51
|
Leach SM, Gibbings SL, Tewari AD, Atif SM, Vestal B, Danhorn T, Janssen WJ, Wager TD, Jakubzick CV. Human and Mouse Transcriptome Profiling Identifies Cross-Species Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. Cell Rep 2020; 33:108337. [PMID: 33147458 PMCID: PMC7673261 DOI: 10.1016/j.celrep.2020.108337] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocyte (MP) system consists of macrophages, monocytes, and dendritic cells (DCs). MP subtypes play distinct functional roles in steady-state and inflammatory conditions. Although murine MPs are well characterized, their pulmonary and lymph node (LN) human homologs remain poorly understood. To address this gap, we have created a gene expression compendium across 24 distinct human and murine lung and LN MPs, along with human blood and murine spleen MPs, to serve as validation datasets. In-depth RNA sequencing identifies corresponding human-mouse MP subtypes and determines marker genes shared and divergent across species. Unexpectedly, only 13%-23% of the top 1,000 marker genes (i.e., genes not shared across species-specific MP subtypes) overlap in corresponding human-mouse MP counterparts. Lastly, CD88 in both species helps distinguish monocytes/macrophages from DCs. Our cross-species expression compendium serves as a resource for future translational studies to investigate beforehand whether pursuing specific MP subtypes or genes will prove fruitful.
Collapse
Affiliation(s)
- Sonia M Leach
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Sophie L Gibbings
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Anita D Tewari
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03756, USA
| | - Shaikh M Atif
- Department of Medicine, Division of Asthma, Allergy, and Clinical Immunology, University of Colorado, Denver, CO 80045, USA
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Thomas Danhorn
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Division of Pulmonary Sciences and Critical Care, University of Colorado, Denver, CO 80045, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Claudia V Jakubzick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03756, USA; Department of Immunology, University of Colorado, Denver Anschutz Campus, Denver, CO 80045, USA.
| |
Collapse
|
52
|
Neff CP, Atif SM, Logue EC, Siebert J, Görg C, Lavelle J, Fiorillo S, Twigg H, Campbell TB, Fontenot AP, Palmer BE. HIV Infection Is Associated with Loss of Anti-Inflammatory Alveolar Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2447-2455. [PMID: 32929038 PMCID: PMC7577929 DOI: 10.4049/jimmunol.2000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
HIV type 1 is associated with pulmonary dysfunction that is exacerbated by cigarette smoke. Alveolar macrophages (AM) are the most prominent immune cell in the alveolar space. These cells play an important role in clearing inhaled pathogens and regulating the inflammatory environment; however, how HIV infection impacts AM phenotype and function is not well understood, in part because of their autofluorescence and the absence of well-defined surface markers. The main aim of this study was to evaluate the impact of HIV infection on human AM and to compare the effect of smoking on their phenotype and function. Time-of-flight mass cytometry and RNA sequencing were used to characterize macrophages from human bronchoalveolar lavage of HIV-infected and -uninfected smokers and nonsmokers. We found that the frequency of CD163+ anti-inflammatory AM was decreased, whereas CD163-CCR7+ proinflammatory AM were increased in HIV infection. HIV-mediated proinflammatory polarization was associated with increased levels of inflammatory cytokines and macrophage activation. Conversely, smoking heightened the inflammatory response evident by change in the expression of CXCR4 and TLR4. Altogether, these findings suggest that HIV infection, along with cigarette smoke, favors a proinflammatory macrophage phenotype associated with enhanced expression of inflammatory molecules. Further, this study highlights time-of-flight mass cytometry as a reliable method for immunophenotyping the highly autofluorescent cells present in the bronchoalveolar lavage of cigarette smokers.
Collapse
Affiliation(s)
- Charles Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric C Logue
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Janet Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- CytoAnalytics, Denver, CO 80113
| | - Carsten Görg
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James Lavelle
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Homer Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
53
|
Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer 2020; 8:e001204. [PMID: 33020244 PMCID: PMC7537336 DOI: 10.1136/jitc-2020-001204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ellen Duong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
54
|
Rayees S, Rochford I, Joshi JC, Joshi B, Banerjee S, Mehta D. Macrophage TLR4 and PAR2 Signaling: Role in Regulating Vascular Inflammatory Injury and Repair. Front Immunol 2020; 11:2091. [PMID: 33072072 PMCID: PMC7530636 DOI: 10.3389/fimmu.2020.02091] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a central role in dictating the tissue response to infection and orchestrating subsequent repair of the damage. In this context, macrophages residing in the lungs continuously sense and discriminate among a wide range of insults to initiate the immune responses important to host-defense. Inflammatory tissue injury also leads to activation of proteases, and thereby the coagulation pathway, to optimize injury and repair post-infection. However, long-lasting inflammatory triggers from macrophages can impair the lung's ability to recover from severe injury, leading to increased lung vascular permeability and neutrophilic injury, hallmarks of Acute Lung Injury (ALI). In this review, we discuss the roles of toll-like receptor 4 (TLR4) and protease activating receptor 2 (PAR2) expressed on the macrophage cell-surface in regulating lung vascular inflammatory signaling.
Collapse
Affiliation(s)
- Sheikh Rayees
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Ian Rochford
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Bhagwati Joshi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Somenath Banerjee
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, United States
| |
Collapse
|
55
|
Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol 2020; 11:1698. [PMID: 32849595 PMCID: PMC7426504 DOI: 10.3389/fimmu.2020.01698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Androgens, the predominant male sex hormones, drive the development and maintenance of male characteristics by binding to androgen receptor (AR). As androgens are systemically distributed throughout the whole organism, they affect many tissues and cell types in addition to those in male sexual organs. It is now clear that the immune system is a target of androgen action. In the lungs, many immune cells express ARs and are responsive to androgens. In this review, we describe the effects of androgens and ARs on lung myeloid immune cells-monocytes and macrophages-as they relate to health and disease. In particular, we highlight the effect of androgens on lung diseases, such as asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the therapeutic use of androgens and how circulating androgens correlate with lung disease. In addition to human studies, we also discuss how mouse models have helped to uncover the effect of androgens on monocytes and macrophages in lung disease. Although the role of estrogen and other female hormones has been broadly analyzed in the literature, we focus on the new perspectives of androgens as modulators of the immune system that target myeloid cells during lung inflammation.
Collapse
Affiliation(s)
| | | | - Nicola Heller
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
56
|
Patel VI, Booth JL, Dozmorov M, Brown BR, Metcalf JP. Anthrax Edema and Lethal Toxins Differentially Target Human Lung and Blood Phagocytes. Toxins (Basel) 2020; 12:toxins12070464. [PMID: 32698436 PMCID: PMC7405021 DOI: 10.3390/toxins12070464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of inhalation anthrax, is a serious concern as a bioterrorism weapon. The vegetative form produces two exotoxins: Lethal toxin (LT) and edema toxin (ET). We recently characterized and compared six human airway and alveolar-resident phagocyte (AARP) subsets at the transcriptional and functional levels. In this study, we examined the effects of LT and ET on these subsets and human leukocytes. AARPs and leukocytes do not express high levels of the toxin receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). Less than 20% expressed surface TEM8, while less than 15% expressed CMG2. All cell types bound or internalized protective antigen, the common component of the two toxins, in a dose-dependent manner. Most protective antigen was likely internalized via macropinocytosis. Cells were not sensitive to LT-induced apoptosis or necrosis at concentrations up to 1000 ng/mL. However, toxin exposure inhibited B. anthracis spore internalization. This inhibition was driven primarily by ET in AARPs and LT in leukocytes. These results support a model of inhalation anthrax in which spores germinate and produce toxins. ET inhibits pathogen phagocytosis by AARPs, allowing alveolar escape. In late-stage disease, LT inhibits phagocytosis by leukocytes, allowing bacterial replication in the bloodstream.
Collapse
Affiliation(s)
- Vineet I. Patel
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - J. Leland Booth
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Brent R. Brown
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Jordan P. Metcalf
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
57
|
Zou R, Gui X, Zhang J, Tian Y, Liu X, Tian M, Chen T, Wu H, Chen J, Dai J, Cai H. Association of serum macrophage-mannose receptor CD206 with mortality in idiopathic pulmonary fibrosis. Int Immunopharmacol 2020; 86:106732. [PMID: 32622200 DOI: 10.1016/j.intimp.2020.106732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is attracting considerable attention due to disease acceleration and substantial mortality. Macrophages are known to regulate the fibrotic process in idiopathic pulmonary fibrosis. OBJECTIVE We investigated if two new macrophage-specific serum biomarkers, soluble mannose receptor (MR, sCD206) and soluble CD163 (sCD163), increased in serum obtained from patients with AE-IPF compared to stable IPF (S-IPF). METHODS A total of 36 IPF patients with AE status, 54 IPF patients with stable status, and 27 normal controls were enrolled in this study. The levels of serum sCD206 and sCD163 were compared among the three groups and analysed with the clinical features and mortality of IPF. RESULTS The serum concentrations of both markers were higher in patients with AE-IPF than in those with S-IPF (580.0 ng/ml vs 335 ng/ml for sCD206 and 69.2 ng/ml vs 37.9 ng/ml for sCD163). The level of sCD206 was related to an increased risk of mortality (HR = 1.002, p < 0.001). The best separation between decedents and survivors was obtained by sCD206 (area under the receiver operating characteristic curve [AUC] 0.712 and 95% confidence interval 0.595-0.830). CONCLUSION Our data demonstrated that the macrophage-related markers sCD206 and sCD163 were significantly higher in patients with IPF, especially sCD206 in AE-IPF patients. The high level of serum sCD206 was associated with mortality in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruyi Zou
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Xianhua Gui
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Ji Zhang
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, Jiangsu, People's Republic of China
| | - Yaqiong Tian
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Xiaoqin Liu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Mi Tian
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Tingting Chen
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Hongyan Wu
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital, Nanjing Medical University, No. 299 Qingyang Road, Wuxi 214023, Jiangsu, People's Republic of China.
