51
|
Yee M, Domm W, Gelein R, Bentley KLDM, Kottmann RM, Sime PJ, Lawrence BP, O'Reilly MA. Alternative Progenitor Lineages Regenerate the Adult Lung Depleted of Alveolar Epithelial Type 2 Cells. Am J Respir Cell Mol Biol 2017; 56:453-464. [PMID: 27967234 DOI: 10.1165/rcmb.2016-0150oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An aberrant oxygen environment at birth increases the severity of respiratory viral infections later in life through poorly understood mechanisms. Here, we show that alveolar epithelial cell (AEC) 2 cells (AEC2s), progenitors for AEC1 cells, are depleted in adult mice exposed to neonatal hypoxia or hyperoxia. Airway cells expressing surfactant protein (SP)-C and ATP binding cassette subfamily A member 3, alveolar pod cells expressing keratin (KRT) 5, and pulmonary fibrosis were observed when these mice were infected with a sublethal dose of HKx31, H3N2 influenza A virus. This was not seen in infected siblings birthed into room air. Genetic lineage tracing studies in mice exposed to neonatal hypoxia or hyperoxia revealed pre-existing secretoglobin 1a1+ cells produced airway cells expressing SP-C and ATP binding cassette subfamily A member 3. Pre-existing Kr5+ progenitor cells produced squamous alveolar cells expressing receptor for advanced glycation endproducts, aquaporin 5, and T1α in alveoli devoid of AEC2s. They were not the source of KRT5+ alveolar pod cells. These oxygen-dependent changes in epithelial cell regeneration and fibrosis could be recapitulated by conditionally depleting AEC2s in mice using diphtheria A toxin and then infecting with influenza A virus. Likewise, airway cells expressing SP-C and alveolar cells expressing KRT5 were observed in human idiopathic pulmonary fibrosis. These findings suggest that alternative progenitor lineages are mobilized to regenerate the alveolar epithelium when AEC2s are severely injured or depleted by previous insults, such as an adverse oxygen environment at birth. Because these lineages regenerate AECs in spatially distinct compartments of a lung undergoing fibrosis, they may not be sufficient to prevent disease.
Collapse
Affiliation(s)
| | | | | | | | - R Matthew Kottmann
- 4 Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Patricia J Sime
- 4 Department of Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | | | | |
Collapse
|
52
|
VanLeuven JT, Ridenhour BJ, Gonzalez AJ, Miller CR, Miura TA. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses. PLoS One 2017; 12:e0178408. [PMID: 28575086 PMCID: PMC5456070 DOI: 10.1371/journal.pone.0178408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/13/2017] [Indexed: 12/28/2022] Open
Abstract
The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.
Collapse
Affiliation(s)
- James T. VanLeuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Benjamin J. Ridenhour
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Andres J. Gonzalez
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R. Miller
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Tanya A. Miura
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
53
|
Zhang H, Luo J, Alcorn JF, Chen K, Fan S, Pilewski J, Liu A, Chen W, Kolls JK, Wang J. AIM2 Inflammasome Is Critical for Influenza-Induced Lung Injury and Mortality. THE JOURNAL OF IMMUNOLOGY 2017; 198:4383-4393. [PMID: 28424239 PMCID: PMC5439025 DOI: 10.4049/jimmunol.1600714] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 03/24/2017] [Indexed: 11/19/2022]
Abstract
The absent in melanoma 2 (AIM2) inflammasome plays an important role in many viral and bacterial infections, but very little is known about its role in RNA virus infection, including influenza A virus (IAV). In this study, we have designed in vivo and in vitro studies to determine the role of AIM2 in infections with lethal doses of IAVs A/PR8/34 and A/California/07/09. In wild-type mice, IAV infection enhanced AIM2 expression, induced dsDNA release, and stimulated caspase-1 activation and release of cleaved IL-1β in the lung, which was significantly reduced in AIM2-deficient mice. Interestingly, AIM2 deficiency did not affect the transcription of caspase-1 and IL-1β. In addition, AIM2-deficient mice exhibited attenuated lung injury and significantly improved survival against IAV challenges, but did not alter viral burden in the lung. However, AIM2 deficiency did not seem to affect adaptive immune response against IAV infections. Furthermore, experiments with AIM2-specific small interfering RNA-treated and AIM2-deficient human and mouse lung alveolar macrophages and type II cells indicated a macrophage-specific function of AIM2 in regulation of IAV-stimulated proinflammatory response. Collectively, our results demonstrate that influenza infection activates the AIM2 inflammasome, which plays a critical role in IAV-induced lung injury and mortality. AIM2 might serve as a therapeutic target for combating influenza-associated morbidity and mortality without compromising the host antiviral responses.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Jiadi Luo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224.,Department of Pathology, Second Affiliated Xiangya Hospital, Central South University, Changsha 410078, China
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Kong Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Songqing Fan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224.,Department of Pathology, Second Affiliated Xiangya Hospital, Central South University, Changsha 410078, China
| | - Joseph Pilewski
- Pulmonary, Allergy, and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224; and
| | - Aizhong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Central South University, Changsha 410078, China
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Jay K Kolls
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Jieru Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224;
| |
Collapse
|
54
|
Liu X, Yang C, Hu Y, Lei E, Lin X, Zhao L, Zou Z, Zhang A, Zhou H, Chen H, Qian P, Jin M. HIST1H1C Regulates Interferon-β and Inhibits Influenza Virus Replication by Interacting with IRF3. Front Immunol 2017; 8:350. [PMID: 28392790 PMCID: PMC5364133 DOI: 10.3389/fimmu.2017.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/10/2017] [Indexed: 01/26/2023] Open
Abstract
Influenza virus NS2 is well known for its role in viral ribonucleoprotein nuclear export; however, its function has not been fully understood. A recent study showed that NS2 might interact with HIST1H1C (H1C, H1.2). Histones have been found to affect influenza virus replication, such as the H2A, H2B, H3, and H4, but H1 has not been detected. Here, we found that H1C interacts with NS2 via its C-terminal in the nucleus and that H1C affects influenza virus replication. The H1N1 influenza virus replicates better in H1C knockout A549 cells compared to wild-type A549 cells, primarily because of the regulation of H1C on interferon-β (IFN-β). Further studies showed that the H1C phosphorylation mutant (T146A) decreases IFN-β, while H1C methylation mutants (K34A, K187A) increases IFN-β by releasing the nucleosome and promoting IRF3 binding to the IFN-β promoter. Interestingly, NS2 interacts with H1C, which reduces H1C-IRF3 interaction and results in the inhibition of IFN-β enhanced by H1C. In summary, our study reveals a novel function of H1C to regulate IFN-β and uncovers an underlying mechanism, which suggests H1C plays a role in epigenetic regulation. Moreover, our results suggest a novel mechanism for the influenza virus to antagonize the innate immune response by NS2.
Collapse
Affiliation(s)
- Xiaokun Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Cha Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Yong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Erming Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China; State Key Laboratory of Agricultural Microbiology, Key Laboratory of Agro-Microbiology Resources Development, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
55
|
IRAV ( FLJ11286), an Interferon-Stimulated Gene with Antiviral Activity against Dengue Virus, Interacts with MOV10. J Virol 2017; 91:JVI.01606-16. [PMID: 27974568 PMCID: PMC5309953 DOI: 10.1128/jvi.01606-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is a member of the genus Flavivirus and can cause severe febrile illness. Here, we show that FLJ11286, which we refer to as IRAV, is induced by DENV in an interferon-dependent manner, displays antiviral activity against DENV, and localizes to the DENV replication complex. IRAV is an RNA binding protein and localizes to cytoplasmic processing bodies (P bodies) in uninfected cells, where it interacts with the MOV10 RISC complex RNA helicase, suggesting a role for IRAV in the processing of viral RNA. After DENV infection, IRAV, along with MOV10 and Xrn1, localizes to the DENV replication complex and associates with DENV proteins. Depletion of IRAV or MOV10 results in an increase in viral RNA. These data serve to characterize an interferon-stimulated gene with antiviral activity against DENV, as well as to propose a mechanism of activity involving the processing of viral RNA.
IMPORTANCE Dengue virus, a member of the family Flaviviridae, can result in a life-threatening illness and has a significant impact on global health. Dengue virus has been shown to be particularly sensitive to the effects of type I interferon; however, little is known about the mechanisms by which interferon-stimulated genes function to inhibit viral replication. A better understanding of the interferon-mediated antiviral response to dengue virus may aid in the development of novel therapeutics. Here, we examine the influence of the interferon-stimulated gene IRAV (FLJ11286) on dengue virus replication. We show that IRAV associates with P bodies in uninfected cells and with the dengue virus replication complex after infection. IRAV also interacts with MOV10, depletion of which is associated with increased viral replication. Our results provide insight into a newly identified antiviral gene, as well as broadening our understanding of the innate immune response to dengue virus infection.
