51
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
52
|
Xie Z, Liao J, Chen J. Targeting macrophages to reprogram the tumor immune microenvironment. BLOOD SCIENCE 2024; 6:e00203. [PMID: 39149533 PMCID: PMC11326473 DOI: 10.1097/bs9.0000000000000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Affiliation(s)
- Zhidong Xie
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Jinfeng Laboratory, Chongqing, China
| |
Collapse
|
53
|
Saqib M, Zahoor A, Rahib A, Shamim A, Mumtaz H. Clinical and translational advances in primary brain tumor therapy with a focus on glioblastoma-A comprehensive review of the literature. World Neurosurg X 2024; 24:100399. [PMID: 39386927 PMCID: PMC11462364 DOI: 10.1016/j.wnsx.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This comprehensive review paper examines the most updated state of research on glioblastoma, an aggressive brain tumor with limited treatment options. By analyzing 76 recent studies, from translational and basic sciences, to clinical trials, we highlight various aspects of glioblastoma and shed light on potential therapeutic strategies. The interplay between tumor cells, neural progenitor cells, and the tumor microenvironment is explored. Targeting the PI3K-Akt-mTOR pathway through extracellular-vesicle (EV)-mediated signaling emerges as a potential therapeutic strategy. Personalized modeling approaches utilizing patient-specific MRI data offer promise for optimizing treatment strategies. The response of glioblastoma stem cells (GSCs) to different treatment modalities is examined, emphasizing the need to inhibit the transformation of proneural (PN) GSCs into resistant mesenchymal (MES) GSCs. Metabolic therapy and combination therapies show potential in reversing treatment resistance and inhibiting both PN and MES GSCs. Immunotherapy, targeted approaches, and molecular dynamics in gliomas are discussed, providing insights into early-stage diagnosis and treatment. Additionally, the potential use of Zika virus as an oncolytic agent is explored. Analysis of phase 0 to 3 clinical trials reveal promising outcomes for various experimental treatments, highlighting the importance of combination therapies, predictive signatures, and patient selection strategies. Specific compounds demonstrate potential therapeutic benefits and tolerability. Phase 3 trials indicate the efficacy of DCVax-L in improving survival rates and depatux-m in prolonging progression-free survival. These findings emphasize the importance of personalized treatment approaches and continued exploration of targeted therapies, immunotherapies, and tumor biology understanding in shaping the future of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Rahib
- Nowshera Medical College, Nowshera, Pakistan
| | - Amna Shamim
- King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
54
|
Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, Hadjipanayis CG. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers (Basel) 2024; 16:3273. [PMID: 39409893 PMCID: PMC11476085 DOI: 10.3390/cancers16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor depicted by a cold tumor microenvironment, low immunogenicity, and limited effective therapeutic interventions. Its location in the brain, a highly immune-selective organ, acts as a barrier, limiting immune access and promoting GBM dissemination, despite therapeutic interventions. Currently, chemotherapy and radiation combined with surgical resection are the standard of care for GBM treatment. Although immune checkpoint blockade has revolutionized the treatment of solid tumors, its observed success in extracranial tumors has not translated into a significant survival benefit for GBM patients. To develop effective immunotherapies for GBM, it is vital to tailor treatments to overcome the numerous immunosuppressive barriers that inhibit T cell responses to these tumors. In this review, we address the unique physical and immunological barriers that make GBM challenging to treat. Additionally, we explore potential therapeutic mechanisms, studied in central nervous system (CNS) and non-CNS cancers, that may overcome these barriers. Furthermore, we examine current and promising immunotherapy clinical trials and immunotherapeutic interventions for GBM. By highlighting the array of challenges T cell-based therapies face in GBM, we hope this review can guide investigators as they develop future immunotherapies for this highly aggressive malignancy.
Collapse
Affiliation(s)
- Noor E. Nader
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Tracy Miller
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | - Gary Kohanbash
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | | |
Collapse
|
55
|
Jiang Q, Yang X, Deng T, Yan J, Guo F, Mo L, An S, Huang Q. Comprehensive machine learning-based integration develops a novel prognostic model for glioblastoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200838. [PMID: 39072291 PMCID: PMC11278295 DOI: 10.1016/j.omton.2024.200838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024]
Abstract
In this study, we developed a new prognostic model for glioblastoma (GBM) based on an integrated machine learning algorithm. We used univariate Cox regression analysis to identify prognostic genes by combining six GBM cohorts. Based on the prognostic genes, 10 machine learning algorithms were integrated into 117 algorithm combinations, and the artificial intelligence prognostic signature (AIPS) with the greatest average C-index was chosen. The AIPS was compared with 10 previously published models by univariate Cox analysis and the C-index. We compared the differences in prognosis, tumor immune microenvironment (TIME), and immunotherapy sensitivity between the high and low AIPS score groups. The AIPS based on the random survival forest algorithm with the highest average C-index (0.868) was selected. Compared with the previous 10 prognostic models, our AIPS has the highest C-index. The AIPS was closely linked to the clinical features of GBM. We discovered that patients in the low score group had improved prognoses, a more active TIME, and were more sensitive to immunotherapy. Finally, we verified the expression of several key genes by western blotting and immunohistochemistry. We identified an ideal prognostic signature for GBM, which might provide new insights into stratified treatment approaches for GBM patients.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xiawei Yang
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Sanqi An
- Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
56
|
Kim KS, Zhang J, Arrieta VA, Dmello C, Grabis E, Habashy K, Duffy J, Zhao J, Gould A, Chen L, Hu J, Balyasnikova I, Chand D, Levey D, Canoll P, Zhao W, Sims PA, Rabadan R, Pandey S, Zhang B, Lee-Chang C, Heiland DH, Sonabend AM. MAPK/ERK signaling in gliomas modulates interferon responses, T cell recruitment, microglia phenotype, and immune checkpoint blockade efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612571. [PMID: 39345374 PMCID: PMC11429708 DOI: 10.1101/2024.09.11.612571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Glioblastoma (GB) remains a formidable challenge in neuro-oncology, with immune checkpoint blockade (ICB) showing limited efficacy in unselected patients. We previously recently established that MAPK/ERK signaling is associated with overall survival following anti-PD-1 and anti-CTLA-4 treatment in recurrent GB. However, the causal relationship between MAPK/ERK signaling and susceptibility to ICB, as well as the mechanisms underlying this association, remain poorly understood. Method We conducted in vivo kinome-wide CRISPR/Cas9 screenings in murine gliomas to identify key regulators of susceptibility to anti-PD-1 and CD8+ T cell responses and performed survival studies to validate the most relevant genes. Additionally, paired single cell RNA-sequencing (scRNA-seq) with p-ERK staining, spatial transcriptomics on GB samples, and ex-vivo slice culture of a BRAFV600E mutant GB tumor treated with BRAFi/MEKi were used to determine the causal relationship between MAPK signaling, tumor cell immunogenicity, and modulation of microglia phenotype. Results CRISPR/Cas9 screens identified the MAPK pathway, particularly the RAF-MEK-ERK pathway, as the most critical modulator of glioma susceptibility to CD8+ T cells, and anti-PD-1 across all kinases. Experimentally-induced ERK phosphorylation in gliomas enhanced survival with ICB treatment, led to durable anti-tumoral immunity upon re-challenge and memory T cell infiltration in long-term survivors. Elevated p-ERK in glioma cells correlated with increased interferon responses, antigen presentation and T cell infiltration in GB. Moreover, spatial transcriptomics and scRNA-seq analysis revealed the modulation of interferon responses by the MAPK/ERK pathway in BRAFV600E human GB cells with ERK1/2 knockout and in slice cultures of human BRAFV600E GB tissue. Notably, BRAFi/MEKi treatment disrupted the interaction between tumor cells and tumor-associated macrophages/microglia in slice cultures from BRAFV600E mutant GB. Conclusion Our data indicate that the MAPK/ERK pathway is a critical regulator of GB cell susceptibility to anti-tumoral immunity, modulating interferon responses, and antigen-presentation in glioma cells, as well as tumor cell interaction with microglia. These findings not only elucidate the mechanistic underpinnings of immunotherapy resistance in GB but also highlight the MAPK/ERK pathway as a promising target for enhancing immunotherapeutic efficacy in this challenging malignancy.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Víctor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elena Grabis
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Karl Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Irina Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Peter Canoll
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Surya Pandey
- Department of Hematology and Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bin Zhang
- Department of Hematology and Oncology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Adam M. Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
57
|
Cooksey LC, Friesen DC, Mangan ED, Mathew PA. Prospective Molecular Targets for Natural Killer Cell Immunotherapy against Glioblastoma Multiforme. Cells 2024; 13:1567. [PMID: 39329751 PMCID: PMC11429815 DOI: 10.3390/cells13181567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain tumor and has a dismal overall survival rate. To date, no GBM therapy has yielded successful results in survival for patients beyond baseline surgical resection, radiation, and chemotherapy. Immunotherapy has taken the oncology world by storm in recent years and there has been movement from researchers to implement the immunotherapy revolution into GBM treatment. Natural killer (NK) cell-based immunotherapies are a rising candidate to treat GBM from multiple therapeutic vantage points: monoclonal antibody therapy targeting tumor-associated antigens (TAAs), immune checkpoint inhibitors, CAR-NK cell therapy, Bi-specific killer cell engagers (BiKEs), and more. NK therapies often focus on tumor antigens for targeting. Here, we reviewed some common targets analyzed in the fight for GBM immunotherapy relevant to NK cells: EGFR, HER2, CD155, and IL-13Rα2. We further propose investigating the Lectin-like Transcript 1 (LLT1) and cell surface proliferating cell nuclear antigen (csPCNA) as targets for NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Luke C. Cooksey
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Derek C. Friesen
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Enrique D. Mangan
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
| | - Porunelloor A. Mathew
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.C.C.); (D.C.F.); (E.D.M.)