| | - Jinghong Dai
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China.
| | - Hourong Cai
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China; Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
58
|
Hume PS, Gibbings SL, Jakubzick CV, Tuder RM, Curran-Everett D, Henson PM, Smith BJ, Janssen WJ. Localization of Macrophages in the Human Lung via Design-based Stereology. Am J Respir Crit Care Med 2020; 201:1209-1217. [PMID: 32197050 PMCID: PMC7233346 DOI: 10.1164/rccm.201911-2105oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rationale: Interstitial macrophages (IMs) and airspace macrophages (AMs) play critical roles in lung homeostasis and host defense, and are central to the pathogenesis of a number of lung diseases. However, the absolute numbers of macrophages and the precise anatomic locations they occupy in the healthy human lung have not been quantified.Objectives: To determine the precise number and anatomic location of human pulmonary macrophages in nondiseased lungs and to quantify how this is altered in chronic cigarette smokers.Methods: Whole right upper lobes from 12 human donors without pulmonary disease (6 smokers and 6 nonsmokers) were evaluated using design-based stereology. CD206 (cluster of differentiation 206)-positive/CD43+ AMs and CD206+/CD43- IMs were counted in five distinct anatomical locations using the optical disector probe.Measurements and Main Results: An average of 2.1 × 109 IMs and 1.4 × 109 AMs were estimated per right upper lobe. Of the AMs, 95% were contained in diffusing airspaces and 5% in airways. Of the IMs, 78% were located within the alveolar septa, 14% around small vessels, and 7% around the airways. The local density of IMs was greater in the alveolar septa than in the connective tissue surrounding the airways or vessels. The total number and density of IMs was 36% to 56% greater in the lungs of cigarette smokers versus nonsmokers.Conclusions: The precise locations occupied by pulmonary macrophages were defined in nondiseased human lungs from smokers and nonsmokers. IM density was greatest in the alveolar septa. Lungs from chronic smokers had increased IM numbers and overall density, supporting a role for IMs in smoking-related disease.
Collapse
Affiliation(s)
- Patrick S. Hume
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and,Division of Pulmonary Sciences and Critical Care Medicine
| | - Sophie L. Gibbings
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Claudia V. Jakubzick
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care Medicine
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado,Department of Biostatistics and Informatics, Colorado School of Public Health, and
| | - Peter M. Henson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and,Division of Pulmonary Sciences and Critical Care Medicine
| | - Bradford J. Smith
- Department of Biomedical Engineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - William J. Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and,Division of Pulmonary Sciences and Critical Care Medicine
| |
Collapse
|
59
|
Tighe RM, Yu YR. Know Where You Are: Pulmonary Macrophage Locations in the Human Lung. Am J Respir Crit Care Med 2020; 201:1169-1170. [PMID: 32228390 PMCID: PMC7233343 DOI: 10.1164/rccm.202002-0235ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Robert M Tighe
- Department of MedicineDuke UniversityDurham, North Carolina
| | - Yen Rei Yu
- Department of MedicineDuke UniversityDurham, North Carolina
| |
Collapse
|
60
|
Frafjord A, Skarshaug R, Hammarström C, Stankovic B, Dorg LT, Aamodt H, Woldbaek PR, Helland Å, Brustugun OT, Øynebråten I, Corthay A. Antibody combinations for optimized staining of macrophages in human lung tumours. Scand J Immunol 2020; 92:e12889. [PMID: 32299134 DOI: 10.1111/sji.12889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
The analysis of tumour-associated macrophages (TAMs) has a high potential to predict cancer recurrence and response to immunotherapy. However, the heterogeneity of TAMs poses a challenge for quantitative and qualitative measurements. Here, we critically evaluated by immunohistochemistry and flow cytometry two commonly used pan-macrophage markers (CD14 and CD68) as well as some suggested markers for tumour-promoting M2 macrophages (CD163, CD204, CD206 and CD209) in human non-small cell lung cancer (NSCLC). Tumour, non-cancerous lung tissue and blood were investigated. For immunohistochemistry, CD68 was confirmed to be a useful pan-macrophage marker although careful selection of antibody was found to be critical. The widely used anti-CD68 antibody clone KP-1 stains both macrophages and neutrophils, which is problematic for TAM quantification because lung tumours contain many neutrophils. For TAM counting in tumour sections, we recommend combined labelling of CD68 with a cell membrane marker such as CD14, CD163 or CD206. In flow cytometry, the commonly used combination of CD14 and HLA-DR was found to not be optimal because some TAMs do not express CD14. Instead, combined staining of CD68 and HLA-DR is preferable to gate all TAMs. Concerning macrophage phenotypic markers, the scavenger receptor CD163 was found to be expressed by a substantial fraction (50%-86%) of TAMs with a large patient-to-patient variation. Approximately 50% of TAMs were positive for CD206. Surprisingly, there was no clear overlap between CD163 and CD206 positivity, and three distinct TAM sub-populations were identified in NSCLC tumours: CD163+ CD206+ , CD163+ CD206- and CD163- CD206- . This work should help develop macrophage-based prognostic tools for cancer.
Collapse
Affiliation(s)
- Astri Frafjord
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Renate Skarshaug
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Clara Hammarström
- Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Branislava Stankovic
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Linda T Dorg
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henrik Aamodt
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Cardiothoracic Surgery, Ullevål Hospital, Oslo University Hospital, Oslo, Norway
| | - Per Reidar Woldbaek
- Department of Cardiothoracic Surgery, Ullevål Hospital, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Odd Terje Brustugun
- Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Section of Oncology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
61
|
Chapuy L, Bsat M, Rubio M, Harvey F, Motta V, Schwenter F, Wassef R, Richard C, Deslandres C, Nguyen BN, Soucy G, Hacohen N, Fritz J, Villani AC, Mehta H, Sarfati M. Transcriptomic Analysis and High-dimensional Phenotypic Mapping of Mononuclear Phagocytes in Mesenteric Lymph Nodes Reveal Differences Between Ulcerative Colitis and Crohn's Disease. J Crohns Colitis 2020; 14:393-405. [PMID: 31541232 PMCID: PMC7068244 DOI: 10.1093/ecco-jcc/jjz156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] and ulcerative colitis [UC] are distinct forms of inflammatory bowel disease. Heterogeneity of HLA-DR+SIRPα + mononuclear phagocytes [MNPs], including macrophages [MΦ], monocyte-derived [Mono] cells, and dendritic cells [DCs], was reported in gut tissue but not yet investigated in mesenteric lymph nodes [MLNs] of IBD patients. We here compared the phenotype, function, and molecular profile of HLA-DR+SIRPα + MNPs in CD and UC MLNs. METHODS Cell distribution, morphology, immune function, and transcriptomic [bulk RNAseq] and high-dimensional protein expression profiles [CyTOF] of HLA-DR+SIRPα + MNPs were examined in MLNs of UC [n = 14], CD [n = 35], and non-IBD [n = 12] patients. RESULTS Elevated frequencies of CD14+CD64+CD163+ [Mono/MΦ-like] MNPs displaying monocyte/MΦ morphology and phagocytic function were a distinct feature of UC MLNs. In CD, the proportion of CD14-CD64-CD163- [DC-like] cells was augmented relative to Mono/MΦ-like cells; DC-like cells drove naïve T cell proliferation, Th1 polarisation, and Th17 TCM plasticity. Gene expression profile corroborated the nature of DC-like cells, best represented by BTLA, SERPINF, IGJ and, of Mono/MΦ-like cells, defined by CD163, MARCO, MAFB, CD300E, S100A9 expression. CyTOF analysis showed that CD123+ plasmacytoid cells predominated over conventional DCs in DC-like cells. Four CD163+ clusters were revealed in Mono/MΦ-like cells, two of which were enriched in MARCO-CD68dimHLA-DRdim monocyte-like cells and MARCOhiCD68hiHLA-DRhi Mɸ, whose proportion increased in UC relative to CD. CONCLUSIONS Defining the landscape of MNPs in MLNs provided evidence for expansion of CD163+ Mono/MΦ-like cells in UC only, highlighting a distinction between UC and CD, and thus the potential contribution of monocyte-like cells in driving colitis.
