51
|
Nadeem T, Bogue W, Bigit B, Cuervo H. Deficiency of Notch signaling in pericytes results in arteriovenous malformations. JCI Insight 2020; 5:125940. [PMID: 33148887 PMCID: PMC7710269 DOI: 10.1172/jci.insight.125940] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Arteriovenous malformations (AVMs) are high-flow lesions directly connecting arteries and veins. In the brain, AVM rupture can cause seizures, stroke, and death. Patients with AVMs exhibit reduced coverage of the vessels by pericytes, the mural cells of microvascular capillaries; however, the mechanism underlying this pericyte reduction and its association with AVM pathogenesis remains unknown. Notch signaling has been proposed to regulate critical pericyte functions. We hypothesized that Notch signaling in pericytes is crucial to maintain pericyte homeostasis and prevent AVM formation. We inhibited Notch signaling specifically in perivascular cells and analyzed the vasculature of these mice. The retinal vessels of mice with deficient perivascular Notch signaling developed severe AVMs, together with a significant reduction in pericytes and vascular smooth muscle cells (vSMC) in the arteries, while vSMCs were increased in the veins. Vascular malformations and pericyte loss were also observed in the forebrain of embryonic mice deficient for perivascular Notch signaling. Moreover, the loss of Notch signaling in pericytes downregulated Pdgfrb levels and increased pericyte apoptosis, pointing to a critical role for Notch in pericyte survival. Overall, our findings reveal a mechanism of AVM formation and highlight the Notch signaling pathway as an essential mediator in this process.
Collapse
|
52
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
53
|
Zhang Y, Yang X. The Roles of TGF-β Signaling in Cerebrovascular Diseases. Front Cell Dev Biol 2020; 8:567682. [PMID: 33072751 PMCID: PMC7530326 DOI: 10.3389/fcell.2020.567682] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebrovascular diseases are one of the leading causes of death worldwide, however, little progress has been made in preventing or treating these diseases to date. The transforming growth factor-β (TGF-β) signaling pathway plays crucial and highly complicated roles in cerebrovascular development and homeostasis, and dysregulated TGF-β signaling contributes to cerebrovascular diseases. In this review, we provide an updated overview of the functional role of TGF-β signaling in the cerebrovascular system under physiological and pathological conditions. We discuss the current understanding of TGF-β signaling in cerebral angiogenesis and the maintenance of brain vessel homeostasis. We also review the mechanisms by which disruption of TGF-β signaling triggers or promotes the progression of cerebrovascular diseases. Finally, we briefly discuss the potential of targeting TGF-β signaling to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
54
|
Ruiz S, Zhao H, Chandakkar P, Papoin J, Choi H, Nomura-Kitabayashi A, Patel R, Gillen M, Diao L, Chatterjee PK, He M, Al-Abed Y, Wang P, Metz CN, Oh SP, Blanc L, Campagne F, Marambaud P. Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models. J Clin Invest 2020; 130:942-957. [PMID: 31689244 DOI: 10.1172/jci127425] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT), a genetic bleeding disorder leading to systemic arteriovenous malformations (AVMs), is caused by loss-of-function mutations in the ALK1/ENG/Smad1/5/8 pathway. Evidence suggests that HHT pathogenesis strongly relies on overactivated PI3K/Akt/mTOR and VEGFR2 pathways in endothelial cells (ECs). In the BMP9/10-immunoblocked (BMP9/10ib) neonatal mouse model of HHT, we report here that the mTOR inhibitor, sirolimus, and the receptor tyrosine kinase inhibitor, nintedanib, could synergistically fully block, but also reversed, retinal AVMs to avert retinal bleeding and anemia. Sirolimus plus nintedanib prevented vascular pathology in the oral mucosa, lungs, and liver of the BMP9/10ib mice, as well as significantly reduced gastrointestinal bleeding and anemia in inducible ALK1-deficient adult mice. Mechanistically, in vivo in BMP9/10ib mouse ECs, sirolimus and nintedanib blocked the overactivation of mTOR and VEGFR2, respectively. Furthermore, we found that sirolimus activated ALK2-mediated Smad1/5/8 signaling in primary ECs - including in HHT patient blood outgrowth ECs - and partially rescued Smad1/5/8 activity in vivo in BMP9/10ib mouse ECs. These data demonstrate that the combined correction of endothelial Smad1/5/8, mTOR, and VEGFR2 pathways opposes HHT pathogenesis. Repurposing of sirolimus plus nintedanib might provide therapeutic benefit in patients with HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Haitian Zhao
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | | | - Julien Papoin
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Hyunwoo Choi
- Barrow Aneurysm and AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Radhika Patel
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Matthew Gillen
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and
| | - Li Diao
- Center for Immunology and Inflammation
| | | | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Christine N Metz
- Institute of Molecular Medicine, and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - S Paul Oh
- Barrow Aneurysm and AVM Research Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Lionel Blanc
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Philippe Marambaud
- Litwin-Zucker Center for Alzheimer's Disease and Memory Disorders and.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
55
|
Ruiz-Llorente L, Albiñana V, Botella LM, Bernabeu C. Differential Expression of Circulating Plasma miRNA-370 and miRNA-10a from Patients with Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:E2855. [PMID: 32899377 PMCID: PMC7565099 DOI: 10.3390/jcm9092855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant, vascular disorder that presents with telangiectases and arteriovenous malformations. HHT is a genetically heterogeneous disorder, involving mutations in endoglin (ENG; HHT1) and activin receptor-like kinase 1 (ACVRL1/ALK1; HHT2) genes that account for over 85% of all HHT patients. The current diagnosis of HHT patients remains at the clinical level, but many suspected patients do not have a clear HHT diagnosis or do not show pathogenic mutations in HHT genes. This situation has prompted the search for biomarkers to help in the early diagnosis of the disease. We have analyzed the plasma levels in HHT patients of selected micro-RNAs (miRNAs), small single-stranded RNAs that regulate gene expression at the transcriptional level by interacting with specific RNA targets. A total of 16 HHT1 and 17 HHT2 plasma samples from clinically confirmed patients and 16 controls were analyzed in this study. Total RNA was purified from plasma, and three selected miRNAs (miRNA-10a, miRNA-214, and miRNA-370), related to the pathobiology of cardiovascular diseases and potentially targeting ENG or ALK1, were measured by quantitative polymerase chain reaction. Compared with controls, levels of miRNA-370, whose putative target is ENG, were significantly downregulated in HHT1, but not in HHT2, whereas the levels of miRNA-10a, whose putative target is ALK1, were significantly upregulated in HHT2, but not in HHT1. In addition, the levels of miRNA-214, potentially targeting ENG and ALK1, did not change in either HHT1 or HHT2 patients versus control samples. While further studies are warranted, these results suggest that dysregulated plasma levels of miRNA-370 or miRNA-10a could help to identify undiagnosed HHT1 or HHT2 patients, respectively.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (L.R.-L.); (V.A.); (L.M.B.)
- Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Virginia Albiñana
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (L.R.-L.); (V.A.); (L.M.B.)
| | - Luisa M. Botella
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (L.R.-L.); (V.A.); (L.M.B.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (L.R.-L.); (V.A.); (L.M.B.)
| |
Collapse
|
56
|
Alk1 haploinsufficiency causes glomerular dysfunction and microalbuminuria in diabetic mice. Sci Rep 2020; 10:13136. [PMID: 32753679 PMCID: PMC7403732 DOI: 10.1038/s41598-020-68515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Endothelial dysfunction has been shown to play an important role in the pathogenesis of glomerular damage during diabetic kidney disease (DKD). As such, a better understanding of the molecular mechanisms involved in glomerular endothelial dysfunctions could provide novel therapeutic strategies for the prevention of DKD. We have previously shown that Alk1/BMP9 signaling plays an important function to maintain vascular integrity in diabetic animals. As such, we evaluated the effects of Alk1 suppression on glomerular endothelial function in diabetic mice. In the present study, we used mice with conditional heterozygote deletion of Alk1 in the endothelium (Alk1ΔEC) to evaluate the role of Alk1 on kidney function during STZ-induced diabetes. DKD was investigated in diabetic control and Alk1ΔEC mice euthanized eight weeks after the onset of diabetes. We showed that Alk1 expression is reduced in the glomeruli of human DKD patients. While renal function was not altered in Alk1ΔEC non-diabetic mice, we showed that Alk1 haploinsufficiency in the glomerular endothelium leads to microalbuminuria, thickening of the glomerular basement membrane, glomerular apoptosis and podocyte loss in diabetic mice. These data suggest that Alk1 is important for the proper function of glomerular endothelial cells and that decreased Alk1 combined with chronic hyperglycemia can impair renal function.
