models to evaluate the effect of bFGF-GHS on chronic scar tissue. Sham operation group was also prepared (n = 5 for each). RESULTS 4 weeks after implantation, bFGF-GHS significantly improved cardiac contractile function (fractional shortening: 21.8 ± 1.1 vs 21.5 ± 1.3 vs 29.7 ± 1.8%; P < 0.001/fractional area change: 33.0 ± 1.4 vs 34.1 ± 2.3 vs 40.6 ± 1.8%; P < 0.001) (Sham vs Vehicle vs bFGF) accompanied with neovascularization. Immunohistochemical studies revealed that bFGF-GHS increased collagen III/I ratio indicating the alteration of solid scar tissue. Quantitative RT-PCR results showed a decrease of collagen I mRNA expression within border MI zone. CONCLUSIONS The implantation of bFGF-GHS altered the collagen subtype of the fibrotic scar more suitable for tissue repair. The treatment of sustained-release bFGF may be promising for ischemic heart disease through chronic pathology.
Collapse
|
55
|
Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells 2018; 7:cells7060048. [PMID: 29799480 PMCID: PMC6025241 DOI: 10.3390/cells7060048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models and useful tools for drug discovery and toxicology testing. In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models. Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that underlies the significant improvement of the induced reprogramming of somatic cells to CMs; the methods used to improve scalability of throughput assays for functional screening and drug testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential use in biomedical applications.
Collapse
|
56
|
Ma R, Liang J, Huang W, Guo L, Cai W, Wang L, Paul C, Yang HT, Kim HW, Wang Y. Electrical Stimulation Enhances Cardiac Differentiation of Human Induced Pluripotent Stem Cells for Myocardial Infarction Therapy. Antioxid Redox Signal 2018; 28:371-384. [PMID: 27903111 PMCID: PMC5770128 DOI: 10.1089/ars.2016.6766] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS Electrical stimulation (EleS) can promote cardiac differentiation, but the underlying mechanism is not well known. This study investigated the effect of EleS on cardiomyocyte (CM) differentiation of human induced pluripotent stem cells (hiPSCs) and evaluated the therapeutic effects for the treatment of myocardial infarction (MI). RESULTS Cardiac differentiation of hiPSCs was induced with EleS after embryoid body formation. Spontaneously beating hiPSCs were observed as early at 2 days when treated with EleS compared with control treatment. The cardiac differentiation efficiency of hiPSCs was significantly enhanced by EleS. In addition, the functional maturation of hiPSC-CMs under EleS was confirmed by calcium indicators, intracellular Ca2+ levels, and expression of structural genes. Mechanistically, EleS mediated cardiac differentiation of hiPSCs through activation of Ca2+/PKC/ERK pathways, as revealed by RNA sequencing, quantitative polymerase chain reaction, and Western blotting. After transplantation in immunodeficient MI mice, EleS-preconditioned hiPSC-derived cells significantly improved cardiac function and attenuated expansion of infarct size. The preconditioned hiPSC-derived CMs were functionally integrated with the host heart. INNOVATION We show EleS as an efficacious time-saving approach for CM generation. The global RNA profiling shows that EleS can accelerate cardiac differentiation of hiPSCs through activation of multiple pathways. The cardiac-mimetic electrical signals will provide a novel approach to generate functional CMs and facilitate cardiac tissue engineering for successful heart regeneration. CONCLUSION EleS can enhance efficiency of cardiac differentiation in hiPSCs and promote CM maturation. The EleS-preconditioned CMs emerge as a promising approach for clinical application in MI treatment. Antioxid. Redox Signal. 28, 371-384.
Collapse
Affiliation(s)
- Ruilian Ma
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Jialiang Liang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Wei Huang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Linlin Guo
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Wenfeng Cai
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Lei Wang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Christian Paul
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Huang-Tian Yang
- 2 Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai, China
| | - Ha Won Kim
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Yigang Wang
- 1 Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
57
|
Peng BY, Dubey NK, Mishra VK, Tsai FC, Dubey R, Deng WP, Wei HJ. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res 2018; 2018:7806435. [PMID: 30046616 PMCID: PMC6036791 DOI: 10.1155/2018/7806435] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/27/2018] [Indexed: 12/14/2022] Open
Abstract
High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.
Collapse
Affiliation(s)
- Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei City 110, Taiwan
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala, India
| | - Feng-Chou Tsai
- Department of Stem Cell Research, Cosmetic Clinic Group, Taipei City 110, Taiwan
| | - Rajni Dubey
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
58
|
Maffessanti F, Prinzen FW, Conte G, Regoli F, Caputo ML, Suerder D, Moccetti T, Faletra F, Krause R, Auricchio A. Integrated Assessment of Left Ventricular Electrical Activation and Myocardial Strain Mapping in Heart Failure Patients. JACC Clin Electrophysiol 2018; 4:138-146. [DOI: 10.1016/j.jacep.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/25/2017] [Accepted: 08/17/2017] [Indexed: 01/04/2023]
|
59
|
Katarzyna R. Adult Stem Cell Therapy for Cardiac Repair in Patients After Acute Myocardial Infarction Leading to Ischemic Heart Failure: An Overview of Evidence from the Recent Clinical Trials. Curr Cardiol Rev 2017; 13:223-231. [PMID: 28464769 PMCID: PMC5633717 DOI: 10.2174/1573403x13666170502103833] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Cardiovascular diseases (CVD) still represent the leading cause of mortality worldwide, despite the remarkable advances in interventional cardiology, cardiac surgery, and modern pharmacotherapy, particularly in the setting of acute myocardial infarction (AMI), chronic ischemic heart failure (HF), cardiomyopathy (CM), and the associated left ventricular (LV) dysfunction. A significant loss of cardiomyocytes that underlies all of these conditions was previously considered irreversible. However, current evidence indicates that the human heart has some potential for repair, and over the past decade, many research studies have been exploring the use of stem cells (SCs) to facilitate restoration of myocardium. Consequently, the safety, feasibility, and effectiveness of SC therapy have been reported in many randomized clinical trials (RCTs), using different lineages of adult SCs. Nevertheless, the clinical benefits of SC therapy are not yet well established. In the near future, understanding of the complex interrelations between SCs, paracrine factors, genetic or epigenetic pre-dispositions, and myocardial microenvironment, in the context of an individual patient, will be crucial for translation of this knowledge into practical development of successful, long-term regenerative SC therapeutic applications, in a growing population of patients suffering from previous myocardial in-farction (MI) leading to chronic ischemic cardiomyopathy. Conclusion: This overview highlights the therapeutic potential of adult SCs in terms of their possible regenerative capacity, safety, and clinical outcomes, in patients with AMI, and/or subsequent HF (due to chronic ischemic cardiomyopathy). This review was based upon PubMed database search for trials on SC therapy, in patients with AMI and HF, and the main timeframe was set from 2006 to 2016.