Collapse
Affiliation(s)
- Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - François Harvey
- Department of Biomedical Informatics, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Vinicius Motta
- McGill Goodman Research Center, McGill University, Montréal, QC, Canada
| | - Frank Schwenter
- Digestive Surgery Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Ramses Wassef
- Digestive Surgery Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Carole Richard
- Digestive Surgery Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Colette Deslandres
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHU Sainte-Justine, Université de Montreal, QC, Canada
| | - Bich N Nguyen
- Pathology Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Geneviève Soucy
- Pathology Department, Centre Hospitalier de l’Université de Montréal [CHUM], Montréal, QC, Canada
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Jorge Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, Qc, Canada
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Heena Mehta
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal [CRCHUM], Montréal, QC, Canada
| |
Collapse
|
62
|
Nelson BN, Hawkins AN, Wozniak KL. Pulmonary Macrophage and Dendritic Cell Responses to Cryptococcus neoformans. Front Cell Infect Microbiol 2020; 10:37. [PMID: 32117810 PMCID: PMC7026008 DOI: 10.3389/fcimb.2020.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen Cryptococcus neoformans can cause life-threatening infections in immune compromised individuals. This pathogen is typically acquired via inhalation, and enters the respiratory tract. Innate immune cells such as macrophages and dendritic cells (DCs) are the first host cells that encounter C. neoformans, and the interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease. Cryptococcus possesses several virulence factors and evasion strategies to prevent its killing and destruction by pulmonary phagocytes, but these phagocytic cells can also contribute to anti-cryptococcal responses. This review will focus on the interactions between Cryptococcus and primary macrophages and dendritic cells (DCs), dealing specifically with the cryptococcal/pulmonary cell interface.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Ashlee N Hawkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
63
|
Gamage AM, Zhu F, Ahn M, Foo RJH, Hey YY, Low DHW, Mendenhall IH, Dutertre CA, Wang LF. Immunophenotyping monocytes, macrophages and granulocytes in the Pteropodid bat Eonycteris spelaea. Sci Rep 2020; 10:309. [PMID: 31941952 PMCID: PMC6962400 DOI: 10.1038/s41598-019-57212-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Bats are asymptomatic reservoir hosts for several highly pathogenic viruses. Understanding this enigmatic relationship between bats and emerging zoonotic viruses requires tools and approaches which enable the comparative study of bat immune cell populations and their functions. We show that bat genomes have a conservation of immune marker genes which delineate phagocyte populations in humans, while lacking key mouse surface markers such as Ly6C and Ly6G. Cross-reactive antibodies against CD44, CD11b, CD14, MHC II, and CD206 were multiplexed to characterize circulating monocytes, granulocytes, bone-marrow derived macrophages (BMDMs) and lung alveolar macrophages (AMs) in the cave nectar bat Eonycteris spelaea. Transcriptional profiling of bat monocytes and BMDMs identified additional markers – including MARCO, CD68, CD163, CD172α, and CD88 – which can be used to further characterize bat myeloid populations. Bat cells often resembled their human counterparts when comparing immune parameters that are divergent between humans and mice, such as the expression patterns of certain immune cell markers. A genome-wide comparison of immune-related genes also revealed a much closer phylogenetic relationship between bats and humans compared to rodents. Taken together, this study provides a set of tools and a comparative framework which will be important for unravelling viral disease tolerance mechanisms in bats.
Collapse
Affiliation(s)
- Akshamal M Gamage
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Randy Jee Hiang Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ying Ying Hey
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dolyce H W Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Charles-Antoine Dutertre
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
64
|
Peng QL, Zhang YM, Liang L, Liu X, Ye LF, Yang HB, Zhang L, Shu XM, Lu X, Wang GC. A high level of serum neopterin is associated with rapidly progressive interstitial lung disease and reduced survival in dermatomyositis. Clin Exp Immunol 2019; 199:314-325. [PMID: 31797350 DOI: 10.1111/cei.13404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 01/24/2023] Open
Abstract
Neopterin is primarily synthesized and released by activated macrophages/monocytes upon stimulation with interferon-γ and is considered as a marker for macrophage activation. This study aimed to analyze the serum levels of neopterin in patients with dermatomyositis (DM) in association with clinical manifestations, laboratory data and patient prognosis. One hundred and eighty-two consecutive DM patients and 30 healthy controls were retrospectively enrolled into the study. Serum levels of neopterin were significantly increased in DM patients compared to healthy controls (P < 0·001). High serum neopterin levels were associated with anti-melanoma differentiation-associated gene (MDA5) antibody, rapidly progressive interstitial lung disease (RP-ILD) and characteristic DM cutaneous involvement. Longitudinal assessment of serum samples revealed that the serum neopterin levels were closely correlated with disease severity (β = 30·24, P < 0·001). In addition, a significant increase in serum neopterin concentration of non-survivors was observed when compared to that of survivors (P < 0·001). Receiver operator characteristic curves showed that serum neopterin could distinguish non-survivors and survivors at an optimal cut-off level of 22·1 nmol/l with a sensitivity and specificity of 0·804 and 0·625, respectively (P < 0·001). Kaplan-Meier survival curves revealed that DM patients with serum neopterin > 22·1 nmol/l had a significantly higher mortality compared to the patient group with serum neopterin < 22·1 nmol/l (log-rank P < 0·001). Multivariate regression analysis identified high serum neopterin concentration to be an independent risk factor for poor prognosis in DM (adjusted hazard ratio = 4·619, 95% confidence interval = 2·092-10·195, P < 0·001). In conclusion, increased serum levels of neopterin were significantly associated with RP-ILD and reduced survival in DM patients, suggesting it as a promising biomarker in disease evaluation of DM.
Collapse
Affiliation(s)
- Q-L Peng
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Y-M Zhang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - L Liang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - X Liu
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - L-F Ye
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - H-B Yang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - L Zhang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - X-M Shu
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - X Lu
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - G-C Wang
- Department of Rheumatology, Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
65
|
Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology 2019; 160:126-138. [PMID: 31715003 DOI: 10.1111/imm.13154] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Macrophages are tissue-resident myeloid cells with essential roles in host defense, tissue repair, and organ homeostasis. The lung harbors a large number of macrophages that reside in alveoli. As a result of their strategic location, alveolar macrophages are critical sentinels of healthy lung function and barrier immunity. They phagocytose inhaled material and initiate protective immune responses to pathogens, while preventing excessive inflammatory responses and tissue damage. Apart from alveolar macrophages, other macrophage populations are found in the lung and recent single-cell RNA-sequencing studies indicate that lung macrophage heterogeneity is greater than previously appreciated. The cellular origin and development of mouse lung macrophages has been extensively studied, but little is known about the ontogeny of their human counterparts, despite the importance of macrophages for lung health. In this context, humanized mice (mice with a human immune system) can give new insights into the biology of human lung macrophages by allowing in vivo studies that are not possible in humans. In particular, we have created humanized mouse models that support the development of human lung macrophages in vivo. In this review, we will discuss the heterogeneity, development, and homeostasis of lung macrophages. Moreover, we will highlight the impact of age, the microbiota, and pathogen exposure on lung macrophage function. Altered macrophage function has been implicated in respiratory infections as well as in common allergic and inflammatory lung diseases. Therefore, understanding the functional heterogeneity and ontogeny of lung macrophages should help to develop future macrophage-based therapies for important lung diseases in humans.
Collapse
Affiliation(s)
- Elza Evren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Ringqvist
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tim Willinger
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
66
|
Guo T, Guo W, Song M, Ni S, Luo M, Chen P, Peng H. Paradoxical Reaction In The Form Of New Pulmonary Mass During Anti-Tuberculosis Treatment: A Case Series And Literature Review. Infect Drug Resist 2019; 12:3677-3685. [PMID: 32063717 PMCID: PMC6884965 DOI: 10.2147/idr.s211556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction Paradoxical reaction refers to deterioration of the original tuberculosis lesions or emergence of new infiltrative lesions during anti-tuberculosis treatment. The common manifestations of paradoxical reaction include new pleural effusion, cerebral tuberculosis and lymphadenitis. Paradoxical reaction manifested by new pulmonary mass is rare. Patients and methods This article summarizes and analyzes the clinical manifestations, chest CT, laboratory findings, treatments, pathological biopsy results of five patients diagnosed as paradoxical reaction in the form of new pulmonary mass. A literature review related to paradoxical reaction was conducted. Results Five patients diagnosed as pulmonary tuberculosis or tuberculous pleuritis received systematic anti-tuberculosis treatmensssts. New pulmonary masses were found by CT scans during the follow-ups. The patients were negative for tumor markers, examination of rheumatoid connective tissue disease and G/GM test. The original anti-tuberculosis treatments were continued. All of the masses were diminished gradually. Conclusion Paradoxical reaction needs to be taken into consideration when a new pulmonary mass occurs during anti-tuberculosis treatments. The diagnosis should be based on the patients’ clinical manifestations, laboratory results, imaging examinsssations and lung biopsy examinations. The original anti-tuberculosis therapy can be continued in patients without severe clinical symptoms. A close follow-up is needed.
Collapse
Affiliation(s)
- Ting Guo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central-South University, Changsha, Hunan 410011, People's Republic of China.,The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan 410011, People's Republic of China
| | - Wei Guo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central-South University, Changsha, Hunan 410011, People's Republic of China.,The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan 410011, People's Republic of China
| | - Min Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central-South University, Changsha, Hunan 410011, People's Republic of China.,The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan 410011, People's Republic of China
| | - Shanshan Ni
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central-South University, Changsha, Hunan 410011, People's Republic of China.,The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan 410011, People's Republic of China
| | - Man Luo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central-South University, Changsha, Hunan 410011, People's Republic of China.,The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan 410011, People's Republic of China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central-South University, Changsha, Hunan 410011, People's Republic of China.,The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan 410011, People's Republic of China
| | - Hong Peng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central-South University, Changsha, Hunan 410011, People's Republic of China.,The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
67
|
Ardain A, Marakalala MJ, Leslie A. Tissue-resident innate immunity in the lung. Immunology 2019; 159:245-256. [PMID: 31670391 DOI: 10.1111/imm.13143] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The lung is a unique organ that must protect against inhaled pathogens and toxins, without mounting a disproportionate response against harmless particulate matter and without compromising its vital function. Tissue-resident immune cells within the lung provide local immunity and protection from infection but are also responsible for causing disease when dysregulated. There is a growing appreciation of the importance of tissue-resident memory T cells to lung immunity, but non-recirculating, tissue-resident, innate immune cells also exist. These cells provide the first line of defence against pulmonary infection and are essential for co-ordinating the subsequent adaptive response. In this review, we discuss the main lung-resident innate immune subsets and their functions in common pulmonary diseases, such as influenza, bacterial pneumonia, asthma and inflammatory disorders.