Collapse
|
57
|
Hwan Kim Y, Vu PN, Choe SW, Jeon CJ, Arthur HM, Vary CPH, Lee YJ, Oh SP. Overexpression of Activin Receptor-Like Kinase 1 in Endothelial Cells Suppresses Development of Arteriovenous Malformations in Mouse Models of Hereditary Hemorrhagic Telangiectasia. Circ Res 2020; 127:1122-1137. [PMID: 32762495 DOI: 10.1161/circresaha.119.316267] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease caused by mutations in ENG, ALK1, or SMAD4. Since proteins from all 3 HHT genes are components of signal transduction of TGF-β (transforming growth factor β) family members, it has been hypothesized that HHT is a disease caused by defects in the ENG-ALK1-SMAD4 linear signaling. However, in vivo evidence supporting this hypothesis is scarce. OBJECTIVE We tested this hypothesis and investigated the therapeutic effects and potential risks of induced-ALK1 or -ENG overexpression (OE) for HHT. METHODS AND RESULTS We generated a novel mouse allele (ROSA26Alk1) in which HA (human influenza hemagglutinin)-tagged ALK1 and bicistronic eGFP expression are induced by Cre activity. We examined whether ALK1-OE using the ROSA26Alk1 allele could suppress the development of arteriovenous malformations (AVMs) in wounded adult skin and developing retinas of Alk1- and Eng-inducible knockout (iKO) mice. We also used a similar approach to investigate whether ENG-OE could rescue AVMs. Biochemical and immunofluorescence analyses confirmed the Cre-dependent OE of the ALK1-HA transgene. We could not detect any pathological signs in ALK1-OE mice up to 3 months after induction. ALK1-OE prevented the development of retinal AVMs and wound-induced skin AVMs in Eng-iKO as well as Alk1-iKO mice. ALK1-OE normalized expression of SMAD and NOTCH target genes in ENG-deficient endothelial cells (ECs) and restored the effect of BMP9 (bone morphogenetic protein 9) on suppression of phosphor-AKT levels in these endothelial cells. On the other hand, ENG-OE could not inhibit the AVM development in Alk1-iKO models. CONCLUSIONS These data support the notion that ENG and ALK1 form a linear signaling pathway for the formation of a proper arteriovenous network during angiogenesis. We suggest that ALK1 OE or activation can be an effective therapeutic strategy for HHT. Further research is required to study whether this therapy could be translated into treatment for humans.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (Y.H.K., S.-w.C., S.P.O.).,Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ (Y.H.K., S.P.O.)
| | - Phuong-Nhung Vu
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea (N.V.P., Y.J.L.)
| | - Se-Woon Choe
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (Y.H.K., S.-w.C., S.P.O.).,Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea (S.-w.C.)
| | - Chang-Jin Jeon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Korea (C.J.J.)
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University, United Kingdom (H.M.A.)
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough (C.P.V.)
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea (N.V.P., Y.J.L.)
| | - S Paul Oh
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (Y.H.K., S.-w.C., S.P.O.).,Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ (Y.H.K., S.P.O.)
| |
Collapse
|
58
|
Deregulation of Drosha in the pathogenesis of hereditary hemorrhagic telangiectasia. Curr Opin Hematol 2020; 26:161-169. [PMID: 30855334 DOI: 10.1097/moh.0000000000000493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The TGFβ (transforming growth factor β) superfamily - a large group of structurally related and evolutionarily conserved proteins - profoundly shapes and organizes the vasculature during normal development and adult homeostasis. Mutations inactivating several of its ligands, receptors, or signal transducers set off hereditary hemorrhagic telangiectasia (HHT), a disorder that causes capillary networks to form incorrectly. Drosha, an essential microRNA-processing enzyme, also interfaces with TGFβ signal transducers, but its involvement in vascular conditions had not been tested until recently. This review summarizes current evidence that links mutations of Drosha to HHT. RECENT FINDINGS Genetic studies have revealed that rare missense mutations in the Drosha gene occur more commonly among HHT patients than in healthy people. Molecular analyses also indicated that Drosha enzymes with HHT-associated mutations generate microRNAs less efficiently than their wild-type counterpart when stimulated by TGFβ ligands. In zebrafish or mouse, mutant Drosha proteins cause the formation of dilated, leaky blood vessels deprived of capillaries, similar to those typically found in patients with HHT. SUMMARY Recent evidence suggests that Drosha-mediated microRNA biogenesis contributes significantly to the control of vascular development and homeostasis by TGFβ. Loss or reduction of Drosha function may predispose carriers to HHT and possibly other vascular diseases.
Collapse
|
59
|
Fish JE, Flores Suarez CP, Boudreau E, Herman AM, Gutierrez MC, Gustafson D, DiStefano PV, Cui M, Chen Z, De Ruiz KB, Schexnayder TS, Ward CS, Radovanovic I, Wythe JD. Somatic Gain of KRAS Function in the Endothelium Is Sufficient to Cause Vascular Malformations That Require MEK but Not PI3K Signaling. Circ Res 2020; 127:727-743. [PMID: 32552404 PMCID: PMC7447191 DOI: 10.1161/circresaha.119.316500] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: We previously identified somatic activating mutations in the KRAS (Kirsten rat sarcoma viral oncogene homologue) gene in the endothelium of the majority of human sporadic brain arteriovenous malformations; a disorder characterized by direct connections between arteries and veins. However, whether this genetic abnormality alone is sufficient for lesion formation, as well as how active KRAS signaling contributes to arteriovenous malformations, remains unknown. Objective: To establish the first in vivo models of somatic KRAS gain of function in the endothelium in both mice and zebrafish to directly observe the phenotypic consequences of constitutive KRAS activity at a cellular level in vivo, and to test potential therapeutic interventions for arteriovenous malformations. Methods and Results: Using both postnatal and adult mice, as well as embryonic zebrafish, we demonstrate that endothelial-specific gain of function mutations in Kras (G12D or G12V) are sufficient to induce brain arteriovenous malformations. Active KRAS signaling leads to altered endothelial cell morphogenesis and increased cell size, ectopic sprouting, expanded vessel lumen diameter, and direct connections between arteries and veins. Furthermore, we show that these lesions are not associated with altered endothelial growth dynamics or a lack of proper arteriovenous identity but instead seem to feature exuberant angiogenic signaling. Finally, we demonstrate that KRAS-dependent arteriovenous malformations in zebrafish are refractory to inhibition of the downstream effector PI3K but instead require active MEK (mitogen-activated protein kinase kinase 1) signaling. Conclusions: We demonstrate that active KRAS expression in the endothelium is sufficient for brain arteriovenous malformations, even in the setting of uninjured adult vasculature. Furthermore, the finding that KRAS-dependent lesions are reversible in zebrafish suggests that MEK inhibition may represent a promising therapeutic treatment for arteriovenous malformation patients.
Collapse
Affiliation(s)
- Jason E Fish
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada.,Peter Munk Cardiac Centre (J.E.F.), University Health Network, Canada.,Department of Laboratory Medicine and Pathobiology (J.E.F., D.G.), University of Toronto, Canada
| | - Carlos Perfecto Flores Suarez
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Emilie Boudreau
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Alexander M Herman
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Manuel Cantu Gutierrez
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,Graduate Program in Developmental Biology (M.C.G., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Dakota Gustafson
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada.,Department of Laboratory Medicine and Pathobiology (J.E.F., D.G.), University of Toronto, Canada
| | - Peter V DiStefano
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Meng Cui
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Zhiqi Chen
- From the Toronto General Hospital Research Institute (J.E.F., E.B., D.G., P.V.D., Z.C.), University Health Network, Canada
| | - Karen Berman De Ruiz
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX
| | - Taylor S Schexnayder
- Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,and Advanced Technology Cores (T.S.S., C.S.W.), Baylor College of Medicine, Houston, TX
| | - Christopher S Ward
- Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,and Advanced Technology Cores (T.S.S., C.S.W.), Baylor College of Medicine, Houston, TX
| | - Ivan Radovanovic
- Krembil Research Institute (I.R.), University Health Network, Canada.,Division of Neurosurgery, Sprott Department of Surgery (I.R.), University Health Network, Canada.,Department of Surgery (I.R.), University of Toronto, Canada
| | - Joshua D Wythe
- Cardiovascular Research Institute (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., J.D.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (C.P.F.S., A.M.H., M.C.G., M.C., K.B.D.R., T.S.S., C.S.W., J.D.W.), Baylor College of Medicine, Houston, TX.,Graduate Program in Developmental Biology (M.C.G., J.D.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
60
|
Martinez-Corral I, Zhang Y, Petkova M, Ortsäter H, Sjöberg S, Castillo SD, Brouillard P, Libbrecht L, Saur D, Graupera M, Alitalo K, Boon L, Vikkula M, Mäkinen T. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun 2020; 11:2869. [PMID: 32513927 PMCID: PMC7280302 DOI: 10.1038/s41467-020-16496-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways. Lymphatic malformation (LM) is a debilitating often incurable vascular disease. Using a mouse model of LM driven by a disease-causative PIK3CA mutation, the authors show that vascular growth is dependent on the upstream lymphangiogenic VEGF-C signalling, permitting effective therapeutic intervention.
Collapse
Affiliation(s)
- Ines Martinez-Corral
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Yan Zhang
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Milena Petkova
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Henrik Ortsäter
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Sjöberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sandra D Castillo
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Louis Libbrecht
- Center for Vascular Anomalies, Division of Pathology, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Dieter Saur
- Department of Internal Medicine 2, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | - Mariona Graupera
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laurence Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
61
|
Trauma Can Induce Telangiectases in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9051507. [PMID: 32429545 PMCID: PMC7290907 DOI: 10.3390/jcm9051507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease of the fibrovascular tissue resulting in visceral vascular malformations and (muco-) cutaneous telangiectases with recurrent bleedings. The mechanism behind the disease is not fully understood; however, observations from HHT mouse models suggest that mechanical trauma may induce the formation of abnormal vessels. To assess the influence of environmental trauma (mechanical or light induced) on the number of telangiectases in patients with HHT, the number of telangiectases on the hands, face, and lips were counted on 103 HHT patients possessing at least three out of four Curaçao criteria. They were then surveyed for information concerning their dominant hand, exposure to sunlight, and types of regular manual work. Patients developed more telangiectases on their dominant hand and lower lip (Wilcoxon rank sum test: p < 0.001). Mechanical stress induced by manual work led to an increased number of telangiectases on patients’ hands (Mann–Whitney U test: p < 0.001). There was also a positive correlation between sun exposure and the number of telangiectases on the lips (Mann–Whitney U test: 0.027). This study shows that mechanical and UV-induced trauma strongly influence the formation of telangiectases in HHT patients. This result has potential implications in preventive measures and on therapeutic approaches for HHT.
