51
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
52
|
Pereira PR, Oliveira-Junior MC, Mackenzie B, Chiovatto JED, Matos Y, Greiffo FR, Rigonato-Oliveira NC, Brugemman TR, Delle H, Idzko M, Albertini R, Ligeiro Oliveira AP, Damaceno-Rodrigues NR, Caldini EG, Fernandez IE, Castro-Faria-Neto HC, Dolhnikoff M, Eickelberg O, Vieira RP. Exercise Reduces Lung Fibrosis Involving Serotonin/Akt Signaling. Med Sci Sports Exerc 2016; 48:1276-1284. [PMID: 26895395 DOI: 10.1249/mss.0000000000000907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia, which involves aberrant serotonin (5-hydroxytryptamine [5-HT]) and Akt signaling. As protective effects of chronic aerobic training (AT) have been demonstrated in the context of lung injury, this study investigated whether AT attenuates bleomycin-induced lung fibrosis partly via a reduction of 5-HT and AKT signaling. METHODS Seventy-two C57BL/6 male mice were distributed in Control (Co), Exercise (Ex), Fibrosis (Fi), and Fibrosis + Exercise (Fi + Ex) groups. Bleomycin (1.5 UI·kg) was administered on day 1 and treadmill AT began on day 15 and continued for 60 min·d, 5 d·wk for 4 wk. We evaluated total and differential cell counts in bronchoalveolar lavage (BAL), interleukin (IL)-1β, IL-6, CXCL1/KC, IL-10, tumor necrosis factor α, and transforming growth factor β levels in BAL, collagen content in lung parenchyma, 5-HT levels in BAL fluid and in serum, the expression of 5-HT2B receptor, and Akt phosphorylation in lung tissue. RESULTS AT reduced bleomycin-increased number of total cells (P < 0.001), neutrophils (P < 0.01), macrophages (P < 0.01), and lymphocytes (P < 0.05) in BAL. It also reduced the levels of IL-1β (P < 0.01), IL-6 (P < 0.05), CXCL1/KC (P < 0.001), tumor necrosis factor α (P < 0.001), and transforming growth factor β (P < 0.001). It increased expression of ant-inflammatory cytokine IL-10 (P < 0.001). It reduced bleomycin-increased 5-HT levels in BAL (P < 0.001) and in serum (P < 0.05). Reductions in collagen fiber deposition (P < 0.01), 5-HT2B receptor expression (P < 0.01), and Akt phosphorylation in lung tissue were observed. CONCLUSIONS AT accelerates the resolution of lung inflammation and fibrosis in a model of bleomycin-induced lung fibrosis partly via attenuation of 5-HT/Akt signaling.
Collapse
Affiliation(s)
- Paulo Rogerio Pereira
- 1Laboratory of Pulmonary and Exercise Immunology, Nove de Julho University, São Paulo, BRAZIL; 2Laboratory of Experimental Therapeutics, School of Medicine, University of São Paulo, São Paulo, BRAZIL; 3COPD and Asthma Research Group, Department of Pneumology, University Hospital Freiburg, Freiburg, GERMANY; 4Laboratory of Cellular Biology, School of Medicine, University of Sao Paulo, São Paulo, BRAZIL; 5Comprehensive Pneumology Centre, University Hospital of the Ludwig Maximilians University Munich, Munich, GERMANY; 6Laboratory of Immunopharmacology, Institute Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, BRAZIL; and 7Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of Sao Paulo, São Paulo, BRAZIL
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Roels E, Krafft E, Farnir F, Holopainen S, Laurila HP, Rajamäki MM, Day MJ, Antoine N, Pirottin D, Clercx C. Assessment of CCL2 and CXCL8 chemokines in serum, bronchoalveolar lavage fluid and lung tissue samples from dogs affected with canine idiopathic pulmonary fibrosis. Vet J 2015; 206:75-82. [DOI: 10.1016/j.tvjl.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 12/16/2022]
|
54
|
Luzina IG, Todd NW, Sundararajan S, Atamas SP. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015; 74:88-100. [DOI: 10.1016/j.cyto.2014.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
|
55
|
Tang H, He H, Ji H, Gao L, Mao J, Liu J, Lin H, Wu T. Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β–dependent epithelial to mesenchymal transition. J Surg Res 2015; 197:167-75. [DOI: 10.1016/j.jss.2015.02.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/15/2015] [Accepted: 02/26/2015] [Indexed: 11/27/2022]
|
56
|
Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221182 PMCID: PMC4499611 DOI: 10.1155/2015/957031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.
Collapse
|
57
|
Kim DY, Cho SH, Takabayashi T, Schleimer RP. Chronic Rhinosinusitis and the Coagulation System. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:421-30. [PMID: 26122502 PMCID: PMC4509654 DOI: 10.4168/aair.2015.7.5.421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Chronic rhinosinusitis (CRS) is one of the most common chronic diseases in adults and severely affects quality of life in patients. Although various etiologic and pathogenic mechanisms of CRS have been proposed, the causes of CRS remain uncertain. Abnormalities in the coagulation cascade may play an etiologic role in many diseases, such as asthma and other inflammatory conditions. While studies on the relationship between asthma and dysregulated coagulation have been reported, the role of the coagulation system in the pathogenesis of CRS has only been considered following recent reports. Excessive fibrin deposition is seen in nasal polyp (NP) tissue from patients with chronic rhinosinusitis with nasal polyp (CRSwNP) and is associated with activation of thrombin, reduction of tissue plasminogen activator (t-PA) and upregulation of coagulation factor XIII-A (FXIII-A), all events that can contribute to fibrin deposition and crosslinking. These findings were reproduced in a murine model of NP that was recently established. Elucidation of the mechanisms of fibrin deposition may enhance our understanding of tissue remodeling in the pathophysiology of NP and provide new targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Dong Young Kim
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong H Cho
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
58
|
José RJ, Williams AE, Mercer PF, Sulikowski MG, Brown JS, Chambers RC. Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:6024-34. [PMID: 25948816 PMCID: PMC4456635 DOI: 10.4049/jimmunol.1500124] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/24/2022]
Abstract
Neutrophils are key effector cells of the innate immune response to pathogenic bacteria, but excessive neutrophilic inflammation can be associated with bystander tissue damage. The mechanisms responsible for neutrophil recruitment to the lungs during bacterial pneumonia are poorly defined. In this study, we focus on the potential role of the major high-affinity thrombin receptor, proteinase-activated receptor 1 (PAR-1), during the development of pneumonia to the common lung pathogen Streptococcus pneumoniae. Our studies demonstrate that neutrophils were indispensable for controlling S. pneumoniae outgrowth but contributed to alveolar barrier disruption. We further report that intra-alveolar coagulation (bronchoalveolar lavage fluid thrombin-antithrombin complex levels) and PAR-1 immunostaining were increased in this model of bacterial lung infection. Functional studies using the most clinically advanced PAR-1 antagonist, SCH530348, revealed a key contribution for PAR-1 signaling in influencing neutrophil recruitment to lung airspaces in response to both an invasive and noninvasive strain of S. pneumoniae (D39 and EF3030) but that PAR-1 antagonism did not impair the ability of the host to control bacterial outgrowth. PAR-1 antagonist treatment significantly decreased pulmonary levels of IL-1β, CXCL1, CCL2, and CCL7 and attenuated alveolar leak. Ab neutralization studies further demonstrated a nonredundant role for IL-1β, CXCL1, and CCL7 in mediating neutrophil recruitment in response to S. pneumoniae infection. Taken together, these data demonstrate a key role for PAR-1 during S. pneumoniae lung infection that is mediated, at least in part, by influencing multiple downstream inflammatory mediators.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Andrew E Williams
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Michal G Sulikowski
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
59
|
The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 2015; 2015:437695. [PMID: 25878399 PMCID: PMC4387953 DOI: 10.1155/2015/437695] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa), factor VIIa (FVIIa), tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells) or inflammatory cells (e.g., macrophages) via the proteolytic activation of protease-activated receptors (PARs). Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4) activating fibrin degradation products (FDPs) and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β). Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator) evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.