Collapse
Affiliation(s)
- Amanda Ardain
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohlopheni J Marakalala
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Department of Infection and Immunity, University College London, London, UK
| | - Alasdair Leslie
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Department of Infection and Immunity, University College London, London, UK
| |
Collapse
|
68
|
Chu Q, Zhang Y, Chen W, Jia R, Yu X, Wang Y, Li Y, Liu Y, Ye X, Yu L, Zheng X. Apios americana Medik flowers polysaccharide (AFP) alleviate Cyclophosphamide-induced immunosuppression in ICR mice. Int J Biol Macromol 2019; 144:829-836. [PMID: 31734373 DOI: 10.1016/j.ijbiomac.2019.10.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Immunosuppression refers to the suppression of the immune response. The immune function of immunocompromised people is not enough to resist bacterial, viral, fungal and other infections, leading to a series of diseases. A large number of experimental data show that polysaccharide compounds are immune modulators, which can enhance the body immunity with little toxic. Meanwhile, it can reduce the side effects of commonly used immunosuppressants, such as cytotoxicity, decreased ability of the body to fight infection, and inhibition of the reproduction of bone marrow hematopoietic cells. It can be used as oral or injectable drugs. In this study, a purified polysaccharide was primarily extracted from the flowers of Apios americana Medik (AAM), which can improve the immunosuppression induced by cyclophosphamide (CTX). The immunoenhancement effect of AFP was evaluated by measuring the body weight, immune organ index, cytokine secretion and antibody generated levels of CTX-induced mice. Our results showed that AFP could significantly improve the above immune indexes, which indicated AFP could alleviate immunosuppression induced by CTX. The study provided a theoretical basis for the promotion, development and application of AAM as a newly introduced food material.
Collapse
Affiliation(s)
- Qiang Chu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yiru Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin Yu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaxuan Wang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yonglu Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lushuang Yu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
69
|
Cross-presentation of Exogenous Antigens. Transfus Clin Biol 2019; 26:346-351. [DOI: 10.1016/j.tracli.2019.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
|
70
|
Belchamber KBR, Singh R, Batista CM, Whyte MK, Dockrell DH, Kilty I, Robinson MJ, Wedzicha JA, Barnes PJ, Donnelly LE. Defective bacterial phagocytosis is associated with dysfunctional mitochondria in COPD macrophages. Eur Respir J 2019; 54:13993003.02244-2018. [PMID: 31320451 DOI: 10.1183/13993003.02244-2018] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2019] [Indexed: 02/02/2023]
Abstract
Increased reactive oxygen species (ROS) have been implicated in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study examined the effect of exogenous and endogenous oxidative stress on macrophage phagocytosis in patients with COPD.Monocyte-derived macrophages (MDMs) were generated from non-smoker, smoker and COPD subjects, differentiated in either granulocyte macrophage-colony stimulating factor (G-Mφ) or macrophage-colony stimulating factor (M-Mφ). Alveolar macrophages were isolated from lung tissue or bronchoalveolar lavage fluid. Macrophages were incubated in ±200 µM H2O2 for 24 h, then exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, after which phagocytosis, mitochondrial ROS (mROS) and mitochondrial membrane potential (ΔΨm) were measured.Phagocytosis of bacteria was significantly decreased in both G-Mφ and M-Mφ from COPD patients compared with from non-smoker controls. In non-smokers and smokers, bacterial phagocytosis did not alter mROS or ΔΨm; however, in COPD, phagocytosis increased early mROS and decreased ΔΨm in both G-Mφ and M-Mφ. Exogenous oxidative stress reduced phagocytosis in non-smoker and COPD alveolar macrophages and non-smoker MDMs, associated with reduced mROS production.COPD macrophages show defective phagocytosis, which is associated with altered mitochondrial function and an inability to regulate mROS production. Targeting mitochondrial dysfunction may restore the phagocytic defect in COPD.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Richa Singh
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Craig M Batista
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Moira K Whyte
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - David H Dockrell
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Iain Kilty
- Inflammation and Immunology Research Unit, Pfizer Inc, Cambridge, MA, USA
| | | | - Jadwiga A Wedzicha
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
71
|
Patel VI, Metcalf JP. Airway Macrophage and Dendritic Cell Subsets in the Resting Human Lung. Crit Rev Immunol 2019; 38:303-331. [PMID: 30806245 DOI: 10.1615/critrevimmunol.2018026459] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cells (DCs) and macrophages (MΦs) are antigen-presenting phagocytic cells found in many peripheral tissues of the human body, including the blood, lymph nodes, skin, and lung. They are vital to maintaining steady-state respiration in the human lung based on their ability to clear airways while also directing tolerogenic or inflammatory responses based on specific stimuli. Over the past three decades, studies have determined that there are multiple subsets of these two general cell types that exist in the airways and interstitium. Identifying these numerous subsets has proven challenging, especially with the unique microenvironments present in the lung. Cells found in the vasculature are not the same subsets found in the skin or the lung, as demonstrated by surface marker expression. By transcriptional profiling, these subsets show similarities but also major differences. Primary human lung cells and/ or tissues are difficult to acquire, particularly in a healthy condition. Additionally, surface marker screening and transcriptional profiling are continually identifying new DC and MΦ subsets. While the overall field is moving forward, we emphasize that more attention needs to focus on replicating the steady-state microenvironment of the lung to reveal the physiological functions of these subsets.
Collapse
Affiliation(s)
- Vineet Indrajit Patel
- Pulmonary and Critical Care Division of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan Patrick Metcalf
- Pulmonary and Critical Care Division of the Department of Medicine and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
72
|
Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol 2019; 10:2035. [PMID: 31543877 PMCID: PMC6728754 DOI: 10.3389/fimmu.2019.02035] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Human monocytes are divided in three major populations; classical (CD14+CD16−), non-classical (CD14dimCD16+), and intermediate (CD14+CD16+). Each of these subsets is distinguished from each other by the expression of distinct surface markers and by their functions in homeostasis and disease. In this review, we discuss the most up-to-date phenotypic classification of human monocytes that has been greatly aided by the application of novel single-cell transcriptomic and mass cytometry technologies. Furthermore, we shed light on the role of these plastic immune cells in already recognized and emerging human chronic diseases, such as obesity, atherosclerosis, chronic obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer's disease. Our aim is to provide an insight into the contribution of human monocytes to the progression of these diseases and highlight their candidacy as potential therapeutic cell targets.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Nico Reusch
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Emily R Hinkley
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| |
Collapse
|
73
|
Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol 2019; 10:1907. [PMID: 31456804 PMCID: PMC6700358 DOI: 10.3389/fimmu.2019.01907] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
Circulating monocytes can infiltrate mucosal or inflamed tissues where they differentiate into either macrophages or dendritic cells. This paradigm is supported by numerous studies conducted in mice and in different in vitro settings for human cells. Determining whether it holds true in vivo in humans is essential for the successful design of monocyte-targeting therapies. Despite limitations inherent to working with human samples, there is accumulating evidence of the existence of in vivo-generated monocyte-derived cells in humans. Here, we review recent studies showing the recruitment of human monocytes into tissues and their differentiation into macrophages or dendritic cells, in normal or pathological settings. We examine the methods available in human studies to demonstrate the monocytic origin of infiltrating cells. Finally, we review the functions of human monocyte-derived cells and how they might contribute to pathogeny.
Collapse
Affiliation(s)
- Alice Coillard
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Université Paris Descartes, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
74
|
Tighe RM, Redente EF, Yu YR, Herold S, Sperling AI, Curtis JL, Duggan R, Swaminathan S, Nakano H, Zacharias WJ, Janssen WJ, Freeman CM, Brinkman RR, Singer BD, Jakubzick CV, Misharin AV. Improving the Quality and Reproducibility of Flow Cytometry in the Lung. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2019; 61:150-161. [PMID: 31368812 PMCID: PMC6670040 DOI: 10.1165/rcmb.2019-0191st] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Defining responses of the structural and immune cells in biologic systems is critically important to understanding disease states and responses to injury. This requires accurate and sensitive methods to define cell types in organ systems. The principal method to delineate the cell populations involved in these processes is flow cytometry. Although researchers increasingly use flow cytometry, technical challenges can affect its accuracy and reproducibility, thus significantly limiting scientific advancements. This challenge is particularly critical to lung immunology, as the lung is readily accessible and therefore used in preclinical and clinical studies to define potential therapeutics. Given the importance of flow cytometry in pulmonary research, the American Thoracic Society convened a working group to highlight issues and technical challenges to the performance of high-quality pulmonary flow cytometry, with a goal of improving its quality and reproducibility.
Collapse
|
75
|
Allden SJ, Ogger PP, Ghai P, McErlean P, Hewitt R, Toshner R, Walker SA, Saunders P, Kingston S, Molyneaux PL, Maher TM, Lloyd CM, Byrne AJ. The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:209-219. [PMID: 31051082 PMCID: PMC6635794 DOI: 10.1164/rccm.201809-1775oc] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/02/2019] [Indexed: 01/26/2023] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating progressive disease with limited therapeutic options. Airway macrophages (AMs) are key components of the defense of the airways and are implicated in the pathogenesis of IPF. Alterations in iron metabolism have been described during fibrotic lung disease and in murine models of lung fibrosis. However, the role of transferrin receptor 1 (CD71)-expressing AMs in IPF is not known. Objectives: To assess the role of CD71-expressing AMs in the IPF lung. Methods: We used multiparametric flow cytometry, gene expression analysis, and phagocytosis/transferrin uptake assays to delineate the role of AMs expressing or lacking CD71 in the BAL of patients with IPF and of healthy control subjects. Measurements and Main Results: There was a distinct increase in proportions of AMs lacking CD71 in patients with IPF compared with healthy control subjects. Concentrations of BAL transferrin were enhanced in IPF-BAL, and furthermore, CD71- AMs had an impaired ability to sequester transferrin. CD71+ and CD71- AMs were phenotypically, functionally, and transcriptionally distinct, with CD71- AMs characterized by reduced expression of markers of macrophage maturity, impaired phagocytosis, and enhanced expression of profibrotic genes. Importantly, proportions of AMs lacking CD71 were independently associated with worse survival, underlining the importance of this population in IPF and as a potential therapeutic target. Conclusions: Taken together, these data highlight how CD71 delineates AM subsets that play distinct roles in IPF and furthermore show that CD71- AMs may be an important pathogenic component of fibrotic lung disease.