Collapse
|
62
|
TMEM100 is a key factor for specification of lymphatic endothelial progenitors. Angiogenesis 2020; 23:339-355. [PMID: 32112176 DOI: 10.1007/s10456-020-09713-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND TMEM100 is identified as a downstream gene of bone morphogenetic protein 9 (BMP9) signaling via activin receptor-like kinase 1 (ALK1), which is known to participate in lymphangiogenesis as well as angiogenesis. TMEM100 has been shown to be important for blood vessel formation and maintenance, but its role in the development of lymphatic vasculature remains unknown. The objective is to investigate the role of TMEM100 in development of the lymphatic system. METHODS AND RESULTS Global Tmem100 gene deletion was induced by tamoxifen on 10.5 days post-coitus. Tmem100-inducible knockout (iKO) embryos in embryonic days (E)14.5-16.5 exhibited edema and blood-filled enlarged lymphatics with misconnections between veins and lymphatic vessels. For a reciprocal approach, we have generated a novel mouse line in which TMEM100 overexpression (OE) can be induced in endothelial cells by intercrossing with Tie2-Cre driver. TMEM100-OE embryos at E12.5-14.5 exhibited edema with small size and number of lymphatic vessels, the exact opposite phenotypes of Tmem100-iKOs. In Tmem100-iKO embryos, the number of progenitors of lymphatic endothelial cells (LECs) in the cardinal vein was increased, while it was decreased in TMEM100-OE embryos. The activity of NOTCH signaling, which limits the number of progenitors of LECs in the cardinal vein, was decreased in Tmem100-iKO embryos, whereas it was increased in TMEM100-OE embryos. CONCLUSION TMEM100 plays an important role in the specification of LECs in the cardinal veins, at least in part, by regulating the NOTCH signaling.
Collapse
|
63
|
Crist AM, Zhou X, Garai J, Lee AR, Thoele J, Ullmer C, Klein C, Zabaleta J, Meadows SM. Angiopoietin-2 Inhibition Rescues Arteriovenous Malformation in a Smad4 Hereditary Hemorrhagic Telangiectasia Mouse Model. Circulation 2020; 139:2049-2063. [PMID: 30744395 DOI: 10.1161/circulationaha.118.036952] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia is an autosomal dominant vascular disorder caused by heterozygous, loss-of-function mutations in 4 transforming growth factor beta (TGFβ) pathway members, including the central transcriptional mediator of the TGFβ pathway, Smad4. Loss of Smad4 causes the formation of inappropriate, fragile connections between arteries and veins called arteriovenous malformations (AVMs), which can hemorrhage leading to stroke, aneurysm, or death. Unfortunately, the molecular mechanisms underlying AVM pathogenesis remain poorly understood, and the TGFβ downstream effectors responsible for hereditary hemorrhagic telangiectasia-associated AVM formation are currently unknown. METHODS To identify potential biological targets of the TGFβ pathway involved in AVM formation, we performed RNA- and chromatin immunoprecipitation-sequencing experiments on BMP9 (bone morphogenetic protein 9)-stimulated endothelial cells (ECs) and isolated ECs from a Smad4-inducible, EC-specific knockout ( Smad4-iECKO) mouse model that develops retinal AVMs. These sequencing studies identified the angiopoietin-Tek signaling pathway as a downstream target of SMAD4. We used monoclonal blocking antibodies to target a specific component in this pathway and assess its effects on AVM development. RESULTS Sequencing studies uncovered 212 potential biological targets involved in AVM formation, including the EC surface receptor, TEK (TEK receptor tyrosine kinase) and its antagonistic ligand, ANGPT2 (angiopoietin-2). In Smad4-iECKO mice, Angpt2 expression is robustly increased, whereas Tek levels are decreased, resulting in an overall reduction in angiopoietin-Tek signaling. We provide evidence that SMAD4 directly represses Angpt2 transcription in ECs. Inhibition of ANGPT2 function in Smad4-deficient mice, either before or after AVMs form, prevents and alleviates AVM formation and normalizes vessel diameters. These rescue effects are attributed to a reversion in EC morphological changes, such as cell size and shape that are altered in the absence of Smad4. CONCLUSIONS Our studies provide a novel mechanism whereby the loss of Smad4 causes increased Angpt2 transcription in ECs leading to AVM formation, increased blood vessel calibers, and changes in EC morphology in the retina. Blockade of ANGPT2 function in an in vivo Smad4 model of hereditary hemorrhagic telangiectasia alleviated these vascular phenotypes, further implicating ANGPT2 as an important TGFβ downstream mediator of AVM formation. Therefore, alternative approaches that target ANGPT2 function may have therapeutic value for the alleviation of hereditary hemorrhagic telangiectasia symptoms, such as AVMs.
Collapse
Affiliation(s)
- Angela M Crist
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA (A.M.C., X.Z., A.R.L., S.M.M.)
| | - Xingyan Zhou
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA (A.M.C., X.Z., A.R.L., S.M.M.)
| | - Jone Garai
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans (J.G., J.Z.)
| | - Amanda R Lee
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA (A.M.C., X.Z., A.R.L., S.M.M.)
| | - Janina Thoele
- Roche Innovation Center, Basel, Switzerland (J.T., C.U.)
| | | | | | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans (J.G., J.Z.)
| | - Stryder M Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA (A.M.C., X.Z., A.R.L., S.M.M.)
| |
Collapse
|
64
|
Robert F, Desroches-Castan A, Bailly S, Dupuis-Girod S, Feige JJ. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020; 15:4. [PMID: 31910860 PMCID: PMC6945546 DOI: 10.1186/s13023-019-1281-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT), also known as Rendu-Osler syndrome, is a genetic vascular disorder affecting 1 in 5000–8000 individuals worldwide. This rare disease is characterized by various vascular defects including epistaxis, blood vessel dilations (telangiectasia) and arteriovenous malformations (AVM) in several organs. About 90% of the cases are associated with heterozygous mutations of ACVRL1 or ENG genes, that respectively encode a bone morphogenetic protein receptor (activin receptor-like kinase 1, ALK1) and a co-receptor named endoglin. Less frequent mutations found in the remaining 10% of patients also affect the gene SMAD4 which is part of the transcriptional complex directly activated by this pathway. Presently, the therapeutic treatments for HHT are intended to reduce the symptoms of the disease. However, recent progress has been made using drugs that target VEGF (vascular endothelial growth factor) and the angiogenic pathway with the use of bevacizumab (anti-VEGF antibody). Furthermore, several exciting high-throughput screenings and preclinical studies have identified new molecular targets directly related to the signaling pathways affected in the disease. These include FKBP12, PI3-kinase and angiopoietin-2. This review aims at reporting these recent developments that should soon allow a better care of HHT patients.
Collapse
Affiliation(s)
- Florian Robert
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Agnès Desroches-Castan
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sabine Bailly
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France
| | - Sophie Dupuis-Girod
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.,Hospices Civils de Lyon, Service de Génétique, Hôpital Femme-Mère-Enfants, F-69677, Bron, France.,Centre National de Référence pour la Maladie de Rendu-Osler, F-69677, Bron, France
| | - Jean-Jacques Feige
- Univ. Grenoble Alpes, Inserm, CEA, Laboratory Biology of Cancer and Infection, F-38000, Grenoble, France.
| |
Collapse
|
65
|
Tual-Chalot S, Garcia-Collado M, Redgrave RE, Singh E, Davison B, Park C, Lin H, Luli S, Jin Y, Wang Y, Lawrie A, Jakobsson L, Arthur HM. Loss of Endothelial Endoglin Promotes High-Output Heart Failure Through Peripheral Arteriovenous Shunting Driven by VEGF Signaling. Circ Res 2019; 126:243-257. [PMID: 31805812 PMCID: PMC6970547 DOI: 10.1161/circresaha.119.315974] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE ENG (endoglin) is a coreceptor for BMP (bone morphogenetic protein) 9/10 and is strongly expressed in endothelial cells. Mutations in ENG lead to the inherited vascular disorder hereditary hemorrhagic telangiectasia characterized by local telangiectases and larger arteriovenous malformations (AVMs); but how ENG functions to regulate the adult vasculature is not understood. OBJECTIVE The goal of the work was to determine how ENG maintains vessel caliber in adult life to prevent AVM formation and thereby protect heart function. METHODS AND RESULTS Genetic depletion of endothelial Eng in adult mice led to a significant reduction in mean aortic blood pressure. There was no evidence of hemorrhage, anemia, or AVMs in major organs to explain the reduced aortic pressure. However, large AVMs developed in the peripheral vasculature intimately associated with the pelvic cartilaginous symphysis-a noncapsulated cartilage with a naturally high endogenous expression of VEGF (vascular endothelial growth factor). The increased blood flow through these peripheral AVMs explained the drop in aortic blood pressure and led to increased cardiac preload, and high stroke volumes, ultimately resulting in high-output heart failure. Development of pelvic AVMs in this region of high VEGF expression occurred because loss of ENG in endothelial cells leads to increased sensitivity to VEGF and a hyperproliferative response. Development of AVMs and associated progression to high-output heart failure in the absence of endothelial ENG was attenuated by targeting VEGF signaling with an anti-VEGFR2 (VEGF receptor 2) antibody. CONCLUSIONS ENG promotes the normal balance of VEGF signaling in quiescent endothelial cells to maintain vessel caliber-an essential function in conditions of increased VEGF expression such as local hypoxia or inflammation. In the absence of endothelial ENG, increased sensitivity to VEGF drives abnormal endothelial proliferation in local regions of high VEGF expression, leading to AVM formation and a rapid injurious impact on heart function.