Collapse
|
60
|
Abstract
The challenge facing many fibrotic lung diseases is that these conditions usually present late, often after several decades of repetitive alveolar epithelial injury, during which functional alveolar units are gradually obliterated and replaced with nonfunctional connective tissue. The resulting fibrosis is often progressive and, in the case of idiopathic pulmonary fibrosis (IPF), invariably leads to respiratory insufficiency and, ultimately, the premature death of affected individuals. Recent years have seen a greater appreciation of the relative importance of chronic inflammation as a driver of fibrotic responses. Current evidence suggests that IPF arises as a result of repetitive epithelial injury and a highly aberrant wound healing response in genetically susceptible and aged individuals. Nonspecific anti-inflammatory agents offer no clinical benefit, but the potential contribution of maladaptive immune responses in determining outcome is gaining increasing recognition. The importance of key differences in the tissue-regenerative potential in young versus aged individuals is also beginning to be more fully appreciated. Moreover, there is considerable overlap in the mechanisms underlying tissue repair and cancer, and patients with IPF are at heightened risk of developing lung cancer. Progressive fibrosis and cancer may therefore represent the extremes of a highly dysregulated tissue injury response. This brief review focuses on some of this evidence and on our current understanding of abnormal tissue repair responses after chronic epithelial injury in the specific context of IPF.
Collapse
Affiliation(s)
- Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | | |
Collapse
|
61
|
Xu QL, Guo XH, Liu JX, Chen B, Liu ZF, Su L. Blockage of protease-activated receptor 1 ameliorates heat-stress induced intestinal high permeability and bacterial translocation. Cell Biol Int 2015; 39:411-7. [PMID: 25492552 DOI: 10.1002/cbin.10408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/14/2014] [Indexed: 11/06/2022]
Abstract
Accumulated evidences indicate intestinal lesions play an important role in the pathogenesis of heatstroke. However, the underlying mechanisms by which heat stress causes intestinal barrier dysfunction and bacterial translocation remain unclear. In this study, we investigated the role of protease-activated receptor 1 (PAR1) in heat stress-induced intestinal hyper-permeability and bacterial translocation. Intestinal permeability in heat stressed mouse was evaluated by determining plasma endotoxin concentration and urinal lactulose/mannitol (L/M) ratio with gastric administration of L/M solution. Venous blood, liver, spleen and mesenteric lymph node tissues were collected for bacterial load test. Real time PCR was used to determine ileum PAR1 mRNA expression. In vitro study, permeability was assessed by determining trans-epithelial electrical resistance (TEER) in human intestinal Caco-2 cell line. RWJ-58259, a selective antagonist of PAR1, was used both in vivo and in vitro studies. The results showed that heat stress could increase ileum PAR1 mRNA level, urinal L/M ratio, plasma endotoxin concentration and bacterial load in the blood, spleen and mesenteric lymph nodes. Blocking PAR1 with RWJ-58259 (10 mg/kg) pretreatment could significantly reduce heat stress-induced above changes, but have no role to PAR1 mRNA level. In Caco-2 cells, heat stress-induced high permeability could also be reduced by RWJ-58259 (5-20 µmol/L). In summary, our results demonstrated that PAR1 signaling pathway may play an important role in the heat stress-induced elevation of intestinal permeability, bacterial translocation and the occurrence of endotoxemia.
Collapse
Affiliation(s)
- Qiu-lin Xu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China; Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | | | | | | | | | | |
Collapse
|
62
|
Sterclova M, Vasakova M. Promising new treatment targets in patients with fibrosing lung disorders. World J Clin Cases 2014; 2:668-675. [PMID: 25405190 PMCID: PMC4233418 DOI: 10.12998/wjcc.v2.i11.668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
The processes of lung fibrogenesis and fibrotic healing are common to a number of conditions with different etiologies. The lungs are the only affected organ in some cases, whereas in others, several organ systems are involved. Therapeutic options can be discussed from various perspectives. In this review, we address the localization of therapeutic targets with regard to cell compartments, including secreted ligands, cell surface, plasma membrane-cytosol interplay, cytosol and nucleus. Complex approach using stem cell therapy is also discussed. As the prognosis of patients with these disorders remains grim, treatment combinations targeting different molecules within the cell should sometimes be considered. It is reasonable to assume that blocking specific pathways will more likely lead to disease stabilization, while stem cell-based treatments could potentially restore lung architecture. Gene therapy could be a candidate for preventive care in families with proven specific gene polymorphisms and documented familial lung fibrosis. Chronobiology, that takes into account effect of circadian rhythm on cell biology, has demonstrated that timed drug administration can improve treatment outcomes. However, the specific recommendations for optimal approaches are still under debate. A multifaceted approach to interstitial lung disorders, including cooperation between those doing basic research and clinical doctors as well as tailoring research and treatment strategies toward (until now) unmet medical needs, could improve our understanding of the diseases and, above all, provide benefits for our patients.