Collapse
|
56
|
Kelm NE, Zhu Z, Ding VA, Xiao H, Wakefield MR, Bai Q, Fang Y. The role of IL-29 in immunity and cancer. Crit Rev Oncol Hematol 2016; 106:91-8. [PMID: 27637354 PMCID: PMC7129698 DOI: 10.1016/j.critrevonc.2016.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
Interleukin-29 (IL-29) is a new member of the recently discovered interferon λ (IFNλ) family. It is produced predominantly by maturing dendritic cells and macrophages. It has been implicated in numerous immunological responses and has shown antiviral activity similar to the Type I interferons, although its target cell population is more limited than the Type I interferons. In recent years, the role of IL-29 in the pathogenesis of various cancers has also been extensively studied. In this review, we will discuss the recent advances of IL-29 in immunological processes and the pathogenesis of various cancer.
Collapse
Affiliation(s)
- Noah E Kelm
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Vivi A Ding
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States; The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States; Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States.
| |
Collapse
|
57
|
|
58
|
Chiba Y, Matsumiya T, Satoh T, Hayakari R, Furudate K, Xing F, Yoshida H, Tanji K, Mizukami H, Imaizumi T, Ito E. Retinoic acid-inducible gene-I-like receptor (RLR)-mediated antiviral innate immune responses in the lower respiratory tract: Roles of TRAF3 and TRAF5. Biochem Biophys Res Commun 2015; 467:191-6. [PMID: 26454171 DOI: 10.1016/j.bbrc.2015.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022]
Abstract
Upon viral infection, the cytoplasmic viral sensor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA to activate antiviral signaling to induce type I interferon (IFN). RIG-I-like receptors (RLRs) activate antiviral signaling in a tissue-specific manner. The molecular mechanism underlying antiviral signaling in the respiratory system remains unclear. We studied antiviral signaling in the lower respiratory tract (LRT), which is the site of many harmful viral infections. Epithelial cells of the LRT can be roughly divided into two groups: bronchial epithelial cells (BECs) and pulmonary alveolar epithelial cells (AECs). These two cell types exhibit different phenotypes; therefore, we hypothesized that these cells may play different roles in antiviral innate immunity. We found that BECs exhibited higher antiviral activity than AECs. TNF receptor-associated factor 3 (TRAF3) has been shown to be a crucial molecule in RLR signaling. The expression levels of TRAF3 and TRAF5, which have conserved domains that are nearly identical, in the LRT were examined. We found that the bronchus exhibited the highest expression levels of TRAF3 and TRAF5 in the LRT. These findings suggest the importance of the bronchus in antiviral innate immunity in the LRT and indicate that TRAF3 and TRAF5 may contribute to RLR signaling.
Collapse
Affiliation(s)
- Yuki Chiba
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Tsugumi Satoh
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Furudate
- Department of Dentistry and Oral Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fei Xing
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
59
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|
60
|
Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling. J Immunol Res 2015; 2015:738547. [PMID: 26557722 PMCID: PMC4628668 DOI: 10.1155/2015/738547] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/13/2015] [Accepted: 06/21/2015] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection upregulates genes of the suppressor of cytokine signaling (SOCS) family, which utilize a feedback loop to inhibit type I interferon dependent antiviral signaling pathway. Here, we reconstituted RSV nonstructural (NS) protein expression plasmids (pNS1, pNS2, and pNS1/2) and tested whether NS1 or NS2 would trigger SOCS1 and SOCS3 protein expression. These NS proteins inhibited interferon- (IFN-) α signaling through a mechanism involving the induction of SOCS1 and SOCS3, which appeared to be different from autocrine IFN dependent. NS1 induced both SOCS1 and SOCS3 upregulation, while NS2 only induced SOCS1 expression. The induced expression of SOCS1 and SOCS3 preceded endogenous IFN-signaling activation and inhibited the IFN-inducible antiviral response as well as chemokine induction. Treatments with INF-α and NS proteins both induced SOCS1 expression; however, they had opposing effects on IFN-α-dependent antiviral gene expression. Our results indicate that NS1 and NS2, which induce the expression of SOCS1 or SOCS3, might represent an independent pathway of stimulating endogenous IFN signaling.
Collapse
|
61
|
Ota C, Ishizawa K, Yamada M, Tando Y, He M, Takahashi T, Yamaya M, Yamamoto Y, Yamamoto H, Kure S, Kubo H. Receptor for advanced glycation end products expressed on alveolar epithelial cells is the main target for hyperoxia-induced lung injury. Respir Investig 2015; 54:98-108. [PMID: 26879479 DOI: 10.1016/j.resinv.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Receptor for advanced glycation end products (RAGE) is abundantly expressed on alveolar epithelial cells (AECs) and participates in innate immune responses such as apoptosis and inflammation. However, it is unclear whether RAGE-mediated apoptosis of AECs is associated with hyperoxia-induced lung injury. METHODS We used wild-type and RAGE-knockout C57BL6/J mice in this study. In addition, we developed bone marrow chimeric mouse models expressing RAGE on hematopoietic or non-hematopoietic cells, including lung parenchymal cells, and compared survival ratios and changes in the permeability of the alveolar-capillary barrier after hyperoxia exposure. Further, we prepared single cell suspensions of lung cells and evaluated the apoptosis of AECs or microvascular endothelial cells (MVECs) by using a combination of antibodies and JC-1 dye. We also examined whether RAGE inhibition decreased hyperoxia-induced apoptosis of human lung epithelial cells in vitro. RESULTS After hyperoxia exposure, mice expressing RAGE on lung cells showed lower survival rate and increased alveolar-capillary permeability than mice expressing RAGE on hematopoietic cells. RAGE-expressing AECs showed significantly higher apoptosis than RAGE-knockout AECs after in vivo hyperoxia exposure. The level of hyperoxia-induced apoptosis was not different in MVECs. However, RAGE-null lung epithelial cells showed lower apoptosis than RAGE-expressing cells in vitro. CONCLUSION These results indicated that RAGE on AECs mainly contributed to hyperoxia-induced lung injury and alveolar-capillary barrier disruption.
Collapse
Affiliation(s)
- Chiharu Ota
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kota Ishizawa
- Department of Molecular Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yukiko Tando
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mei He
- Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Toru Takahashi
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
62
|
Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses. J Virol 2015; 89:11935-44. [PMID: 26378172 DOI: 10.1128/jvi.01792-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/09/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Human alveolar epithelial cells (AECs) and alveolar macrophages (AMs) are the first lines of lung defense. Here, we report that AECs are the direct targets for H1N1 viruses that have circulated since the 2009 pandemic (H1N1pdm09). AMs are less susceptible to H1N1pdm09 virus, but they produce significantly more inflammatory cytokines than AECs from the same donor. AECs form an intact epithelial barrier that is destroyed by H1N1pdm09 infection. However, there is significant variation in the cellular permissiveness to H1N1pdm09 infection among different donors. AECs from obese donors appear to be more susceptible to H1N1pdm09 infection, whereas gender, smoking history, and age do not appear to affect AEC susceptibility. There is also a difference in response to different strains of H1N1pdm09 viruses. Compared to A/California04/09 (CA04), A/New York/1682/09 (NY1682) is more infectious and causes more epithelial barrier injury, although it stimulates less cytokine production. We further determined that a single amino acid residue substitution in NY1682 hemagglutinin is responsible for the difference in infectivity. In conclusion, this is the first study of host susceptibility of human lung primary cells and the integrity of the alveolar epithelial barrier to influenza. Further elucidation of the mechanism of increased susceptibility of AECs from obese subjects may facilitate the development of novel protection strategies against influenza virus infection. IMPORTANCE Disease susceptibility of influenza is determined by host and viral factors. Human alveolar epithelial cells (AECs) form the key line of lung defenses against pathogens. Using primary AECs from different donors, we provided cellular level evidence that obesity might be a risk factor for increased susceptibility to influenza. We also compared the infections of two closely related 2009 pandemic H1N1 strains in AECs from the same donor and identified a key viral factor that affected host susceptibility, the dominance of which may be correlated with disease epidemiology. In addition, primary human AECs can serve as a convenient and powerful model to investigate the mechanism of influenza-induced lung injury and determine the effect of genetic and epigenetic factors on host susceptibility to pandemic influenza virus infection.
Collapse
|
63
|
Domm W, Misra RS, O'Reilly MA. Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections. Front Med (Lausanne) 2015; 2:55. [PMID: 26322310 PMCID: PMC4530667 DOI: 10.3389/fmed.2015.00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health.