Collapse
Affiliation(s)
- Simon Tual-Chalot
- From the Biosciences Institute (S.T.-C., R.E.R., E.S., B.D., C.P., H.L., H.M.A.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| | | | - Rachael E Redgrave
- From the Biosciences Institute (S.T.-C., R.E.R., E.S., B.D., C.P., H.L., H.M.A.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Esha Singh
- From the Biosciences Institute (S.T.-C., R.E.R., E.S., B.D., C.P., H.L., H.M.A.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Benjamin Davison
- From the Biosciences Institute (S.T.-C., R.E.R., E.S., B.D., C.P., H.L., H.M.A.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Catherine Park
- From the Biosciences Institute (S.T.-C., R.E.R., E.S., B.D., C.P., H.L., H.M.A.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Hua Lin
- From the Biosciences Institute (S.T.-C., R.E.R., E.S., B.D., C.P., H.L., H.M.A.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Saimir Luli
- Preclinical In Vivo Imaging Facility (S.L.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Yi Jin
- Karolinska Institutet, Solna, Sweden (M.G.-C., Y.J., Y.W., L.J.)
| | - Yixin Wang
- Karolinska Institutet, Solna, Sweden (M.G.-C., Y.J., Y.W., L.J.)
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, United Kingdom (A.L.)
| | - Lars Jakobsson
- Karolinska Institutet, Solna, Sweden (M.G.-C., Y.J., Y.W., L.J.)
| | - Helen M Arthur
- From the Biosciences Institute (S.T.-C., R.E.R., E.S., B.D., C.P., H.L., H.M.A.), Faculty of Medical Sciences, Newcastle University, United Kingdom
| |
Collapse
|
66
|
Kim YH, Choe SW, Chae MY, Hong S, Oh SP. SMAD4 Deficiency Leads to Development of Arteriovenous Malformations in Neonatal and Adult Mice. J Am Heart Assoc 2019; 7:e009514. [PMID: 30571376 PMCID: PMC6404197 DOI: 10.1161/jaha.118.009514] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic vascular disorder caused by mutations in endoglin (ENG), activin receptor‐like kinase 1 (ACVRL1;ALK1), or SMAD4. Major clinical symptoms of HHT are arteriovenous malformations (AVMs) found in the brain, lungs, visceral organs, and mucosal surface. Animal models harboring mutations in Eng or Alk1 recapitulate all of these HHT clinical symptoms and have been useful resources for studying mechanisms and testing potential drugs. However, animal models representing SMAD4 mutations have been lacking. The goal of this study is to evaluate Smad4‐inducible knockout (iKO) mice as an animal model of HHT and compare the phenotypes with other established HHT animal models. Methods and Results Global Smad4 deletion was induced at neonatal and adult stages, and hemoglobin levels, gastrointestinal hemorrhage, and presence of aberrant arteriovenous connections were examined. Neonatal Smad4‐iKO mice exhibited signs of gastrointestinal bleeding and AVMs in the brain, intestine, nose, and retina. The radial expansion was decreased, and AVMs were detected on both distal and proximal retinal vasculature of Smad4‐iKOs. Aberrant smooth muscle actin staining was observed in the initial stage AVMs and their connecting veins, indicating abnormal arterial flow to veins. In adult mice, Smad4 deficiency caused gastrointestinal bleeding and AVMs along the gastrointestinal tract and wounded skin. HHT‐related phenotypes of Smad4‐iKOs appeared to be comparable with those found in Alk1‐iKO and Eng‐iKO mice. Conclusions These data further confirm that SMAD signaling is crucial for normal arteriovenous network formation, and Smad4‐iKO will be an alternative animal model of AVM research associated with HHT.
Collapse
Affiliation(s)
- Yong Hwan Kim
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL.,2 Department of Neurobiology Barrow Neurological Institute Phoenix AZ
| | - Se-Woon Choe
- 3 Department of Medical IT Convergence Engineering Kumoh National Institute of Technology Gumi Korea
| | - Min-Young Chae
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL
| | - Suntaek Hong
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL.,4 Lee Gil Ya Cancer and Diabetes Institute Gachon University Incheon Korea
| | - S Paul Oh
- 1 Department of Physiology and Functional Genomics College of Medicine University of Florida Gainesville FL.,2 Department of Neurobiology Barrow Neurological Institute Phoenix AZ
| |
Collapse
|
67
|
Barbosa Do Prado L, Han C, Oh SP, Su H. Recent Advances in Basic Research for Brain Arteriovenous Malformation. Int J Mol Sci 2019; 20:ijms20215324. [PMID: 31731545 PMCID: PMC6862668 DOI: 10.3390/ijms20215324] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriovenous malformations (AVMs) are abnormal connections of vessels that shunt blood directly from arteries into veins. Rupture of brain AVMs (bAVMs) can cause life-threatening intracranial bleeding. Even though the majority of bAVM cases are sporadic without a family history, some cases are familial. Most of the familial cases of bAVMs are associated with a genetic disorder called hereditary hemorrhagic telangiectasia (HHT). The mechanism of bAVM formation is not fully understood. The most important advances in bAVM basic science research is the identification of somatic mutations of genes in RAS-MAPK pathways. However, the mechanisms by which mutations of these genes lead to AVM formation are largely unknown. In this review, we summarized the latest advance in bAVM studies and discussed some pathways that play important roles in bAVM pathogenesis. We also discussed the therapeutic implications of these pathways.
Collapse
Affiliation(s)
- Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
| | - Chul Han
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - S. Paul Oh
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +01-415-206-3162
| |
Collapse
|
68
|
Kim D, Seo EJ, Song YS, Suh CH, Kim JW, Kim DJ, Suh DC. Current Status of Clinical Diagnosis and Genetic Analysis of Hereditary Hemorrhagic Telangiectasia in South Korea: Multicenter Case Series and a Systematic Review. Neurointervention 2019; 14:91-98. [PMID: 31455059 PMCID: PMC6736501 DOI: 10.5469/neuroint.2019.00150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 01/28/2023] Open
Abstract
Purpose Hereditary hemorrhagic telangiectasia (HHT), a rare genetic vascular disorder, has been rarely reported in South Korea. We investigated the current prevalence and presenting patterns of genetically confirmed HHT in South Korea. Materials and Methods We defined HHT patients as those with proven mutations on known HHT-related genes (ENG, ACVRL1, SMAD4, and GDF2) or those fulfilling 3 or 4 of the Curaçao criteria. A computerized systematic search was performed in PubMed and KoreaMed using the following search term: (“hereditary hemorrhagic telangiectasia” AND “Korea”) OR (“Osler-Weber-Rendu” AND “Korea”). We also collected government health insurance data. HHT genetic testing results were collected from three tertiary hospitals in which the genetic tests were performed. We integrated patient data by analyzing each case to obtain the prevalence and presenting pattern of HHT in South Korea. Results We extracted 90 cases from 52 relevant articles from PubMed and KoreaMed. An additional 22 cases were identified from the three Korean tertiary hospitals after excluding seven cases that overlapped with those in the published articles. Finally, 112 HHT patients were identified (41 males and 71 females, aged 4–82 years [mean±standard deviation, 45.3±20.6 years]). The prevalence of HHT in South Korea is about 1 in 500,000, with an almost equal prevalence among men and women. Forty-nine patients underwent genetic testing, of whom 28 had HHT1 (ENG mutation) and 19 had HHT2 (ACVRL1 mutation); the other two patients were negative for ENG, ACVRL1, and SMAD4 mutations. Conclusion The prevalence of HHT is underestimated in Korea. The rate of phenotypic presentation seems to be similar to that found worldwide. Korean health insurance coverage is limited to representative genetic analysis to detect ENG and ACVRL1 mutations. Further genetic analyses to detect HHT3, HHT4, and other forms of HHT should be implemented.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboraory Medicines, Asan Medical Center, University of Ulsan, Seoul, Korea
| | - Yun Sun Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chong Hyun Suh
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Won Kim
- Department of Laboraory Medicines, Samsung Medical Center, Seoul, Korea
| | - Dong Joon Kim
- Department of Radiology, Severance Stroke Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Chul Suh
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
69
|
Li KN, Jain P, He CH, Eun FC, Kang S, Tumbar T. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. eLife 2019; 8:e45977. [PMID: 31343406 PMCID: PMC6684267 DOI: 10.7554/elife.45977] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Skin vasculature cross-talking with hair follicle stem cells (HFSCs) is poorly understood. Skin vasculature undergoes dramatic remodeling during adult mouse hair cycle. Specifically, a horizontal plexus under the secondary hair germ (HPuHG) transiently neighbors the HFSC activation zone during the quiescence phase (telogen). Increased density of HPuHG can be induced by reciprocal mutations in the epithelium (Runx1) and endothelium (Alk1) in adult mice, and is accompanied by prolonged HFSC quiescence and by delayed entry and progression into the hair growth phase (anagen). Suggestively, skin vasculature produces BMP4, a well-established HFSC quiescence-inducing factor, thus contributing to a proliferation-inhibitory environment near the HFSC. Conversely, the HFSC activator Runx1 regulates secreted proteins with previously demonstrated roles in vasculature remodeling. We suggest a working model in which coordinated remodeling and molecular cross-talking of the adult epithelial and endothelial skin compartments modulate timing of HFSC activation from quiescence for proper tissue homeostasis of adult skin.