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
58
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
59
|
Tataranu LG, Turliuc S, Kamel A, Rizea RE, Dricu A, Staicu GA, Baloi SC, Rodriguez SMB, Manole AIM. Glioblastoma Tumor Microenvironment: An Important Modulator for Tumoral Progression and Therapy Resistance. Curr Issues Mol Biol 2024; 46:9881-9894. [PMID: 39329940 PMCID: PMC11430601 DOI: 10.3390/cimb46090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The race to find an effective treatment for glioblastoma (GBM) remains a critical topic, because of its high aggressivity and impact on survival and the quality of life. Currently, due to GBM's high heterogeneity, the conventional treatment success rate and response to therapy are relatively low, with a median survival rate of less than 20 months. A new point of view can be provided by the comprehension of the tumor microenvironment (TME) in pursuance of the development of new therapeutic strategies to aim for a longer survival rate with an improved quality of life and longer disease-free interval (DFI). The main components of the GBM TME are represented by the extracellular matrix (ECM), glioma cells and glioma stem cells (GSCs), immune cells (microglia, macrophages, neutrophils, lymphocytes), neuronal cells, all of them having dynamic interactions and being able to influence the tumoral growth, progression, and drug resistance thus being a potential therapeutic target. This paper will review the latest research on the GBM TME and the potential therapeutic targets to form an up-to-date strategy.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy "G. T. Popa", 700115 Iasi, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | | | - Stefania Carina Baloi
- Biochemistry Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | | | | |
Collapse
|
60
|
Sarkar S, Patranabis S. Immunomodulatory signalling networks in glioblastoma multiforme: a comprehensive review of therapeutic approaches. Hum Cell 2024; 37:1355-1377. [PMID: 39085713 DOI: 10.1007/s13577-024-01112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Glioblastoma multiforme is a very aggressive type of cancer with high mortality and poor prognosis worldwide. Advanced treatment options with an understanding of the molecules and signalling mechanisms involved in this type of cancer have the potential to increase targeted therapy and decrease off-target effects, resistance, and recurrence. Glioblastoma multiforme (GBM) presents a complex tumour microenvironment with numerous cellular components and an extracellular matrix comprising multiple components. A deeper understanding of these components and corresponding signalling pathways can increase the success of immune checkpoint inhibitors in the treatment of GBM. The discovery of specific molecular changes and biomarkers has led to the investigation of tailored treatments for individual patients. Combination therapies targeting multiple pathways or utilizing different modalities are emerging as a promising strategy albeit with challenges in drug delivery to the brain. The review presents a comprehensive update of the various immunomodulatory signalling networks in GBM and highlights the corresponding therapeutic approaches by targeting them.
Collapse
|
61
|
Fan J, Liu J, Zhang B, Wang X, Wang X, Liang J, Li Y, Zhang Y, Zhang C, Yu S, Li T, Yang X. GPR65 contributes to constructing immunosuppressive microenvironment in glioma. Neurosurg Rev 2024; 47:417. [PMID: 39123083 PMCID: PMC11315802 DOI: 10.1007/s10143-024-02633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Glioma, especially glioblastoma patients, present highly heterogeneous and immunosuppressive microenvironment, leading to their poor response to treatment and survival. Targeting the tumor microenvironment is considered a promising therapeutic strategy. M2 macrophages are highly infiltrated in glioma tissue, even up to 50% of the total number of bulk tissue cells. Here, we identified GPR65 as the hub gene of the M2 macrophage-related module in glioma through WGCNA analysis. The expression and prognosis analysis suggested that GPR65 was positively correlated with the malignancy and poor prognosis of glioma, and the heterogeneity analysis found that GPR65 was highly expressed in the vascular proliferation area of glioma, which matched the spatial expression characteristics of M2 macrophages. We further verified that GPR65 was highly expressed in macrophages but not tumor cells in the glioma microenvironment by single-cell data analysis and immunofluorescence. Most importantly, we found that inhibition of GPR65 was sufficient to reduce macrophages' polarization response to glioma cell and break the malignant cooperation with glioma cells. Our study reports the expression characteristics and malignant behavior of GPR65 in the glioma microenvironment, which provides a new alternative target of treatment to glioma microenvironment.
Collapse
Affiliation(s)
- Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Bin Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xisen Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Beijing, 102200, China.
| |
Collapse
|
62
|
Du Y, Lv J, Hao Z, Li Z, Song T, Ge H, Wang H, Yu Z, Xie Z, Li D, Liu Y. Pickering emulsion-guided monomeric delivery of monophosphoryl lipid A for enhanced vaccination. J Control Release 2024; 374:39-49. [PMID: 39111597 DOI: 10.1016/j.jconrel.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/11/2024]
Abstract
Immunological adjuvants are vaccine components that enhance long-lasting adaptive immune responses to weakly immunogenic antigens. Monophosphoryl lipid A (MPLA) is a potent and safe vaccine adjuvant that initiates an early innate immune response by binding to the Toll-like receptor 4 (TLR4). Importantly, the binding and recognition process is highly dependent on the monomeric state of MPLA. However, current vaccine delivery systems often prioritize improving the loading efficiency of MPLA, while neglecting the need to maintain its monomeric form for optimal immune activation. Here, we introduce a Pickering emulsion-guided MPLA monomeric delivery system (PMMS), which embed MPLA into the oil-water interface to achieve the monomeric loading of MPLA. During interactions with antigen-presenting cells, PMMS functions as a chaperone for MPLA, facilitating efficient recognition by TLR4 regardless of the presence of lipopolysaccharide-binding proteins. At the injection site, PMMS efficiently elicited local immune responses, subsequently promoting the migration of antigen-internalized dendritic cells to the lymph nodes. Within the draining lymph nodes, PMMS enhanced antigen presentation and maturation of dendritic cells. In C57BL/6 mice models, PMMS vaccination provoked potent antigen-specific CD8+ T cell-based immune responses. Additionally, PMMS demonstrated strong anti-tumor effects against E.G7-OVA lymphoma. These data indicate that PMMS provides a straightforward and efficient strategy for delivering monomeric MPLA to achieve robust cellular immune responses and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Yiqun Du
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China; Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518035, PR China.
| | - Jiali Lv
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Zongwei Hao
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhaofeng Li
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Huifang Ge
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Hongyan Wang
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhenyu Yu
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhongwen Xie
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Daxiang Li
- Joint Research Center for Food Nutrition and Health of IHM, School of Tea and Food Science & Technology, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, PR China
| | - Yuchen Liu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen 518035, PR China.