Collapse
Affiliation(s)
- William Domm
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| | - Ravi S Misra
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA ; Department of Environmental Medicine, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| |
Collapse
|
64
|
Otsubo C, Bharathi S, Uppala R, Ilkayeva OR, Wang D, McHugh K, Zou Y, Wang J, Alcorn JF, Zuo YY, Hirschey MD, Goetzman ES. Long-chain Acylcarnitines Reduce Lung Function by Inhibiting Pulmonary Surfactant. J Biol Chem 2015; 290:23897-904. [PMID: 26240137 DOI: 10.1074/jbc.m115.655837] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
The role of mitochondrial energy metabolism in maintaining lung function is not understood. We previously observed reduced lung function in mice lacking the fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase (LCAD). Here, we demonstrate that long-chain acylcarnitines, a class of lipids secreted by mitochondria when metabolism is inhibited, accumulate at the air-fluid interface in LCAD(-/-) lungs. Acylcarnitine accumulation is exacerbated by stress such as influenza infection or by dietary supplementation with l-carnitine. Long-chain acylcarnitines co-localize with pulmonary surfactant, a unique film of phospholipids and proteins that reduces surface tension and prevents alveolar collapse during breathing. In vitro, the long-chain species palmitoylcarnitine directly inhibits the surface adsorption of pulmonary surfactant as well as its ability to reduce surface tension. Treatment of LCAD(-/-) mice with mildronate, a drug that inhibits carnitine synthesis, eliminates acylcarnitines and improves lung function. Finally, acylcarnitines are detectable in normal human lavage fluid. Thus, long-chain acylcarnitines may represent a risk factor for lung injury in humans with dysfunctional fatty acid oxidation.
Collapse
Affiliation(s)
- Chikara Otsubo
- From the Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Sivakama Bharathi
- From the Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Radha Uppala
- From the Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina 27701, and
| | - Dongning Wang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina 27701, and
| | - Kevin McHugh
- From the Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Ye Zou
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Jieru Wang
- From the Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - John F Alcorn
- From the Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina 27701, and
| | - Eric S Goetzman
- From the Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224,
| |
Collapse
|
65
|
Ito Y, Correll K, Zemans RL, Leslie CC, Murphy RC, Mason RJ. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signaling. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1178-88. [PMID: 26033355 PMCID: PMC4451400 DOI: 10.1152/ajplung.00290.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022] Open
Abstract
The most severe complication of influenza is viral pneumonia, which can lead to the acute respiratory distress syndrome. Alveolar epithelial cells (AECs) are the first cells that influenza virus encounters upon entering the alveolus. Infected epithelial cells produce cytokines that attract and activate neutrophils and macrophages, which in turn induce damage to the epithelial-endothelial barrier. Hepatocyte growth factor (HGF)/c-Met and transforming growth factor-α (TGF-α)/epidermal growth factor receptor (EGFR) are well known to regulate repair of damaged alveolar epithelium by stimulating cell migration and proliferation. Recently, TGF-α/EGFR signaling has also been shown to regulate innate immune responses in bronchial epithelial cells. However, little is known about whether HGF/c-Met signaling alters the innate immune responses and whether the innate immune responses in AECs are regulated by HGF/c-Met and TGF-α/EGFR. We hypothesized that HGF/c-Met and TGF-α/EGFR would regulate innate immune responses to influenza A virus infection in human AECs. We found that recombinant human HGF (rhHGF) and rhTGF-α stimulated primary human AECs to secrete IL-8 and granulocyte macrophage colony-stimulating factor (GM-CSF) strongly and IL-6 and monocyte chemotactic protein 1 moderately. Influenza infection stimulated the secretion of IL-8 and GM-CSF by AECs plated on rat-tail collagen through EGFR activation likely by TGF-α released from AECs and through c-Met activated by HGF secreted from lung fibroblasts. HGF secretion by fibroblasts was stimulated by AEC production of prostaglandin E2 during influenza infection. We conclude that HGF/c-Met and TGF-α/EGFR signaling enhances the innate immune responses by human AECs during influenza infections.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, Denver, Colorado;
| | - Kelly Correll
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Rachel L Zemans
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Aurora, Colorado
| | | | - Robert C Murphy
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, Colorado; Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
66
|
Mao P, Wu S, Li J, Fu W, He W, Liu X, Slutsky AS, Zhang H, Li Y. Human alveolar epithelial type II cells in primary culture. Physiol Rep 2015; 3:e12288. [PMID: 25677546 PMCID: PMC4393197 DOI: 10.14814/phy2.12288] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 01/13/2023] Open
Abstract
Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells.
Collapse
Affiliation(s)
- Pu Mao
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Songling Wu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Jianchun Li
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Wei Fu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Weiqun He
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Arthur S Slutsky
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
- Keenan Research Centre for Biomedical Science of St. Michael's HospitalToronto, Ontario, Canada
- Department of Medicine, University of TorontoToronto, Ontario, Canada
| | - Haibo Zhang
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
- Keenan Research Centre for Biomedical Science of St. Michael's HospitalToronto, Ontario, Canada
- Department of Medicine, University of TorontoToronto, Ontario, Canada
- Department of Anesthesia, University of TorontoToronto, Ontario, Canada
- Department of Physiology, University of TorontoToronto, Ontario, Canada
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases and Guangzhou Institute of Respiratory DiseasesGuangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
67
|
Hofer CC, Woods PS, Davis IC. Infection of mice with influenza A/WSN/33 (H1N1) virus alters alveolar type II cell phenotype. Am J Physiol Lung Cell Mol Physiol 2015; 308:L628-38. [PMID: 25595651 DOI: 10.1152/ajplung.00373.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Abstract
Influenza viruses cause acute respiratory disease of great importance to public health. Alveolar type II (ATII) respiratory epithelial cells are central to normal lung function and are a site of influenza A virus replication in the distal lung. However, the consequences of infection for ATII cell function are poorly understood. To determine the impact of influenza infection on ATII cells we used C57BL/6-congenic SP-C(GFP) mice that express green fluorescent protein (GFP) under the control of the surfactant protein-C (SP-C) promoter, which is only active in ATII cells. Most cells isolated from the lungs of uninfected SP-C(GFP) mice were GFP(+) but did not express the alveolar type I (ATI) antigen podoplanin (PODO). ATII cells were also EpCAM(+) and α2,3-linked sialosaccharide(+). Infection with influenza A/WSN/33 virus caused severe hypoxemia and pulmonary edema. This was accompanied by loss of whole lung GFP fluorescence, reduced ATII cell yields, increased ATII cell apoptosis, reduced SP-C gene and protein expression in ATII cell lysates, and increased PODO gene and protein levels. Flow cytometry indicated that infection decreased GFP(+)/PODO(-) cells and increased GFP(-)/PODO(+) and GFP(-)/PODO(-) cells. Very few GFP(+)/PODO(+) cells were detectable. Finally, infection resulted in a significant decline in EpCAM expression by PODO(+) cells, but had limited effects on α2,3-linked sialosaccharides. Our findings indicate that influenza infection results in a progressive differentiation of ATII cells into ATI-like cells, possibly via an SP-C(-)/PODO(-) intermediate, to replace dying or dead ATI cells. However, impaired SP-C synthesis is likely to contribute significantly to reduced lung compliance in infected mice.
Collapse
Affiliation(s)
- Christian C Hofer
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio; and
| | - Parker S Woods
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Ian C Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
68
|
Abstract
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| | - Richard W. Compans
- IDepartment of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| |
Collapse
|
69
|
Hahn DR, Na CL, Weaver TE. Reserve autophagic capacity in alveolar epithelia provides a replicative niche for influenza A virus. Am J Respir Cell Mol Biol 2014; 51:400-12. [PMID: 24661119 DOI: 10.1165/rcmb.2013-0437oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autophagy contributes to cellular homeostasis through metabolite recycling and degradation of cytotoxic protein aggregates and damaged organelles. Although recent studies have established that the requirement for basal autophagy is largely tissue specific, the importance of autophagy for alveolar epithelial cell homeostasis remains an important knowledge gap. In the present study we generated two mouse models, with > 90% or > 50% recombination at the Atg5 locus in the distal respiratory epithelium, to assess the effect of dose-dependent decreases in autophagy on alveolar homeostasis. A 90% decrease in autophagy was well tolerated in young adult mice but resulted in alveolar septal thickening and altered lung mechanics in aged animals, consistent with accumulation of damage over time. By comparison, a 50% decrease in autophagy had no effect on alveolar structure or function throughout the murine life span, indicating that basal autophagy in this compartment exceeds that required for homeostasis. A 50% decrease in autophagy in the bronchoalveolar epithelium significantly attenuated influenza A/H3N2 viral replication, leading to improved lung structure and function and reduced morbidity and mortality after infection. The reserve of autophagic capacity in the alveolar epithelium may provide a niche for replication of influenza A virus.