Collapse
Affiliation(s)
- Sarah J. Allden
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
- UCB Celltech, Slough, United Kingdom; and
| | - Patricia P. Ogger
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Poonam Ghai
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Peter McErlean
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Richard Hewitt
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Richard Toshner
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Simone A. Walker
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Peter Saunders
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Shaun Kingston
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Philip L. Molyneaux
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Toby M. Maher
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Clare M. Lloyd
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Adam J. Byrne
- Inflammation, Repair, and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
76
|
Hisert KB, Liles WC, Manicone AM. A Flow Cytometric Method for Isolating Cystic Fibrosis Airway Macrophages from Expectorated Sputum. Am J Respir Cell Mol Biol 2019; 61:42-50. [PMID: 30742539 PMCID: PMC6604218 DOI: 10.1165/rcmb.2018-0236ma] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Abstract
Research to understand the contribution of macrophages to nonresolving airway inflammation in cystic fibrosis (CF) and other chronic suppurative airways diseases has been hindered by a lack of methods for isolating and studying these cells. With the development of technologies that can characterize small numbers of cells or individual cells, there is an even greater need for methodologies to isolate rare cells in heterogeneous specimens. Here, we describe a method that overcomes the technical obstacles imposed by sputum debris and apoptotic cells, and allows isolation of pure populations of macrophages from CF sputum. In addition to enhancing our ability to study human CF airway macrophages, this protocol can be adapted to study cells in sputum from other chronic suppurative lung diseases (e.g., chronic obstructive pulmonary disease) and used for isolation of individual cells for single cell analyses.
Collapse
Affiliation(s)
| | - W. Conrad Liles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | | |
Collapse
|
77
|
Ross JT, Nesseler N, Lee JW, Ware LB, Matthay MA. The ex vivo human lung: research value for translational science. JCI Insight 2019; 4:128833. [PMID: 31167972 DOI: 10.1172/jci.insight.128833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Respiratory diseases are among the leading causes of death and disability worldwide. However, the pathogenesis of both acute and chronic lung diseases remains incompletely understood. As a result, therapeutic options for important clinical problems, including acute respiratory distress syndrome and chronic obstructive pulmonary disease, are limited. Research efforts have been held back in part by the difficulty of modeling lung injury in animals. Donor human lungs that have been rejected for transplantation offer a valuable alternative for understanding these diseases. In 2007, our group developed a simple preparation of an ex vivo-perfused single human lung. In this Review, we discuss the availability of donor human lungs for research, describe the ex vivo-perfused lung preparation, and highlight how this preparation can be used to study the mechanisms of lung injury, to isolate primary cells, and to test novel therapeutics.
Collapse
Affiliation(s)
| | - Nicolas Nesseler
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA.,Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France.,Univ Rennes, CHU de Rennes, Inra, INSERM, Institut Nutrition, Métabolismes, Cancer- UMR_A 1341, UMR_S 1241, Rennes, France.,Univ Rennes, CHU Rennes, INSERM, Centre d'Investigation Clinique de Rennes 1414, Rennes, France
| | - Jae-Woo Lee
- Department of Anesthesiology, Cardiovascular Research Institute, UCSF, San Francisco, California
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael A Matthay
- Department of Anesthesiology, Cardiovascular Research Institute, UCSF, San Francisco, California.,Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| |
Collapse
|
78
|
Horiike Y, Suzuki Y, Fujisawa T, Yasui H, Karayama M, Hozumi H, Furuhashi K, Enomoto N, Nakamura Y, Inui N, Ogawa N, Suda T. Successful classification of macrophage-mannose receptor CD206 in severity of anti-MDA5 antibody positive dermatomyositis associated ILD. Rheumatology (Oxford) 2019; 58:2143-2152. [DOI: 10.1093/rheumatology/kez185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract
Objectives
Macrophage-mannose receptor, CD206, is a marker of alternatively activated macrophages. Activated macrophages play key roles in DM. Interstitial lung disease (ILD) is a leading cause of mortality in patients with DM/clinically amyopathic DM (CADM). In particular, patients with the anti-melanoma differential gene 5 antibody (MDA5) frequently develop fatal rapid progressive ILD. This study aimed to evaluate the clinical implications of alternatively activated macrophages in patients with CADM/DM-ILD with anti-MDA5 antibody (MDA5-CADM/DM-ILD).
Methods
We measured serum concentrations of soluble CD206 (sCD206) in 33 patients with MDA5-CADM/DM-ILD and 36 age- and sex-matched control subjects. Expression levels of CD206 in the lungs from MDA5-CADM/DM-ILD were also examined.
Results
Patients with MDA5-CADM/DM-ILD had higher levels of sCD206 than those in controls (P < 0.0001). Of the 33 patients, 10 MDA5-CADM/DM-ILD patients developed fatal respiratory failure. Concentrations of sCD206 in patients with fatal ILD cases were significantly higher than those in the survivors, and increased sCD206 levels were associated with a higher mortality rate (Log-rank test, P = 0.0009). Age- and gender-adjusted logistic regression analyses showed that sCD206 was an independent prognostic factor for MDA5-CADM/DM-ILD. Importantly, assessment by sCD206 together with PaO2 successfully divided into three groups by their prognosis (P < 0.005, respectively). Pathological analyses showed accumulations of CD206-positive macrophages in lungs from the fatal case rather than those in the non-fatal cases.
Conclusions
Levels of serum sCD206 are increased in MDA5-CADM/DM-ILD and associated with poor prognosis. sCD206 is a potential biomarker to predict the severity of MDA5-CADM/DM-ILD.
Collapse
Affiliation(s)
- Yasuoki Horiike
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Noriyoshi Ogawa
- Third Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu,Japan
| |
Collapse
|
79
|
Walter JM, Ren Z, Yacoub T, Reyfman PA, Shah RD, Abdala-Valencia H, Nam K, Morgan VK, Anekalla KR, Joshi N, McQuattie-Pimentel AC, Chen CI, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Aillon RP, Watanabe S, Williams KJN, Lu Z, Paonessa J, Hountras P, Breganio M, Borkowski N, Donnelly HK, Allen JP, Amaral LA, Bharat A, Misharin AV, Bagheri N, Hauser AR, Budinger GRS, Wunderink RG. Multidimensional Assessment of the Host Response in Mechanically Ventilated Patients with Suspected Pneumonia. Am J Respir Crit Care Med 2019; 199:1225-1237. [PMID: 30398927 PMCID: PMC6519857 DOI: 10.1164/rccm.201804-0650oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Rationale: The identification of informative elements of the host response to infection may improve the diagnosis and management of bacterial pneumonia. Objectives: To determine whether the absence of alveolar neutrophilia can exclude bacterial pneumonia in critically ill patients with suspected infection and to test whether signatures of bacterial pneumonia can be identified in the alveolar macrophage transcriptome. Methods: We determined the test characteristics of alveolar neutrophilia for the diagnosis of bacterial pneumonia in three cohorts of mechanically ventilated patients. In one cohort, we also isolated macrophages from alveolar lavage fluid and used the transcriptome to identify signatures of bacterial pneumonia. Finally, we developed a humanized mouse model of Pseudomonas aeruginosa pneumonia to determine if pathogen-specific signatures can be identified in human alveolar macrophages. Measurements and Main Results: An alveolar neutrophil percentage less than 50% had a negative predictive value of greater than 90% for bacterial pneumonia in both the retrospective (n = 851) and validation cohorts (n = 76 and n = 79). A transcriptional signature of bacterial pneumonia was present in both resident and recruited macrophages. Gene signatures from both cell types identified patients with bacterial pneumonia with test characteristics similar to alveolar neutrophilia. Conclusions: The absence of alveolar neutrophilia has a high negative predictive value for bacterial pneumonia in critically ill patients with suspected infection. Macrophages can be isolated from alveolar lavage fluid obtained during routine care and used for RNA-Seq analysis. This novel approach may facilitate a longitudinal and multidimensional assessment of the host response to bacterial pneumonia.