| |
Collapse
|
63
|
Yang J, Xiong X, Zheng W, Xu H, Liao X, Wei Q, Yang L. The roles of tertiary lymphoid structures in genitourinary cancers: molecular mechanisms, therapeutic strategies, and clinical applications. Int J Surg 2024; 110:5007-5021. [PMID: 38978471 PMCID: PMC11325987 DOI: 10.1097/js9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) associated with distinct treatment efficacy and clinical prognosis has been identified in various cancer types. However, the mechanistic roles and clinical implications of TLSs in genitourinary (GU) cancers remain incompletely explored. Despite their potential role as predictive markers described in numerous studies, it is essential to comprehensively evaluate the characteristics of TLSs, including drivers of formation, structural foundation, cellular compositions, maturation stages, molecular features, and specific functionality to maximize their positive impacts on tumor-specific immunity. The unique contributions of these structures to cancer progression and biology have fueled interest in these structures as mediators of antitumor immunity. Emerging data are trying to explore the effects of therapeutic interventions targeting TLSs. Therefore, a better understanding of the molecular and phenotypic heterogeneity of TLSs may facilitate the development of TLSs-targeting therapeutic strategies to obtain optimal clinical benefits for GU cancers in the setting of immunotherapy. In this review, the authors focus on the phenotypic and functional heterogeneity of TLSs in cancer progression, current therapeutic interventions targeting TLSs and the clinical implications and therapeutic potential of TLSs in GU cancers.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
64
|
Di L, Li M, Lei X, Xie W, Liu G, Wang Y, Zhang W, Zhu WG. Caspase-4 in glioma indicates deterioration and unfavorable prognosis by affecting tumor cell proliferation and immune cell recruitment. Sci Rep 2024; 14:17443. [PMID: 39075190 PMCID: PMC11286837 DOI: 10.1038/s41598-024-65018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/16/2024] [Indexed: 07/31/2024] Open
Abstract
Gliomas are the most common malignant tumors of the central nervous system, accounting for approximately 80% of all malignant brain tumors. Accumulating evidence suggest that pyroptosis plays an essential role in the progression of cancer. Unfortunately, the effect of the pyroptosis-related factor caspase-4 (CASP4) on immunotherapy and drug therapy for tumors has not been comprehensively investigated. In this study, we systematically screened six hub genes by pooling differential pyroptosis-related genes in The Cancer Genome Atlas (TCGA) glioma data and the degree of centrality of index-related genes in the protein-protein interaction network. We performed functional and pathway enrichment analyses of the six hub genes to explore their biological functions and potential molecular mechanisms. We then investigated the importance of CASP4 using Kaplan-Meier survival analysis of glioma patients. TCGA and the Chinese Glioma Genome Atlas (CGGA) databases showed that reduced CASP4 expression leads to the potent clinical deterioration of glioma patients. Computational analysis of the effect of CASP4 on the infiltration level and recruitment of glioma immune cells revealed that CASP4 expression was closely associated with a series of tumor-suppressive immune checkpoint molecules, chemokines, and chemokine receptors. We also found that aberrant CASP4 expression correlated with chemotherapeutic drug sensitivity. Finally, analysis at the cellular and tissue levels indicated an increase in CASP4 expression in glioma, and that CASP4 inhibition significantly inhibited the proliferation of glioma cells. Thus, CASP4 is implicated as a new prognostic biomarker for gliomas with the potential to further guide immunotherapy and chemotherapy strategies for glioma patients.
Collapse
Affiliation(s)
- Longjiang Di
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengyan Li
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xianli Lei
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Faculty of Medicine, Peking University, Beijing, 100191, China
| | - Wenting Xie
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Guoqiang Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, Toledo, OH, 43614, USA
| | - Wenjing Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Wei-Guo Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
- College of Basic Medical Sciences, Wan Nan Medical College, Wuhu, 241006, China.
- International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
65
|
Chen S, Jiang Y, Wang C, Tong S, He Y, Lu W, Zhang Z. Epigenetic clocks and gliomas: unveiling the molecular interactions between aging and tumor development. Front Mol Biosci 2024; 11:1446428. [PMID: 39130373 PMCID: PMC11310061 DOI: 10.3389/fmolb.2024.1446428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Gliomas, the most prevalent and aggressive primary brain tumors, represent a diverse group of malignancies originating from glial cells. These tumors account for significant brain tumor-related morbidity and mortality, with higher incidence rates in North America and Europe compared to Asia and Africa. Genetic predispositions and environmental factors, particularly ionizing radiation, critically impact glioma risk. Epigenetics, particularly DNA methylation, plays a pivotal role in glioma research, with IDH-mutant gliomas showing aberrant methylation patterns contributing to tumorigenesis. Epigenetic clocks, biomarkers based on DNA methylation patterns predicting biological age, have revealed significant insights into aging and tumor development. Recent studies demonstrate accelerated epigenetic aging in gliomas, correlating with increased cancer risk and poorer outcomes. This review explores the mechanisms of epigenetic clocks, their biological significance, and their application in glioma research. Furthermore, the clinical implications of epigenetic clocks in diagnosing, prognosticating, and treating gliomas are discussed. The integration of epigenetic clock data into personalized medicine approaches holds promise for enhancing therapeutic strategies and patient outcomes in glioma treatment.
Collapse
Affiliation(s)
- Shiliang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yi Jiang
- Department of Intensive Care Unit, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu, China
| | - Cong Wang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shiyuan Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yibo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wenqiang Lu
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhezhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
66
|
von Roemeling CA, Patel JA, Carpenter SL, Yegorov O, Yang C, Bhatia A, Doonan BP, Russell R, Trivedi VS, Klippel K, Ryu DH, Grippin A, Futch HS, Ran Y, Hoang-Minh LB, Weidert FL, Golde TE, Mitchell DA. Adeno-associated virus delivered CXCL9 sensitizes glioblastoma to anti-PD-1 immune checkpoint blockade. Nat Commun 2024; 15:5871. [PMID: 38997283 PMCID: PMC11245621 DOI: 10.1038/s41467-024-49989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
There are numerous mechanisms by which glioblastoma cells evade immunological detection, underscoring the need for strategic combinatorial treatments to achieve appreciable therapeutic effects. However, developing combination therapies is difficult due to dose-limiting toxicities, blood-brain-barrier, and suppressive tumor microenvironment. Glioblastoma is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment and activation. Herein, we develop a recombinant adeno-associated virus (AAV) gene therapy that enables focal and stable reconstitution of the tumor microenvironment with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for lymphocytes. By manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by cytotoxic lymphocytes, sensitizing glioblastoma to anti-PD-1 immune checkpoint blockade in female preclinical tumor models. These effects are accompanied by immunologic signatures evocative of an inflamed tumor microenvironment. These findings support AAV gene therapy as an adjuvant for reconditioning glioblastoma immunogenicity given its safety profile, tropism, modularity, and off-the-shelf capability.
Collapse
Affiliation(s)
- Christina A von Roemeling
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| | - Jeet A Patel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Savannah L Carpenter
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Oleg Yegorov
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Alisha Bhatia
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Bently P Doonan
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
- Department of Medicine, Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Rylynn Russell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Vrunda S Trivedi
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Kelena Klippel
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Daniel H Ryu
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Grippin
- Department of Radiation Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Hunter S Futch
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Lan B Hoang-Minh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Frances L Weidert
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Goizueta Brain Health Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA.
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
67
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 PMCID: PMC11878440 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
68
|
Guyon J, Haidar Ahmad S, El Baba R, Le Quang M, Bikfalvi A, Daubon T, Herbein G. Generation of glioblastoma in mice engrafted with human cytomegalovirus-infected astrocytes. Cancer Gene Ther 2024; 31:1070-1080. [PMID: 38553638 PMCID: PMC11257955 DOI: 10.1038/s41417-024-00767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in glioblastoma multiforme (GB). Herewith, we present the first experimental evidence for the generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits that lead to the formation of glioblastoma in orthotopically xenografted mice. In addition to the already reported oncogenic HCMV-DB strain, we isolated three HCMV clinical strains from GB tissues that transformed HAs toward CEGBCs and generated spheroids from CEGBCs that resulted in the appearance of glioblastoma-like tumors in xenografted mice. These tumors were nestin-positive mostly in the invasive part surrounded by GFAP-positive reactive astrocytes. The glioblastoma immunohistochemistry phenotype was confirmed by EGFR and cMet gene amplification in the tumor parallel to the detection of HCMV IE and UL69 genes and proteins. Our results fit with an HCMV-induced glioblastoma model of oncogenesis in vivo which will open the door to new therapeutic approaches and assess the anti-HCMV treatment as well as immunotherapy in fighting GB which is characterized by poor prognosis.
Collapse
Affiliation(s)
- Joris Guyon
- University of Bordeaux, INSERM U1312, BRIC, Bordeaux, France
- CHU Bordeaux, Department of Medical Pharmacology, Bordeaux, France
| | - Sandy Haidar Ahmad
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Ranim El Baba
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France
| | - Mégane Le Quang
- Pathology Department, University Hospital of Bordeaux, Bordeaux, France
| | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR5095, Bordeaux, France
| | - Georges Herbein
- University of Franche-Comté, Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Besançon, France.