Collapse
Affiliation(s)
- David R Hahn
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | |
Collapse
|
70
|
Tantawy MA, Hatesuer B, Wilk E, Dengler L, Kasnitz N, Weiß S, Schughart K. The interferon-induced gene Ifi27l2a is active in lung macrophages and lymphocytes after influenza A infection but deletion of Ifi27l2a in mice does not increase susceptibility to infection. PLoS One 2014; 9:e106392. [PMID: 25184786 PMCID: PMC4153650 DOI: 10.1371/journal.pone.0106392] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 08/06/2014] [Indexed: 12/20/2022] Open
Abstract
Interferons represent one of the first and essential host defense mechanisms after infection, and the activation of the IFN-pathway results in the transcriptional activation of hundreds of interferon-stimulated genes. The alpha-inducible protein 27 like 2A (Ifi27l2a) gene (human synonym: ISG12) is strongly up-regulated in the lung after influenza A infection in mice and has been shown in gene expression studies to be highly correlated to other activated genes. Therefore, we investigated the role of Ifi27l2a for the host defense to influenza A infections in more detail. RT-PCR analyses in non-infected mice demonstrated that Ifi27l2a was expressed in several tissues, including the lung. Detailed analyses of reporter gene expression in lungs from Ifi27l2a-LacZ mice revealed that Ifi27l2a was expressed in macrophages and lymphocytes but not in alveolar cells or bronchiolar epithelium cells. The number of macrophages and lymphocyte strongly increased in the lung after infection, but no significant increase in expression levels of the LacZ reporter gene was found within individual immune cells. Also, no reporter gene expression was found in bronchiolar epithelial cells, alveolar cells or infiltrating neutrophils after infection. Thus, up-regulation of Ifi27l2a in infected lungs is mainly due to the infiltration of macrophages and lymphocytes. Most surprisingly, deletion of Ifi27l2a in mouse knock-out lines did not result in increased susceptibility to infections with H1N1 or H7N7 influenza A virus compared to wild type C57BL/6N mice, suggesting a less important role of the gene for the host response to influenza infections than for bacterial infections.
Collapse
Affiliation(s)
- Mohamed A. Tantawy
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Leonie Dengler
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
| | - Nadine Kasnitz
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Hannover, Germany
| | - Siegfried Weiß
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Germany
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
71
|
Hirata N, Suizu F, Matsuda-Lennikov M, Edamura T, Bala J, Noguchi M. Inhibition of Akt kinase activity suppresses entry and replication of influenza virus. Biochem Biophys Res Commun 2014; 450:891-8. [PMID: 24971535 DOI: 10.1016/j.bbrc.2014.06.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
The possibility of the pandemic spread of influenza viruses highlights the need for an effective cure for this life-threatening disease. Influenza A virus, belonging to a family of orthomyxoviruses, is a negative-strand RNA virus which encodes 11 viral proteins. A numbers of intracellular signaling pathways in the host cells interact with influenza the viral proteins, which affect various stages of viral infection and replication. In this study, we investigated how inhibition of Akt kinase activity impacts on influenza virus infection by using "Akt-in", a peptide Akt inhibitor. In PR8 influenza-infected A549 cells, Akt interacted with the NS1 (Non structural protein 1), and hence increased phosphorylation of Akt kinase activity and NS1. Treatment of cells with either "TCL1- or TCL1b-based Akt-in" efficiently suppressed Akt kinase activity while decreasing the levels of phosphorylated NS1; this, in turn, inhibited viral replication in a dose- and time-dependent manner. The inhibitory effect on viral replication appears to not be due to inhibition of the production of inflammatory cytokines, including IL-6 and IL-8, in the host cells. Inhibition of Akt kinase activity in the host cells inhibited the efficiency of viral entry, which is associated with decreased levels of phosphorylated glycogen synthase kinase 3, a substrate of Akt. Thus inhibition of Akt kinase activity in host cells may have therapeutic advantages for influenza virus infection by inhibiting viral entry and replication.
Collapse
Affiliation(s)
- Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Mami Matsuda-Lennikov
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuma Edamura
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Jyoti Bala
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
72
|
Lian JQ, Yang XF, Zhao RR, Zhao YY, Li Y, Zhang Y, Huang CX. Expression profiles of circulating cytokines, chemokines and immune cells in patients with hepatitis B virus infection. HEPATITIS MONTHLY 2014; 14:e18892. [PMID: 24976843 PMCID: PMC4071355 DOI: 10.5812/hepatmon.18892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune cells and molecules play a vital role in initiating, maintaining, regulating immunological homeostasis and inflammation in many pathological and physiological processes; however, the changes on expressions and functions of these cells and molecules in hepatitis B virus (HBV) infection have not been elucidated well. OBJECTIVES The current study aimed to determine the expression pattern of different cytokines, chemokines, immune cells in HBV infection and their association with disease progression. PATIENTS AND METHODS Sixty-nine patients with chronic HBV infection were enrolled. Five immune cell subsets and 46 cytokines and chemokines were analyzed by flow cytometry and Luminex 200. RESULTS In comparison to healthy individuals and asymptomatic HBV carriers, expression of CXCL9, CXCL10, CXCL11, and IL-10 were elevated in patients with chronic active HBV and had positive correlation with ALT levels. In contrast, G-CSF, MCP-3, and IFN-γ levels were significantly decreased in patients with chronic active HBV infection in contrast to carriers and healthy individuals; however, these down regulations did not show any correlation with either virological findings or liver inflammation. Although the proportion of CD4(+) CD25 (high) regulatory T cells (Tregs) was higher in patients with HBV infection than in healthy controls, no correlations were found between Tregs and other cytokines or chemokines. CONCLUSIONS CXCR3-associated chemokines might contribute to liver inflammation in chronic hepatitis B, while MCP-3 and G-CSF were inhibited by HBV infection. Host immune response was suppressed as manifested by an increase in CD4(+) CD25(high) Tregs and IL-10 as well as a decrease in IFN-γ. Exploiting the expression pattern of cytokine and chemokine may help to develop a better understanding of chronic HBV infection pathogenesis.
Collapse
Affiliation(s)
- Jian-Qi Lian
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiao-Fei Yang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Rong-Rong Zhao
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan-Yan Zhao
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Ye Zhang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Corresponding Authors: Ye Zhang, Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China. Tel: +86-2984777595, Fax: +86-2983537377, E-mail: Chang-Xing Huang, Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China. Tel: +86-2984777652, Fax: +86-2983537377, E-mail:
| | - Chang-Xing Huang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Corresponding Authors: Ye Zhang, Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China. Tel: +86-2984777595, Fax: +86-2983537377, E-mail: Chang-Xing Huang, Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, China. Tel: +86-2984777652, Fax: +86-2983537377, E-mail:
| |
Collapse
|
73
|
Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob Agents Chemother 2014; 58:3689-96. [PMID: 24752266 DOI: 10.1128/aac.02798-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The influenza pH1N1 virus caused a global flu pandemic in 2009 and continues manifestation as a seasonal virus. Better understanding of the virus-host cell interaction could result in development of better prevention and treatment options. Here we show that the Akt inhibitor MK2206 blocks influenza pH1N1 virus infection in vitro. In particular, at noncytotoxic concentrations, MK2206 alters Akt signaling and inhibits endocytic uptake of the virus. Interestingly, MK2206 is unable to inhibit H3N2, H7N9, and H5N1 viruses, indicating that pH1N1 evolved specific requirements for efficient infection. Thus, Akt signaling could be exploited further for development of better therapeutics against pH1N1 virus.