Collapse
|
63
|
Boorsma CE, Dekkers BGJ, van Dijk EM, Kumawat K, Richardson J, Burgess JK, John AE. Beyond TGFβ--novel ways to target airway and parenchymal fibrosis. Pulm Pharmacol Ther 2014; 29:166-80. [PMID: 25197006 DOI: 10.1016/j.pupt.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 01/18/2023]
Abstract
Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of the airways. In the past decade, significant advances have been made in understanding the disease behaviour and pathogenesis of parenchymal and airway fibrosis and as a result a variety of novel therapeutic targets for slowing or preventing progression of these fibrotic changes have been identified. This review highlights a number of these targets and discusses the potential for treating parenchymal or airway fibrosis through these mediators/pathways in the future.
Collapse
Affiliation(s)
- C E Boorsma
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B G J Dekkers
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E M van Dijk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - K Kumawat
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - J Richardson
- Division of Respiratory Medicine, Nottingham University Hospitals, QMC Campus, Nottingham NG7 2UH, United Kingdom
| | - J K Burgess
- Woolcock Institute of Medical Research, Glebe 2037, Australia; Discipline of Pharmacology, The University of Sydney, Sydney 2006, Australia
| | - A E John
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
64
|
Jarman ER, Khambata VS, Yun Ye L, Cheung K, Thomas M, Duggan N, Jarai G. A translational preclinical model of interstitial pulmonary fibrosis and pulmonary hypertension: mechanistic pathways driving disease pathophysiology. Physiol Rep 2014; 2:e12133. [PMID: 25214520 PMCID: PMC4270229 DOI: 10.14814/phy2.12133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease, in which a decline in patient prognosis is frequently associated with the onset of pulmonary hypertension (PH). Animal models exhibiting principle pathophysiological features of IPF and PH could provide greater insight into mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches for intervention. Here, we describe an in vivo disease model, in which animals develop progressive interstitial pulmonary fibrosis and associated PH, as defined by the presence of fibrotic foci adjacent to areas of alveolar injury and remodeling of the pulmonary vasculature. Associated changes in physiological parameters included a decline in lung function and increase in mean pulmonary arterial pressure (mPAP) >25 mmHg. The early fibrotic pathology is associated with a profibrogenic microenvironment, elevated levels of the matrix metalloproteases, MMP-2, MMP-7, and MMP-12, TIMP-1, the chemoattractant and mitogen, PDGF-β, and the chemokines CCL2 and CXCL12, that are associated with the recruitment of macrophages, mast cells, and fibrocytes. Principle mechanistic pathways associated with disease pathogenesis are upregulated in the lungs and pulmonary arteries, with sustained increases in gene transcripts for the profibrotic mediator TGF-β1 and components of the TGF-β signaling pathway; PAI-1, Nox-4, and HIF-1α. Therapeutic treatment with the ALK-5/TGF-β RI inhibitor SB-525334 reversed established pulmonary fibrosis and associated vascular remodeling, leading to normalization in clinically translatable physiological parameters including lung function and hemodynamic measurements of mPAP. These studies highlight the application of this model in validating potential approaches for targeting common mechanistic pathways driving disease pathogenesis.
Collapse
Affiliation(s)
- Elizabeth R. Jarman
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Valerie S. Khambata
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Li Yun Ye
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Kenneth Cheung
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Matthew Thomas
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Nicholas Duggan
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | - Gabor Jarai
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| |
Collapse
|
65
|
Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 2014; 189:1161-72. [PMID: 24641682 DOI: 10.1164/rccm.201312-2221pp] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A growing body of evidence indicates that aberrant activation of alveolar epithelial cells and fibroblasts in an aging lung plays a critical role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the biopathological processes linking aging with IPF and the mechanisms responsible for the abnormal activation of epithelial cells and fibroblasts have not been elucidated. Many of the hallmarks of aging (e.g., genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, and cellular senescence) have been proposed as essential mechanisms for the development of IPF; however, these disturbances are not restricted to IPF and also occur in other aging-related lung disorders, primarily chronic obstructive pulmonary disease (COPD). Therefore, an unanswered question is why a current/former smoker of about 60 years of age with shorter telomeres, alveolar epithelial senescence, excessive oxidative stress, and mitochondrial dysfunction develops IPF and not COPD; in other words, what makes old lungs specifically susceptible to develop IPF? In this Perspective, we propose an integral model in which the combination of some gene variants and/or gene expression in the aging lung results in the loss of epithelial integrity and consequently in the failure of the alveoli to correctly respond to injury and to face the stress associated with mechanical stretch. Afterward, a distinctive epigenetic "reprogramming" that affects both epithelial cells and fibroblasts provokes, among others, the recapitulation of developmental pathways and the aberrant activation and miscommunication between both cell types, resulting in the exaggerated production and accumulation of extracellular matrix and the subsequent destruction of the lung architecture.
Collapse
Affiliation(s)
- Moisés Selman
- 1 Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," México DF, Mexico; and
| | | |
Collapse
|
66
|
Queiroz KCS, Shi K, Duitman J, Aberson HL, Wilmink JW, van Noesel CJM, Richel DJ, Spek CA. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer 2014; 135:2294-304. [PMID: 24436106 DOI: 10.1002/ijc.28726] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022]
Abstract
Protease activated receptor (PAR)-1 expression in tumor cells is associated with disease progression and overall survival in a variety of cancers of epithelial origin; however, the importance of PAR-1 in the tumor microenvironment remains unexplored. Utilizing an orthotopic pancreatic cancer model in which tumor cells are PAR-1 positive whereas stromal cells are PAR-1 negative, we show that PAR-1 expression in the microenvironment drives progression and induces chemoresistance of pancreatic cancer. PAR-1 enhances monocyte recruitment into the tumor microenvironment by regulating monocyte migration and fibroblast dependent chemokine production thereby inducing chemoresistance. Overall, our data identify a novel role of PAR-1 in the pancreatic tumor microenvironment and suggest that PAR-1 may be an attractive target to reduce drug resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Mercer PF, Williams AE, Scotton CJ, José RJ, Sulikowski M, Moffatt JD, Murray LA, Chambers RC. Proteinase-activated receptor-1, CCL2, and CCL7 regulate acute neutrophilic lung inflammation. Am J Respir Cell Mol Biol 2014; 50:144-57. [PMID: 23972264 DOI: 10.1165/rcmb.2013-0142oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PAR1 plays a central role in mediating the interplay between coagulation and inflammation, but its role in regulating acute neutrophilic inflammation is unknown. We report that antagonism of PAR1 was highly effective at reducing acute neutrophil accumulation in a mouse model of LPS-induced lung inflammation. PAR1 antagonism also reduced alveolar-capillary barrier disruption in these mice. This protection was associated with a reduction in the expression of the chemokines, CCL2 and CCL7, but not the proinflammatory cytokines, TNF and IL-6, or the classic neutrophil chemoattractants, CXCL1 and CXCL2. Antibody neutralization of CCL2 and CCL7 significantly reduced LPS-induced total leukocyte and neutrophil accumulation, recovered from the bronchoalveolar lavage fluid of challenged mice. Immunohistochemical analysis revealed that CCL2 predominantly localized to alveolar macrophages and pulmonary epithelial cells, whereas CCL7 was restricted to the pulmonary epithelium. In keeping with these observations, the intranasal administration of recombinant CCL2 (rCCL2) and rCCL7 led to the accumulation of neutrophils within the lung airspaces of naive mice in the absence of any underlying inflammation. Flow cytometry analysis further demonstrated an increase in Ly6G(hi) neutrophils expressing the chemokine receptors, CCR1 and CCR2, isolated from mouse lungs compared with circulating neutrophils. Conversely, the expression of CXCR2 decreased on neutrophils isolated from the lung compared with circulating neutrophils. Furthermore, this switch in chemokine receptor expression was accentuated after acute LPS-induced lung inflammation. Collectively, these findings reveal a novel role for PAR1 and the chemokines, CCL2 and CCL7, during the early events of acute neutrophilic inflammation.