- CHU Besançon, Department of Virology, Besançon, France.
| |
Collapse
|
69
|
Tan S, Ding X, Pan D, Xu Y, Wang C, Yan J, Chen C, Wang L, Wang X, Yang M, Xu Y. Synthesis and Characterization of a Novel PET Tracer for Noninvasive Evaluation of FGL1 Status in Tumors. Mol Pharm 2024; 21:3425-3433. [PMID: 38836286 DOI: 10.1021/acs.molpharmaceut.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibrinogen-like protein 1 (FGL1) is a potential novel immune checkpoint target for malignant tumor diagnosis and therapy. Accurate detection of FGL1 levels in tumors via noninvasive PET imaging might be beneficial for managing the disease. To achieve this, multiple FGL1-targeting peptides (FGLP) were designed, and a promising candidate, 68Ga-NOTA-FGLP2, was identified through a high-throughput screening approach using microPET imaging of 68Ga-labeled peptides. Subsequent in vitro cell experiments showed that uptake values of 68Ga-NOTA-FGLP2 in FGL1 positive Huh7 tumor cells were significantly higher than those in FGL1 negative U87 MG tumor cells. Further microPET imaging showed that the Huh7 xenografts were clearly visualized with a favorable contrast. ROI analysis showed that the uptake values of the tracer in Huh7 xenografts were 2.63 ± 0.07% ID/g at 30 min p.i.. After treatment with an excess of unlabeled FGLP2, the tumor uptake significantly decreased to 0.54 ± 0.05% ID/g at 30 min p.i.. Moreover, the uptake in U87 MG xenografts was 0.44 ± 0.06% ID/g at the same time point. The tracer was excreted mainly through the renal system. 18F-FDG PET imaging was also performed in mice bearing Huh7 and U87 MG xenografts, respectively. However, there was no significant difference in the uptake between the tumors with different FGL1 expressions. Preclinical data indicated that 68Ga-NOTA-FGLP2 might be a suitable radiotracer for in vivo noninvasive visualization of tumors with abundant expression of FGL1. Further investigation of 68Ga-NOTA-FGLP2 for tumor diagnosis and therapy is undergoing.
Collapse
Affiliation(s)
- Siyi Tan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Ding
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yue Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ce Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Junjie Yan
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chongyang Chen
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xinyu Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuping Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
70
|
Huang M, Zhang L, Wu Y, Zhou X, Wang Y, Zhang J, Liu Y, He Z, Wang X. CSF3R as a potential prognostic biomarker and immunotherapy target in glioma. Cent Eur J Immunol 2024; 49:155-168. [PMID: 39381559 PMCID: PMC11457564 DOI: 10.5114/ceji.2024.140651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Gliomas are the most common malignant brain tumors, with complicated etiology and poor prognosis. However, there is still a lack of specific biomarkers for the diagnosis, treatment and prognosis assessment for glioma patients. Hence, the purpose of this study was to screen biomarkers for prognostic assessment and therapeutic interventions in gliomas. Material and methods We utilized The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases to investigate the role of colony-stimulating factor 3 receptor (CSF3R) in glioma. Data analysis was conducted using R, GEPIA 2, TISCH and DepMap. Results CSF3R was up-regulated in glioma and associated with the clinical pathological features of the patients. Kaplan-Meier survival analysis indicated a significant association between the expression of CSF3R and prognosis in patients. Univariate and multivariate Cox analyses revealed that patients with high expression of CSF3R have a worse prognosis, and the expression of CSF3R was an independent prognostic factor in gliomas. The nomogram constructed based on the expression of CSF3R demonstrated lower 1-, 3-, and 5-year overall survival (OS) in patients with high CSF3R expression. The biological functional analysis of CSF3R demonstrated its association with various immune regulatory signals. Furthermore, CSF3R was linked to the expression of immune checkpoints and resistance to immunotherapy. Notably, CSF3R was predominantly detected in monocytes/macrophages. Conclusions Our study suggested that CSF3R might potentially function as an independent prognostic factor for glioma and hold promise as a biomarker and target for immunotherapy in glioma.
Collapse
Affiliation(s)
| | | | - Yan Wu
- Zunyi Medical University, China
| | | | | | | | - Ye Liu
- Zunyi Medical University, China
| | | | | |
Collapse
|
71
|
Liu W, Wang B, Guo B, Zhu J, Xu Z, Xu J, Wang Z, Sun G, Wang W, Zhang Y, Xue W. Modularized supramolecular assemblies for hypoxia-activatable fluorescent visualization and image-guided theranostics. Theranostics 2024; 14:3634-3652. [PMID: 38948059 PMCID: PMC11209709 DOI: 10.7150/thno.95590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/18/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Molecular imaging of microenvironment by hypoxia-activatable fluorescence probes has emerged as an attractive approach to tumor diagnosis and image-guided treatment. Difficulties remain in its translational applications due to hypoxia heterogeneity in tumor microenvironments, making it challenging to image hypoxia as a reliable proxy of tumor distribution. Methods: We report a modularized theranostics platform to fluorescently visualize hypoxia via light-modulated signal compensation to overcome tumor heterogeneity, thereby serving as a diagnostic tool for image-guided surgical resection and photodynamic therapy. Specifically, the platform integrating dual modules of fluorescence indicator and photodynamic moderator using supramolecular host-guest self-assembly, which operates cooperatively as a cascaded "AND" logic gate. First, tumor enrichment and specific fluorescence turn-on in hypoxic regions were accessible via tumor receptors and cascaded microenvironment signals as simultaneous inputs of the "AND" gate. Second, image guidance by a lighted fluorescence module and light-mediated endogenous oxygen consumption of a photodynamic module as dual inputs of "AND" gate collaboratively enabled light-modulated signal compensation in situ, indicating homogeneity of enhanced hypoxia-related fluorescence signals throughout a tumor. Results: In in vitro and in vivo analyses, the biocompatible platform demonstrated several strengths including a capacity for dual tumor targeting to progressively facilitate specific fluorescence turn-on, selective signal compensation, imaging-time window extension conducive to precise normalized image-guided treatment, and the functionality of tumor glutathione depletion to improve photodynamic efficacy. Conclusion: The hypoxia-activatable, image-guided theranostic platform demonstrated excellent potential for overcoming hypoxia heterogeneity in tumors.
Collapse
Affiliation(s)
- Wen Liu
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bincheng Wang
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bei Guo
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Junbin Zhu
- China Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Zejun Xu
- College of Pharmacy, Jinan University, Guangzhou 510630, China
- Bai Yun Shan Pharmaceutical General Factory, Guangzhou Bai Yun Shan Pharmaceutical Holdings Co. Ltd. Guangzhou 510515, China
| | - Jiayue Xu
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhen Wang
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Guodong Sun
- China Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yi Zhang
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- China Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Wei Xue
- Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
72
|
ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming Barriers in Glioblastoma-Advances in Drug Delivery Strategies. Cells 2024; 13:998. [PMID: 38920629 PMCID: PMC11201826 DOI: 10.3390/cells13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.
Collapse
Affiliation(s)
- Esther ter Linden
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Erik R. Abels
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Thomas S. van Solinge
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Marike L. D. Broekman
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| |
Collapse
|
73
|
Arrieta VA, Gould A, Kim KS, Habashy KJ, Dmello C, Vázquez-Cervantes GI, Palacín-Aliana I, McManus G, Amidei C, Gomez C, Dhiantravan S, Chen L, Zhang DY, Saganty R, Cholak ME, Pandey S, McCord M, McCortney K, Castro B, Ward R, Muzzio M, Bouchoux G, Desseaux C, Canney M, Carpentier A, Zhang B, Miska JM, Lesniak MS, Horbinski CM, Lukas RV, Stupp R, Lee-Chang C, Sonabend AM. Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas. Nat Commun 2024; 15:4698. [PMID: 38844770 PMCID: PMC11156895 DOI: 10.1038/s41467-024-48326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.