Collapse
Affiliation(s)
- Rygiel Katarzyna
- Department of Family Practice, Medical University of Silesia (SUM), Katowice-Zabrze, Poland
| |
Collapse
|
60
|
Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017; 13:170-191. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE Advanced Biotechnologies, s.c.ar.l, Naples, Italy
| | | | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.,IRCCS Foundation SDN, Naples, Italy
| |
Collapse
|
61
|
Santoso MR, Yang PC. Molecular Imaging of Stem Cells and Exosomes for Myocardial Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9433-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
62
|
Gálvez-Montón C, Soler-Botija C, Iborra-Egea O, Díaz-Güemes I, Martí M, Iglesias-García O, Prat-Vidal C, Crisóstomo V, Llucià-Valldeperas A, Perea-Gil I, Roura S, Sánchez-Margallo FM, Raya Á, Bayes-Genis A. Preclinical Safety Evaluation of Allogeneic Induced Pluripotent Stem Cell-Based Therapy in a Swine Model of Myocardial Infarction. Tissue Eng Part C Methods 2017; 23:736-744. [PMID: 28699384 DOI: 10.1089/ten.tec.2017.0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The combination of biomatrices and induced pluripotent stem cell (iPSC) derivatives to aid repair and myocardial scar formation may soon become a reality for cardiac regenerative medicine. However, the tumor risk associated with residual undifferentiated cells remains an important safety concern of iPSC-based therapies. This concern is not satisfactorily addressed in xenotransplantation, which requires immune suppression of the transplanted animal. In this study, we assessed the safety of transplanting undifferentiated iPSCs in an allogeneic setting. Given that swine are commonly used as large animal models in cardiac medicine, we used porcine iPSCs (p-iPSCs) in conjunction with bioengineered constructs that support recovery after acute myocardial infarction. Histopathology analyses found no evidence of p-iPSCs or p-iPSC-derived cells within the host myocardium or biomatrices after 30 and 90 days of follow-up. Consistent with the disappearance of the implanted cells, we could not observe functional benefit of these treatments in terms of left ventricular ejection fraction, cardiac output, ventricular volumes, or necrosis. We therefore conclude that residual undifferentiated iPSCs should pose no safety concern when used on immune-competent recipients in an allogeneic setting, at least in the context of cardiac regenerative medicine.
Collapse
Affiliation(s)
- Carolina Gálvez-Montón
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain .,2 CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III , Madrid, Spain
| | - Carolina Soler-Botija
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain .,2 CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III , Madrid, Spain
| | - Oriol Iborra-Egea
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain
| | - Idoia Díaz-Güemes
- 3 Jesús Usón Minimally Invasive Surgery Centre (JUMISC) , Cáceres, Spain
| | - Mercè Martí
- 4 Center of Regenerative Medicine in Barcelona , Barcelona, Spain
| | | | - Cristina Prat-Vidal
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain .,2 CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III , Madrid, Spain
| | - Verónica Crisóstomo
- 2 CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III , Madrid, Spain .,3 Jesús Usón Minimally Invasive Surgery Centre (JUMISC) , Cáceres, Spain
| | - Aida Llucià-Valldeperas
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain
| | - Isaac Perea-Gil
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain
| | - Santiago Roura
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain .,2 CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III , Madrid, Spain .,4 Center of Regenerative Medicine in Barcelona , Barcelona, Spain
| | - Francisco M Sánchez-Margallo
- 2 CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III , Madrid, Spain .,3 Jesús Usón Minimally Invasive Surgery Centre (JUMISC) , Cáceres, Spain
| | - Ángel Raya
- 4 Center of Regenerative Medicine in Barcelona , Barcelona, Spain .,5 Centro de Investigación Biomédica en Red de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain .,6 Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona, Spain
| | - Antoni Bayes-Genis
- 1 ICREC (Heart Failure and Cardiac Regeneration) Research Programme, Health Sciences Research Institute Germans Trias i Pujol (IGTP) , Barcelona, Spain .,2 CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III , Madrid, Spain .,7 Department of Medicine, Universitat Autònoma de Barcelona (UAB) , Barcelona, Spain .,8 Cardiology Service, Hospital Universitari Germans Trias i Pujol , Barcelona, Spain
| |
Collapse
|
63
|
Abstract
For >4 decades, the holy grail in the treatment of acute myocardial infarction has been the mitigation of lethal injury. Despite promising initial results and decades of investigation by the cardiology research community, the only treatment with proven efficacy is early reperfusion of the occluded coronary artery. The remarkable record of failure has led us and others to wonder if cardioprotection is dead. The path to translation, like the ascent to Everest, is certainly littered with corpses. We do, however, highlight a therapeutic principle that provides a glimmer of hope: cellular postconditioning. Administration of cardiosphere-derived cells after reperfusion limits infarct size measured acutely, while providing long-term structural and functional benefits. The recognition that cell therapy may be cardioprotective, and not just regenerative, merits further exploration before we abandon the pursuit entirely.
Collapse
Affiliation(s)
- David J Lefer
- From Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans (D.J.L.); and Cedars-Sinai Heart Institute, Los Angeles, CA (E.M.).
| | - Eduardo Marbán
- From Cardiovascular Center of Excellence and Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans (D.J.L.); and Cedars-Sinai Heart Institute, Los Angeles, CA (E.M.)
| |
Collapse
|
64
|
Rawat N, Singh MK. Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology. Vet World 2017; 10:640-649. [PMID: 28717316 PMCID: PMC5499081 DOI: 10.14202/vetworld.2017.640-649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs) paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.
Collapse
Affiliation(s)
- N Rawat
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - M K Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
65
|
Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, Buettner FFR. Quantitative Assessment of Sialo-Glycoproteins and N-Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. Chembiochem 2017; 18:1317-1331. [PMID: 28509371 DOI: 10.1002/cbic.201700100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 12/25/2022]
Abstract
Human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC CMs) may be used in regenerative medicine for individualized tissue transplants in the future. For application in patients, the generated CMs have to be highly pure and well characterized. In order to overcome the prevalent scarcity of CM-specific markers, we quantitatively assessed cell-surface-exposed sialo-glycoproteins and N-glycans of hiPSCs, CM progenitors, and CMs. Applying a combination of metabolic labeling and specific sialo-glycoprotein capture, we could highly enrich and quantify membrane proteins during cardiomyogenic differentiation. Among them we identified a number of novel, putative biomarkers for hiPSC CMs. Analysis of the N-glycome by capillary gel electrophoresis revealed three novel structures comprising β1,3-linked galactose, α2,6-linked sialic acid and complex fucosylation; these were highly specific for hiPSCs. Bisecting GlcNAc structures strongly increased during differentiation, and we propose that they are characteristic of early, immature CMs.