Collapse
Affiliation(s)
- Paul F Mercer
- 1 Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 2014; 4:173. [PMID: 24454287 PMCID: PMC3887273 DOI: 10.3389/fphar.2013.00173] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterized by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix (ECM) in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5B genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic transforming growth factor beta and continuous deposition of ECM stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review, we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation, and myofibroblast activation in the fibrotic lung.
Collapse
Affiliation(s)
- Ana Camelo
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Rebecca Dunmore
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Matthew A Sleeman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Deborah L Clarke
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| |
Collapse
|
69
|
Borensztajn K, Crestani B, Kolb M. Idiopathic pulmonary fibrosis: from epithelial injury to biomarkers--insights from the bench side. ACTA ACUST UNITED AC 2013; 86:441-52. [PMID: 24356558 DOI: 10.1159/000357598] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most frequent fibrotic diffuse parenchymal lung disease. Its prognosis is devastating: >50% of the patients die within 3 years after diagnosis. Options for the treatment of IPF are limited and lung transplantation is the only 'curative' therapy. Currently, in the absence of validated indicators of disease progression/activity and diagnostic tools, the clinical management of IPF remains a major challenge. A better understanding of the pathogenesis of IPF is critical for the identification of new therapeutic targets as well as molecules that may serve as surrogate markers for clinically significant endpoints. The current paradigm on the mechanisms leading from a normal to a fibrotic lung postulates that chronic epithelial lesion leads to aberrant wound healing activation, which is characterized by deregulated fibroblast proliferation and activation together with an uncontrolled extracellular matrix synthesis. In this review, we shed light on the role of epithelial cell damage in the pathogenesis of fibrosis. Finally, we examine the markers of epithelial damage and their potential use as biomarkers and the future of this continuously expanding field.
Collapse
|
70
|
Abstract
The coagulation cascade plays a central role in the pathogenesis of fibroproliferative lung diseases such as the acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF) through multifaceted effects on haemostasis, inflammation and tissue repair. However, targeting the coagulation cascade using traditional anticoagulant approaches has not resulted in improved outcomes for these patients. The cellular effects of the coagulation cascade are mediated via a family of four proteinase-activated receptors (PAR(1-4)). PARs are G protein-coupled receptors that have a unique method of activation involving proteolytic cleavage. They play key roles in mediating the interplay between coagulation and inflammation and tissue repair and fibrosis. Current evidence suggests a central role for PAR(1) and PAR(2) in influencing these responses, although data from animal models suggest that their contribution is highly dependent on both the nature of the insult and disease status. Nonetheless, these receptors may represent important targets in conditions associated with uncontrolled coagulation signalling responses including IPF, ARDS, asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, , London, UK
| | | | | |
Collapse
|
71
|
Datta A, Alexander R, Sulikowski MG, Nicholson AG, Maher TM, Scotton CJ, Chambers RC. Evidence for a functional thymic stromal lymphopoietin signaling axis in fibrotic lung disease. THE JOURNAL OF IMMUNOLOGY 2013; 191:4867-79. [PMID: 24081992 DOI: 10.4049/jimmunol.1300588] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) recently has emerged as a key cytokine in the development of type 2 immune responses. Although traditionally associated with allergic inflammation, type 2 responses are also recognized to contribute to the pathogenesis of tissue fibrosis. However, the role of TSLP in the development of non-allergen-driven diseases, characterized by profibrotic type 2 immune phenotypes and excessive fibroblast activation, remains underexplored. Fibroblasts represent the key effector cells responsible for extracellular matrix production but additionally play important immunoregulatory roles, including choreographing immune cell recruitment through chemokine regulation. The aim of this study was to examine whether TSLP may be involved in the pathogenesis of a proto-typical fibrotic disease, idiopathic pulmonary fibrosis (IPF). We combined the immunohistochemical analysis of human IPF biopsy material with signaling studies by using cultured primary human lung fibroblasts and report for the first time, to our knowledge, that TSLP and its receptor (TSLPR) are highly upregulated in IPF. We further show that lung fibroblasts represent both a novel cellular source and target of TSLP and that TSLP induces fibroblast CCL2 release (via STAT3) and subsequent monocyte chemotaxis. These studies extend our understanding of TSLP as a master regulator of type 2 immune responses beyond that of allergic inflammatory conditions and suggest a novel role for TSLP in the context of chronic fibrotic lung disease.
Collapse
Affiliation(s)
- Arnab Datta
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
72
|
Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:157-79. [PMID: 24050627 DOI: 10.1146/annurev-pathol-012513-104706] [Citation(s) in RCA: 622] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease associated with aging that is characterized by the histopathological pattern of usual interstitial pneumonia. Although an understanding of the pathogenesis of IPF is incomplete, recent advances delineating specific clinical and pathologic features of IPF have led to better definition of the molecular pathways that are pathologically activated in the disease. In this review we highlight several of these advances, with a focus on genetic predisposition to IPF and how genetic changes, which occur primarily in epithelial cells, lead to activation of profibrotic pathways in epithelial cells. We then discuss the pathologic changes within IPF fibroblasts and the extracellular matrix, and we conclude with a summary of how these profibrotic pathways may be interrelated.