Collapse
Affiliation(s)
- Víctor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karl J Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gustavo I Vázquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irina Palacín-Aliana
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christina Amidei
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cristal Gomez
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Silpol Dhiantravan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meghan E Cholak
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Surya Pandey
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthew McCord
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel Ward
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel Muzzio
- Life Sciences Group, IIT Research Institute, Chicago, IL, USA
| | | | | | | | - Alexandre Carpentier
- Sorbonne Université, Inserm, CNRS, UMR S 1127, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurochirurgie, Paris, France
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason M Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
74
|
Indira Chandran V, Gopala S, Venkat EH, Kjolby M, Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol 2024; 8:103. [PMID: 38760427 PMCID: PMC11101656 DOI: 10.1038/s41698-024-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Glioblastoma is a highly heterogeneous tumor whose pathophysiological complexities dictate both the diagnosis of disease severity as well as response to therapy. Conventional diagnostic tools and standard treatment regimens have only managed to achieve limited success in the management of patients suspected of glioblastoma. Extracellular vesicles are an emerging liquid biopsy tool that has shown great promise in resolving the limitations presented by the heterogeneous nature of glioblastoma. Here we discuss the contrasting yet interdependent dual role of extracellular vesicles as communication agents that contribute to the progression of glioblastoma by creating a heterogeneous microenvironment and as a liquid biopsy tool providing an opportunity to accurately identify the disease severity and progression.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Easwer Hariharan Venkat
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology and Steno Diabetes Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
75
|
Zhou J, Zheng H, Zhang H, Yu W, Li B, Ye L, Wang L. MCM5 is a Novel Therapeutic Target for Glioblastoma. Onco Targets Ther 2024; 17:371-381. [PMID: 38765057 PMCID: PMC11100520 DOI: 10.2147/ott.s457600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
Objective MCM5 is a DNA licensing factor involved in cell proliferation and has been previously established as an excellent biomarker in a number of malignancies. Nevertheless, the role of MCM5 in GBM has not been fully clarified. The present study aimed to investigate the potential roles of MCM5 in the treatment of GBM and to elucidate its underlying mechanism, which is beneficial for developing new therapeutic strategies and predicting prognosis. Methods Firstly, we obtained transcriptomic and proteomic data from the TCGA and CPTAC databases on glioma patients. Employing the DeSeq2 R package, we then identified genes with joint differential expression in GBM tissues subjected to chemotherapy. To develop a prognostic risk score model, we performed univariate and multivariate Cox regression analyses. In vitro knockdown and overexpression of MCM5 were used to further investigate the biological functions of GBM cells. Additionally, we also delved into the upstream regulation of MCM5, revealing associations with several transcription factors. Finally, we investigated differences in immune cell infiltration and drug sensitivity across diverse risk groups identified in the prognostic risk model. Results In this study, the chemotherapy-treated GBM samples exhibited consistent alterations in 46 upregulated and 94 downregulated genes at both the mRNA and protein levels. Notably, MCM5 emerged as a gene with prognostic significance as well as potential therapeutic relevance. In vitro experiments subsequently validated the role of increased MCM5 expression in promoting GBM cell proliferation and resistance to TMZ. Correlations with transcription factors such as CREB1, CTCF, NFYB, NRF1, PBX1, TEAD1, and USF1 were discovered during upstream regulatory analysis, enriching our understanding of MCM5 regulatory mechanisms. The study additionally delves into immune cell infiltration and drug sensitivity, providing valuable insights for personalized treatment approaches. Conclusion This study identifies MCM5 as a key player in GBM, demonstrating its prognostic significance and potential therapeutic relevance by elucidating its role in promoting cell proliferation and resistance to chemotherapy.
Collapse
Affiliation(s)
- Jian Zhou
- Hyperbaric Oxygen Department, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, 518055, People’s Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People’s Republic of China
| | - Housheng Zheng
- Hyperbaric Oxygen Department, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, 518055, People’s Republic of China
| | - Huiru Zhang
- Hyperbaric Oxygen Department, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, 518055, People’s Republic of China
| | - Wenqiang Yu
- Hyperbaric Oxygen Department, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, 518055, People’s Republic of China
| | - Baoer Li
- Hyperbaric Oxygen Department, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, 518055, People’s Republic of China
| | - Liang Ye
- Hyperbaric Oxygen Department, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, 518055, People’s Republic of China
| | - Lu Wang
- Hyperbaric Oxygen Department, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen, 518055, People’s Republic of China
| |
Collapse
|
76
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
77
|
Liu Y, Ali H, Khan F, Pang L, Chen P. Epigenetic regulation of tumor-immune symbiosis in glioma. Trends Mol Med 2024; 30:429-442. [PMID: 38453529 PMCID: PMC11081824 DOI: 10.1016/j.molmed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Glioma is a type of aggressive and incurable brain tumor. Patients with glioma are highly resistant to all types of therapies, including immunotherapies. Epigenetic reprogramming is a key molecular hallmark in tumors across cancer types, including glioma. Mounting evidence highlights a pivotal role of epigenetic regulation in shaping tumor biology and therapeutic responses through mechanisms involving both glioma cells and immune cells, as well as their symbiotic interactions in the tumor microenvironment (TME). In this review, we discuss the molecular mechanisms of epigenetic regulation that impacts glioma cell biology and tumor immunity in both a cell-autonomous and non-cell-autonomous manner. Moreover, we provide an overview of potential therapeutic approaches that can disrupt epigenetic-regulated tumor-immune symbiosis in the glioma TME.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lizhi Pang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
78
|
Dong J, Qian Y, Zhang W, Xu J, Wang L, Fan Z, Jia M, Wei L, Yang H, Luo X, Wang Y, Jiang Y, Huang Z, Wang Y. Tenacissoside H repressed the progression of glioblastoma by inhibiting the PI3K/Akt/mTOR signaling pathway. Eur J Pharmacol 2024; 968:176401. [PMID: 38331340 DOI: 10.1016/j.ejphar.2024.176401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Glioblastoma (GBM) is one of the most common intracranial primary malignancies with the highest mortality rate, and there is a lack of effective treatments. In this study, we examined the anti-GBM activity of Tenacissoside H (TH), an active component isolated from the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Wight & Arn (MT), and investigated the potential mechanism. Firstly, we found that TH decreased the viability of GBM cells by inducing cell cycle arrest and apoptosis, and inhibited the migration of GBM cells. Furthermore, combined with the Gene Expression Omnibus database (GEO) and network pharmacology as well as molecular docking, TH was shown to inhibit GBM progression by directly regulating the PI3K/Akt/mTOR pathway, which was further validated in vitro. In addition, the selective PI3K agonist 740 y-p partially restored the inhibitory effects of TH on GBM cells. Finally, TH inhibited GBM progression in an orthotopic transplantation model by inactivating the PI3K/Akt/mTOR pathway in vivo. Conclusively, our results suggest that TH represses GBM progression by inhibiting the PI3K/Akt/mTOR signaling pathway in vitro and in vivo, and provides new insight for the treatment of GBM patients.
Collapse
Affiliation(s)
- Jianhong Dong
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yiming Qian
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lipei Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 310030, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lijia Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hui Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xuan Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
79
|
Thiruppathi J, Vijayan V, Park IK, Lee SE, Rhee JH. Enhancing cancer immunotherapy with photodynamic therapy and nanoparticle: making tumor microenvironment hotter to make immunotherapeutic work better. Front Immunol 2024; 15:1375767. [PMID: 38646546 PMCID: PMC11026591 DOI: 10.3389/fimmu.2024.1375767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer immunotherapy has made tremendous advancements in treating various malignancies. The biggest hurdle to successful immunotherapy would be the immunosuppressive tumor microenvironment (TME) and low immunogenicity of cancer cells. To make immunotherapy successful, the 'cold' TME must be converted to 'hot' immunostimulatory status to activate residual host immune responses. To this end, the immunosuppressive equilibrium in TME should be broken, and immunogenic cancer cell death ought to be induced to stimulate tumor-killing immune cells appropriately. Photodynamic therapy (PDT) is an efficient way of inducing immunogenic cell death (ICD) of cancer cells and disrupting immune-restrictive tumor tissues. PDT would trigger a chain reaction that would make the TME 'hot' and have ICD-induced tumor antigens presented to immune cells. In principle, the strategic combination of PDT and immunotherapy would synergize to enhance therapeutic outcomes in many intractable tumors. Novel technologies employing nanocarriers were developed to deliver photosensitizers and immunotherapeutic to TME efficiently. New-generation nanomedicines have been developed for PDT immunotherapy in recent years, which will accelerate clinical applications.