Collapse
Affiliation(s)
- Sarah A Konze
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Astrid Oberbeck
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
66
|
Jamaiyar A, Wan W, Ohanyan V, Enrick M, Janota D, Cumpston D, Song H, Stevanov K, Kolz CL, Hakobyan T, Dong F, Newby BMZ, Chilian WM, Yin L. Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Res Cardiol 2017; 112:41. [PMID: 28540527 DOI: 10.1007/s00395-017-0631-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
Abstract
Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved. We tested a new approach of stem cell therapy by delivery of induced vascular progenitor cells (iVPCs) grown on polymer micro-bundle scaffolds in a rat model of myocardial infarction. iVPCs partially reprogrammed from vascular endothelial cells (ECs) had potent angiogenic potential and were able to simultaneously differentiate into vascular smooth muscle cells (SMCs) and ECs in 2D culture. Under hypoxic conditions, iVPCs also secreted angiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as measured by enzyme-linked immunosorbent assay (ELISA). A longitudinal micro-scaffold made from poly(lactic-co-glycolic acid) was sufficient for the growth and delivery of iVPCs. Co-cultured ECs and SMCs aligned well on the micro-bundle scaffold similarly as in the vessels. 3D cell/polymer micro-bundles formed by iVPCs and micro-scaffolds were transplanted into the ischemic myocardium in a rat model of myocardial infarction (MI) with ligation of the left anterior descending artery. Our in vivo data showed that iVPCs on the micro-bundle scaffold had higher survival, and better retention and engraftment in the myocardium than free iVPCs. iVPCs on the micro-bundles promoted better cardiomyocyte survival than free iVPCs. Moreover, iVPCs and iVPC/polymer micro-bundles treatment improved cardiac function (ejection fraction and fractional shortening, endocardial systolic volume) measured by echocardiography, increased vessel density, and decreased infarction size [endocardial and epicardial infarct (scar) length] better than untreated controls at 8 weeks after MI. We conclude that iVPCs grown on a polymer micro-bundle scaffold are new promising approach for cell-based therapy designed for cardiovascular regeneration in ischemic heart disease.
Collapse
Affiliation(s)
- Anurag Jamaiyar
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Weiguo Wan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Danielle Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Devan Cumpston
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Hokyung Song
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Kelly Stevanov
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Christopher L Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Tatev Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Bi-Min Zhang Newby
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
67
|
Rojas SV, Kensah G, Rotaermel A, Baraki H, Kutschka I, Zweigerdt R, Martin U, Haverich A, Gruh I, Martens A. Transplantation of purified iPSC-derived cardiomyocytes in myocardial infarction. PLoS One 2017; 12:e0173222. [PMID: 28493867 PMCID: PMC5426598 DOI: 10.1371/journal.pone.0173222] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background Induced pluripotent stem cells (iPSC) can be differentiated into cardiomyocytes and represent a possible autologous cell source for myocardial repair. We analyzed the engraftment and functional effects of murine iPSC-derived cardiomyocytes (iPSC-CMs) in a murine model of myocardial infarction. Methods and results To maximize cardiomyocyte yield and purity a genetic purification protocol was applied. Murine iPSCs were genetically modified to express a Zeocin™ resistance gene under control of the cardiac-specific α-myosin heavy chain (α-MHC, MYH6) promoter. Thus, CM selection was performed during in vitro differentiation. iPSC-CM aggregates (“cardiac bodies”, CBs) were transplanted on day 14 after LAD ligation into the hearts of previously LAD-ligated mice (800 CBs/animal; 2-3x106 CMs). Animals were treated with placebo (PBS, n = 14) or iPSC-CMs (n = 35). Myocardial remodeling and function were evaluated by magnetic resonance imaging (MRI), conductance catheter (CC) analysis and histological morphometry. In vitro and in vivo differentiation was investigated. Follow up was 28 days (including histological assessment and functional analysis). iPSC-CM purity was >99%. Transplanted iPSC-CMs formed mature grafts within the myocardium, expressed cardiac markers and exhibited sarcomeric structures. Intramyocardial transplantation of iPSC-CMs significantly improved myocardial remodeling and left ventricular function 28 days after LAD-ligation. Conclusions We conclude that iPSCs can effectively be differentiated into cardiomyocytes and genetically enriched to high purity. iPSC derived cardiomyocytes engraft within the myocardium of LAD-ligated mice and contribute to improve left ventricular function.
Collapse
Affiliation(s)
- Sebastian V. Rojas
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - George Kensah
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Alexander Rotaermel
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Hassina Baraki
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ingo Kutschka
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Andreas Martens
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
68
|
Raso A, Dirkx E. Cardiac regenerative medicine: At the crossroad of microRNA function and biotechnology. Noncoding RNA Res 2017; 2:27-37. [PMID: 30159418 PMCID: PMC6096413 DOI: 10.1016/j.ncrna.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need to develop new therapeutic strategies to stimulate cardiac repair after damage, such as myocardial infarction. Already for more than a century scientist are intrigued by studying the regenerative capacity of the heart. While moving away from the old classification of the heart as a post-mitotic organ, and being inspired by the stem cell research in other scientific fields, mainly three different strategies arose in order to develop regenerative medicine, namely; the use of cardiac stem cells, reprogramming of fibroblasts into cardiomyocytes or direct stimulation of endogenous cardiomyocyte proliferation. MicroRNAs, known to play a role in orchestrating cell fate processes such as proliferation, differentiation and reprogramming, gained a lot of attention in this context the latest years. Indeed, several research groups have independently demonstrated that microRNA-based therapy shows promising results to induce heart tissue regeneration and improve cardiac pump function after myocardial injury. Nowadays, a whole new biotechnology field has been unveiled to investigate the possibilities for efficient, safe and specific delivery of microRNAs towards the heart.
Collapse
Affiliation(s)
| | - Ellen Dirkx
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
69
|
Kim H, Kim D, Ku SH, Kim K, Kim SH, Kwon IC. MicroRNA-mediated non-viral direct conversion of embryonic fibroblasts to cardiomyocytes: comparison of commercial and synthetic non-viral vectors. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1070-1085. [PMID: 28277007 DOI: 10.1080/09205063.2017.1287537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Technological advances opened up new ways of directing cell fate conversion from one cell lineage to another. The direct cell conversion technique has recently attracted much attention in regenerative medicine to treat devastated organs and tissues, particularly having limited regenerative capacity such as the heart and brain. Unfortunately, its clinical application is severely limited due to a safety concern and immunogenicity of viral vectors, as human gene therapy did in the beginning stages. In this study, we examined the possibility of adopting non-viral vectors to direct cell conversion from mouse embryonic fibroblasts to induced cardiomyocytes (iCM) by transient transfection of four types of chemically synthesized micro-RNA mimics (miRNA-1, 133, 208, and 499). Herein, we tested several commercial and synthetic non-viral gene delivery carriers, which could be divided into three different categories: polymers [branched PEI (bPEI), bioreducible PEI (PEI-SS), deoxycholic acid-conjugated PEI (DA-PEI), jetPEI™, SuperFect™], lipids (Lipofectamine 2000™), and peptides (PepMute™). According to the analyses of physicochemical properties, cellular uptake, and cytotoxicity of the carrier/miRNA complexes, DA-PEI exhibited excellent miRNA delivery efficiency to mouse embryonic fibroblasts. One week after a single treatment of DA-PEI/miRNA without other adjuvants, the cells started to express cardiomyocyte-specific markers, such as α-actinin and α-MHC, indicating the formation of cardiomyocyte-like cells. Although the overall frequency of non-viral vector induced cardiomyogenic transdifferentiation was quite low (ca. 0.2%), this study can provide compelling support to develop clinically applicable transdifferentiation techniques.