Collapse
Affiliation(s)
- Paul J Wolters
- Department of Medicine, School of Medicine, University of California, San Francisco, California 94143; ,
| | | | | |
Collapse
|
73
|
Aerts L, Hamelin MÈ, Rhéaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, Riteau B, Boivin G. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One 2013; 8:e72529. [PMID: 24015257 PMCID: PMC3755973 DOI: 10.1371/journal.pone.0072529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human metapneumovirus (hMPV) infection causes acute respiratory tract infections (RTI) which can result in hospitalization of both children and adults. To date, no antiviral or vaccine is available for this common viral infection. Immunomodulators could represent an interesting strategy for the treatment of severe viral infection. Recently, the role of protease-activated receptors (PAR) in inflammation, coagulation and infection processes has been of growing interest. Herein, the effects of a PAR1 agonist and a PAR1 antagonist on hMPV infection were investigated in BALB/c mice. Intranasal administration of the PAR1 agonist resulted in increased weight loss and mortality of infected mice. Conversely, the PAR1 antagonist was beneficial to hMPV infection by decreasing weight loss and clinical signs and by significantly reducing pulmonary inflammation, pro-inflammatory cytokine levels (including IL-6, KC and MCP-1) and recruitment of immune cells to the lungs. In addition, a significant reduction in pulmonary viral titers was also observed in the lungs of PAR1 antagonist-treated mice. Despite no apparent direct effect on virus replication during in vitro experiments, an important role for PAR1 in the regulation of furin expression in the lungs was shown for the first time. Further experiments indicated that the hMPV fusion protein can be cleaved by furin thus suggesting that PAR1 could have an effect on viral infectivity in addition to its immunomodulatory properties. Thus, inhibition of PAR1 by selected antagonists could represent an interesting strategy for decreasing the severity of paramyxovirus infections.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Sophie Lavigne
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Christian Couture
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - WooJin Kim
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nathalie Vergnolle
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Beatrice Riteau
- Virologie et Pathologie Humaine, Université Lyon, Faculté de Médecine RTH Laennec, Lyon, France
- Centre de Tours-Nouzilly Institut National de la Recherche Agronomique, Nouzilly, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| |
Collapse
|
74
|
Schwingshackl A, Teng B, Ghosh M, Waters CM. Regulation of Monocyte Chemotactic Protein-1 secretion by the Two-Pore-Domain Potassium (K2P) channel TREK-1 in human alveolar epithelial cells. Am J Transl Res 2013; 5:530-542. [PMID: 23977412 PMCID: PMC3745440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
We recently proposed a role for the 2-pore-domain K(+) (K2P) channel TREK-1 in the regulation of cytokine release from alveolar epithelial cells (AECs) by demonstrating decreased IL-6 secretion from TREK-1 deficient cells, but the effects of altered TREK-1 expression on other inflammatory mediators remain poorly understood. We now examined the role of TREK-1 in TNF-α-induced MCP-1 release from human A549 cells. We hypothesized that TREK-1 regulates TNF-α-induced MCP-1 secretion via c-Jun N-terminal kinases (JNK)- and protein kinase-C (PKC)-dependent pathways. In contrast to IL-6 secretion, we found that TREK-1 deficiency resulted in increased MCP-1 production and secretion, although baseline MCP-1 gene expression was unchanged in TREK-1 deficient cells. In contrast to TREK-1 deficient AECs, overexpression of MCP-1 had no effect on MCP-1 secretion. Phosphorylation of JNK1/2/3 was increased in TREK-1 deficient cells upon TNF-α stimulation, but pharmacological inhibition of JNK1/2/3 decreased MCP-1 release from both control and TREK-1 deficient cells. Similarly, pharmacological inhibition of PKC decreased MCP-1 secretion from control and TREK-1 deficient cells, suggesting that alterations in JNK and PKC signaling pathways were unlikely the cause for the increased MCP-1 secretion from TREK-1 deficient cells. Furthermore, MCP-1 secretion from control and TREK-1 deficient cells was independent of extracellular Ca(2+) but sensitive to inhibition of intracellular Ca(2+) reuptake mechanisms. In summary, we report for the first time that TREK-1 deficiency in human AECs resulted in increased MCP-1 production and secretion, and this effect appeared unrelated to alterations in JNK-, PKC- or Ca(2+)-mediated signaling pathways in TREK-1 deficient cells.
Collapse
Affiliation(s)
- Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science CenterMemphis, TN 38103, USA
- Department of Physiology, University of Tennessee Health Science CenterMemphis, TN 38103, USA
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science CenterMemphis, TN 38103, USA
| | - Manik Ghosh
- Department of Physiology, University of Tennessee Health Science CenterMemphis, TN 38103, USA
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science CenterMemphis, TN 38103, USA
- Department of Medicine, University of Tennessee Health Science CenterMemphis, TN 38103, USA
| |
Collapse
|
75
|
Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS One 2013; 8:e71679. [PMID: 23967234 PMCID: PMC3742516 DOI: 10.1371/journal.pone.0071679] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023] Open
Abstract
The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.
Collapse
|
76
|
Deng X, Xu M, Yuan C, Yin L, Chen X, Zhou X, Li G, Fu Y, Feghali-Bostwick CA, Pang L. Transcriptional regulation of increased CCL2 expression in pulmonary fibrosis involves nuclear factor-κB and activator protein-1. Int J Biochem Cell Biol 2013; 45:1366-76. [DOI: 10.1016/j.biocel.2013.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
77
|
Sakai N, Tager AM. Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:911-21. [PMID: 23499992 PMCID: PMC4041487 DOI: 10.1016/j.bbadis.2013.03.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the "pas de deux" (steps of two), or perhaps more appropriate to IPF pathogenesis, the "folie à deux" (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their "fibrosis of two", including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Norihiko Sakai
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| | - Andrew M. Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
78
|
Atamas SP, Chapoval SP, Keegan AD. Cytokines in chronic respiratory diseases. F1000 BIOLOGY REPORTS 2013; 5:3. [PMID: 23413371 PMCID: PMC3564216 DOI: 10.3410/b5-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines are small, secreted proteins that control immune responses. Within the lung, they can control host responses to injuries or infection, resulting in clearance of the insult, repair of lung tissue, and return to homeostasis. Problems can arise when this response is over exuberant and/or cytokine production becomes dysregulated. In such cases, chronic and repeated inflammatory reactions and cytokine production can be established, leading to airway remodeling and fibrosis with unintended, maladaptive consequences. In this report, we describe the cytokines and molecular mechanisms behind the pathology observed in three major chronic diseases of the lung: asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Overlapping mechanisms are presented as potential sites for therapeutic intervention.