Collapse
Affiliation(s)
- Jayalakshmi Thiruppathi
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - In-Kyu Park
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Radiology, Biomolecular Theranostics (BiT) Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, Republic of Korea
- Combinatorial Tumor Immunotherapy Medical Research Center (MRC), Chonnam National University Medical School, Hwasun-gun, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Hwasun-gun, Jeonnam, Republic of Korea
| |
Collapse
|
80
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
81
|
Memari E, Khan D, Alkins R, Helfield B. Focused ultrasound-assisted delivery of immunomodulating agents in brain cancer. J Control Release 2024; 367:283-299. [PMID: 38266715 DOI: 10.1016/j.jconrel.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Focused ultrasound (FUS) combined with intravascularly circulating microbubbles can transiently increase the permeability of the blood-brain barrier (BBB) to enable targeted therapeutic delivery to the brain, the clinical testing of which is currently underway in both adult and pediatric patients. Aside from traditional cancer drugs, this technique is being extended to promote the delivery of immunomodulating therapeutics to the brain, including antibodies, immune cells, and cytokines. In this manner, FUS approaches are being explored as a tool to improve and amplify the effectiveness of immunotherapy for both primary and metastatic brain cancer, a particularly challenging solid tumor to treat. Here, we present an overview of the latest groundbreaking research in FUS-assisted delivery of immunomodulating agents to the brain in pre-clinical models of brain cancer, and place it within the context of the current immunotherapy approaches. We follow this up with a discussion on new developments and emerging strategies for this rapidly evolving approach.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada
| | - Dure Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada; Department of Biology, Concordia University, Montreal H4B 1R6, Canada.
| |
Collapse
|
82
|
Ahluwalia MS, Khosla AA, Ozair A, Gouda MA, Subbiah V. Impact of tissue-agnostic approvals on management of primary brain tumors. Trends Cancer 2024; 10:256-274. [PMID: 38245379 DOI: 10.1016/j.trecan.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 01/22/2024]
Abstract
Novel tissue-agnostic therapeutics targeting driver mutations in tumor cells have been recently approved by FDA, driven by basket trials that have demonstrated their efficacy and safety across diverse tumor histology. However, the relative rarity of primary brain tumors (PBTs) has limited their representation in early trials of tissue-agnostic medications. Thus, consensus continues to evolve regarding utility of tissue-agnostic medications in routine practice for PBTs, a diverse group of neoplasms characterized by limited treatment options and unfavorable prognoses. We describe current and potential impact of tissue-agnostic approvals on management of PBTs. We discuss data from clinical trials for PBTs regarding tissue-agnostic targets, including BRAFV600E, neurotrophic tyrosine receptor kinase (NTRK) fusions, microsatellite instability-high (MSI-High), mismatch repair deficiency (dMMR), and high tumor mutational burden (TMB-H), in context of challenges in managing PBTs. Described are additional tissue-agnostic targets that hold promise for benefiting patients with PBTs, including RET fusion, fibroblast growth factor receptor (FGFR), ERBB2/HER2, and KRASG12C, and TP53Y220C.
Collapse
Affiliation(s)
- Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Atulya A Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Internal Medicine, William Beaumont University Hospital, Royal Oak, MI, USA
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Early Phase Drug Development Program, Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
83
|
Kudruk S, Forsyth CM, Dion MZ, Hedlund Orbeck JK, Luo J, Klein RS, Kim AH, Heimberger AB, Mirkin CA, Stegh AH, Artzi N. Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy. Proc Natl Acad Sci U S A 2024; 121:e2306973121. [PMID: 38346200 PMCID: PMC10895370 DOI: 10.1073/pnas.2306973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.
Collapse
Affiliation(s)
- Sergej Kudruk
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Connor M. Forsyth
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Michelle Z. Dion
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jenny K. Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Jingqin Luo
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO63110
| | - Albert H. Kim
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Amy B. Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Alexander H. Stegh
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Medicine, Engineering in Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA02115
| |
Collapse
|
84
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
85
|
Romagnoli G, D'Alessandris QG, Capone I, Tavilla A, Canini I, Lapenta C, Buccarelli M, Giordano M, Tirelli V, Sanchez M, Fragale A, Giannetti S, Di Bonaventura R, Lauretti L, Biffoni M, Ricci-Vitiani L, Pallini R, Gabriele L. CD8+CD103+PD1+TIM3+ T cells in glioblastoma microenvironment correlate with prognosis. Immunology 2024; 171:198-211. [PMID: 37884280 DOI: 10.1111/imm.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Glioblastoma, isocitrate dehydrogenase-wildtype (GB), is the most common and aggressive primary brain malignancy with poor outcome. Immune checkpoint inhibitors (ICIs) have been tested in GB and, despite disappointing results, the identification of a small subgroup of responders underlies the need to improve our understanding of the tumour microenvironment (TME) immunity. This study aimed to determine whether the expression of selected immune checkpoints on tissue-resident memory T cells (Trm) may predict patient outcome. We conducted a single cohort observational study. Tumour samples were collected from 45 patients with histologically confirmed GB (WHO grade 4) and processed to obtain single-cell suspensions. Patients were assessed for the correlation of Trm phenotype with overall survival (OS) or progression-free survival (PFS) using multiparametric flow cytometry and uni/multivariate analyses. Levels of Trm expressing programmed cell death protein 1 (PD1) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) were found to be linked to clinical outcome. Low frequency of Trm expressing PD1 or TIM3 or both markers defined subgroups as independent positive prognostic factors for patient survival. On multivariate analysis, low CD8+CD103+PD1+TIM3+ Trm and Karnofsky performance status (KPS) ≥70 were confirmed to be the most predictive independent factors associated with longer OS (hazard ratios-HR [95%CI]: 0.14 [0.04-0.52] p < 0.001, 0.39 [0.16-0.96] p = 0.04, respectively). The CD8+CD103+ Trm subgroups were also age-related predictors for survival in GB.
Collapse
Affiliation(s)
- Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Quintino Giorgio D'Alessandris
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Tavilla
- National Centre for Disease Prevention and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Canini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Lapenta
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Giordano
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Alessandra Fragale
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Giannetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liverana Lauretti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
86
|
Kosianova А, Pak O, Bryukhovetskiy I. Regulation of cancer stem cells and immunotherapy of glioblastoma (Review). Biomed Rep 2024; 20:24. [PMID: 38170016 PMCID: PMC10758921 DOI: 10.3892/br.2023.1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Glioblastoma (GB) is one of the most adverse diagnoses in oncology. Complex current treatment results in a median survival of 15 months. Resistance to treatment is associated with the presence of cancer stem cells (CSCs). The present review aimed to analyze the mechanisms of CSC plasticity, showing the particular role of β-catenin in regulating vital functions of CSCs, and to describe the molecular mechanisms of Wnt-independent increase of β-catenin levels, which is influenced by the local microenvironment of CSCs. The present review also analyzed the reasons for the low effectiveness of using medication in the regulation of CSCs, and proposed the development of immunotherapy scenarios with tumor cell vaccines, containing heterogenous cancer cells able of producing a multidirectional antineoplastic immune response. Additionally, the possibility of managing lymphopenia by transplanting hematopoietic stem cells from a healthy sibling and using clofazimine or other repurposed drugs that reduce β-catenin concentration in CSCs was discussed in the present study.