Collapse
Affiliation(s)
- Hyosuk Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea.,b KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul , South Korea
| | - Dongkyu Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea
| | - Sook Hee Ku
- c Technology Convergence R&BD Group , Korea Institute of Industrial Technology , Daegu , South Korea
| | - Kwangmeyung Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea
| | - Sun Hwa Kim
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea
| | - Ick Chan Kwon
- a Center for Theragnosis, Biomedical Research Institute , Korea Institute of Science and Technology (KIST) , Seoul , South Korea.,b KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul , South Korea
| |
Collapse
|
70
|
Omatsu-Kanbe M, Nozuchi N, Nishino Y, Mukaisho KI, Sugihara H, Matsuura H. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death. Sci Rep 2017; 7:41318. [PMID: 28120944 PMCID: PMC5264617 DOI: 10.1038/srep41318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Atypically-shaped cardiomyocytes (ACMs) are beating heart cells identified in the cultures of cardiomyocyte-removed fractions obtained from adult mouse hearts. Since ACMs spontaneously develop into beating cells in the absence of hormones or chemicals, these cells are likely to be a type of cardiac progenitors rather than stem cells. “Native ACMs” are found as small interstitial cells among ventricular myocytes that co-express cellular prion protein (PrP) and cardiac troponin T (cTnT) in mouse and human heart tissues. However, the endogenous behavior of human ACMs is unclear. In the present study, we demonstrate that PrP+ cTnT+ cells are present in the human heart tissue with myocardial infarction (MI). These cells were mainly found in the border of necrotic cardiomyocytes caused by infarcts and also in the hibernating myocardium subjected to the chronic ischemia. The ratio of PrP+ cTnT+ cells to the total cells observed in the normal heart tissue section of mouse and human was estimated to range from 0.3–0.8%. Notably, living human PrP+ cTnT+ cells were identified in the cultures obtained at pathological autopsy despite exposure to lethal ischemic conditions for hours after death. These findings suggest that ACMs could survive in the ischemic human heart and develop into a sub-population of cardiac myocytes.
Collapse
Affiliation(s)
- Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Nozomi Nozuchi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Yuka Nishino
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Ken-Ichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroyuki Sugihara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
71
|
Affiliation(s)
- Hajime Ichimura
- Department of Cardiovascular Surgery, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University
- Institute for Biomedical Sciences, Shinshu University
| |
Collapse
|
72
|
Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular Therapy for Heart Failure. Curr Cardiol Rev 2016; 12:195-215. [PMID: 27280304 PMCID: PMC5011188 DOI: 10.2174/1573403x12666160606121858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/31/1969] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management.
Collapse
Affiliation(s)
- Peter J Psaltis
- Co-Director of Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia 5000.
| | | | | | | |
Collapse
|
73
|
Transplantation of iPSc Restores Cardiac Function by Promoting Angiogenesis and Ameliorating Cardiac Remodeling in a Post-infarcted Swine Model. Cell Biochem Biophys 2016; 71:1463-73. [PMID: 25388842 DOI: 10.1007/s12013-014-0369-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Induced pluripotent stem cells (iPSc) hold significant promise for the development of cardiac regenerative therapy for myocardial infarction (MI). However, preclinical optimization and validation of large-animal models will be required before iPSc used clinically. Therefore, we aim to investigate the therapeutic potential of iPSc transplantation for MI and relative mechanisms in a post-infarcted swine model. Left anterior descending coronary artery was balloon-occluded after percutaneous transluminal angiography to generate MI (60-min no-flow ischemia). Animals were then divided into Sham, PBS control, and iPS experimental groups. The cardiac function and LV structural were assessed by dual-source computed tomography. Terminal deoxynucleotidyl nick end labeling, histology, and immunofluorescence were used to examine the effect of transplanted iPS cells on apoptosis, fibrosis, and hypertrophy. At 6 weeks, LV structural abnormality and cardiac dysfunction were less pronounced in iPSc group than in PBS group, and these improvements were accompanied by reduction of scar size. iPSc transplantation was associated with significant increase of vascular density and reduced myocardial apoptosis in the border zone of infarction, which was accompanied by the reduction in fibrosis degree. Moreover, proangiogenic and antiapoptotic factors were increased significantly in iPS group compared with PBS group. Cardiomyocyte hypertrophy was significantly attenuated by iPSc transplantation. In conclusion, these results suggested that transplantation of iPSc may result in functional recovery by promoting angiogenesis, inhibiting apoptosis, and ameliorating cardiac remodeling. This proof of concept study may provide a basis for an autologous iPSc-based therapy of MI.
Collapse
|
74
|
Ghafarzadeh M, Namdari M, Eatemadi A. Stem cell therapies for congenital heart disease. Biomed Pharmacother 2016; 84:1163-1171. [PMID: 27780147 DOI: 10.1016/j.biopha.2016.10.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/15/2023] Open
Abstract
Congenital heart disease (CHD) is the most prevalent congenital anomaly in newborn babies. Cardiac malformations have been induced in different animal model experiments, by perturbing some molecules that take part in the developmental pathways associated with myocyte differentiation, specification, or cardiac morphogenesis. The exact epigenetic, environmental, or genetic, basis for these molecules perturbations is yet to be understood. But, scientist have bridged this gap by introducing autologous stem cell into the defective hearts to treat CHD. The choice of stem cells to use has also raised an issue. In this review, we explore different stem cells that have been recently used, as an update into the pool of this knowledge and we suggested the future perspective into the choice of stem cells to control this disease. We propose that isolating mesenchymal stem cells from neonate will give a robust heart regeneration as compared to adults. This source are easily isolated. To unveil stem cell therapy beyond its possibility and safety, further study is required, including largescale randomized, and clinical trials to certify the efficacy of stem cell therapy.
Collapse
Affiliation(s)
- Masoumeh Ghafarzadeh
- Assalian Hospital, Center for Obstetrics and Gynecology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Mehrdad Namdari
- Department of Cardiology, Lorestan University of Medical Sciences, Postal address: 6997118544, Khoramabad, Iran.