Collapse
Affiliation(s)
- James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Tyrone Yacoub
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Paul A. Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Raj D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Kiwon Nam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Vince K. Morgan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Kishore R. Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Monica Chi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Raul P. Aillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Joseph Paonessa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Peter Hountras
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Madonna Breganio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nicole Borkowski
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Helen K. Donnelly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jonathan P. Allen
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois; and
| | - Luis A. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, and
| | | | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Alan R. Hauser
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois; and
| | | | | |
Collapse
|
80
|
Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med 2019; 285:510-523. [PMID: 30663801 PMCID: PMC6850289 DOI: 10.1111/joim.12876] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. Here, we describe recent insights into the generation of innate and adaptive cell-mediated immune responses following clinical infection with PUUV. First described are studies demonstrating a marked redistribution of peripheral blood mononuclear phagocytes (MNP) to the airways, a process that may underlie local immune activation at the site of primary infection. We then describe observations of an excessive natural killer (NK) cell activation and the persistence of highly elevated numbers of NK cells in peripheral blood following PUUV infection. A similar vigorous CD8 Tcell response is also described, though Tcell responses decline with viraemia. Like MNPs, many NK cells and CD8 T cells also localize to the lung upon acute PUUV infection. Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
Collapse
Affiliation(s)
- J Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K T Maleki
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Solà-Riera
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University Hospital, Umeå University, Umeå, Sweden
| | - N K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H G Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
81
|
Jardine L, Wiscombe S, Reynolds G, McDonald D, Fuller A, Green K, Filby A, Forrest I, Ruchaud-Sparagano MH, Scott J, Collin M, Haniffa M, Simpson AJ. Lipopolysaccharide inhalation recruits monocytes and dendritic cell subsets to the alveolar airspace. Nat Commun 2019; 10:1999. [PMID: 31040289 PMCID: PMC6491485 DOI: 10.1038/s41467-019-09913-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mononuclear phagocytes (MPs) including monocytes, macrophages and dendritic cells (DCs) are critical innate immune effectors and initiators of the adaptive immune response. MPs are present in the alveolar airspace at steady state, however little is known about DC recruitment in acute pulmonary inflammation. Here we use lipopolysaccharide inhalation to induce acute inflammation in healthy volunteers and examine the impact on bronchoalveolar lavage fluid and blood MP repertoire. Classical monocytes and two DC subsets (DC2/3 and DC5) are expanded in bronchoalveolar lavage fluid 8 h after lipopolysaccharide inhalation. Surface phenotyping, gene expression profiling and parallel analysis of blood indicate recruited DCs are blood-derived. Recruited monocytes and DCs rapidly adopt typical airspace-resident MP gene expression profiles. Following lipopolysaccharide inhalation, alveolar macrophages strongly up-regulate cytokines for MP recruitment. Our study defines the characteristics of human DCs and monocytes recruited into bronchoalveolar space immediately following localised acute inflammatory stimulus in vivo. The diversity of human mononuclear phagocyte subsets remains to be characterized in many tissue-specific and functional contexts, including pulmonary inflammation. Here the authors characterize dendritic cell and monocyte subset recruitment to the bronchoalveolar space in a human LPS inhalation model.
Collapse
Affiliation(s)
- Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK.
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Gary Reynolds
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - David McDonald
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Fuller
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Filby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian Forrest
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | | | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK.
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| |
Collapse
|
82
|
Lepzien R, Rankin G, Pourazar J, Muala A, Eklund A, Grunewald J, Blomberg A, Smed‐Sörensen A. Mapping mononuclear phagocytes in blood, lungs, and lymph nodes of sarcoidosis patients. J Leukoc Biol 2019; 105:797-807. [PMID: 30742337 PMCID: PMC6916617 DOI: 10.1002/jlb.5a0718-280rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a T-cell driven inflammatory disease characterized by granuloma formation. Mononuclear phagocytes (MNPs)-macrophages, monocytes, and dendritic cells (DCs)-are likely critical in sarcoidosis as they initiate and maintain T cell activation and contribute to granuloma formation by cytokine production. Granulomas manifest primarily in lungs and lung-draining lymph nodes (LLNs) but these compartments are less studied compared to blood and bronchoalveolar lavage (BAL). Sarcoidosis can present with an acute onset (usually Löfgren's syndrome (LS)) or a gradual onset (non-LS). LS patients typically recover within 2 years while 60% of non-LS patients maintain granulomas for up to 5 years. Here, four LS and seven non-LS patients underwent bronchoscopy with endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). From each patient, blood, BAL, endobronchial biopsies (EBBs), and LLN samples obtained by EBUS-TBNA were collected and MNPs characterized using multicolor flow cytometry. Six MNP subsets were identified at varying frequencies in the anatomical compartments investigated. Importantly, monocytes and DCs were most mature with migratory potential in BAL and EBBs but not in the LLNs suggesting heterogeneity in MNPs in the compartments typically affected in sarcoidosis. Additionally, in LS patients, frequencies of DC subsets were lower or lacking in LLNs and EBBs, respectively, compared to non-LS patients that may be related to the disease outcome. Our work provides a foundation for future investigations of MNPs in sarcoidosis to identify immune profiles of patients at risk of developing severe disease with the aim to provide early treatment to slow down disease progression.
Collapse
Affiliation(s)
- Rico Lepzien
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Gregory Rankin
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Ala Muala
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Anders Eklund
- Division of Respiratory MedicineDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Johan Grunewald
- Division of Respiratory MedicineDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anders Blomberg
- Department of Public Health and Clinical MedicineDivision of MedicineUmeå UniversityUmeåSweden
| | - Anna Smed‐Sörensen
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| |
Collapse
|
83
|
Houston S. Claudia Jakubzick: Work hard, play hard. J Exp Med 2019; 216:467-470. [PMID: 30787034 PMCID: PMC6400547 DOI: 10.1084/jem.20190217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Claudia Jakubzick: Work hard, play hard Claudia Jakubzick will be an Associate Professor at Dartmouth in the Department of Microbiology and Immunology working on immune homeostasis and how the immune system can recognize and target precancerous cells. She started her own laboratory at National Jewish Health in 2014, becoming a tenure-track Assistant Professor and an Associate Professor in 2017, and will relocate to Dartmouth mid-2019. She is also a member of the American Association of Immunologists’ Minority Affairs Committee. We contacted Claudia to find out about her career in science.
Collapse
|
84
|
Vangeti S, Gertow J, Yu M, Liu S, Baharom F, Scholz S, Friberg D, Starkhammar M, Ahlberg A, Smed-Sörensen A. Human Blood and Tonsil Plasmacytoid Dendritic Cells Display Similar Gene Expression Profiles but Exhibit Differential Type I IFN Responses to Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:2069-2081. [PMID: 30760619 DOI: 10.4049/jimmunol.1801191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Influenza A virus (IAV) infection constitutes an annual health burden across the globe. Plasmacytoid dendritic cells (PDCs) are central in antiviral defense because of their superior capacity to produce type I IFNs in response to viruses. Dendritic cells (DCs) differ depending on their anatomical location. However, only limited host-pathogen data are available from the initial site of infection in humans. In this study, we investigated how human tonsil PDCs, likely exposed to virus because of their location, responded to IAV infection compared with peripheral blood PDCs. In tonsils, unlike in blood, PDCs are the most frequent DC subset. Both tonsil and blood PDCs expressed several genes necessary for pathogen recognition and immune response, generally in a similar pattern. MxA, a protein that renders cells resistant to IAV infection, was detected in both tonsil and blood PDCs. However, despite steady-state MxA expression and contrary to previous reports, at high IAV concentrations (typically cytopathic to other immune cells), both tonsil and blood PDCs supported IAV infection. IAV exposure resulted in PDC maturation by upregulation of CD86 expression and IFN-α secretion. Interestingly, blood PDCs secreted 10-fold more IFN-α in response to IAV compared with tonsil PDCs. Tonsil PDCs also had a dampened cytokine response to purified TLR ligands compared with blood PDCs. Our findings suggest that tonsil PDCs may be less responsive to IAV than blood PDCs, highlighting the importance of studying immune cells at their proposed site of function.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jens Gertow
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Sang Liu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Faezzah Baharom
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Saskia Scholz
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Magnus Starkhammar
- Capio Ear, Nose and Throat Clinic Globen, 121 77 Johanneshov, Sweden; and
| | - Alexander Ahlberg
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Huddinge, 141 86 Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, 171 64 Stockholm, Sweden;
| |
Collapse
|
85
|
Tang-Huau TL, Segura E. Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev Biol 2019; 86:44-49. [DOI: 10.1016/j.semcdb.2018.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 02/10/2018] [Indexed: 01/09/2023]
|
86
|
Liu Y, Wang R, Jiang J, Cao Z, Zhai F, Sun W, Cheng X. A subset of CD1c + dendritic cells is increased in patients with tuberculosis and promotes Th17 cell polarization. Tuberculosis (Edinb) 2018; 113:189-199. [PMID: 30514502 DOI: 10.1016/j.tube.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/19/2023]
Abstract
The role of primary subsets of DCs in Mycobacterium tuberculosis infection in humans is incompletely understood. In this study, we identified a CD1c DC subset with phenotype of CD1c+CD11c+CD19-CD11b+ that was significantly increased in tuberculous pleural effusions and in peripheral blood from patients with TB compared with that from healthy controls (p < 0.0001). Sputum smear/culture-positive patients with tuberculosis had significantly higher frequency of CD1c+CD11b+ DC subset than sputum smear/culture-negative patients (p < 0.0001). After effective anti-TB chemotherapy, the frequency of CD1c+CD11b+ DC subset in peripheral blood and tuberculous pleural effusions was decreased. CD1c+CD11b+ DC subset from tuberculous pleural effusions expressed higher levels of TLR2, TLR4, CD172a, CD206 and FcεRⅠ, but lower levels of CD80, CD83 and CD86 compared with CD1c+CD11b- DC subset. Expression of IL-1β, IL-6, IL-8, IL-23, TNF-α, IFN-γ and TGF-β mRNA in CD1c+CD11b+ DCs was higher than in CD1c+CD11b- DC subset. Co-culture of autologous naive CD4+ T cells with sorted CD1c+CD11b+ DCs expressed significantly increased levels of IL-17A and RORγt transcripts as compared with those co-cultured with CD11b- subset. In conclusion, a CD1c+CD11b+ DC subset with elevated frequency in patients with tuberculosis was identified and it promoted Th17 cell differentiation.