Collapse
Affiliation(s)
- Аleksandra Kosianova
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Oleg Pak
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Igor Bryukhovetskiy
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| |
Collapse
|
87
|
Cui X, Huo D, Wang Q, Wang Y, Liu X, Zhao K, You Y, Zhang J, Kang C. RUNX1/NPM1/H3K4me3 complex contributes to extracellular matrix remodeling via enhancing FOSL2 transcriptional activation in glioblastoma. Cell Death Dis 2024; 15:98. [PMID: 38286983 PMCID: PMC10825180 DOI: 10.1038/s41419-024-06481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Extracellular matrix (ECM) remodeling has been implicated in the tumor malignant progression and immune escape in glioblastoma (GBM). Runt-related transcription factor 1 (RUNX1) is a vital transcriptional factor for promoting tumorigenesis and invasion in mesenchymal subtype of GBM. But the correlation between RUNX1 and ECM genes expression and regulatory mechanism of RUNX1 on ECM genes expression remain poorly understood to date. In this study, by using integral analysis of chromatin immunoprecipitation-sequencing and RNA sequencing, we reported that RUNX1 positively regulated the expression of various ECM-related genes, including Fibronectin 1 (FN1), Collagen type IV alpha 1 chain (COL4A1), and Lumican (LUM), in GBM. Mechanistically, we demonstrated that RUNX1 interacted with Nucleophosmin 1 (NPM1) to maintain the chromatin accessibility and facilitate FOS Like 2, AP-1 Transcription Factor Subunit (FOSL2)-mediated transcriptional activation of ECM-related genes, which was independent of RUNX1's transcriptional function. ECM remodeling driven by RUNX1 promoted immunosuppressive microenvironment in GBM. In conclusion, this study provides a novel mechanism of RUNX1 binding to NPM1 in driving the ECM remodeling and GBM progression.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Institute of Hematology, Zhejiang University, Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310003, China
| | - Qixue Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yunfei Wang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xiaomin Liu
- Neuro-Oncology Center, Tianjin Huanhu Hospital, Nankai University, Tianjin, 300350, China
| | - Kai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Chunsheng Kang
- Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| |
Collapse
|
88
|
Abdel-Rahman SA, Gabr M. Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma. Cancers (Basel) 2024; 16:435. [PMID: 38275876 PMCID: PMC10814352 DOI: 10.3390/cancers16020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood-brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
89
|
Arrieta VA, Duerinck J, Burdett KB, Habashy KJ, Geens W, Gould A, Schwarze JK, Dmello C, Kim KS, Saganty R, Chen L, Moscona A, McCord M, Lee-Chang C, Horbinski CM, Zhang H, Stupp R, Neyns B, Sonabend AM. ERK1/2 Phosphorylation Predicts Survival in Recurrent Glioblastoma Following Intracerebral and Adjuvant PD-1/CTLA-4 Immunotherapy: A REMARK-guided Analysis. Clin Cancer Res 2024; 30:379-388. [PMID: 37939133 PMCID: PMC10842826 DOI: 10.1158/1078-0432.ccr-23-1889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Evidence suggests that MAPK pathway activation, as measured by ERK1/2 phosphorylation (p-ERK), predicts overall survival (OS) in patients with recurrent glioblastoma receiving anti-PD-1 therapy. We aimed to validate these findings in independent cohorts. EXPERIMENTAL DESIGN In a 24-patient clinical trial on recurrent glioblastoma and high-grade gliomas, we examined the link between p-ERK levels and OS. Patients received intravenous nivolumab, followed by maximal safe resection and an intracerebral injection of either ipilimumab alone or combined with nivolumab. Biweekly adjuvant nivolumab was then administered up to five times (NCT03233152). Using REporting recommendations for tumor MARKER prognostic studies (REMARK) criteria, we conducted independent analyses for p-ERK quantification and statistical evaluations. Additional comparative analysis included prior cohorts, totaling 65 patients. Cox proportional hazards models and meta-analysis were employed to assess p-ERK as a predictive biomarker after immunotherapy. RESULTS Lower median p-ERK+ cell density was observed compared with prior studies, likely due to variable tissue processing across cohorts. Nonetheless, high p-ERK was associated with prolonged OS, particularly in isocitrate dehydrogenase wild-type glioblastomas (P = 0.036). Median OS for high and low p-ERK patients were 55.6 and 30 weeks, respectively. Multivariable analysis reinforced p-ERK's significance in survival prediction (P = 0.011). Upon p-ERK normalization across cohorts (n = 65), meta-analysis supported the survival benefit of elevated tumor p-ERK levels (P = 0.0424). CONCLUSIONS This study strengthens the role of p-ERK as a predictive biomarker for OS in patients with glioblastoma on immune checkpoint blockade. Future research should focus on further validation in prospective trials and the standardization of preanalytical variables influencing p-ERK quantification.
Collapse
Affiliation(s)
- Víctor A Arrieta
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Johnny Duerinck
- Department of Neurosurgery, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kirsten B Burdett
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Karl J Habashy
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Wietse Geens
- Department of Neurosurgery, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Andrew Gould
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Julia K Schwarze
- Department of Medical Oncology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Ruth Saganty
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Li Chen
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Alberto Moscona
- Facultad de Ciencias de la Salud, Escuela de Medicina Universidad Panamericana, Mexico City, Mexico
| | - Matthew McCord
- Department of Pathology, Division of Neuropathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Division of Neuropathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bart Neyns
- Department of Medical Oncology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Adam M Sonabend
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
90
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
91
|
Janes ME, Gottlieb AP, Park KS, Zhao Z, Mitragotri S. Cancer vaccines in the clinic. Bioeng Transl Med 2024; 9:e10588. [PMID: 38193112 PMCID: PMC10771564 DOI: 10.1002/btm2.10588] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 01/10/2024] Open
Abstract
Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.
Collapse
Affiliation(s)
- Morgan E. Janes
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alexander P. Gottlieb
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
92
|
Teran Pumar OY, Lathia JD, Watson DC, Bayik D. 'Slicing' glioblastoma drivers with the Swiss cheese model. Trends Cancer 2024; 10:15-27. [PMID: 37625928 PMCID: PMC10840711 DOI: 10.1016/j.trecan.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The Swiss cheese model is used to assess risks and explain accidents in a variety of industries. This model can be applied to dissect the homeostatic mechanisms whose cumulative dysregulation contributes to disease states, including cancer. Using glioblastoma (GBM) as an exemplar, we discuss how specific protumorigenic mechanisms collectively drive disease by affecting genomic integrity, epigenetic regulation, metabolic homeostasis, and antitumor immunity. We further highlight how host factors, such as hormonal differences and aging, impact this process, and the interplay between these 'system failures' that enable tumor progression and foster therapeutic resistance. Finally, we examine therapies that consider the interactions between these elements, which may comprise more effective approaches given the multifaceted protumorigenic mechanisms that drive GBM.
Collapse
Affiliation(s)
- Oriana Y Teran Pumar
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Justin D Lathia
- Case Comprehensive Cancer Center, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dionysios C Watson
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Medical Oncology Division, Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
93
|
Gao M, Huang J, Yang B, Liu Q, Luo M, Yang B, Li X, Liu X. Identification of efferocytosis-related subtypes in gliomas and elucidating their characteristics and clinical significance. Front Cell Dev Biol 2023; 11:1295891. [PMID: 38161335 PMCID: PMC10757721 DOI: 10.3389/fcell.2023.1295891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Gliomas, the most prevalent tumors of the central nervous system, are known for their aggressive nature and poor prognosis. The heterogeneity among gliomas leads to varying responses to the same treatments, even among similar glioma types. In our study, we efferocytosis-related subtypes and explored their characteristics in terms of immune landscape, intercellular communication, and metabolic processes, ultimately elucidating their potential clinical implications. Methods and Results: We first identified efferocytosis-related subtypes in Bulk RNA-seq using the NMF algorithm. We then preliminarily demonstrated the correlation of these subtypes with efferocytosis by examining enrichment scores of cell death pathways, macrophage infiltration, and the expression of immune ligands. Our analysis of single-cell RNA-seq data further supported the association of these subtypes with efferocytosis. Through enrichment analysis, we found that efferocytosis-related subtypes differ from other types of gliomas in terms of immune landscape, intercellular communication, and substance metabolism. Moreover, we found that the efferocytosis-related classification is a prognostic factor with robust predictive performance by calculating the AUC values. We also found that efferocytosis-related subtypes, when compared with other gliomas in drug sensitivity, survival, and TIDE scores, show a clear link to the effectiveness of chemotherapy, radiotherapy, and immunotherapy in glioma patients. Discussion: We identified efferocytosis-related subtypes in gliomas by analyzing the expression of 137 efferocytosis-associated genes, exploring their characteristics in immune landscape, intercellular communication, metabolic processes, and genomic variations. Moreover, we discovered that the classification of efferocytosis-related subtypes has a strong prognostic predictive power and holds potential significance in guiding clinical treatment.