Collapse
Affiliation(s)
- Kefei Nina Li
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Prachi Jain
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Catherine Hua He
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Flora Chae Eun
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Sangjo Kang
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Tudorita Tumbar
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| |
Collapse
|
70
|
Hao Q, Wang H, Lu JL, Ma L, Chen XL, Ye X, Zhao YH, Li MT, Chen Y, Zhao YL. Activin Receptor-Like Kinase 1 Combined With VEGF-A Affects Migration and Proliferation of Endothelial Cells From Sporadic Human Cerebral AVMs. Front Cell Neurosci 2019; 12:525. [PMID: 30687014 PMCID: PMC6333867 DOI: 10.3389/fncel.2018.00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Heterozygous loss of activin receptor-like kinase 1 (Alk1) can lead to hereditary hemorrhagic telangiectasia (HHT), which is a kind of vascular disease characterized by direct connections between arteries and veins with the lacking of capillaries, and develops into arteriovenous malformations (AVMs) in later stage. However, the changes of Alk1 in human sporadic cerebral AVMs (cAVMs) remain unknown. In the present study, we used endothelial cells (ECs) derived from human cAVMs (cAVM-ECs) specimens, to explore the characteristics of cAVM-ECs and the relationship between Alk1 and human sporadic cAVMs. Our data showed that there were obvious morphological changes in cAVM-ECs, and they could trans-differentiate into mesenchyme-like cells easily in a short period. In addition, the abilities of migration of cAVM-ECs were poorer than that in human aortic endothelial cells (HA-ECs). The abilities of proliferation of cAVM-ECs in patients with different ages were lower than HA-ECs. Immunofluorescent staining and Western blot showed that the levels of Alk1 mRNA and protein in the HA-ECs were both higher than that in cAVM-ECs. In addition, the levels of Alk1 mRNA had no significant differences between different ages in cAVM-ECs groups. The levels of VEGF-A mRNA in the cAVM were higher than HA-ECs. Besides, levels of VEGF-A mRNA expression were lower in older cAVM patients. Therefore, we conclude that Alk1 might induce the formation of sporadic human cAVMs through affecting migration and proliferation of endothelial cells combined with VEGF-A.
Collapse
Affiliation(s)
- Qiang Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun-Lin Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Li Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Xiao-Lin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Ya-Hui Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Ming-Tao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yuan-Li Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Stroke Center, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Basic Medical Science Department, Capital Medical University, Beijing, China
| |
Collapse
|
71
|
Galaris G, Thalgott JH, Lebrin FPG. Pericytes in Hereditary Hemorrhagic Telangiectasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:215-246. [PMID: 31147880 DOI: 10.1007/978-3-030-16908-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by multi-systemic vascular dysplasia affecting 1 in 5000 people worldwide. Individuals with HHT suffer from many complications including nose and gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output heart failure. Identification of the causative gene mutations and the generation of animal models have revealed that decreased transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling and increased vascular endothelial growth factor (VEGF) signaling activity in endothelial cells are responsible for the development of the vascular malformations in HHT. Perturbations in these key pathways are thought to lead to endothelial cell activation resulting in mural cell disengagement from the endothelium. This initial instability state causes the blood vessels to response inadequately when they are exposed to angiogenic triggers resulting in excessive blood vessel growth and the formation of vascular abnormalities that are prone to bleeding. Drugs promoting blood vessel stability have been reported as effective in preclinical models and in clinical trials indicating possible interventional targets based on a normalization approach for treating HHT. Here, we will review how disturbed TGF-β and VEGF signaling relates to blood vessel destabilization and HHT development and will discuss therapeutic opportunities based on the concept of vessel normalization to treat HHT.
Collapse
Affiliation(s)
- Georgios Galaris
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jérémy H Thalgott
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Physics for Medicine, ESPCI, INSERM U1273, CNRS, Paris, France.
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France.
| |
Collapse
|
72
|
Cannavicci A, Zhang Q, Dai SC, Faughnan ME, Kutryk MJB. Decreased levels of miR-28-5p and miR-361-3p and increased levels of insulin-like growth factor 1 mRNA in mononuclear cells from patients with hereditary hemorrhagic telangiectasia 1. Can J Physiol Pharmacol 2018; 97:562-569. [PMID: 30512964 DOI: 10.1139/cjpp-2018-0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disorder inherited in an autosomal dominant manner. Patients with HHT can develop vascular dysplasias called telangiectasias and arteriovenous malformations (AVMs). Our objective was to profile and characterize micro-RNAs (miRNAs), short noncoding RNAs that regulate gene expression posttranscriptionally, in HHT patient-derived peripheral blood mononuclear cells (PBMCs). PBMCs, comprised mostly of lymphocytes and monocytes, have been reported to be dysfunctional in HHT. A total of 40 clinically confirmed HHT patients and 22 controls were enrolled in this study. PBMCs were isolated from 16 mL of peripheral blood and purified for total RNA. MiRNA expression profiling was conducted with a human miRNA array analysis. Select dysregulated miRNAs and miRNA targets were validated with reverse transcription-quantitative polymerase chain reaction. Of the 377 miRNAs screened, 41 dysregulated miRNAs were identified. Both miR-28-5p and miR-361-3p, known to target insulin-like growth factor 1 (IGF1), a potent angiogenic growth factor, were found to be significantly downregulated in HHT patients. Consequently, IGF1 mRNA levels were found to be significantly elevated. Our research successfully identified miRNA dysregulation and elevated IGF1 mRNA levels in PBMCs from HHT patients. This novel discovery represents a potential pathogenic mechanism that could be targeted to alleviate clinical manifestations of HHT.
Collapse
Affiliation(s)
- Anthony Cannavicci
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Si-Cheng Dai
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Marie E Faughnan
- c Division of Respirology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J B Kutryk
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
73
|
Zhu W, Saw D, Weiss M, Sun Z, Wei M, Shaligram S, Wang S, Su H. Induction of Brain Arteriovenous Malformation Through CRISPR/Cas9-Mediated Somatic Alk1 Gene Mutations in Adult Mice. Transl Stroke Res 2018; 10:557-565. [PMID: 30511203 DOI: 10.1007/s12975-018-0676-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. The pathogenesis of bAVM has not been fully understood. Animal models are important tools for dissecting bAVM pathogenesis and testing new therapies. We have developed several mouse bAVM models using genetically modified mice. However, due to the body size, mouse bAVM models have some limitations. Recent studies identified somatic mutations in sporadic human bAVM. To develop a feasible tool to create sporadic bAVM in rodent and animals larger than rodent, we made tests using the CRISPR/Cas9 technique to induce somatic gene mutations in mouse brain in situ. Two sequence-specific guide RNAs (sgRNAs) targeting mouse Alk1 exons 4 and 5 were cloned into pAd-Alk1e4sgRNA + e5sgRNA-Cas9 plasmid. These sgRNAs were capable to generate mutations in Alk1 gene in mouse cell lines. After packaged into adenovirus, Ad-Alk1e4sgRNA + e5sgRNA-Cas9 was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brains of wild-type C57BL/6J mice. Eight weeks after viral injection, bAVMs were detected in 10 of 12 mice. Compared to the control (Ad-GFP/AAV-VEGF-injected) brain, 13% of Alk1 alleles were mutated and Alk1 expression was reduced by 26% in the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF-injected brains. Around the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF injected site, Alk1-null endothelial cells were detected. Our data demonstrated that CRISPR/Cas9 is a feasible tool for generating bAVM model in animals.