Collapse
Affiliation(s)
- Sergei P Atamas
- Department of Medicine, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Baltimore VA Medical Center Baltimore, MD 21201 USA
| | | | | |
Collapse
|
79
|
Coagulation and coagulation signalling in fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1018-27. [PMID: 23298546 DOI: 10.1016/j.bbadis.2012.12.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 12/29/2022]
Abstract
Following tissue injury, a complex and coordinated wound healing response comprising coagulation, inflammation, fibroproliferation and tissue remodelling has evolved to nullify the impact of the original insult and reinstate the normal physiological function of the affected organ. Tissue fibrosis is thought to result from a dysregulated wound healing response as a result of continual local injury or impaired control mechanisms. Although the initial insult is highly variable for different organs, in most cases, uncontrolled or sustained activation of mesenchymal cells into highly synthetic myofibroblasts leads to the excessive deposition of extracellular matrix proteins and eventually loss of tissue function. Coagulation was originally thought to be an acute and transient response to tissue injury, responsible primarily for promoting haemostasis by initiating the formation of fibrin plugs to enmesh activated platelets within the walls of damaged blood vessels. However, the last 20years has seen a major re-evaluation of the role of the coagulation cascade following tissue injury and there is now mounting evidence that coagulation plays a critical role in orchestrating subsequent inflammatory and fibroproliferative responses during normal wound healing, as well as in a range of pathological contexts across all major organ systems. This review summarises our current understanding of the role of coagulation and coagulation initiated signalling in the response to tissue injury, as well as the contribution of uncontrolled coagulation to fibrosis of the lung, liver, kidney and heart. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
80
|
Hasenberg M, Stegemann-Koniszewski S, Gunzer M. Cellular immune reactions in the lung. Immunol Rev 2012; 251:189-214. [DOI: 10.1111/imr.12020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mike Hasenberg
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| | | | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging; University of Duisburg/Essen; University Hospital; Essen; Germany
| |
Collapse
|
81
|
Abstract
The primary function of the coagulation cascade is to promote hemostasis and limit blood loss in response to tissue injury. In addition, there is now considerable evidence that coagulation plays pivotal roles in orchestrating inflammatory and tissue repair responses via both the generation of fibrin and activation of the family of proteinase-activated receptors (PARs). Consequently, uncontrolled coagulation and PAR signaling responses have been shown to contribute to excessive inflammatory and fibroproliferative responses in the context of a broad range of conditions, including acute lung injury and fibrotic lung disease. In terms of the cellular origin of excessive coagulation activity in the context of lung injury, coagulation zymogens are principally thought to be derived from the circulation and locally activated via the extrinsic tissue factor-dependent coagulation pathway within the intraalveolar compartment. More recently, we have provided compelling evidence that several key coagulation zymogens are locally synthesized by the hyperplastic alveolar epithelium in pulmonary fibrosis. In terms of signaling receptors activated in response to the coagulation cascade, current evidence suggests a major role for PAR1 in influencing endothelial-epithelial barrier disruption, inflammatory cell recruitment, and collagen deposition in response to lung injury, whereas PAR2 signaling has been implicated mainly in mediating lung inflammatory responses. This article reviews current understanding of coagulation pathways in acute and fibrotic lung injury and expands on the scientific rationale for strategies that specifically target intraalveolar coagulation or PAR signaling responses.
Collapse
|
82
|
Ortiz-Stern A, Deng X, Smoktunowicz N, Mercer PF, Chambers RC. PAR-1-dependent and PAR-independent pro-inflammatory signaling in human lung fibroblasts exposed to thrombin. J Cell Physiol 2012; 227:3575-84. [PMID: 22278285 DOI: 10.1002/jcp.24061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteinase-activated receptors (PARs) are crucial in orchestrating cellular responses to coagulation proteinases, such as thrombin and FXa. Four PARs have been characterized and have been shown to be differentially expressed in mice and humans and between tissues. We have previously shown that in murine lung fibroblasts, PAR-1 is solely responsible for all cellular responses to thrombin and FXa. In contrast, we report here that in primary human lung fibroblasts (pHLFs), known PARs fail to account for all of the cellular responses to thrombin, in particular in the presence of high, but physiologically achievable concentrations of thrombin. We report that pHLFs secrete CCL2 in a PAR-1-dependent manner at low thrombin concentration (∼0.3 nM). At or above 10 nM thrombin, pharmacological antagonism (RWJ-58259) fails to block thrombin-induced CCL2 release; whereas PAR-1 cleavage-blocking monoclonal antibodies (ATAP2 and WEDE15) only partially inhibit thrombin-induced CCL2 secretion. In addition, activation of PAR-3, PAR-4, and transactivation of either PAR-2 or EGFR were ruled out as being responsible for thrombin-mediated CCL2 secretion at high yet standard concentrations of the proteinase. We further provide evidence that PAR-1-dependent and PAR-independent signaling involves the rapid phosphorylation of ERK, which in turn is absolutely required for thrombin-induced CCL2 secretion at both low and standard concentration of the proteinase. Our findings suggest the existence of a PAR-independent signaling mechanism in human lung fibroblasts and have important implications for the design of therapeutic strategies aimed at blocking pro-inflammatory signaling responses associated with excessive thrombin generation.
Collapse
|
83
|
Podder B, Kim YS, Zerin T, Song HY. Antioxidant effect of silymarin on paraquat-induced human lung adenocarcinoma A549 cell line. Food Chem Toxicol 2012; 50:3206-14. [DOI: 10.1016/j.fct.2012.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 12/31/2022]
|
84
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
85
|
Sellamuthu R, Umbright C, Roberts JR, Cumpston A, McKinney W, Chen BT, Frazer D, Li S, Kashon M, Joseph P. Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats. J Appl Toxicol 2012; 33:301-12. [PMID: 22431001 DOI: 10.1002/jat.2733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 01/28/2023]
Abstract
Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m(-3), 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Rajendran Sellamuthu
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Liang J, Jung Y, Tighe RM, Xie T, Liu N, Leonard M, Gunn MD, Jiang D, Noble PW. A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 302:L933-40. [PMID: 22287613 DOI: 10.1152/ajplung.00256.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CC chemokine ligand-2 (CCL2)/monocyte chemoattractant protein (MCP)-1 expression is upregulated during pulmonary inflammation, and the CCL2-CCR2 axis plays a critical role in leukocyte recruitment and promotion of host defense against infection. The role of CCL2 in mediating macrophage subpopulations in the pathobiology of noninfectious lung injury is unknown. The goal of this study was to examine the role of CCL2 in noninfectious acute lung injury. Our results show that lung-specific overexpression of CCL2 protected mice from bleomycin-induced lung injury, characterized by significantly reduced mortality, reduced neutrophil accumulation, and decreased accumulation of the inflammatory mediators IL-6, CXCL2 (macrophage inflammatory protein-2), and CXCL1 (keratinocyte-derived chemokine). There were dramatic increases in the recruitment of myosin heavy chain (MHC) II IA/IE(int)CD11c(int) cells, exudative macrophages, and dendritic cells in Ccl2 transgenic mouse lungs both at baseline and after bleomycin treatment compared with levels in wild-type mice. We further demonstrated that MHCII IA/IE(int)CD11c(int) cells engulfed apoptotic cells during acute lung injury. Our data suggested a previously undiscovered role for MHCII IA/IE(int)CD11c(int) cells in apoptotic cell clearance and inflammation resolution.