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of advance Science in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| |
Collapse
|
75
|
Youssef AA, Ross EG, Bolli R, Pepine CJ, Leeper NJ, Yang PC. The Promise and Challenge of Induced Pluripotent Stem Cells for Cardiovascular Applications. JACC Basic Transl Sci 2016; 1:510-523. [PMID: 28580434 PMCID: PMC5451899 DOI: 10.1016/j.jacbts.2016.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent discovery of human-induced pluripotent stem cells (iPSCs) has revolutionized the field of stem cells. iPSCs have demonstrated that biological development is not an irreversible process and that mature adult somatic cells can be induced to become pluripotent. This breakthrough is projected to advance our current understanding of many disease processes and revolutionize the approach to effective therapeutics. Despite the great promise of iPSCs, many translational challenges still remain. In this article, we review the basic concept of induction of pluripotency as a novel approach to understand cardiac regeneration, cardiovascular disease modeling and drug discovery. We critically reflect on the current results of preclinical and clinical studies using iPSCs for these applications with appropriate emphasis on the challenges facing clinical translation.
Collapse
Affiliation(s)
- Amr A Youssef
- Division of Cardiology, Ain Shams University, Cairo, Egypt and Aurora Bay Area Medical Center, Marinette, Wisconsin, USA
| | - Elsie Gyang Ross
- Division of Cardiovascular Medicine and Vascular Surgery, Stanford University, California, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicholas J Leeper
- Division of Cardiovascular Medicine and Vascular Surgery, Stanford University, California, USA
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Stanford University, California, USA
| |
Collapse
|
76
|
Jha R, Wu Q, Singh M, Preininger MK, Han P, Ding G, Cho HC, Jo H, Maher KO, Wagner MB, Xu C. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells. Sci Rep 2016; 6:30956. [PMID: 27492371 PMCID: PMC4974658 DOI: 10.1038/srep30956] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes.
Collapse
Affiliation(s)
- Rajneesh Jha
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Monalisa Singh
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Marcela K Preininger
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pengcheng Han
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Gouliang Ding
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Hee Cheol Cho
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin O Maher
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mary B Wagner
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
77
|
Langhans MT, Yu S, Tuan RS. Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Curr Stem Cell Res Ther 2016; 11:453-474. [PMID: 26423296 DOI: 10.2174/1574888x10666151001115248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering are presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering.
Collapse
Affiliation(s)
| | | | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA 15219, USA.
| |
Collapse
|
78
|
Rojas SV, Meier M, Zweigerdt R, Eckardt D, Rathert C, Schecker N, Schmitto JD, Rojas-Hernandez S, Martin U, Kutschka I, Haverich A, Martens A. Multimodal Imaging for In Vivo Evaluation of Induced Pluripotent Stem Cells in a Murine Model of Heart Failure. Artif Organs 2016; 41:192-199. [DOI: 10.1111/aor.12728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Sebastian V. Rojas
- Department of Cardiothoracic; Transplantation and Vascular Surgery, Hannover Medical School
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-REBIRTH-Cluster of Excellence; Hannover Medical School
| | - Martin Meier
- Central Animal Laboratory; Hannover Medical School; Hannover
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-REBIRTH-Cluster of Excellence; Hannover Medical School
| | | | - Christian Rathert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-REBIRTH-Cluster of Excellence; Hannover Medical School
| | - Natalie Schecker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-REBIRTH-Cluster of Excellence; Hannover Medical School
| | - Jan D. Schmitto
- Department of Cardiothoracic; Transplantation and Vascular Surgery, Hannover Medical School
| | - Sara Rojas-Hernandez
- Department of Anaesthesiology and Intensive Care Medicine; Hannover Medical School; Hannover Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-REBIRTH-Cluster of Excellence; Hannover Medical School
| | - Ingo Kutschka
- Department of Cardiothoracic; Transplantation and Vascular Surgery, Hannover Medical School
| | - Axel Haverich
- Department of Cardiothoracic; Transplantation and Vascular Surgery, Hannover Medical School
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-REBIRTH-Cluster of Excellence; Hannover Medical School
| | - Andreas Martens
- Department of Cardiothoracic; Transplantation and Vascular Surgery, Hannover Medical School
- Leibniz Research Laboratories for Biotechnology and Artificial Organs-REBIRTH-Cluster of Excellence; Hannover Medical School
| |
Collapse
|
79
|
Induced Pluripotent Stem Cells as a new Strategy for Osteogenesis and Bone Regeneration. Stem Cell Rev Rep 2016; 11:645-51. [PMID: 26022504 DOI: 10.1007/s12015-015-9594-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Induced pluripotent stem (iPS) cells, possess high proliferation and differentiation ability, are now considered an attractive option for osteogenic differentiation and bone regeneration. In fact, recent discoveries have demonstrated that iPS cells can be differentiated into osteoblasts, suggesting that iPS cells have the potential to advance future bone regenerative therapies. Herein, we provide an overview of the recent findings on osteogenic characteristics and differentiation potential of iPS cells. In addition, we discuss current methods for inducing their specification towards osteogenic phenotype as well as in vivo evidence supporting the therapeutic benefit of iPS-derived osteoblasts. Finally, we describe recent findings regarding the use of iPS-derived cells for osteogenic differentiation and bone regeneration, which have indicated that these pluripotent cells represent an ideal tool for regenerative cell therapies and might contribute to the development of future bone tissue engineering.
Collapse
|
80
|
Discrepant Results of Experimental Human Mesenchymal Stromal Cell Therapy after Myocardial Infarction: Are Animal Models Robust Enough? PLoS One 2016; 11:e0152938. [PMID: 27050443 PMCID: PMC4822837 DOI: 10.1371/journal.pone.0152938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background Human mesenchymal stromal cells (MSCs) have been reported to preserve cardiac function in myocardial infarction (MI) models. Previously, we found a beneficial effect of intramyocardial injection of unstimulated human MSCs (uMSCs) on cardiac function after permanent coronary artery ligation. In the present study we aimed to extend this research by investigating the effect of intramyocardial injection of human MSCs pre-stimulated with the pro-inflammatory cytokine interferon-gamma (iMSCs), since pro-inflammatory priming has shown additional salutary effects in multiple experimental disease models. Methods MI was induced in NOD/Scid mice by permanent ligation of the left anterior descending coronary artery. Animals received intramyocardial injection of uMSCs, iMSCs or PBS. Sham-operated animals were used to determine baseline characteristics. Cardiac performance was assessed after 2 and 14 days using 7-Tesla magnetic resonance imaging and pressure-volume loop measurements. Histology and q-PCR were used to confirm MSC engraftment in the heart. Results Both uMSC and iMSC therapy had no significant beneficial effect on cardiac function or remodelling in contrast to our previous studies. Conclusions Animal models for cardiac MSC therapy appear less robust than initially envisioned.