Collapse
Affiliation(s)
- Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Saw
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Miriam Weiss
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Meng Wei
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sonali Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sen Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
74
|
Wang K, Zhao S, Liu B, Zhang Q, Li Y, Liu J, Shen Y, Ding X, Lin J, Wu Y, Yan Z, Chen J, Li X, Song X, Niu Y, Liu J, Chen W, Ming Y, Du R, Chen C, Long B, Zhang Y, Tong X, Zhang S, Posey JE, Zhang B, Wu Z, Wythe JD, Liu P, Lupski JR, Yang X, Wu N. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet 2018; 55:675-684. [PMID: 30120215 PMCID: PMC6161649 DOI: 10.1136/jmedgenet-2017-105224] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM. METHODS We performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model. RESULTS We identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-β) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM. CONCLUSIONS Our study highlights the specific role of BMP/TGF-β and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiachen Lin
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Cong Chen
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
75
|
Abstract
Liver vascular malformations (VMs) in hereditary hemorrhagic telangiectasia (HHT) are typically diffuse and can evolve from small telangiectasias to large arteriovenous malformations, with various stages of severity. Doppler US is the ideal first-line investigation for the assessment of liver VMs in HHT due to its safety, tolerability, low costs, and accuracy for the detection of liver VMs. The caliber, course, and flow characteristics in the hepatic artery, portal vein, and hepatic vein as determined by Doppler US, together with parenchymal abnormalities, support the diagnosis of liver VMs in HHT and their severity staging. When Doppler US expertise is lacking or an assessment of HHT patients with symptoms/signs suggestive of complicated liver VMs is required, particularly if OLT is considered, multiphase CT or MRI is suitable to investigate symptomatic liver VMs. Liver biopsy is neither necessary for the diagnosis of hepatic VMs related to HHT nor should be considered in HHT patients with liver mass/es suggestive of focal nodular hyperplasia.
Collapse
|
76
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 455] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
77
|
Characterization of multi-cellular dynamics of angiogenesis and vascular remodelling by intravital imaging of the wounded mouse cornea. Sci Rep 2018; 8:10672. [PMID: 30006556 PMCID: PMC6045577 DOI: 10.1038/s41598-018-28770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/29/2018] [Indexed: 01/12/2023] Open
Abstract
Establishment of the functional blood vasculature involves extensive cellular rearrangement controlled by growth factors, chemokines and flow-mediated shear forces. To record these highly dynamic processes in mammalians has been technically demanding. Here we apply confocal and wide field time-lapse in vivo microscopy to characterize the remodelling vasculature of the wounded mouse cornea. Using mouse lines with constitutive or inducible endogenous fluorescent reporters, in combination with tracer injections and mosaic genetic recombination, we follow processes of sprouting angiogenesis, sprout fusion, vessel expansion and pruning in vivo, at subcellular resolution. We describe the migratory behaviour of endothelial cells of perfused vessels, in relation to blood flow directionality and vessel identity. Live-imaging following intravascular injection of fluorescent tracers, allowed for recording of VEGFA-induced permeability. Altogether, live-imaging of the remodelling vasculature of inflamed corneas of mice carrying endogenous fluorescent reporters and conditional alleles, constitutes a powerful platform for investigation of cellular behaviour and vessel function.
Collapse
|
78
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
79
|
Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis 2018; 21:363-380. [PMID: 29460088 PMCID: PMC5878194 DOI: 10.1007/s10456-018-9602-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1, ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse (Smad4f/f;Cdh5-CreERT2) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery-vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.
Collapse
|
80
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
81
|
Jiang X, Wooderchak-Donahue WL, McDonald J, Ghatpande P, Baalbaki M, Sandoval M, Hart D, Clay H, Coughlin S, Lagna G, Bayrak-Toydemir P, Hata A. Inactivating mutations in Drosha mediate vascular abnormalities similar to hereditary hemorrhagic telangiectasia. Sci Signal 2018; 11:11/513/eaan6831. [PMID: 29339534 DOI: 10.1126/scisignal.aan6831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) family of cytokines critically regulates vascular morphogenesis and homeostasis. Impairment of TGF-β or BMP signaling leads to heritable vascular disorders, including hereditary hemorrhagic telangiectasia (HHT). Drosha, a key enzyme for microRNA (miRNA) biogenesis, also regulates the TGF-β and BMP pathway through interaction with Smads and their joint control of gene expression through miRNAs. We report that mice lacking Drosha in the vascular endothelium developed a vascular phenotype resembling HHT that included dilated and disorganized vasculature, arteriovenous fistulae, and hemorrhages. Exome sequencing of HHT patients who lacked known pathogenic mutations revealed an overrepresentation of rare nonsynonymous variants of DROSHA Two of these DROSHA variants (P100L and R279L) did not interact with Smads and were partially catalytically active. In zebrafish, expression of these mutants or morpholino-directed knockdown of Drosha resulted in angiogenesis defects and abnormal vascular permeability. Together, our studies point to an essential role of Drosha in vascular development and the maintenance of vascular integrity, and reveal a previously unappreciated link between Drosha dysfunction and HHT.
Collapse
Affiliation(s)
- Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Whitney L Wooderchak-Donahue
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA.,Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Jamie McDonald
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mai Baalbaki
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melissa Sandoval
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel Hart
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hilary Clay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shaun Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pinar Bayrak-Toydemir
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA. .,Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
82
|
Wang X, Solban N, Khanna P, Callea M, Song J, Alsop DC, Pearsall RS, Atkins MB, Mier JW, Signoretti S, Alimzhanov M, Kumar R, Bhasin MK, Bhatt RS. Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma. Oncotarget 2018; 7:41857-41869. [PMID: 27248821 PMCID: PMC5173101 DOI: 10.18632/oncotarget.9621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Treatment of metastatic renal cell carcinoma (mRCC) with agents that block signaling through vascular endothelial growth factor receptor 2 (VEGFR2) induces disease regression or stabilization in some patients; however, these responses tend to be short-lived. Therefore, development of combination therapies that can extend the efficacy of VEGFR antagonists in mRCC remains a priority. We studied murine xenograft models of RCC that become refractory to treatment with the VEGFR tyrosine kinase inhibitor (TKI) sunitinib. Dalantercept is a novel antagonist of Activin receptor-like kinase 1 (ALK1)/Bone morphogenetic protein (BMP) 9 signaling. Dalantercept inhibited growth in the murine A498 xenograft model which correlated with hyperdilation of the tumor vasculature and an increase in tumor hypoxia. When combined with sunitinib, dalantercept induced tumor necrosis and prevented tumor regrowth and revascularization typically seen with sunitinib monotherapy in two RCC models. Combination therapy led to significant downregulation of angiogenic genes as well as downregulation of endothelial specific gene expression particularly of the Notch signaling pathway. We demonstrate that simultaneous targeting of molecules that control distinct phases of angiogenesis, such as ALK1 and VEGFR, is a valid strategy for treatment of mRCC. At the molecular level, combination therapy leads to downregulation of Notch signaling.
Collapse
Affiliation(s)
- Xiaoen Wang
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Prateek Khanna
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marcella Callea
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Michael B Atkins
- Departments of Oncology and Medicine, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - James W Mier
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Ravi Kumar
- Acceleron Pharma, Inc., Cambridge, MA, USA
| | - Manoj K Bhasin
- Division of Interdisciplinary Medicine & Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rupal S Bhatt
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, Metz CN, Blanc L, Campagne F, Marambaud P. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet 2017; 26:4786-4798. [PMID: 28973643 PMCID: PMC5886173 DOI: 10.1093/hmg/ddx358] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a highly debilitating and life-threatening genetic vascular disorder arising from endothelial cell (EC) proliferation and hypervascularization, for which no cure exists. Because HHT is caused by loss-of-function mutations in bone morphogenetic protein 9 (BMP9)-ALK1-Smad1/5/8 signaling, interventions aimed at activating this pathway are of therapeutic value. We interrogated the whole-transcriptome in human umbilical vein ECs (HUVECs) and found that ALK1 signaling inhibition was associated with a specific pro-angiogenic gene expression signature, which included a significant elevation of DLL4 expression. By screening the NIH clinical collections of FDA-approved drugs, we identified tacrolimus (FK-506) as the most potent activator of ALK1 signaling in BMP9-challenged C2C12 reporter cells. In HUVECs, tacrolimus activated Smad1/5/8 and opposed the pro-angiogenic gene expression signature associated with ALK1 loss-of-function, by notably reducing Dll4 expression. In these cells, tacrolimus also inhibited Akt and p38 stimulation by vascular endothelial growth factor, a major driver of angiogenesis. In the BMP9/10-immunodepleted postnatal retina-a mouse model of HHT vascular pathology-tacrolimus activated endothelial Smad1/5/8 and prevented the Dll4 overexpression and hypervascularization associated with this model. Finally, tacrolimus stimulated Smad1/5/8 signaling in C2C12 cells expressing BMP9-unresponsive ALK1 HHT mutants and in HHT patient blood outgrowth ECs. Tacrolimus repurposing has therefore therapeutic potential in HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Prodyot K Chatterjee
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Erica Christen
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | - Christine N Metz
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Disorders
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine
- Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, NY 10021, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
84
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
85
|
Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 2017; 144:3241-3252. [PMID: 28760815 DOI: 10.1242/dev.150904] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/22/2017] [Indexed: 02/01/2023]
Abstract
How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4-deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size.