Collapse
Affiliation(s)
- Jiurong Liang
- Division of Pulmonary,Department of Medicine, Duke Univ. School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Shimizu S, Gabazza EC, Ogawa T, Tojima I, Hoshi E, Kouzaki H, Shimizu T. Role of thrombin in chronic rhinosinusitis-associated tissue remodeling. Am J Rhinol Allergy 2011; 25:7-11. [PMID: 21711961 DOI: 10.2500/ajra.2011.25.3535] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thrombin, the effector enzyme of the coagulation system, has been reported to promote inflammatory responses in nasal diseases through its protease-activated receptors (PARs). Chronic rhinosinusitis (CRS) is characterized by increased deposition of extracellular matrix proteins, tissue remodeling, and formation of nasal polyps. The role of thrombin in chronic nasal inflammation-associated tissue remodeling still has not been appraised. This study was conducted to elucidate the role of thrombin in the pathogenesis of CRS. METHODS Nasal secretion was collected from patients with CRS with nasal polyp (CRSwNP) with asthma (n = 9), CRSwNP without asthma (n = 10), allergic rhinitis (n = 7), and control patients (n = 3). The concentrations of thrombin, thrombin-antithrombin (TAT) complex, and vascular endothelial growth factor (VEGF) were evaluated by enzyme immunoassays. The concentration of thrombin and TAT complex was measured in nasal secretion from each group of patients, and VEGF was measured in culture medium from airway epithelial cells treated with thrombin or thrombin receptor agonist peptide. RESULTS Thrombin and TAT complex were significantly increased in nasal secretion of patients with CRSwNPs with asthma compared with the control group. Thrombin and PAR-1 agonist peptide significantly stimulated VEGF secretion from cultured human airway epithelial cells. CONCLUSION The results of this study showed that there is increased activation of the coagulation system in the nasal mucosa of CRS patients and that thrombin may play a role in nasal polyp formation by stimulating VEGF production from airway epithelial cells.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | | | | | | | | | | | | |
Collapse
|
88
|
Lo Re S, Lecocq M, Uwambayinema F, Yakoub Y, Delos M, Demoulin JB, Lucas S, Sparwasser T, Renauld JC, Lison D, Huaux F. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med 2011; 184:1270-81. [PMID: 21868503 DOI: 10.1164/rccm.201103-0516oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE There is evidence that CD4(+) effector T lymphocytes (T eff) participate in the development of lung fibrosis, but the role of their CD4(+) regulatory T-cell (T reg) counterparts remains to be determined. OBJECTIVES To elucidate the contribution of T reg cells in a mouse model of lung fibrosis induced by silica (SiO(2)) particles. METHODS Lung T reg and T eff cells purified from SiO(2)-treated Foxp3-GFP transgenic mice were cocultured with naive lung fibroblasts or transferred to the lungs of healthy mice. DEREG mice, which express the diphtheria toxin receptor under the control of the foxp3 gene, were used to deplete T reg cells during fibrogenesis. MEASUREMENTS AND MAIN RESULTS CD4(+) Foxp3(+) T reg cells were persistently recruited in the lungs in response to SiO(2). T reg accumulation paralleled the establishment of pulmonary immunosuppression and fibrosis. T reg cells highly expressed platelet-derived growth factor (PDGF)-B via a TGF-β autocrine signaling pathway, directly stimulated fibroblast proliferation in vitro, and increased lung collagen deposition upon transfer in the lung of naive mice. The direct profibrotic effects of T reg cells were abolished by the inhibitor of the PDGF-B/TGF-β signaling pathway, imatinib mesylate. Neutralization of T reg-immunosuppressive activity resulted in enhanced accumulation of T eff cells and IL-4-driven pulmonary fibrogenesis, further demonstrating that T reg cells control T eff cell functions during inflammatory fibrosis. CONCLUSIONS Our study indicates that T reg cells contribute to lung fibrosis by stimulating fibroblasts through the secretion of PDGF-B in noninflammatory conditions and regulate detrimental T eff cell activities during inflammation-related fibrosis.
Collapse
Affiliation(s)
- Sandra Lo Re
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zhou W, Dowell DR, Geraci MW, Blackwell TS, Collins RD, Polosukhin VV, Lawson WE, Wu P, Sussan T, Biswal S, Goleniewska K, O'Neal J, Newcomb DC, Toki S, Morrow JD, Peebles RS. PGI synthase overexpression protects against bleomycin-induced mortality and is associated with increased Nqo 1 expression. Am J Physiol Lung Cell Mol Physiol 2011; 301:L615-22. [PMID: 21764988 DOI: 10.1152/ajplung.00224.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mortality rate for acute lung injury (ALI) is reported to be between 35-40%, and there are very few treatment strategies that improve the death rate from this condition. Previous studies have suggested that signaling through the prostaglandin (PG) I(2) receptor may protect against bleomycin-induced ALI in mice. We found that mice that overexpress PGI synthase (PGIS) in the airway epithelium were significantly protected against bleomycin-induced mortality and had reduced parenchymal consolidation, apoptosis of lung tissue, and generation of F(2)-isoprostanes compared with littermate wild-type controls. In addition, we show for the first time in both in vivo and in vitro experiments that PGI(2) induced the expression of NADP (H): quinoneoxidoreductase 1 (Nqo 1), an enzyme that prevents the generation of reactive oxygen species. PGI(2) induction of Nqo 1 provides a possible novel mechanism by which this prostanoid protects against bleomycin-induced mortality and identifies a potential therapeutic target for human ALI.