Collapse
Affiliation(s)
- Yanhua Liu
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Ruo Wang
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Zhihong Cao
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Fei Zhai
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Weiguo Sun
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China
| | - Xiaoxing Cheng
- Key Laboratory of Tuberculosis Prevention and Treatment, Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing, 100091, China.
| |
Collapse
|
87
|
Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res 2018; 19:170. [PMID: 30189872 PMCID: PMC6127991 DOI: 10.1186/s12931-018-0864-2] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prototype of lethal, chronic, progressive interstitial lung disease of unknown etiology. Over the past decade, macrophage has been recognized to play a significant role in IPF pathogenesis. Depending on the local microenvironments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) phenotypes. In general, M1 macrophages are responsible for wound healing after alveolar epithelial injury, while M2 macrophages are designated to resolve wound healing processes or terminate inflammatory responses in the lung. IPF is a pathological consequence resulted from altered wound healing in response to persistent lung injury. In this review, we intend to summarize the current state of knowledge regarding the process of macrophage polarization and its mediators in the pathogenesis of pulmonary fibrosis. Our goal is to update the understanding of the mechanisms underlying the initiation and progression of IPF, and by which, we expect to provide help for developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Lei Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guorao Wu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Weining Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Weikuan Gu
- Departments of Orthopaedic Surgery-Campbell Clinic, and Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
88
|
Joshi N, Walter JM, Misharin AV. Alveolar Macrophages. Cell Immunol 2018; 330:86-90. [DOI: 10.1016/j.cellimm.2018.01.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/07/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
|
89
|
Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A, Shankar TS, Selzman CH, Drakos SG, Lavine KJ. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med 2018; 24:1234-1245. [PMID: 29892064 PMCID: PMC6082687 DOI: 10.1038/s41591-018-0059-x] [Citation(s) in RCA: 487] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
Paradigm-shifting studies in the mouse have identified tissue macrophage heterogeneity as a critical determinant of immune responses. In contrast, surprisingly little is known regarding macrophage heterogeneity in humans. Macrophages within the mouse heart are partitioned into CCR2- and CCR2+ subsets with divergent origins, repopulation mechanisms, and functions. Here, we demonstrate that the human myocardium also contains distinct subsets of CCR2- and CCR2+ macrophages. Analysis of sex-mismatched heart transplant recipients revealed that CCR2- macrophages are a tissue-resident population exclusively replenished through local proliferation, whereas CCR2+ macrophages are maintained through monocyte recruitment and proliferation. Moreover, CCR2- and CCR2+ macrophages have distinct functional properties, analogous to reparative CCR2- and inflammatory CCR2+ macrophages in the mouse heart. Clinically, CCR2+ macrophage abundance is associated with left ventricular remodeling and systolic function in heart failure patients. Collectively, these observations provide initial evidence for the functional importance of macrophage heterogeneity in the human heart.
Collapse
Affiliation(s)
- Geetika Bajpai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Caralin Schneider
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nicole Wong
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Slava Epelman
- Peter Munk Cardiac Center, Ted Rogers Center for Heart Failure Research, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Akinobu Itoh
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Craig H Selzman
- Division of Cardiothoracic Surgery & Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stavros G Drakos
- Division of Cardiovascular Medicine & Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Immunology and Pathology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
90
|
Moon HG, Kim SJ, Jeong JJ, Han SS, Jarjour NN, Lee H, Abboud-Werner SL, Chung S, Choi HS, Natarajan V, Ackerman SJ, Christman JW, Park GY. Airway Epithelial Cell-Derived Colony Stimulating Factor-1 Promotes Allergen Sensitization. Immunity 2018; 49:275-287.e5. [PMID: 30054206 DOI: 10.1016/j.immuni.2018.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/25/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
Airway epithelial cells (AECs) secrete innate immune cytokines that regulate adaptive immune effector cells. In allergen-sensitized humans and mice, the airway and alveolar microenvironment is enriched with colony stimulating factor-1 (CSF1) in response to allergen exposure. In this study we found that AEC-derived CSF1 had a critical role in the production of allergen reactive-IgE production. Furthermore, spatiotemporally secreted CSF1 regulated the recruitment of alveolar dendritic cells (DCs) and enhanced the migration of conventional DC2s (cDC2s) to the draining lymph node in an interferon regulatory factor 4 (IRF4)-dependent manner. CSF1 selectively upregulated the expression of the chemokine receptor CCR7 on the CSF1R+ cDC2, but not the cDC1, population in response to allergen stimuli. Our data describe the functional specification of CSF1-dependent DC subsets that link the innate and adaptive immune responses in T helper 2 (Th2) cell-mediated allergic lung inflammation.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jong Jin Jeong
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Seon-Sook Han
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nizar N Jarjour
- Allergy, Pulmonary, and Critical Care Division, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Hyun Lee
- Center for Biomolecular Sciences, and Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sherry L Abboud-Werner
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sangwoon Chung
- Section of Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Center, Columbus, OH, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, and Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - John W Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Center, Columbus, OH, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
91
|
Vangeti S, Yu M, Smed-Sörensen A. Respiratory Mononuclear Phagocytes in Human Influenza A Virus Infection: Their Role in Immune Protection and As Targets of the Virus. Front Immunol 2018; 9:1521. [PMID: 30018617 PMCID: PMC6037688 DOI: 10.3389/fimmu.2018.01521] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Emerging viruses have become increasingly important with recurrent epidemics. Influenza A virus (IAV), a respiratory virus displaying continuous re-emergence, contributes significantly to global morbidity and mortality, especially in young children, immunocompromised, and elderly people. IAV infection is typically confined to the airways and the virus replicates in respiratory epithelial cells but can also infect resident immune cells. Clearance of infection requires virus-specific adaptive immune responses that depend on early and efficient innate immune responses against IAV. Mononuclear phagocytes (MNPs), comprising monocytes, dendritic cells, and macrophages, have common but also unique features. In addition to being professional antigen-presenting cells, MNPs mediate leukocyte recruitment, sense and phagocytose pathogens, regulate inflammation, and shape immune responses. The immune protection mediated by MNPs can be compromised during IAV infection when the cells are also targeted by the virus, leading to impaired cytokine responses and altered interactions with other immune cells. Furthermore, it is becoming increasingly clear that immune cells differ depending on their anatomical location and that it is important to study them where they are expected to exert their function. Defining tissue-resident MNP distribution, phenotype, and function during acute and convalescent human IAV infection can offer valuable insights into understanding how MNPs maintain the fine balance required to protect against infections that the cells are themselves susceptible to. In this review, we delineate the role of MNPs in the human respiratory tract during IAV infection both in mediating immune protection and as targets of the virus.
Collapse
Affiliation(s)
- Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
92
|
Hsiao HM, Fernandez R, Tanaka S, Li W, Spahn JH, Chiu S, Akbarpour M, Ruiz-Perez D, Wu Q, Turam C, Scozzi D, Takahashi T, Luehmann HP, Puri V, Budinger GS, Krupnick AS, Misharin AV, Lavine KJ, Liu Y, Gelman AE, Bharat A, Kreisel D. Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1β. J Clin Invest 2018; 128:2833-2847. [PMID: 29781811 PMCID: PMC6025976 DOI: 10.1172/jci98436] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemia-reperfusion injury, a form of sterile inflammation, is the leading risk factor for both short-term mortality following pulmonary transplantation and chronic lung allograft dysfunction. While it is well recognized that neutrophils are critical mediators of acute lung injury, processes that guide their entry into pulmonary tissue are not well understood. Here, we found that CCR2+ classical monocytes are necessary and sufficient for mediating extravasation of neutrophils into pulmonary tissue during ischemia-reperfusion injury following hilar clamping or lung transplantation. The classical monocytes were mobilized from the host spleen, and splenectomy attenuated the recruitment of classical monocytes as well as the entry of neutrophils into injured lung tissue, which was associated with improved graft function. Neutrophil extravasation was mediated by MyD88-dependent IL-1β production by graft-infiltrating classical monocytes, which downregulated the expression of the tight junction-associated protein ZO-2 in pulmonary vascular endothelial cells. Thus, we have uncovered a crucial role for classical monocytes, mobilized from the spleen, in mediating neutrophil extravasation, with potential implications for targeting of recipient classical monocytes to ameliorate pulmonary ischemia-reperfusion injury in the clinic.
Collapse
Affiliation(s)
- Hsi-Min Hsiao
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ramiro Fernandez
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Satona Tanaka
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wenjun Li
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jessica H. Spahn
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stephen Chiu
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Mahzad Akbarpour
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Daniel Ruiz-Perez
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qiang Wu
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Cem Turam
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Davide Scozzi
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tsuyoshi Takahashi
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hannah P. Luehmann
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Varun Puri
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | - Yongjian Liu
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
93
|
Mubarak RA, Roberts N, Mason RJ, Alper S, Chu HW. Comparison of pro- and anti-inflammatory responses in paired human primary airway epithelial cells and alveolar macrophages. Respir Res 2018; 19:126. [PMID: 29940963 PMCID: PMC6020222 DOI: 10.1186/s12931-018-0825-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Background Airway epithelial cells and alveolar macrophages (AMs) are the first line of defense in the lung during infection. Toll-like receptor (TLR) agonists have been extensively used to define the regulation of inflammation in these cells. However, previous studies were performed in non-paired airway epithelial cells and AMs. The major goal of our study was to compare the pro- and anti-inflammatory responses of paired human primary airway epithelial cells and AMs to TLR3 and TLR4 agonists. Methods Tracheobronchial epithelial cells (TBEC) and AMs from four smokers and four non-smokers without lung disease were cultured with or without Poly(I:C) (PIC) (a TLR3 agonist) or LPS (a TLR4 agonist) for 4, 24 and 48 h. The immune responses of paired cells were compared. Results TBEC and AMs showed stronger pro-inflammatory cytokine (e.g., IL-8) responses to PIC and LPS, respectively. TLR3 and TLR4 mRNA levels were similar in non-stimulated TBEC and AMs. However, PIC stimulation in AMs led to sustained up-regulation of the immune negative regulators Tollip and A20, which may render AMs less sensitive to PIC stimulation than TBEC. Unlike AMs, TBEC did not increase NF-κB activation after LPS stimulation. Interestingly, smoking status was correlated with less TLR3 and IRAK-M expression in non-stimulated TBEC, but not in AMs. PIC-stimulated TBEC and LPS-stimulated AMs from smokers vs. non-smokers produced more IL-8. Finally, we show that expression of A20 and IRAK-M is strongly correlated in the two paired cell types. Conclusions By using paired airway epithelial cells and AMs, this study reveals how these two critical types of lung cells respond to viral and bacterial pathogen associated molecular patterns, and provides rationale for modulating immune negative regulators to prevent excessive lung inflammation during respiratory infection. Electronic supplementary material The online version of this article (10.1186/s12931-018-0825-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reem Al Mubarak
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Nicole Roberts
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Robert J Mason
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA
| | - Scott Alper
- Department of Biomedical Research and Center for Genes, Environment, and Health, National Jewish Health, University of Colorado, 1400 Jackson Street, Denver, CO, 80206, USA. .,Department of Immunology and Microbiology, University of Colorado, 1400 Jackson Street, Denver, CO, 80206, USA.