Collapse
Affiliation(s)
- Aruna Poduri
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew H Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian Raftrey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mike Van
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
86
|
Morine KJ, Qiao X, Paruchuri V, Aronovitz MJ, Mackey EE, Buiten L, Levine J, Ughreja K, Nepali P, Blanton RM, Oh SP, Karas RH, Kapur NK. Reduced activin receptor-like kinase 1 activity promotes cardiac fibrosis in heart failure. Cardiovasc Pathol 2017; 31:26-33. [PMID: 28820968 DOI: 10.1016/j.carpath.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Activin receptor-like kinase 1 (ALK1) mediates signaling via the transforming growth factor beta-1 (TGFβ1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. HYPOTHESIS We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. METHODS AND RESULTS In patients with advanced heart failure referred for left ventricular (LV) assist device implantation, LV Alk1 mRNA and protein levels were lower than control LV obtained from patients without heart failure. To investigate the role of ALK1 in heart failure, Alk1 haploinsufficient (Alk1+/-) and wild-type (WT) mice were studied 2 weeks after severe transverse aortic constriction (TAC). LV and lung weights were higher in Alk1+/- mice after TAC. Cardiomyocyte area and LV mRNA levels of brain natriuretic peptide and β-myosin heavy chain were increased similarly in Alk1+/- and WT mice after TAC. Alk-1 mice exhibited reduced Smad 1 phosphorylation and signaling compared to WT mice after TAC. Compared to WT, LV fibrosis and Type 1 collagen mRNA and protein levels were higher in Alk1+/- mice. LV fractional shortening was lower in Alk1+/- mice after TAC. CONCLUSIONS Reduced expression of ALK1 promotes cardiac fibrosis and impaired LV function in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required.
Collapse
Affiliation(s)
- Kevin J Morine
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Xiaoying Qiao
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Vikram Paruchuri
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Emily E Mackey
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Lyanne Buiten
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Jonathan Levine
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Keshan Ughreja
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Prerna Nepali
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Robert M Blanton
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Richard H Karas
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| | - Navin K Kapur
- Molecular Cardiology Research Institute and Division of Cardiology, Department of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
87
|
Franco CA, Gerhardt H. Blood flow boosts BMP signaling to keep vessels in shape. J Cell Biol 2017; 214:793-5. [PMID: 27672213 PMCID: PMC5037414 DOI: 10.1083/jcb.201609038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Bone morphogenic proteins (BMPs) and blood flow regulate vascular remodeling and homeostasis. In this issue, Baeyens et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201603106) show that blood flow sensitizes endothelial cells to BMP9 signaling by triggering Alk1/ENG complexing to suppress cell proliferation and to recruit mural cells, thereby establishing endothelial quiescence.
Collapse
Affiliation(s)
- Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Holger Gerhardt
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, 3000 Leuven, Belgium German Center for Cardiovascular Research, 13347 Berlin, Germany Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
88
|
Kim YH, Kim MJ, Choe SW, Sprecher D, Lee YJ, Oh SP. Selective effects of oral antiangiogenic tyrosine kinase inhibitors on an animal model of hereditary hemorrhagic telangiectasia. J Thromb Haemost 2017; 15:1095-1102. [PMID: 28339142 PMCID: PMC5902312 DOI: 10.1111/jth.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 11/28/2022]
Abstract
Essentials Antiangiogenic drugs are indicated as therapies for hereditary hemorrhagic telangiectasia. We interrogated the response to four antiangiogenic drugs for anemia and intestinal bleeding. Sorafenib and a pazopanib analog significantly improved while erlotinib worsened anemia. Some oral antiangiogenic drugs were effective in reducing intestinal bleeding. SUMMARY Background Epistaxis and gastrointestinal (GI) tract hemorrhages are common symptoms of aged hereditary hemorrhagic telangiectasia (HHT) patients that result in anemia. Clinical as well as animal studies have suggested that vascular endothelial growth factor (VEGF) neutralizing antibodies lessen hemorrhage associated with adult-onset arteriovenous malformations (AVMs). Objectives The goal of this study is to evaluate potential therapeutic effects of oral delivery of four antiangiogenic tyrosine-kinase inhibitors (TKIs) in the development of adult-onset AVMs in a murine model of HHT. Methods An adult activin receptor-like kinase 1 (Alk1)-inducible knockout (iKO) model was utilized to evaluate the effect of oral administration of sorafenib, sunitinib, erlotinib and a pazopanib analog (GW771806) on hemoglobin level, GI hemorrhages and formation of wound-induced skin AVMs. Results and Conclusions Sorafenib and GW771806 significantly improved, yet erlotinib worsened, anemia and GI-bleeding in the Alk1-iKO model. However, none of these TKIs appeared to be effective for inhibiting the development of wound-induced skin AVMs. Taken together, these results suggest that oral delivery of antiangiogenic TKIs is selectively more effective for GI bleeding than mucocutaneous AVMs, and it may provide an experimental basis for selective therapeutic options depending on the symptoms of HHT.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Physiology and Functional genomics, College of Medicine, University of Florida, Gainesville, Florida 32610 USA
| | - Mi-Jung Kim
- Department of Aging, College of Medicine, University of Florida, Gainesville, Florida 32610 USA
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Se-woon Choe
- Department of Physiology and Functional genomics, College of Medicine, University of Florida, Gainesville, Florida 32610 USA
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Dennis Sprecher
- GlaxoSmithKline Laboratories, Metabolic Pathways and Cardiovascular Unit, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - S. Paul Oh
- Department of Physiology and Functional genomics, College of Medicine, University of Florida, Gainesville, Florida 32610 USA
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
89
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
90
|
Conditional knockout of activin like kinase-1 (ALK-1) leads to heart failure without maladaptive remodeling. Heart Vessels 2017; 32:628-636. [PMID: 28213819 DOI: 10.1007/s00380-017-0955-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022]
Abstract
Activin like kinase-1 (AlK-1) mediates signaling via the transforming growth factor beta (TGFβ) family of ligands. AlK-1 activity promotes endothelial proliferation and migration. Reduced AlK-1 activity is associated with arteriovenous malformations. No studies have examined the effect of global AlK-1 deletion on indices of cardiac remodeling. We hypothesized that reduced levels of AlK-1 promote maladaptive cardiac remodeling. To test this hypothesis, we employed AlK-1 conditional knockout mice (cKO) harboring the ROSA26-CreER knock-in allele, whereby a single dose of intraperitoneal tamoxifen triggered ubiquitous Cre recombinase-mediated excision of floxed AlK-1 alleles. Tamoxifen treated wild-type (WT-TAM; n = 5) and vehicle treated AlK-1-cKO mice (cKO-CON; n = 5) served as controls for tamoxifen treated AlK-1-cKO mice (cKO-TAM; n = 15). AlK-1 cKO-TAM mice demonstrated reduced 14-day survival compared to cKO-CON controls (13 vs 100%, respectively, p < 0.01). Seven days after treatment, cKO-TAM mice exhibited reduced left ventricular (LV) fractional shortening, progressive LV dilation, and gastrointestinal bleeding. After 14 days total body mass was reduced, but LV and lung mass increased in cKO-TAM not cKO-CON mice. Peak LV systolic pressure, contractility, and arterial elastance were reduced, but LV end-diastolic pressure and stroke volume were increased in cKO-TAM, not cKO-CON mice. LV AlK-1 mRNA levels were reduced in cKO-TAM, not cKO-CON mice. LV levels of other TGFβ-family ligands and receptors (AlK5, TBRII, BMPRII, Endoglin, BMP7, BMP9, and TGFβ1) were unchanged between groups. Cardiomyocyte area and LV levels of BNP were increased in cKO-TAM mice, but LV levels of β-MHC and SERCA were unchanged. No increase in markers of cardiac fibrosis, Type I collagen, CTGF, or PAI-1, were observed between groups. No differences were observed for any variable studied between cKO-CON and WT-TAM mice. Global deletion of AlK-1 is associated with the development of high output heart failure without maladaptive remodeling. Future studies exploring the functional role of AlK-1 in cardiac remodeling independent of systemic AVMs are required.
Collapse
|
91
|
Wetzel-Strong SE, Detter MR, Marchuk DA. The pathobiology of vascular malformations: insights from human and model organism genetics. J Pathol 2016; 241:281-293. [PMID: 27859310 DOI: 10.1002/path.4844] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
Vascular malformations may arise in any of the vascular beds present in the human body. These lesions vary in location, type, and clinical severity of the phenotype. In recent years, the genetic basis of several vascular malformations has been elucidated. This review will consider how the identification of the genetic factors contributing to different vascular malformations, with subsequent functional studies in animal models, has provided a better understanding of these factors that maintain vascular integrity in vascular beds, as well as their role in the pathogenesis of vascular malformations. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.,Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
92
|
Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivée B, Lee M, Urarte AA, Kraehling JR, Genet G, Hirschi KK, Sessa WC, Canals FV, Graupera M, Yan M, Young LH, Oh PS, Eichmann A. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun 2016; 7:13650. [PMID: 27897192 PMCID: PMC5141347 DOI: 10.1038/ncomms13650] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jinah Han
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jennifer S. Fang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Bruno Larrivée
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Monica Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Ana A. Urarte
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jan R. Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Karen K. Hirschi
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - William C. Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Francesc V. Canals
- Translation Research Laboratory, Catalan Institute of Oncology, Idibell, Barcelona 08908, Spain
| | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Minhong Yan
- Molecular Oncology, Genentech, Inc., South San Francisco, California 94080-4990, USA
| | - Lawrence H. Young
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Paul S. Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, PO Box 100274, Gainesville, Florida 32610, USA
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Inserm U970, Paris Cardiovascular Research Center, Paris 75015, France
| |
Collapse
|
93
|
A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep 2016; 5:37366. [PMID: 27874028 PMCID: PMC5118799 DOI: 10.1038/srep37366] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a potentially life-threatening genetic vascular disorder caused by loss-of-function mutations in the genes encoding activin receptor-like kinase 1 (ALK1), endoglin, Smad4, and bone morphogenetic protein 9 (BMP9). Injections of mouse neonates with BMP9/10 blocking antibodies lead to HHT-like vascular defects in the postnatal retinal angiogenesis model. Mothers and their newborns share the same immunity through the transfer of maternal antibodies during lactation. Here, we investigated whether the transmammary delivery route could improve the ease and consistency of administering anti-BMP9/10 antibodies in the postnatal retinal angiogenesis model. We found that anti-BMP9/10 antibodies, when intraperitoneally injected into lactating dams, are efficiently transferred into the blood circulation of lactationally-exposed neonatal pups. Strikingly, pups receiving anti-BMP9/10 antibodies via lactation displayed consistent and robust vascular pathology in the retina, which included hypervascularization and defects in arteriovenous specification, as well as the presence of multiple and massive arteriovenous malformations. Furthermore, RNA-Seq analyses of neonatal retinas identified an increase in the key pro-angiogenic factor, angiopoietin-2, as the most significant change in gene expression triggered by the transmammary delivery of anti-BMP9/10 antibodies. Transmammary-delivered BMP9/10 immunoblocking in the mouse neonatal retina is therefore a practical, noninvasive, reliable, and robust model of HHT vascular pathology.