Collapse
|
81
|
Xu Y, Guan J. Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioact Mater 2016; 1:18-28. [PMID: 29744392 PMCID: PMC5883968 DOI: 10.1016/j.bioactmat.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes. Cell therapy is an attractive approach for cardiac regeneration after myocardial infarction. Biomaterials are used as cell carriers. This review highlights how biochemical and biophysical properties of biomaterials affect cell fates.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
82
|
Rojas SV, Martens A, Zweigerdt R, Baraki H, Rathert C, Schecker N, Rojas-Hernandez S, Schwanke K, Martin U, Haverich A, Kutschka I. Transplantation Effectiveness of Induced Pluripotent Stem Cells Is Improved by a Fibrinogen Biomatrix in an Experimental Model of Ischemic Heart Failure. Tissue Eng Part A 2016; 21:1991-2000. [PMID: 25867819 DOI: 10.1089/ten.tea.2014.0537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate whether a fibrinogen biomatrix improves the transplantation effectiveness of induced pluripotent stem cells (iPSCs) in a model of myocardial infarction. BACKGROUND Early retention, engraftment, and cell proliferation are important factors for successful cardiac stem cell therapy. Common transplantation techniques involve the direction injection of cells in aqueous media. However, this approach yields low retention and variable cell biodistribution, leading to reduced grafts that are unable to sufficiently regenerate damaged myocardium. Biologically compatible scaffolds that improve the retention of injected cells can improve cardiac stem cell therapy. METHODS Murine iPSCs were transfected for luciferase reporter gene expression. First, in vitro experiments were performed comparing cell viability in fibrinogen and medium. Second, iPSCs were transplanted intramyocardially by direct injection into ischemic myocardium of immunodeficient mice, following permanent left coronary artery ligation. Cells were delivered in medium or fibrinogen. Follow-up included graft assessment by bioluminescence imaging, the evaluation of cardiac function by magnetic resonance imaging, and histology to evaluate graft size and determine the extent of myocardial scarring. RESULTS In vitro experiments showed proliferation of iPSCs in fibrinogen from 6.4×10(3)±8.0×10(2) after 24 h to 2.1×10(4)±3.2×10(3) after 72 h. Early cardiac cell amount in control group animals was low (23.7%±0.7%) with massive cell accumulation in the right (46.3%±1.0%) and the left lung (30.0%±0.6%). When iPSCs were injected applying the fibrinogen biomatrix, intramyocardial cell amount was increased (66.3%±0.9%) with demonstrable graft proliferation over the experimental time course. Left ventricle-function was higher in the fibrinogen group (42.9%±2.8%), also showing a higher fraction of refilled infarcted-area (66.9%±2.7%). CONCLUSIONS The fibrinogen biomatrix improved cardiac iPSc retention, sustaining functional improvement and cellular refill of infarcted myocardium. Therefore, fibrinogen can be considered an ideal biological scaffold for intramyocardial stem cell transplantations.
Collapse
Affiliation(s)
- Sebastian V Rojas
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany .,2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Andreas Martens
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany .,2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Robert Zweigerdt
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Hassina Baraki
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | - Christian Rathert
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Natalie Schecker
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | | | - Kristin Schwanke
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Ulrich Martin
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Axel Haverich
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany .,2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Ingo Kutschka
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| |
Collapse
|
83
|
El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y. Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration. Stem Cells Transl Med 2016; 5:694-702. [PMID: 26987352 PMCID: PMC4835241 DOI: 10.5966/sctm.2015-0017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/23/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms, yet their clinical translation has been compromised by their biosafety concern. Here, we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iPSCs) led to the formation of invasive teratocarcinoma-like tumors in more than 90% of immunodeficient mice. Moreover, removal of primary tumors from LV-iPSC progeny-transplanted hosts generated secondary and metastatic tumors. Combined transgene-free (TGF) reprogramming and elimination of residual pluripotent cells by enzymatic dissociation ensured tumor-free transplantation, ultimately enabling regeneration of type 1 diabetes-specific human islet structures in vivo. The incidence of tumor formation in TGF-iPSCs was titratable, depending on the oncogenic load, with reintegration of the cMYC expressing vector abolishing tumor-free transplantation. Thus, transgene-free cMYC-independent reprogramming and elimination of residual pluripotent cells are mandatory steps in achieving transplantation of iPSC progeny for customized and safe islet regeneration in vivo. SIGNIFICANCE Pluripotent stem cell therapy for diabetes relies on the safety as well as the quality of derived insulin-producing cells. Data from this study highlight prominent tumorigenic risks of induced pluripotent stem cell (iPSC) products, especially when reprogrammed with integrating vectors. Two major underlying mechanisms in iPSC tumorigenicity are residual pluripotent cells and cMYC overload by vector integration. This study also demonstrated that combined transgene-free reprogramming and enzymatic dissociation allows teratoma-free transplantation of iPSC progeny in the mouse model in testing the tumorigenicity of iPSC products. Further safety assessment and improvement in iPSC specification into a mature β cell phenotype would lead to safe islet replacement therapy for diabetes.
Collapse
Affiliation(s)
| | - Seiga Ohmine
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Egon J Jacobus
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Salma G Morsy
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara J Holditch
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Claire A Schreiber
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Koji Uetsuka
- Laboratory of Animal Health and Hygiene, Department of Biological Production Science, College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Noemi Fusaki
- PRESTO, Japan Science and Technology Agency, Saitama, Japan Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Dennis A Wigle
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yogish C Kudva
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
84
|
Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34:362-379. [PMID: 26976812 DOI: 10.1016/j.biotechadv.2016.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.
Collapse
|
85
|
Hesari Z, Soleimani M, Atyabi F, Sharifdini M, Nadri S, Warkiani ME, Zare M, Dinarvand R. A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. J Biomed Mater Res A 2016; 104:1534-43. [PMID: 26914600 DOI: 10.1002/jbm.a.35689] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 01/17/2023]
Abstract
Controlling cellular orientation, proliferation, and differentiation is valuable in designing organ replacements and directing tissue regeneration. In the present study, we developed a hybrid microfluidic system to produce a dynamic microenvironment by placing aligned PDMS microgrooves on surface of biodegradable polymers as physical guidance cues for controlling the neural differentiation of human induced pluripotent stem cells (hiPSCs). The neuronal differentiation capacity of cultured hiPSCs in the microfluidic system and other control groups was investigated using quantitative real time PCR (qPCR) and immunocytochemistry. The functionally of differentiated hiPSCs inside hybrid system's scaffolds was also evaluated on the rat hemisected spinal cord in acute phase. Implanted cell's fate was examined using tissue freeze section and the functional recovery was evaluated according to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. Our results confirmed the differentiation of hiPSCs to neuronal cells on the microfluidic device where the expression of neuronal-specific genes was significantly higher compared to those cultured on the other systems such as plain tissue culture dishes and scaffolds without fluidic channels. Although survival and integration of implanted hiPSCs did not lead to a significant functional recovery, we believe that combination of fluidic channels with nanofiber scaffolds provides a great microenvironment for neural tissue engineering, and can be used as a powerful tool for in situ monitoring of differentiation potential of various kinds of stem cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1534-1543, 2016.