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A639, Denver, CO, 80206, USA.
| |
Collapse
|
94
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 886] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| | - Venetia Bigley
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
95
|
Lung Interstitial Macrophages: Past, Present, and Future. J Immunol Res 2018; 2018:5160794. [PMID: 29854841 PMCID: PMC5952507 DOI: 10.1155/2018/5160794] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022] Open
Abstract
For a long time, investigations about the lung myeloid compartment have been mainly limited to the macrophages located within the airways, that is, the well-known alveolar macrophages specialized in recycling of surfactant molecules and removal of debris. However, a growing number of reports have highlighted the complexity of the lung myeloid compartment, which also encompass different subsets of dendritic cells, tissue monocytes, and nonalveolar macrophages, called interstitial macrophages (IM). Recent evidence supports that, in mice, IM perform important immune functions, including the maintenance of lung homeostasis and prevention of immune-mediated allergic airway inflammation. In this article, we describe lung IM from a historical perspective and we review current knowledge on their characteristics, ontogeny, and functions, mostly in rodents. Finally, we emphasize some important future challenges for the field.
Collapse
|
96
|
Happle C, Meyer-Decking L, Dreier A, Wetzke M, Gläsener S, Grychtol R, Braubach P, Jablonka A, Haid S, Jirmo AC, Habener A, Skuljec J, Hansen G. Improved protocol for simultaneous analysis of leukocyte subsets and epithelial cells from murine and human lung. Exp Lung Res 2018; 44:127-136. [PMID: 29677457 DOI: 10.1080/01902148.2018.1432721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study and isolate lung cells by flow cytometry, enzymatic digestion and generation of single cell suspensions is required. This significantly influences expression of cellular epitopes and protocols need to be adapted for the best isolation and subsequent analysis of specific cellular subsets. MATERIALS AND METHODS We optimized protocols for the simultaneous isolation and characterization of specific human and murine lung cell types. For alveolar epithelial cells (AEC), a primarily dispase based digestion method and for leukocytes, a primarily collagenase based technique was adapted. Protocols were applied in parallel in either single experimental mice or human lung specimens. RESULTS Optimized dispase/DNase digestion yielded a high percentage of Epcam+CD45-CD31- AEC as assessed by flow cytometry. Epcam+CD45-CD3-CD11b-CD11c-CD16/32-CD19-CD31-F4/80- AEC were readily sortable with high purity and typical morphology and function upon in vitro stimulation with lipopolysaccharide or respiratory-syncytial-virus (RSV) infection. To analyze lung leukocytes, specimens were digested with an adapted collagenase/DNase protocol yielding high percentages of viable leukocytes with typical morphology, function, and preserved subset specific leukocyte markers. Both protocols could be applied simultaneously in a single experimental mouse post mortem. Application of both digestion methods in primary human lung specimens yielded similar results with high proportions of Epcam+CD45- human AEC after dispase/DNase digestion and preservation of human T cell epitopes after collagenase/DNase digestion. CONCLUSION The here described protocols were optimized for the simple and efficient isolation of murine and human lung cells. In contrast to previously described techniques, they permit simultaneous in-depth characterization of pulmonary epithelial cells and leukocyte subsets such as T helper, cytotoxic T, and B cells from one sample. As such, they may help to comprehensively and sustainably characterize murine and human lung specimens and facilitate studies on the role of lung immune cells in different respiratory pathologies.
Collapse
Affiliation(s)
- Christine Happle
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Lena Meyer-Decking
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Anika Dreier
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Martin Wetzke
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Stephanie Gläsener
- b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Ruth Grychtol
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Peter Braubach
- b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany.,c Department of Pathology , Hannover Medical School , Hannover , Germany
| | - Alexandra Jablonka
- d Department of Clinical Immunology and Rheumatology , Hannover Medical School , Hannover , Germany.,e German Center for Infection Research (DZIF) , Standort Hannover-Braunschweig , Germany
| | - Sibylle Haid
- f Experimental Virology and TWINCORE , a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research , Hannover , Germany
| | - Adan Chari Jirmo
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Anika Habener
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| | - Jelena Skuljec
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany
| | - Gesine Hansen
- a Department of Pediatrics, Allergology, and Neonatology , Hannover Medical School , Hannover , Germany.,b German Center for Lung Research , Biomedical Research in End Stage and Obstructive Lung Disease/ BREATH Hannover , Germany
| |
Collapse
|
97
|
Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The cell surface phenotype of human dendritic cells. Semin Cell Dev Biol 2018; 86:3-14. [PMID: 29499385 DOI: 10.1016/j.semcdb.2018.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) are bone marrow derived leucocytes that are part of the mononuclear phagocytic system. These are surveillance cells found in all tissues and, as specialised antigen presenting cells, direct immune responses. Membrane molecules on the DC surface form a landscape that defines them as leucocytes and part of the mononuclear phagocytic system, interacts with their environment and directs interactions with other cells. This review describes the DC surface landscape, reflects on the different molecules confirmed to be on their surface and how they provide the basis for manipulation and translation of the potent functions of these cells into new diagnostics and immune therapies for the clinic.
Collapse
Affiliation(s)
- Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - P Mark Hogarth
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Inflammation, Cancer and Infection, Burnet Institute, Melbourne, VIC, Australia
| | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
98
|
Zheng Z, Chiu S, Akbarpour M, Sun H, Reyfman PA, Anekalla KR, Abdala-Valencia H, Edgren D, Li W, Kreisel D, Korobova FV, Fernandez R, McQuattie-Pimentel A, Zhang ZJ, Perlman H, Misharin AV, Scott Budinger GR, Bharat A. Donor pulmonary intravascular nonclassical monocytes recruit recipient neutrophils and mediate primary lung allograft dysfunction. Sci Transl Med 2018; 9:9/394/eaal4508. [PMID: 28615357 DOI: 10.1126/scitranslmed.aal4508] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/21/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022]
Abstract
Primary graft dysfunction is the predominant driver of mortality and graft loss after lung transplantation. Recruitment of neutrophils as a result of ischemia-reperfusion injury is thought to cause primary graft dysfunction; however, the mechanisms that regulate neutrophil influx into the injured lung are incompletely understood. We found that donor-derived intravascular nonclassical monocytes (NCMs) are retained in human and murine donor lungs used in transplantation and can be visualized at sites of endothelial injury after reperfusion. When NCMs in the donor lungs were depleted, either pharmacologically or genetically, neutrophil influx and lung graft injury were attenuated in both allogeneic and syngeneic models. Similar protection was observed when the patrolling function of donor NCMs was impaired by deletion of the fractalkine receptor CX3CR1. Unbiased transcriptomic profiling revealed up-regulation of MyD88 pathway genes and a key neutrophil chemoattractant, CXCL2, in donor-derived NCMs after reperfusion. Reconstitution of NCM-depleted donor lungs with wild-type but not MyD88-deficient NCMs rescued neutrophil migration. Donor NCMs, through MyD88 signaling, were responsible for CXCL2 production in the allograft and neutralization of CXCL2 attenuated neutrophil influx. These findings suggest that therapies to deplete or inhibit NCMs in donor lung might ameliorate primary graft dysfunction with minimal toxicity to the recipient.
Collapse
Affiliation(s)
- Zhikun Zheng
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stephen Chiu
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mahzad Akbarpour
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haiying Sun
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul A Reyfman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kishore R Anekalla
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hiam Abdala-Valencia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daphne Edgren
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenjun Li
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel Kreisel
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Farida V Korobova
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ramiro Fernandez
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Zheng J Zhang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Harris Perlman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexander V Misharin
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - G R Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. .,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
99
|
Dysregulated Functions of Lung Macrophage Populations in COPD. J Immunol Res 2018; 2018:2349045. [PMID: 29670919 PMCID: PMC5835245 DOI: 10.1155/2018/2349045] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD.
Collapse
|
100
|
Liegeois M, Legrand C, Desmet CJ, Marichal T, Bureau F. The interstitial macrophage: A long-neglected piece in the puzzle of lung immunity. Cell Immunol 2018; 330:91-96. [PMID: 29458975 DOI: 10.1016/j.cellimm.2018.02.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/24/2022]
Abstract
Lung macrophages have mostly been studied considering only their most accessible and well-defined representative, the alveolar macrophage (AM). In contrast, the identity and putative immune functions of their tissue counterpart, the interstitial macrophage (IM), have long remained much more elusive. Yet, recent evidence supports the notion that IMs perform important immune functions in the lung, notably in terms of innate immunoregulation. Here, we review current knowledge on the phenotype, ontogeny and function of IMs and propose strategies for the unambiguous identification and study of this important and dynamic lung innate immune cell population.
Collapse
Affiliation(s)
- Maude Liegeois
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, Liege University, 4000 Liege, Belgium
| | - Celine Legrand
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, Liege University, 4000 Liege, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, Liege University, 4000 Liege, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, Liege University, 4000 Liege, Belgium.
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, Liege University, 4000 Liege, Belgium.
| |
Collapse
|