Collapse
|
74
|
Goetzman ES, Alcorn JF, Bharathi SS, Uppala R, McHugh KJ, Kosmider B, Chen R, Zuo YY, Beck ME, McKinney RW, Skilling H, Suhrie KR, Karunanidhi A, Yeasted R, Otsubo C, Ellis B, Tyurina YY, Kagan VE, Mallampalli RK, Vockley J. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction. J Biol Chem 2014; 289:10668-10679. [PMID: 24591516 DOI: 10.1074/jbc.m113.540260] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| | - John F Alcorn
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sivakama S Bharathi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Radha Uppala
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Kevin J McHugh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Beata Kosmider
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Rimei Chen
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Megan E Beck
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Richard W McKinney
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Helen Skilling
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Kristen R Suhrie
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Anuradha Karunanidhi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Renita Yeasted
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Chikara Otsubo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Bryon Ellis
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Rama K Mallampalli
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15213
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
75
|
New Wisdom to Defy an Old Enemy: Summary from a scientific symposium at the 4th Influenza Vaccines for the World (IVW) 2012 Congress, 11 October, Valencia, Spain. Vaccine 2014; 31 Suppl 1:A1-20. [PMID: 23587330 DOI: 10.1016/j.vaccine.2013.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Both seasonal and pandemic influenza cause considerable morbidity and mortality globally. In addition, the ongoing threat of new, unpredictable influenza pandemics from emerging variant strains cannot be underestimated. Recently bioCSL (previously known as CSL Biotherapies) sponsored a symposium 'New Wisdom to Defy an Old Enemy' at the 4th Influenza Vaccines for the World Congress in Valencia, Spain. This symposium brought together a renowned faculty of experts to discuss lessons from past experience, novel influenza vaccine developments, and new methods to increase vaccine acceptance and coverage. Specific topics reviewed and discussed included new vaccine development efforts focused on improving efficacy via alternative administration routes, dose modifications, improved adjuvants, and the use of master donor viruses. Improved safety was also discussed, particularly the new finding of an excess of febrile reactions isolated to children who received the 2010 Southern Hemisphere (SH) trivalent inactivated influenza vaccine (TIV). Significant work has been done to both identify the cause and minimize the risk of febrile reactions in children. Other novel prophylactic and therapeutic advances were discussed including immunotherapy. Standard IVIg and hIVIg have been used in ferret studies and human case reports with promising results. New adjuvants, such as ISCOMATRIX™ adjuvant, were noted to provide single-dose, prolonged protection with seasonal vaccine after lethal H5N1 virus challenge in a ferret model of human influenza disease. The data suggest that adjuvanted seasonal influenza vaccines may provide broader protection than unadjuvanted vaccines. The use of an antigen-formulated vaccine to induce broad protection between pandemics that could bridge the gap between pandemic declaration and the production of a homologous vaccine was also discussed. Finally, despite the availability of effective vaccines, most current efforts to increase influenza vaccine coverage rates to higher levels (i.e., above 70-80%) have been ineffective in highly developed countries where the vaccine is used, hindered by the public's skepticism towards vaccines in general. New educational and social media methods to increase vaccine acceptance and coverage were discussed. While the first priority should be the development of improved influenza vaccines, a particular focus on the aging global population is critical. It is also important to draw lessons from other academic disciplines that can help to inform vaccine education programs, policy, and communication. By tailoring communications and patient education using an understanding of cognitive bias and the model of preferred cognitive styles, the likelihood of effecting desirable health decisions can be maximized, leading to improved vaccine coverage and control of influenza and other vaccine-preventable diseases.
Collapse
|
76
|
Nayak MK, Agrawal AS, Bose S, Naskar S, Bhowmick R, Chakrabarti S, Sarkar S, Chawla-Sarkar M. Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses. J Antimicrob Chemother 2014; 69:1298-310. [DOI: 10.1093/jac/dkt534] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
77
|
Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun 2013; 21:73-98. [PMID: 24217220 DOI: 10.1177/1753425913508992] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A viruses (IAVs) remain a major health threat and a prime example of the significance of innate immunity. Our understanding of innate immunity to IAV has grown dramatically, yielding new concepts that change the way we view innate immunity as a whole. Examples include the role of p53, autophagy, microRNA, innate lymphocytes, endothelial cells and gut commensal bacteria in pulmonary innate immunity. Although the innate response is largely beneficial, it also contributes to major complications of IAV, including lung injury, bacterial super-infection and exacerbation of reactive airways disease. Research is beginning to dissect out which components of the innate response are helpful or harmful. IAV uses its limited genetic complement to maximum effect. Several viral proteins are dedicated to combating innate responses, while other viral structural or replication proteins multitask as host immune modulators. Many host innate immune proteins also multitask, having roles in cell cycle, signaling or normal lung biology. We summarize the plethora of new findings and attempt to integrate them into the larger picture of how humans have adapted to the threat posed by this remarkable virus. We explore how our expanded knowledge suggests ways to modulate helpful and harmful inflammatory responses, and develop novel treatments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| |
Collapse
|
78
|
Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection. J Virol 2013; 87:11884-93. [PMID: 23986597 DOI: 10.1128/jvi.01461-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent evidence has identified the role of granzyme B- and perforin-expressing CD4(+) T cells with cytotoxic potential in antiviral immunity. However, the in vivo cytokine cues and downstream pathways governing the differentiation of these cells are unclear. Here, we have identified that CD4(+) T cells with cytotoxic potential are specifically induced at the site of infection during influenza virus infection. The development of CD4(+) T cells with cytotoxic potential in vivo was dependent on the cooperation of the STAT2-dependent type I interferon signaling and the interleukin-2/interleukin-2 receptor alpha pathway for the induction of the transcription factors T-bet and Blimp-1. We showed that Blimp-1 promoted the binding of T-bet to the promoters of cytolytic genes in CD4(+) T cells and was required for the cytolytic function of the in vitro- and in vivo-generated CD4(+) T cells with cytotoxic potential. Thus, our data define the molecular basis of regulation of the in vivo development of this functionally cytotoxic Th subset during acute respiratory virus infection. The potential implications for the functions of these cells are discussed.
Collapse
|
79
|
Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: cytopathic effects and innate immune response. PLoS One 2013; 8:e70129. [PMID: 23894604 PMCID: PMC3722178 DOI: 10.1371/journal.pone.0070129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
Because they are the natural target for respiratory pathogens, primary human respiratory epithelial cells provide the ideal in vitro system for isolation and study of human respiratory viruses, which display a high degree of cell, tissue, and host specificity. Human coronavirus HKU1, first discovered in 2005, has a worldwide prevalence and is associated with both upper and lower respiratory tract disease in both children and adults. Research on HCoV-HKU1 has been difficult because of its inability to be cultured on continuous cell lines and only recently it was isolated from clinical specimens using primary human, ciliated airway epithelial cells. Here we demonstrate that HCoV-HKU1 can infect and be serially propagated in primary human alveolar type II cells at the air-liquid interface. We were not able to infect alveolar type I-like cells or alveolar macrophages. Type II alveolar cells infected with HCoV-HKU1 demonstrated formation of large syncytium. At 72 hours post inoculation, HCoV-HKU1 infection of type II cells induced increased levels of mRNAs encoding IL29,CXCL10, CCL5, and IL-6 with no significant increases in the levels of IFNβ. These studies demonstrate that type II cells are a target cell for HCoV-HKU1 infection in the lower respiratory tract, that type II alveolar cells are immune-competent in response to infection exhibiting a type III interferon and proinflammatory chemokine response, and that cell to cell spread may be a major factor for spread of infection. Furthermore, these studies demonstrate that human alveolar cells can be used to isolate and study novel human respiratory viruses that cause lower respiratory tract disease.
Collapse
|
80
|
Zhou B, Pearce MB, Li Y, Wang J, Mason RJ, Tumpey TM, Wentworth DE. Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS One 2013; 8:e67616. [PMID: 23799150 PMCID: PMC3683066 DOI: 10.1371/journal.pone.0067616] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/10/2013] [Indexed: 12/15/2022] Open
Abstract
The 2009/2010 pandemic influenza virus (H1N1pdm) contains an avian-lineage PB2 gene that lacks E627K and D701N substitutions important in the pathogenesis and transmission of avian-origin viruses in humans or other mammals. Previous studies have shown that PB2-627K is not necessary because of a compensatory Q591R substitution. The role that PB2-701N plays in the H1N1pdm phenotype is not well understood. Therefore, PB2-D701N was introduced into an H1N1pdm virus (A/New York/1682/2009 (NY1682)) and analyzed in vitro and in vivo. Mini-genome replication assay, in vitro replication characteristics in cell lines, and analysis in the mouse and ferret models demonstrated that PB2-D701N increased virus replication rates and resulted in more severe pathogenicity in mice and more efficient transmission in ferrets. In addition, compared to the NY1682-WT virus, the NY1682-D701N mutant virus induced less IFN-λ and replicated to a higher titer in primary human alveolar epithelial cells. These findings suggest that the acquisition of the PB2-701N substitution by H1N1pdm viruses may result in more severe disease or increase transmission in humans.
Collapse
Affiliation(s)
- Bin Zhou
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
| | - Melissa B. Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Yan Li
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Robert J. Mason
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Terrence M. Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
81
|
Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, Ito Y, Holmes KV, Mason RJ. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 2013; 48:742-8. [PMID: 23418343 PMCID: PMC3727876 DOI: 10.1165/rcmb.2012-0339oc] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/16/2012] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-coronavirus (CoV) produces a devastating primary viral pneumonia with diffuse alveolar damage and a marked increase in circulating cytokines. One of the major cell types to be infected is the alveolar type II cell. However, the innate immune response of primary human alveolar epithelial cells infected with SARS-CoV has not been defined. Our objectives included developing a culture system permissive for SARS-CoV infection in primary human type II cells and defining their innate immune response. Culturing primary human alveolar type II cells at an air-liquid interface (A/L) improved their differentiation and greatly increased their susceptibility to infection, allowing us to define their primary interferon and chemokine responses. Viral antigens were detected in the cytoplasm of infected type II cells, electron micrographs demonstrated secretory vesicles filled with virions, virus RNA concentrations increased with time, and infectious virions were released by exocytosis from the apical surface of polarized type II cells. A marked increase was evident in the mRNA concentrations of interferon-β and interferon-λ (IL-29) and in a large number of proinflammatory cytokines and chemokines. A surprising finding involved the variability of expression of angiotensin-converting enzyme-2, the SARS-CoV receptor, in type II cells from different donors. In conclusion, the cultivation of alveolar type II cells at an air-liquid interface provides primary cultures in which to study the pulmonary innate immune responses to infection with SARS-CoV, and to explore possible therapeutic approaches to modulating these innate immune responses.