Collapse
Affiliation(s)
- Zahra Hesari
- Deparmentof Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medicine, Tarbiat Modaress University, Tehran, Iran
| | - Fatemeh Atyabi
- Deparmentof Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Sharifdini
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Samad Nadri
- Medical Biotechnology and Nanotechnology Department, Faculty of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, Australia
| | - Mehrak Zare
- Skin and Stemcell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Deparmentof Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
86
|
Wyles SP, Faustino RS, Li X, Terzic A, Nelson TJ. Systems-based technologies in profiling the stem cell molecular framework for cardioregenerative medicine. Stem Cell Rev Rep 2016; 11:501-10. [PMID: 25218144 DOI: 10.1007/s12015-014-9557-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last decade, advancements in stem cell biology have yielded a variety of sources for stem cell-based cardiovascular investigation. Stem cell behavior, whether to maintain its stable state of pluripotency or to prime toward the cardiovascular lineage is governed by a set of coordinated interactions between epigenetic, transcriptional, and translational mechanisms. The science of incorporating genes (genomics), RNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics) data in a specific biological sample is known as systems biology. Integrating systems biology in progression with stem cell biologics can contribute to our knowledge of mechanisms that underlie pluripotency maintenance and guarantee fidelity of cardiac lineage specification. This review provides a brief summarization of OMICS-based strategies including transcriptomics, proteomics, and metabolomics used to understand stem cell fate and to outline molecular processes involved in heart development. Additionally, current efforts in cardioregeneration based on the "one-size-fits-all" principle limit the potential of individualized therapy in regenerative medicine. Here, we summarize recent studies that introduced systems biology into cardiovascular clinical outcomes analysis, allowing for predictive assessment for disease recurrence and patient-specific therapeutic response.
Collapse
Affiliation(s)
- Saranya P Wyles
- Center for Clinical and Translational Sciences, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
87
|
Kamps JAAM, Krenning G. Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol 2016; 8:163-179. [PMID: 26981212 PMCID: PMC4766267 DOI: 10.4330/wjc.v8.i2.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
The loss of cardiomyocytes during injury and disease can result in heart failure and sudden death, while the adult heart has a limited capacity for endogenous regeneration and repair. Current stem cell-based regenerative medicine approaches modestly improve cardiomyocyte survival, but offer neglectable cardiomyogenesis. This has prompted the need for methodological developments that crease de novo cardiomyocytes. Current insights in cardiac development on the processes and regulatory mechanisms in embryonic cardiomyocyte differentiation provide a basis to therapeutically induce these pathways to generate new cardiomyocytes. Here, we discuss the current knowledge on embryonic cardiomyocyte differentiation and the implementation of this knowledge in state-of-the-art protocols to the direct reprogramming of cardiac fibroblasts into de novo cardiomyocytes in vitro and in vivo with an emphasis on microRNA-mediated reprogramming. Additionally, we discuss current advances on state-of-the-art targeted drug delivery systems that can be employed to deliver these microRNAs to the damaged cardiac tissue. Together, the advances in our understanding of cardiac development, recent advances in microRNA-based therapeutics, and innovative drug delivery systems, highlight exciting opportunities for effective therapies for myocardial infarction and heart failure.
Collapse
|
88
|
Wang H, Xi Y, Zheng Y, Wang X, Cooney AJ. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells. Stem Cell Res 2016; 16:522-30. [PMID: 26972055 DOI: 10.1016/j.scr.2016.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem (iPS) cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES) cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs) transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc), without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs), iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin), cardiac alpha myosin heavy chain (α-MHC), cardiac troponin T (cTnT), and connexin 43 (CX43), as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5) and gata binding protein 4 (gata4). The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs) was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID) mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI) in the future.
Collapse
Affiliation(s)
- Hongran Wang
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Yutao Xi
- Electrophysiology Research Laboratory, Texas Heart Institute, Houston, TX 77030, USA
| | - Yi Zheng
- Department of Internal Medicine, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Xiaohong Wang
- Stem Cell Center, Texas Heart Institute, Houston, TX 77030, USA
| | - Austin J Cooney
- Department of Pediatrics, Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| |
Collapse
|
89
|
Shijun X, Junsheng M, Jianqun Z, Ping B. In vitro three-dimensional coculturing poly3-hydroxybutyrate-co-3-hydroxyhexanoate with mouse-induced pluripotent stem cells for myocardial patch application. J Biomater Appl 2016; 30:1273-82. [PMID: 26873635 DOI: 10.1177/0885328215612115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Identifying a suitable polymeric biomaterial for myocardial patch repair following myocardial infarction, cerebral infarction, and cartilage injury is essential. This study aimed to investigate the effect of the novel polymer material, poly3-hydroxybutyrate- co-3-hydroxyhexanoate, on the adhesion, proliferation, and differentiation of mouse-induced pluripotent stem cells in vitro. Mouse-induced pluripotent stem cells were isolated, expanded, and cultured on either two-dimensional or three-dimensional poly3-hydroxybutyrate- co-3-hydroxyhexanoate films (membranes were perforated to imitate three-dimensional space). Following attachment onto the films, mouse-induced pluripotent stem cell morphology was visualized using scanning electron microscopy. Cell vitality was detected using the Cell Counting Kit-8 assay and cell proliferation was observed using fluorescent 4',6-diamidino-2-phenylindole (DAPI) staining. Mouse-induced pluripotent stem cells were induced into cardiomyocytes by differentiation medium containing vitamin C. A control group in the absence of an inducer was included. Mouse-induced pluripotent stem cell survival and differentiation were observed using immunofluorescence and flow cytometry, respectively. Mouse-induced pluripotent stem cells growth, proliferation, and differentiation were observed on both two-dimensional and three-dimensional poly3-hydroxybutyrate- co-3-hydroxyhexanoate films. Vitamin C markedly improved the efficiency of mouse-induced pluripotent stem cells differentiation into cardiomyocytes on poly3-hydroxybutyrate- co-3-hydroxyhexanoate films. Three-dimensional culture was better at promoting mouse-induced pluripotent stem cell proliferation and differentiation compared with two-dimensional culture.
Collapse
Affiliation(s)
- Xu Shijun
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| | - Mu Junsheng
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| | - Zhang Jianqun
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| | - Bo Ping
- Department of Cardiac Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, P.R. China
| |
Collapse
|
90
|
Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors. Stem Cells Int 2016; 2016:4736159. [PMID: 26977154 PMCID: PMC4763001 DOI: 10.1155/2016/4736159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 02/04/2023] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.