Collapse
|
94
|
Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, Zhang X, Ramírez CM, Park EJ, Tao B, Chen K, Kuruvilla L, Larriveé B, Folta-Stogniew E, Ola R, Rotllan N, Zhou W, Nagle MW, Herz J, Williams KJ, Eichmann A, Lee WL, Fernández-Hernando C, Sessa WC. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 2016; 7:13516. [PMID: 27869117 PMCID: PMC5121336 DOI: 10.1038/ncomms13516] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. Atherosclerosis is caused by low-density lipoprotein (LDL) buildup in the vessel wall, a process thought to be mediated by LDL receptor alone. Here, the authors show that the endothelium can uptake LDL via ALK1, a TGFβ signalling receptor, suggesting new therapies for blocking LDL accumulation in the vessel wall.
Collapse
Affiliation(s)
- Jan R Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - John H Chidlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Chitra Rajagopal
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael G Sugiyama
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Monica Y Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Eon Joo Park
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Keyang Chen
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bruno Larriveé
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Roxana Ola
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Wenping Zhou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael W Nagle
- Human Genetics &Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg 41345, Sweden
| | - Anne Eichmann
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
95
|
Kang W, Lim JS, Park MS, Koh GY, Kim H. Antiangiogenic Therapy Induces Hepatic Tumor Vascular Network Rearrangement to Receive Perfusion via the Portal Vein and Hepatic Artery. J Vasc Res 2016; 53:72-82. [PMID: 27643516 DOI: 10.1159/000448734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Hepatic malignancies can easily develop resistance to antiangiogenic therapy, but the underlying mechanism remains poorly understood. This study explores whether antiangiogenic therapy influences the tumor vascular network and/or the vessels feeding the hepatic tumor. METHODS Mice implanted with Lewis lung carcinoma (LLC) cells were subcutaneously injected 3 times (once every other day starting 1 week after LLC implantation) with either an antiangiogenic agent [vascular endothelial growth factor (VEGF)-Trap] or control agent (bovine serum albumin) at a dose of 25 mg/kg before performing angiography. Hepatic arteriography and portography were performed using a vascular cast method with vascular latex. RESULTS Arteriography of the control-treated LLC-implanted mice showed marked staining of the mass with a prominent feeding artery, suggesting that the tumor is supplied by arterial perfusion. No significant staining was observed on portography. By contrast, 33% (n = 3/9) of the LLC-implanted mice treated with the antiangiogenic agent VEGF-Trap showed intratumoral staining during portography, indicating that these tumors received perfusion via the portal vein. CONCLUSION Antiangiogenic treatment can induce rearrangement of the hepatic tumor vascular network to establish communication with the portal vein. This implies that hepatic tumors can develop resistance to antiangiogenic therapy by maintaining perfusion through portal venous perfusion.
Collapse
Affiliation(s)
- Wonseok Kang
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
96
|
Cuervo H, Nielsen CM, Simonetto DA, Ferrell L, Shah VH, Wang RA. Endothelial notch signaling is essential to prevent hepatic vascular malformations in mice. Hepatology 2016; 64:1302-1316. [PMID: 27362333 PMCID: PMC5261867 DOI: 10.1002/hep.28713] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Liver vasculature is crucial for adequate hepatic functions. Global deletion of Notch signaling in mice results in liver vascular pathologies. However, whether Notch in endothelium is essential for hepatic vascular structure and function remains unknown. To uncover the function of endothelial Notch in the liver, we deleted Rbpj, a transcription factor mediating all canonical Notch signaling, or Notch1 from the endothelium of postnatal mice. We investigated the hepatic vascular defects in these mutants. The liver was severely affected within 2 weeks of endothelial deletion of Rbpj from birth. Two-week old mutant mice had enlarged vessels on the liver surface, abnormal vascular architecture, and dilated sinusoids. Vascular casting and fluorosphere passage experiments indicated the presence of porto-systemic shunts. These mutant mice presented with severely necrotic liver parenchyma and significantly larger hypoxic areas, likely resulting from vascular shunts. We also found elevated levels of VEGF receptor 3 together with reduced levels of ephrin-B2, suggesting a possible contribution of these factors to the generation of hepatic vascular abnormalities. Deletion of Rbpj from the adult endothelium also led to dilated sinusoids, vascular shunts, and necrosis, albeit milder than that observed in mice with deletion from birth. Similar to deletion of Rbpj, loss of endothelial Notch1 from birth led to similar hepatic vascular malformations within 2 weeks. CONCLUSIONS Endothelial Notch signaling is essential for the development and maintenance of proper hepatic vascular architecture and function. These findings may elucidate the molecular pathogenesis of hepatic vascular malformation and the safety of therapeutics inhibiting Notch. (Hepatology 2016;64:1302-1316).
Collapse
Affiliation(s)
- Henar Cuervo
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Corinne M. Nielsen
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | | | - Linda Ferrell
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA,Corresponding author: Rong A. Wang, PhD, University of California, San Francisco, HSW 1618, 513 Parnassus Avenue, San Francisco, CA 94143, Fax: 415-353-4370, Phone: 415-476-6855,
| |
Collapse
|
97
|
Baeyens N, Larrivée B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol 2016; 214:807-16. [PMID: 27646277 PMCID: PMC5037412 DOI: 10.1083/jcb.201603106] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Bruno Larrivée
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Roxana Ola
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brielle Hayward-Piatkowskyi
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Alexandre Dubrac
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Billy Huang
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Tyler D Ross
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brian G Coon
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Elizabeth Min
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Maya Tsarfati
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Haibin Tong
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin 132013, China
| | - Anne Eichmann
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Institut National de la Santé et de la Recherche Médicale U970, Paris Center for Cardiovascular Research, 75015 Paris, France
| | - Martin A Schwartz
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Department of Cell Biology, Yale University, New Haven, CT 06510 Department of Biomedical Engineering, Yale University, New Haven, CT 06510
| |
Collapse
|
98
|
Integrin β8 Deletion Enhances Vascular Dysplasia and Hemorrhage in the Brain of Adult Alk1 Heterozygous Mice. Transl Stroke Res 2016; 7:488-496. [PMID: 27352867 DOI: 10.1007/s12975-016-0478-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Brain arteriovenous malformation (bAVM), characterized by tangled dysplastic vessels, is an important cause of intracranial hemorrhage in young adults, and its pathogenesis and progression are not fully understood. Patients with haploinsufficiency of transforming growth factor-β (TGF-β) receptors, activin receptor-like kinase 1 (ALK1) or endoglin (ENG) have a higher incidence of bAVM than the general population. However, bAVM does not develop effectively in mice with the same haploinsufficiency. The expression of integrin β8 subunit (ITGB8), another member in the TGF-β superfamily, is reduced in sporadic human bAVM. Brain angiogenic stimulation results at the capillary level of vascular malformation in adult Alk1 haploinsufficient (Alk1 +/- ) mice. We hypothesized that deletion of Itgb8 enhances bAVM development in adult Alk1 +/- mice. An adenoviral vector expressing Cre recombinase (Ad-Cre) was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brain of Alk1 +/-;Itgb8-floxed mice to induce focal Itgb8 gene deletion and angiogenesis. We showed that compared with Alk +/- mice (4.75 ± 1.38/mm2), the Alk1 +/-;Itgb8-deficient mice had more dysplastic vessels in the angiogenic foci (7.14 ± 0.68/mm2, P = 0.003). More severe hemorrhage was associated with dysplastic vessels in the brain of Itgb8-deleted Alk1 +/- , as evidenced by larger Prussian blue-positive areas (1278 ± 373 pixels/mm2 vs. Alk1 +/- : 320 ± 104 pixels/mm2; P = 0.028). These data indicate that both Itgb8 and Alk1 are important in maintaining normal cerebral angiogenesis in response to VEGF. Itgb8 deficiency enhances the formation of dysplastic vessels and hemorrhage in Alk1 +/- mice.
Collapse
|
99
|
Rochon ER, Menon PG, Roman BL. Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 2016; 143:2593-602. [PMID: 27287800 DOI: 10.1242/dev.135392] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
Abstract
Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs.
Collapse
Affiliation(s)
- Elizabeth R Rochon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Prahlad G Menon
- Department of Biomedical Engineering, Duquesne University, Pittsburgh, PA 15110, USA
| | - Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
100
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|