Collapse
Affiliation(s)
- Zhaohui Qian
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado; and
| | | | - Lauren Oko
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Karen Edeen
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Andrew Berglund
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Yoko Ito
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Robert J. Mason
- Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|
82
|
Kebaabetswe LP, Haick AK, Miura TA. Differentiated phenotypes of primary murine alveolar epithelial cells and their susceptibility to infection by respiratory viruses. Virus Res 2013; 175:110-9. [PMID: 23639425 PMCID: PMC3683362 DOI: 10.1016/j.virusres.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022]
Abstract
Alveolar epithelial cells are important targets in severe respiratory viral infection. Murine ATI and ATII cultures are an in vitro model for viral pathogenesis. ATI cells are infected by IAV and MHV-1, not mouse-adapted SARS-CoV. ATII cells are infected by IAV, MHV-1, and mouse-adapted SARS-CoV. ATI and ATII cells express cytokines upon infection by respiratory viruses.
Severe respiratory viral infections are associated with spread to the alveoli of the lungs. There are multiple murine models of severe respiratory viral infections that have been used to identify viral and host factors that contribute to disease severity. Primary cultures of murine alveolar epithelial cells provide a robust in vitro model to perform mechanistic studies that can be correlated with in vivo studies to identify cell type-specific factors that contribute to pathology within the alveoli of the lung during viral infection. In this study, we established an in vitro model to compare the responses of type I (ATI) and type II (ATII) alveolar epithelial cells to infection by respiratory viruses used in murine models: mouse-adapted severe acute respiratory syndrome-associated coronavirus (SARS-CoV, v2163), murine coronavirus MHV-1, and influenza A (H1N1) virus, strain PR8. Murine alveolar cells cultured to maintain an ATII cell phenotype, determined by expression of LBP180, were susceptible to infection by all three viruses. In contrast, ATII cells that were cultured to trans-differentiate into an ATI-like cell phenotype were susceptible to MHV-1 and PR8, but not mouse-adapted SARS-CoV. Epithelial cells produce cytokines in response to viral infections, thereby activating immune responses. Thus, virus-induced cytokine expression was quantified in ATI and ATII cells. Both cell types had increased expression of IL-1β mRNA upon viral infection, though at different levels. While MHV-1 and PR8 induced expression of a number of shared cytokines in ATI cells, there were several cytokines whose expression was induced uniquely by MHV-1 infection. In summary, ATI and ATII cells exhibited differential susceptibilities and cytokine responses to infection by respiratory viruses. This in vitro model will be critical for future studies to determine the roles of these specialized cell types in the pathogenesis of respiratory viral infection.
Collapse
Affiliation(s)
| | | | - Tanya A. Miura
- Corresponding author at: 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051, USA. Tel.: +1 208 885 4940; fax: +1 208 885 7905.
| |
Collapse
|
83
|
Hillaire MLB, Haagsman HP, Osterhaus ADME, Rimmelzwaan GF, van Eijk M. Pulmonary surfactant protein D in first-line innate defence against influenza A virus infections. J Innate Immun 2013; 5:197-208. [PMID: 23391661 DOI: 10.1159/000346374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/06/2012] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses (IAV) cause respiratory tract infections annually associated with excess mortality and morbidity. Nonspecific, innate immune mechanisms play a key role in protection against viral invasion at early stages of infection. A soluble protein present in mucosal secretions of the lung, surfactant protein D (SP-D), is an important component of this initial barrier that helps to prevent and limit IAV infections of the respiratory epithelium. This collagenous C-type lectin binds IAVs and thereby inhibits attachment and entry of the virus but also contributes to enhanced clearance of SP-D-opsonized virus via interactions with phagocytic cells. In addition, SP-D modulates the inflammatory response and helps to maintain a balance between effective neutralization/killing of IAV, and protection against alveolar damage resulting from IAV-induced excessive inflammatory responses. The mechanisms of interaction between SP-D and IAV not only depend on the structure and binding properties of SP-D but also on strain-specific features of IAV, and both issues will be discussed. SP-D from pigs exhibits distinct anti-IAV properties and is discussed in more detail. Finally, the potential of SP-D as a prophylactic and/or therapeutic antiviral agent to protect humans against infections by IAV is discussed.
Collapse
Affiliation(s)
- Marine L B Hillaire
- Erasmus Medical Centre, Department of Viroscience, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
84
|
Gereke M, Autengruber A, Gröbe L, Jeron A, Bruder D, Stegemann-Koniszewski S. Flow cytometric isolation of primary murine type II alveolar epithelial cells for functional and molecular studies. J Vis Exp 2012:4322. [PMID: 23287741 DOI: 10.3791/4322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Throughout the last years, the contribution of alveolar type II epithelial cells (AECII) to various aspects of immune regulation in the lung has been increasingly recognized. AECII have been shown to participate in cytokine production in inflamed airways and to even act as antigen-presenting cells in both infection and T-cell mediated autoimmunity (1-8). Therefore, they are especially interesting also in clinical contexts such as airway hyper-reactivity to foreign and self-antigens as well as infections that directly or indirectly target AECII. However, our understanding of the detailed immunologic functions served by alveolar type II epithelial cells in the healthy lung as well as in inflammation remains fragmentary. Many studies regarding AECII function are performed using mouse or human alveolar epithelial cell lines (9-12). Working with cell lines certainly offers a range of benefits, such as the availability of large numbers of cells for extensive analyses. However, we believe the use of primary murine AECII allows a better understanding of the role of this cell type in complex processes like infection or autoimmune inflammation. Primary murine AECII can be isolated directly from animals suffering from such respiratory conditions, meaning they have been subject to all additional extrinsic factors playing a role in the analyzed setting. As an example, viable AECII can be isolated from mice intranasally infected with influenza A virus, which primarily targets these cells for replication (13). Importantly, through ex vivo infection of AECII isolated from healthy mice, studies of the cellular responses mounted upon infection can be further extended. Our protocol for the isolation of primary murine AECII is based on enzymatic digestion of the mouse lung followed by labeling of the resulting cell suspension with antibodies specific for CD11c, CD11b, F4/80, CD19, CD45 and CD16/CD32. Granular AECII are then identified as the unlabeled and sideward scatter high (SSC(high)) cell population and are separated by fluorescence activated cell sorting (3). In comparison to alternative methods of isolating primary epithelial cells from mouse lungs, our protocol for flow cytometric isolation of AECII by negative selection yields untouched, highly viable and pure AECII in relatively short time. Additionally, and in contrast to conventional methods of isolation by panning and depletion of lymphocytes via binding of antibody-coupled magnetic beads (14, 15), flow cytometric cell-sorting allows discrimination by means of cell size and granularity. Given that instrumentation for flow cytometric cell sorting is available, the described procedure can be applied at relatively low costs. Next to standard antibodies and enzymes for lung disintegration, no additional reagents such as magnetic beads are required. The isolated cells are suitable for a wide range of functional and molecular studies, which include in vitro culture and T-cell stimulation assays as well as transcriptome, proteome or secretome analyses (3, 4).
Collapse
Affiliation(s)
- Marcus Gereke
- Research Group Immune Regulation, Helmholtz Centre for Infection Research
| | | | | | | | | | | |
Collapse
|
85
|
Schaap-Nutt A, Liesman R, Bartlett EJ, Scull MA, Collins PL, Pickles RJ, Schmidt AC. Human parainfluenza virus serotypes differ in their kinetics of replication and cytokine secretion in human tracheobronchial airway epithelium. Virology 2012; 433:320-8. [PMID: 22959894 PMCID: PMC3469718 DOI: 10.1016/j.virol.2012.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/15/2012] [Accepted: 08/20/2012] [Indexed: 01/02/2023]
Abstract
Human parainfluenza viruses (PIVs) cause acute respiratory illness in children, the elderly, and immunocompromised patients. PIV3 is a common cause of bronchiolitis and pneumonia, whereas PIV1 and 2 are frequent causes of upper respiratory tract illness and croup. To assess how PIV1, 2, and 3 differ with regard to replication and induction of type I interferons, interleukin-6, and relevant chemokines, we infected primary human airway epithelium (HAE) cultures from the same tissue donors and examined replication kinetics and cytokine secretion. PIV1 replicated to high titer yet did not induce cytokine secretion until late in infection, while PIV2 replicated less efficiently but induced an early cytokine peak. PIV3 replicated to high titer but induced a slower rise in cytokine secretion. The T cell chemoattractants CXCL10 and CXCL11 were the most abundant chemokines induced. Differences in replication and cytokine secretion might explain some of the differences in PIV serotype-specific pathogenesis and epidemiology.