Collapse
|
91
|
Cardiotrophin-1 promotes cardiomyocyte differentiation from mouse induced pluripotent stem cells via JAK2/STAT3/Pim-1 signaling pathway. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 12:591-9. [PMID: 26788034 PMCID: PMC4712363 DOI: 10.11909/j.issn.1671-5411.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. METHODS The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of α-myosin heavy chain (α-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT-1 group. RESULTS Transmission electron microscopic analysis revealed that cells treated with CT-1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. CONCLUSIONS These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1signaling pathway.
Collapse
|
92
|
Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016; 7:10312. [PMID: 26785135 PMCID: PMC4735644 DOI: 10.1038/ncomms10312] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration.
Collapse
|
93
|
Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells Int 2016; 2016:9240652. [PMID: 26880997 PMCID: PMC4736428 DOI: 10.1155/2016/9240652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field.
Collapse
|
94
|
Cell Therapy in Ischemic Heart Disease: Interventions That Modulate Cardiac Regeneration. Stem Cells Int 2016; 2016:2171035. [PMID: 26880938 PMCID: PMC4736413 DOI: 10.1155/2016/2171035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
The incidence of severe ischemic heart disease caused by coronary obstruction has progressively increased. Alternative forms of treatment have been studied in an attempt to regenerate myocardial tissue, induce angiogenesis, and improve clinical conditions. In this context, cell therapy has emerged as a promising alternative using cells with regenerative potential, focusing on the release of paracrine and autocrine factors that contribute to cell survival, angiogenesis, and tissue remodeling. Evidence of the safety, feasibility, and potential effectiveness of cell therapy has emerged from several clinical trials using different lineages of adult stem cells. The clinical benefit, however, is not yet well established. In this review, we discuss the therapeutic potential of cell therapy in terms of regenerative and angiogenic capacity after myocardial ischemia. In addition, we addressed nonpharmacological interventions that may influence this therapeutic practice, such as diet and physical training. This review brings together current data on pharmacological and nonpharmacological approaches to improve cell homing and cardiac repair.
Collapse
|
95
|
ASLAN GS, MISIR DG, KOCABAŞ F. Underlying mechanisms and prospects of heart regeneration. Turk J Biol 2016. [DOI: 10.3906/biy-1506-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
96
|
Induced pluripotent stem cells alleviate lung injury from mesenteric ischemia-reperfusion. J Trauma Acute Care Surg 2015; 79:592-601. [PMID: 26402533 DOI: 10.1097/ta.0000000000000804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mesenteric ischemia-reperfusion (I/R) injury is a serious pathophysiologic process that can trigger the development of multiorgan dysfunction. Acute lung injury is a major cause of death among mesenteric I/R patients, as current treatments remain inadequate. Stem cell-based therapies are considered novel strategies for treating several devastating and incurable diseases. This study examined whether induced pluripotent stem cells (iPSCs) lacking c-myc (i.e., induced using only the three genes oct4, sox2, and klf4) can protect against acute lung injury in a mesenteric I/R mouse model. METHODS C57BL/6 mice were randomly divided into the following groups: sham/no treatment, vehicle treatment with phosphate-buffered saline, treatment with iPSCs, and treatment with iPSC-conditioned medium. The mice were subjected to mesenteric ischemia for 45 minutes followed by reperfusion for 24 hours. After I/R, the lungs and the ileum of the mice were harvested. Lung injury was evaluated by histology, immunohistochemistry, and analyses of the levels of inflammatory cytokines, cleaved caspase 3, and 4-hydroxynonenal. RESULTS The intravenously delivered iPSCs engrafted to the lungs and the ileum in response to mesenteric I/R injury. Compared with the phosphate-buffered saline-treated group, the iPSC-treated group displayed a decreased intensity of acute lung injury 24 hours after mesenteric I/R. iPSC transplantation significantly reduced the expression of proinflammatory cytokines, oxidative stress markers, and apoptotic factors in injured lung tissue and remarkably enhanced endogenous alveolar cell proliferation. iPSC-conditioned medium treatment exerted a partial effect compared with iPSC treatment. CONCLUSION When considering the anti-inflammatory, antioxidant, and antiapoptotic properties of iPSCs, the transplantation of iPSCs may represent an effective treatment option for mesenteric I/R-induced acute lung injury.
Collapse
|
97
|
Den Hartogh SC, Passier R. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity. Stem Cells 2015; 34:13-26. [DOI: 10.1002/stem.2196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Sabine C. Den Hartogh
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
- Department of Applied Stem cell Technologies. MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente, P.O.Box 217; Enschede The Netherlands
| |
Collapse
|
98
|
Padda J, Sequiera GL, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: hits and misses. Can J Physiol Pharmacol 2015; 93:835-41. [DOI: 10.1139/cjpp-2014-0468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiac injury and loss of cardiomyocytes is a causative as well as a resultant condition of cardiovascular disorders, which are the leading cause of death throughout the world. This loss of cardiomyocytes cannot be completely addressed through the currently available drugs being administered, which mainly function only in relieving the symptoms. There is a huge potential being investigated for regenerative and cell replacement therapies through recruiting stem cells of various origins namely embryonic, reprogramming/induction, and adult tissue. These sources are being actively studied for translation to clinical scenarios. In this review, we attempt to discuss some of these promising scenarios, including the clinical trials and the obstacles that need to be overcome, and hope to address the direction in which stem cell therapy is heading.
Collapse
Affiliation(s)
- Jagjit Padda
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Glen Lester Sequiera
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
99
|
Bilgimol JC, Ragupathi S, Vengadassalapathy L, Senthil NS, Selvakumar K, Ganesan M, Manjunath SR. Stem cells: An eventual treatment option for heart diseases. World J Stem Cells 2015; 7:1118-1126. [PMID: 26435771 PMCID: PMC4591785 DOI: 10.4252/wjsc.v7.i8.1118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/04/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cells are of global excitement for various diseases including heart diseases. It is worth to understand the mechanism or role of stem cells in the treatment of heart failure. Bone marrow derived stem cells are commonly practiced with an aim to improve the function of the heart. The majority of studies have been conducted with acute myocardial infarction and a few has been investigated with the use of stem cells for treating chronic or dilated cardiomyopathy. Heterogeneity in the treated group using stem cells has greatly emerged. Ever increasing demand for any alternative made is of at most priority for cardiomyopathy. Stem cells are of top priority with the current impact that has generated among physicians. However, meticulous selection of proper source is required since redundancy is clearly evident with the present survey. This review focuses on the methods adopted using stem cells for heart diseases and outcomes that are generated so far with an idea to determine the best therapeutic possibility in order to fulfill the present demand.
Collapse
|
100
|
Wang B, Ma X, Zhao L, Zhou X, Ma Y, Sun H, Yang Y, Chen B. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction. Clin Exp Med 2015; 16:539-550. [DOI: 10.1007/s10238-015-0383-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
|