Collapse
Affiliation(s)
- Mengge Gao
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Jinsheng Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Yang
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qiong Liu
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Miaoqing Luo
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Biying Yang
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Xujia Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaofang Liu
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| |
Collapse
|
94
|
Georgopoulos AP, James LM. Association between brain cancer immunogenetic profile and in silico immunogenicities of 11 viruses. Sci Rep 2023; 13:21528. [PMID: 38057480 PMCID: PMC10700375 DOI: 10.1038/s41598-023-48843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Several viruses including human herpes viruses (HHVs), human polyomavirus JCV, and human papilloma virus (HPV) have been implicated in brain cancer, albeit inconsistently. Since human leukocyte antigen (HLA) is centrally involved in the human immune response to viruses and has been implicated in brain cancer, we evaluated in silico the immunogenicity between 69 Class I HLA alleles with epitopes of proteins of 9 HHVs, JCV, and HPV with respect to a population-based HLA-brain cancer profile. We found that immunogenicity varied widely across HLA alleles with HLA-C alleles exhibiting the highest immunogenicity, and that immunogenicity scores were negatively associated with the population-based HLA-brain cancer profile, particularly for JCV, HHV6A, HHV5, HHV3, HHV8, and HHV7. Consistent with the role of HLA in foreign antigen elimination, the findings suggest that viruses with proteins of high HLA immunogenicity are eliminated more effectively and, consequently, less likely to cause brain cancer; conversely, the absence of highly immunogenic HLA may allow the viral antigens to persist, contributing to cancer.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
95
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
96
|
Scalia G, Ferini G, Marrone S, Salvati M, Yamamoto V, Kateb B, Schulte R, Forte S, Umana GE. Unexpected Transient Glioblastoma Regression in a Patient Previously Treated with Bacillus Calmette-Guérin Therapy: A Case Report and Immunomodulatory Effects Hypothesis. J Pers Med 2023; 13:1661. [PMID: 38138888 PMCID: PMC10744726 DOI: 10.3390/jpm13121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with limited treatment options and poor prognosis. Bacillus Calmette-Guérin (BCG), a live attenuated strain of Mycobacterium bovis, has been used as an immunotherapeutic agent in bladder cancer and has shown non-specific beneficial effects. This report presents a unique case of GBM regression following BCG therapy for bladder cancer, suggesting the potential systemic immunomodulatory effects of BCG on GBM. (2) Case Presentation: A 67-year-old male with a history of bladder cancer treated with BCG presented with neurological symptoms. Imaging revealed two GBM lesions, and surgery was performed to remove one. Subsequently, the patient experienced complete tumor regression after initial stability. (3) Conclusions: This case highlights the potential of BCG or other immunotherapies in GBM treatment and underscores the need for further research. Understanding the immunomodulatory effects of BCG on GBM could lead to innovative therapies for this devastating disease; although, overcoming the immune evasion mechanisms in the brain is a significant challenge. Further investigation is warranted to explore this promising avenue of research.
Collapse
Affiliation(s)
- Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95123 Catania, Italy
| | - Gianluca Ferini
- Department of Radiation Oncology, Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy;
| | - Salvatore Marrone
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Maurizio Salvati
- Department of Neurosurgery, Policlinico “Tor Vergata”, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Vicky Yamamoto
- University of Southern California-Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA;
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA 90272, USA;
| | - Reinhard Schulte
- School of Medicine, Loma Linda University, Loma Linda, CA 11085, USA;
| | - Stefano Forte
- Genomics and Experimental Oncology Unit, Istituto Oncologico del Mediterraneo, 95029 Viagrande, Catania, Italy;
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Gamma Knife and Trauma Center, Cannizzaro Hospital, 95126 Catania, Italy;
| |
Collapse
|
97
|
Lin F, Lin EZ, Anekoji M, Ichim TE, Hu J, Marincola FM, Jones LD, Kesari S, Ashili S. Advancing personalized medicine in brain cancer: exploring the role of mRNA vaccines. J Transl Med 2023; 21:830. [PMID: 37978542 PMCID: PMC10656921 DOI: 10.1186/s12967-023-04724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.
Collapse
Affiliation(s)
- Feng Lin
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA.
| | - Emma Z Lin
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Misa Anekoji
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Thomas E Ichim
- Therapeutic Solutions International, Oceanside, CA, 92056, USA
| | - Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA
| | | | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA, 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| |
Collapse
|
98
|
von Roemeling C, Yegorov O, Yang C, Klippel K, Russell R, Trivedi V, Bhatia A, Doonan B, Carpenter S, Ryu D, Grippen A, Futch H, Ran Y, Hoang-Minh L, Weidert F, Golde T, Mitchell D. CXCL9 recombinant adeno-associated virus (AAV) virotherapy sensitizes glioblastoma (GBM) to anti-PD-1 immune checkpoint blockade. RESEARCH SQUARE 2023:rs.3.rs-3463730. [PMID: 38014191 PMCID: PMC10680939 DOI: 10.21203/rs.3.rs-3463730/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The promise of immunotherapy to induce long-term durable responses in conventionally treatment resistant tumors like glioblastoma (GBM) has given hope for patients with a dismal prognosis. Yet, few patients have demonstrated a significant survival benefit despite multiple clinical trials designed to invigorate immune recognition and tumor eradication. Insights gathered over the last two decades have revealed numerous mechanisms by which glioma cells resist conventional therapy and evade immunological detection, underscoring the need for strategic combinatorial treatments as necessary to achieve appreciable therapeutic effects. However, new combination therapies are inherently difficult to develop as a result of dose-limiting toxicities, the constraints of the blood-brain barrier, and the suppressive nature of the GBM tumor microenvironment (TME). GBM is notoriously devoid of lymphocytes driven in part by a paucity of lymphocyte trafficking factors necessary to prompt their recruitment, infiltration, and activation. We have developed a novel recombinant adeno-associated virus (AAV) gene therapy strategy that enables focal and stable reconstitution of the GBM TME with C-X-C motif ligand 9 (CXCL9), a powerful call-and-receive chemokine for cytotoxic T lymphocytes (CTLs). By precisely manipulating local chemokine directional guidance, AAV-CXCL9 increases tumor infiltration by CD8-postive cytotoxic lymphocytes, sensitizing GBM to anti-PD-1 immune checkpoint blockade (ICB). These effects are accompanied by immunologic signatures evocative of an inflamed and responsive TME. These findings support targeted AAV gene therapy as a promising adjuvant strategy for reconditioning GBM immunogenicity given its excellent safety profile, TME-tropism, modularity, and off-the-shelf capability, where focal delivery bypasses the constrains of the blood-brain barrier, further mitigating risks observed with high-dose systemic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frances Weidert
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida
| | | | | |
Collapse
|
99
|
Ramapriyan R, Sun J, Curry A, Richardson LG, Ramesh T, Gaffey MA, Gedeon PC, Gerstner ER, Curry WT, Choi BD. The Role of Antibody-Based Therapies in Neuro-Oncology. Antibodies (Basel) 2023; 12:74. [PMID: 37987252 PMCID: PMC10660525 DOI: 10.3390/antib12040074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
This review explores the evolving landscape of antibody-based therapies in neuro-oncology, in particular, immune checkpoint inhibitors and immunomodulatory antibodies. We discuss their mechanisms of action, blood-brain barrier (BBB) penetration, and experience in neuro-oncological conditions. Evidence from recent trials indicates that while these therapies can modulate the tumor immune microenvironment, their clinical benefits remain uncertain, largely due to challenges with BBB penetration and tumor-derived immunosuppression. This review also examines emerging targets such as TIGIT and LAG3, the potential of antibodies in modulating the myeloid compartment, and tumor-specific targets for monoclonal antibody therapy. We further delve into advanced strategies such as antibody-drug conjugates and bispecific T cell engagers. Lastly, we explore innovative techniques being investigated to enhance antibody delivery, including CAR T cell therapy. Despite current limitations, these therapies hold significant therapeutic potential for neuro-oncology. Future research should focus on optimizing antibody delivery to the CNS, identifying novel biological targets, and discovering combination therapies to address the hostile tumor microenvironment.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Jing Sun
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Annabel Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Leland G. Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Tarun Ramesh
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Matthew A. Gaffey
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Patrick C. Gedeon
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Elizabeth R. Gerstner
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William T. Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| |
Collapse
|
100
|
Pour ME, Moghadam SG, Shirkhani P, Sahebkar A, Mosaffa F. Therapeutic cell-based vaccines for glioblastoma multiforme. Med Oncol 2023; 40:354. [PMID: 37952224 DOI: 10.1007/s12032-023-02220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Glioblastoma multiforme (GBM), a highly aggressive tumor, poses significant challenges in achieving successful treatment outcomes. Conventional therapeutic modalities including surgery, radiation, and chemotherapy have demonstrated limited efficacy, primarily attributed to the complexities associated with drug delivery to the tumor site and tumor heterogeneity. To address this critical need for innovative therapies, the potential of cancer vaccines utilizing tumor cells and dendritic cells has been explored for GBM treatment. This article provides a comprehensive review of therapeutic vaccinations employing cell-based vaccine strategies for the management of GBM. A meticulous evaluation of 45 clinical trials involving more than 1500 participants revealed that cell-based vaccinations have exhibited favorable safety profiles with minimal toxicity. Moreover, these vaccines have demonstrated modest improvements in overall survival and progression-free survival among patients. However, certain limitations still persist. Notably, there is a need for advancements in the development of potent antigens to evoke immune responses, as well as the optimization of dosage regimens. Consequently, while cell-based vaccinations show promise as a potential therapeutic approach for GBM, further research is imperative to overcome the current limitations. The ultimate objective is to surmount these obstacles and establish cell-based vaccinations as a standard therapeutic modality for GBM.
Collapse
Affiliation(s)
- Mehrshad Ebrahim Pour
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samin Ghorbani Moghadam
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parian Shirkhani
- School of Pharmacy, Department of Pharmaceutical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|