Collapse
MESH Headings
- Bronchi/immunology
- Bronchi/virology
- Cells, Cultured
- Chemokines/biosynthesis
- Cytokines/biosynthesis
- Cytokines/genetics
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Kinetics
- Parainfluenza Virus 1, Human/classification
- Parainfluenza Virus 1, Human/immunology
- Parainfluenza Virus 1, Human/pathogenicity
- Parainfluenza Virus 1, Human/physiology
- Parainfluenza Virus 2, Human/classification
- Parainfluenza Virus 2, Human/immunology
- Parainfluenza Virus 2, Human/pathogenicity
- Parainfluenza Virus 2, Human/physiology
- Parainfluenza Virus 3, Human/classification
- Parainfluenza Virus 3, Human/immunology
- Parainfluenza Virus 3, Human/pathogenicity
- Parainfluenza Virus 3, Human/physiology
- Polymorphism, Single Nucleotide
- Respiratory Mucosa/immunology
- Respiratory Mucosa/virology
- Serotyping
- Species Specificity
- Trachea/immunology
- Trachea/virology
- Virus Replication
Collapse
Affiliation(s)
- Anne Schaap-Nutt
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-2007, USA
| | - Rachael Liesman
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill. Chapel Hill, NC 27599-7248, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. Chapel Hill, NC 27599-7248, USA
| | - Emmalene J. Bartlett
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-2007, USA
| | - Margaret A. Scull
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill. Chapel Hill, NC 27599-7248, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. Chapel Hill, NC 27599-7248, USA
| | - Peter L. Collins
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-2007, USA
| | - Raymond J. Pickles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill. Chapel Hill, NC 27599-7248, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. Chapel Hill, NC 27599-7248, USA
| | - Alexander C. Schmidt
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-2007, USA
| |
Collapse
|
86
|
Messier EM, Mason RJ, Kosmider B. Efficient and rapid isolation and purification of mouse alveolar type II epithelial cells. Exp Lung Res 2012; 38:363-73. [DOI: 10.3109/01902148.2012.713077] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
87
|
O'Reilly MA, Yee M, Buczynski BW, Vitiello PF, Keng PC, Welle SL, Finkelstein JN, Dean DA, Lawrence BP. Neonatal oxygen increases sensitivity to influenza A virus infection in adult mice by suppressing epithelial expression of Ear1. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:441-51. [PMID: 22677423 PMCID: PMC3409430 DOI: 10.1016/j.ajpath.2012.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/18/2012] [Accepted: 05/02/2012] [Indexed: 01/10/2023]
Abstract
Oxygen exposure in premature infants is a major risk factor for bronchopulmonary dysplasia and can impair the host response to respiratory viral infections later in life. Similarly, adult mice exposed to hyperoxia as neonates display alveolar simplification associated with a reduced number of alveolar epithelial type II cells and exhibit persistent inflammation, fibrosis, and mortality when infected with influenza A virus. Because type II cells participate in innate immunity and alveolar repair, their loss may contribute to oxygen-mediated sensitivity to viral infection. A genomewide screening of type II cells identified eosinophil-associated RNase 1 (Ear1). Ear1 was also detected in airway epithelium and was reduced in lungs of mice exposed to neonatal hyperoxia. Electroporation-mediated gene delivery of Ear1 to the lung before infection successfully reduced viral replication and leukocyte recruitment during infection. It also diminished the enhanced morbidity and mortality attributed to neonatal hyperoxia. These findings demonstrate that novel epithelial expression of Ear1 functions to limit influenza A virus infection, and its loss contributes to oxygen-associated epithelial injury and fibrosis after infection. People born prematurely may have defects in epithelial innate immunity that increase their risk for respiratory viral infections.
Collapse
Affiliation(s)
- Michael A O'Reilly
- Department of Pediatrics, The University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Weinheimer VK, Becher A, Tönnies M, Holland G, Knepper J, Bauer TT, Schneider P, Neudecker J, Rückert JC, Szymanski K, Temmesfeld-Wollbrueck B, Gruber AD, Bannert N, Suttorp N, Hippenstiel S, Wolff T, Hocke AC. Influenza A viruses target type II pneumocytes in the human lung. J Infect Dis 2012; 206:1685-94. [PMID: 22829640 PMCID: PMC7107318 DOI: 10.1093/infdis/jis455] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background. Highly pathogenic avian H5N1 influenza viruses preferentially infect alveolar type II pneumocytes in human lung. However, it is unknown whether this cellular tropism contributes to high viral virulence because the primary target cells of other influenza viruses have not been systematically studied. Methods. We provide the first comparison of the replication, tropism, and cytokine induction of human, highly pathogenic avian influenza A virus subtype H5N1 and other animal influenza A viruses in primary human lung organ cultures. Results. Subytpe H5N1 and human-adapted subtype H1N1 and H3N2 viruses replicated efficiently in the lung tissue, whereas classic swine and low-pathogenicity avian viruses propagated only poorly. Nevertheless, all viruses examined were detected almost exclusively in type II pneumocytes, with a minor involvement of alveolar macrophages. Infection with avian viruses that have a low and high pathogenicity provoked a pronounced induction of cytokines and chemokines, while human and pandemic H1N1-2009 viruses triggered only weak responses. Conclusions. These findings show that differences in the pathogenic potential of influenza A viruses in the human lung cannot be attributed to a distinct cellular tropism. Rather, high or low viral pathogenicity is associated with a strain-specific capacity to productively replicate in type II pneumocytes and to cope with the induced cytokine response.
Collapse
Affiliation(s)
- Viola K Weinheimer
- Division of Influenza/Respiratory Viruses, Robert Koch Institut, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Pommerenke C, Wilk E, Srivastava B, Schulze A, Novoselova N, Geffers R, Schughart K. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS One 2012; 7:e41169. [PMID: 22815957 PMCID: PMC3398930 DOI: 10.1371/journal.pone.0041169] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
An infection represents a highly dynamic process involving complex biological responses of the host at many levels. To describe such processes at a global level, we recorded gene expression changes in mouse lungs after a non-lethal infection with influenza A virus over a period of 60 days. Global analysis of the large data set identified distinct phases of the host response. The increase in interferon genes and up-regulation of a defined NK-specific gene set revealed the initiation of the early innate immune response phase. Subsequently, infiltration and activation of T and B cells could be observed by an augmentation of T and B cell specific signature gene expression. The changes in B cell gene expression and preceding chemokine subsets were associated with the formation of bronchus-associated lymphoid tissue. In addition, we compared the gene expression profiles from wild type mice with Rag2 mutant mice. This analysis readily demonstrated that the deficiency in the T and B cell responses in Rag2 mutants could be detected by changes in the global gene expression patterns of the whole lung. In conclusion, our comprehensive gene expression study describes for the first time the entire host response and its kinetics to an acute influenza A infection at the transcriptome level.
Collapse
Affiliation(s)
- Claudia Pommerenke
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
90
|
Kosmider B, Messier EM, Janssen WJ, Nahreini P, Wang J, Hartshorn KL, Mason RJ. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus. Respir Res 2012; 13:43. [PMID: 22672594 PMCID: PMC3520784 DOI: 10.1186/1465-9921-13-43] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/16/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Influenza A virus (IAV) infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2) activates the majority of antioxidant genes. METHODS Alveolar type II (ATII) cells and alveolar macrophages (AM) were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like) cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8) virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2) or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. RESULTS We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis) but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and oxidative stress. However, AdNrf2 did not increase IFN-λ1 (IL-29) levels. CONCLUSIONS Our results indicate that IAV induces alveolar epithelial injury and that Nrf2 protects these cells from the cytopathic effects of IAV likely by increasing the expression of antioxidant genes. Identifying the pathways involved in protecting cells from injury during influenza infection may be particularly important for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Beata Kosmider
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Wang J, Nikrad MP, Travanty EA, Zhou B, Phang T, Gao B, Alford T, Ito Y, Nahreini P, Hartshorn K, Wentworth D, Dinarello CA, Mason RJ. Innate immune response of human alveolar macrophages during influenza A infection. PLoS One 2012; 7:e29879. [PMID: 22396727 PMCID: PMC3292548 DOI: 10.1371/journal.pone.0029879] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/06/2011] [Indexed: 12/11/2022] Open
Abstract
Alveolar macrophages (AM) are one of the key cell types for initiating inflammatory and immune responses to influenza virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a contemporary H3N2 influenza virus A/New York/238/2005 (NY/238). To understand the local cellular response, we also evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8. Inhibition of TNF and/or IL-1β activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type lectin domain family 7 member A (CLEC7A), macrophage scavenger receptor 1 (MSR1), and CD36, and reduced uptake of zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local components of innate immune response might provide a strategy for controlling influenza A infection-induced proinflammatory response in vivo.