Collapse
Affiliation(s)
- Weisong Zhou
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Striz I, Brabcova E, Kolesar L, Liu XD, Brabcova I, Sekerkova A, Poole JA, Jaresova M, Slavcev A, Rennard SI. Epithelial cells modulate genes associated with NF kappa B activation in co-cultured human macrophages. Immunobiology 2011; 216:1110-6. [PMID: 21601940 DOI: 10.1016/j.imbio.2011.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/05/2011] [Accepted: 04/25/2011] [Indexed: 12/19/2022]
Abstract
Macrophages located in airways and the alveolar space are continually exposed to different signals from the respiratory mucosa. In this respect, epithelial cells represent an important source of cytokines and mediators modulating the state of activation and/or differentiation of mononuclear phagocytes. Many of the proinflammatory genes induced in macrophages during immune and immunopathological reactions are regulated by transcription factor NF kappa B. The aim of our study was to characterize changes in the expression of genes associated with NF kappa B activation and signalling in THP-1 human macrophages co-cultured with A549 respiratory epithelial cells. At least 4-fold upregulation of mRNA level was found in 29 of 84 tested genes including genes for multiple cytokines and chemokines, membrane antigens and receptors, and molecules associated with NF kappa B signalling. The mRNA induction was confirmed at the level of protein expression by evaluating the release of IL-6 and IL-8 and by ICAM-1 expression. Blocking of one NFκB subunit by p65 siRNA inhibited the production of IL-6 in both cell types while IL-8 release from THP-1 cells did not seem to be affected. We conclude from our data that unstimulated respiratory epithelial cells regulate genes associated with NF kappa B dependent immune responses in human macrophages and that these interactions may play a key role in immediate responses in the respiratory mucosa.
Collapse
Affiliation(s)
- I Striz
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Borchers AT, Chang C, Keen CL, Gershwin ME. Idiopathic pulmonary fibrosis-an epidemiological and pathological review. Clin Rev Allergy Immunol 2011; 40:117-34. [PMID: 20838937 DOI: 10.1007/s12016-010-8211-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) affecting the pulmonary interstitium. Other forms of interstitial lung disease exist, and in some cases, an environmental etiology can be delineated. The diagnosis of IPF is typically established by high-resolution CT scan. IPF tends to have a worse prognosis than other forms of ILD. Familial cases of IPF also exist, suggesting a genetic predisposition; telomerase mutations have been observed to occur in familial IPF, which may also explain the increase in IPF with advancing age. Alveolar epithelial cells are believed to be the primary target of environmental agents that have been putatively associated with IPF. These agents may include toxins, viruses, or the autoantibodies found in collagen vascular diseases. The mechanism of disease is still unclear in IPF, but aberrations in fibroblast differentiation, activation, and proliferation may play a role. Epithelial-mesenchymal transition may also be an important factor in the pathogenesis, as it may lead to accumulation of fibroblasts in the lung and a disruption of normal tissue structure. Abnormalities in other components of the immune system, including T cells, B cells, and dendritic cells, as well as the development of ectopic lymphoid tissue, have also been observed to occur in IPF and may play a role in the stimulation of fibrosis that is a hallmark of the disease. It is becoming increasingly clear that the pathogenesis of IPF is indeed a complex and convoluted process that involves numerous cell types and humoral factors.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 95616, USA
| | | | | | | |
Collapse
|
92
|
Coward WR, Saini G, Jenkins G. The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 2010; 4:367-88. [PMID: 20952439 DOI: 10.1177/1753465810379801] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an appalling prognosis. The failure of anti-inflammatory therapies coupled with the observation that deranged epithelium overlies proliferative myofibroblasts to form the fibroblastic focus has lead to the emerging concept that IPF is a disease of deregulated epithelial-mesenchymal crosstalk. IPF is triggered by an as yet unidentified alveolar injury that leads to activation of transforming growth factor-β (TGF-β) and alveolar basement membrane disruption. In the presence of persisting injurious pathways, or disrupted repair pathways, activated TGF-β can lead to enhanced epithelial apoptosis and epithelial-to-mesenchymal transition (EMT) as well as fibroblast, and fibrocyte, transformation into myofibroblasts which are resistant to apoptosis. The resulting deposition of excess disrupted matrix by these myofibroblasts leads to the development of IPF.
Collapse
Affiliation(s)
- William R Coward
- Nottingham Respiratory Biomedical Research Unit, Clinical Sciences Building, Nottingham City Campus, Nottingham, UK
| | | | | |
Collapse
|
93
|
Eickelberg O, Selman M. Update in Diffuse Parenchymal Lung Disease 2009. Am J Respir Crit Care Med 2010; 181:883-8. [DOI: 10.1164/rccm.201001-0124up] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
94
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and most lethal diffuse fibrosing lung disease, with a mortality rate that exceeds that of many cancers. Recently, there have been many clinical trials of novel therapies for IPF. The results have mostly been disappointing, although two treatment approaches have shown some efficacy. This Review describes the difficulties of treating IPF and the approaches that have been tried or are in development, and concludes with suggestions of future therapeutic targets and strategies.
Collapse
Affiliation(s)
- R M du Bois
- National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206, USA.
| |
Collapse
|
95
|
Vannella KM, Luckhardt TR, Wilke CA, van Dyk LF, Toews GB, Moore BB. Latent herpesvirus infection augments experimental pulmonary fibrosis. Am J Respir Crit Care Med 2009; 181:465-77. [PMID: 20185751 DOI: 10.1164/rccm.200905-0798oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE No effective treatment exists for idiopathic pulmonary fibrosis, and its pathogenesis remains unclear. Accumulating evidence implicates herpesviruses as cofactors (either initiating or exacerbating agents) of fibrotic lung disease, but a role for latent herpesvirus infection has not been studied. OBJECTIVES To develop a murine model to determine whether latent herpesvirus infection can augment fibrotic responses and to gain insight into potential mechanisms of enhanced fibrogenesis. METHODS Mice were infected with murine gammaherpesvirus 14 to 70 days before a fibrotic challenge with fluorescein isothiocyanate or bleomycin so that the virus was latent at the time of fibrotic challenge. Measurements were made after viral infection alone or after the establishment of fibrosis. MEASUREMENTS AND MAIN RESULTS gammaHerpesvirus is latent by 14 days post infection, and infection 14 to 70 days before fibrotic challenge augmented fibrosis. Fibrotic augmentation was not dependent on reactivation of the latent virus to a lytic state. Total cell numbers and fibrocyte numbers were increased in the lungs of latently infected mice administered fibrotic challenge compared with mock-infected mice that received fibrotic challenge. Latent infection up-regulates expression of proinflammatory chemokines, transforming growth factor-beta1, and cysteinyl leukotrienes in alveolar epithelial cells. CONCLUSIONS Latent gammaherpesvirus infection augments subsequent fibrotic responses in mice. Enhanced fibrosis is associated with the induction of profibrotic factors and the recruitment of fibrocytes. Our data complement existing human and animal data supporting the hypothesis that gammaherpesviruses can serve as initiating cofactors in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Kevin M Vannella
- Graduate Program in Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|