Collapse
Affiliation(s)
- Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Rzepka JP, Haick AK, Miura TA. Virus-infected alveolar epithelial cells direct neutrophil chemotaxis and inhibit their apoptosis. Am J Respir Cell Mol Biol 2012; 46:833-41. [PMID: 22312020 DOI: 10.1165/rcmb.2011-0230oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The alveolar epithelium is a critical target for pulmonary viruses and can produce proinflammatory cytokines and chemokines upon viral infection. However, the molecular interactions between virus-infected alveolar epithelial cells and inflammatory cells, including polymorphonuclear leukocytes (PMNs), have not been thoroughly characterized. Rat coronavirus (RCoV) is used as a model to study the immune response to viral infection in the lung of the natural host. We have developed an in vitro model to characterize the response of PMNs to RCoV-infected type I-like alveolar epithelial (AT1) cells, the primary target for RCoV infection in the alveoli. Multiple CXC chemokines that signal through CXCR2 were required for PMN chemotaxis toward medium from RCoV-infected AT1-like cells (RCoV-AT1). Furthermore, RCoV-AT1 inhibited spontaneous PMN apoptosis, including activation of effector caspase 3 and initiator caspases 8 and 9. Use of a selective inhibitor of CXCR2, SB265610, demonstrated that CXCR2 signaling was required for RCoV-AT1-mediated inhibition of PMN apoptosis. These data suggest that CXC chemokines produced by RCoV-infected AT1-like cells inhibit PMN apoptosis during infection. These studies provide new insight into the molecular mechanisms whereby alveolar epithelial cells direct the functions of PMNs during viral infection of the lung.
Collapse
Affiliation(s)
- Joanna P Rzepka
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | |
Collapse
|
93
|
Kosmider B, Messier EM, Chu HW, Mason RJ. Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One 2011; 6:e26059. [PMID: 22163265 PMCID: PMC3233536 DOI: 10.1371/journal.pone.0026059] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022] Open
Abstract
Background Cigarette smoke (CS) is a highly complex mixture and many of its components are known carcinogens, mutagens, and other toxic substances. CS induces oxidative stress and cell death, and this cell toxicity plays a key role in the pathogenesis of several pulmonary diseases. Methodology/Principal Findings We studied the effect of cigarette smoke extract (CSE) in human alveolar epithelial type I-like (ATI-like) cells. These are isolated type II cells that are differentiating toward the type I cell phenotype in vitro and have lost many type II cell markers and express type I cell markers. ATI-like cells were more sensitive to CSE than alveolar type II cells, which maintained their differentiated phenotype in vitro. We observed disruption of mitochondrial membrane potential, apoptosis and necrosis that were detected by double staining with acridine orange and ethidium bromide or Hoechst 33342 and propidium iodide and TUNEL assay after treatment with CSE. We also detected caspase 3 and caspase 7 activities and lipid peroxidation. CSE induced nuclear translocation of Nrf2 and increased expression of Nrf2, HO-1, Hsp70 and Fra1. Moreover, we found that Nrf2 knockdown sensitized ATI-like cells to CSE and Nrf2 overexpression provided protection against CSE-induced cell death. We also observed that two antioxidant compounds N-acetylcysteine and trolox protected ATI-like cells against injury by CSE. Conclusions Our study indicates that Nrf2 activation is a major factor in cellular defense of the human alveolar epithelium against CSE-induced toxicity and oxidative stress. Therefore, antioxidant agents that modulate Nrf2 would be expected to restore antioxidant and detoxifying enzymes and to prevent CS-related lung injury and perhaps lessen the development of emphysema.
Collapse
Affiliation(s)
- Beata Kosmider
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America.
| | | | | | | |
Collapse
|
94
|
Funk CJ, Wang J, Ito Y, Travanty EA, Voelker DR, Holmes KV, Mason RJ. Infection of human alveolar macrophages by human coronavirus strain 229E. J Gen Virol 2011; 93:494-503. [PMID: 22090214 DOI: 10.1099/vir.0.038414-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human coronavirus strain 229E (HCoV-229E) commonly causes upper respiratory tract infections. However, lower respiratory tract infections can occur in some individuals, indicating that cells in the distal lung are susceptible to HCoV-229E. This study determined the virus susceptibility of primary cultures of human alveolar epithelial cells and alveolar macrophages (AMs). Fluorescent antibody staining indicated that HCoV-229E could readily infect AMs, but no evidence was found for infection in differentiated alveolar epithelial type II cells and only a very low level of infection in type II cells transitioning to the type I-like cell phenotype. However, a human bronchial epithelial cell line (16HBE) was readily infected. The innate immune response of AMs to HCoV-229E infection was evaluated for cytokine production and interferon (IFN) gene expression. AMs secreted significant amounts of tumour necrosis factor alpha (TNF-α), regulated on activation normal T-cell expressed and secreted (RANTES/CCL5) and macrophage inflammatory protein 1β (MIP-1β/CCL4) in response to HCoV-229E infection, but these cells exhibited no detectable increase in IFN-β or interleukin-29 in mRNA levels. AMs from smokers had reduced secretion of TNF-α compared with non-smokers in response to HCoV-229E infection. Surfactant protein A (SP-A) and SP-D are part of the innate immune system in the distal lung. Both surfactant proteins bound to HCoV-229E, and pre-treatment of HCoV-229E with SP-A or SP-D inhibited infection of 16HBE cells. In contrast, there was a modest reduction in infection in AMs by SP-A, but not by SP-D. In summary, AMs are an important target for HCoV-229E, and they can mount a pro-inflammatory innate immune response to infection.
Collapse
Affiliation(s)
- C Joel Funk
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Jieru Wang
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Yoko Ito
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Emily A Travanty
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Dennis R Voelker
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kathryn V Holmes
- Department of Microbiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Robert J Mason
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
95
|
Sever-Chroneos Z, Murthy A, Davis J, Florence JM, Kurdowska A, Krupa A, Tichelaar JW, White MR, Hartshorn KL, Kobzik L, Whitsett JA, Chroneos ZC. GM-CSF modulates pulmonary resistance to influenza A infection. Antiviral Res 2011; 92:319-28. [PMID: 21925209 DOI: 10.1016/j.antiviral.2011.08.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/29/2011] [Accepted: 08/26/2011] [Indexed: 01/19/2023]
Abstract
Alveolar type II epithelial or other pulmonary cells secrete GM-CSF that regulates surfactant catabolism and mucosal host defense through its capacity to modulate the maturation and activation of alveolar macrophages. GM-CSF enhances expression of scavenger receptors MARCO and SR-A. The alveolar macrophage SP-R210 receptor binds the surfactant collectin SP-A mediating clearance of respiratory pathogens. The current study determined the effects of epithelial-derived GM-CSF in host resistance to influenza A pneumonia. The results demonstrate that GM-CSF enhanced resistance to infection with 1.9×10(4) ffc of the mouse-adapted influenza A/Puerto Rico/8/34 (PR8) H1N1 strain, as indicated by significant differences in mortality and mean survival of GM-CSF-deficient (GM(-/-)) mice compared to GM(-/-) mice in which GM-CSF is expressed at increased levels. Protective effects of GM-CSF were observed both in mice with constitutive and inducible GM-CSF expression under the control of the pulmonary-specific SFTPC or SCGB1A1 promoters, respectively. Mice that continuously secrete high levels of GM-CSF developed desquamative interstitial pneumonia that impaired long-term recovery from influenza. Conditional expression of optimal GM-CSF levels at the time of infection, however, resulted in alveolar macrophage proliferation and focal lymphocytic inflammation of distal airways. GM-CSF enhanced alveolar macrophage activity as indicated by increased expression of SP-R210 and CD11c. Infection of mice lacking the GM-CSF-regulated SR-A and MARCO receptors revealed that MARCO decreases resistance to influenza in association with increased levels of SP-R210 in MARCO(-/-) alveolar macrophages. In conclusion, GM-CSF enhances early host resistance to influenza. Targeting of MARCO may reinforce GM-CSF-mediated host defense against pathogenic influenza.
Collapse
Affiliation(s)
- Zvjezdana Sever-Chroneos
- University of Texas Health Science Center at Tyler, Center of Biomedical Research, 11937 US HWY 271, Tyler, TX 75708-3154, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|