51
|
Qi H, Jin M, Duan Y, Du X, Zhang Y, Ren F, Wang Y, Tian Q, Wang X, Wang Q, Zhu Y, Xie Y, Liu C, Cao X, Mishina Y, Chen D, Deng CX, Chang Z, Chen L. FGFR3 induces degradation of BMP type I receptor to regulate skeletal development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1237-47. [PMID: 24657641 DOI: 10.1016/j.bbamcr.2014.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/16/2014] [Accepted: 03/12/2014] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play significant roles in vertebrate organogenesis and morphogenesis. FGFR3 is a negative regulator of chondrogenesis and multiple mutations with constitutive activity of FGFR3 result in achondroplasia, one of the most common dwarfisms in humans, but the molecular mechanism remains elusive. In this study, we found that chondrocyte-specific deletion of BMP type I receptor a (Bmpr1a) rescued the bone overgrowth phenotype observed in Fgfr3 deficient mice by reducing chondrocyte differentiation. Consistently, using in vitro chondrogenic differentiation assay system, we demonstrated that FGFR3 inhibited BMPR1a-mediated chondrogenic differentiation. Furthermore, we showed that FGFR3 hyper-activation resulted in impaired BMP signaling in chondrocytes of mouse growth plates. We also found that FGFR3 inhibited BMP-2- or constitutively activated BMPR1-induced phosphorylation of Smads through a mechanism independent of its tyrosine kinase activity. We found that FGFR3 facilitates BMPR1a to degradation through Smurf1-mediated ubiquitination pathway. We demonstrated that down-regulation of BMP signaling by BMPR1 inhibitor dorsomorphin led to the retardation of chondrogenic differentiation, which mimics the effect of FGF-2 on chondrocytes and BMP-2 treatment partially rescued the retarded growth of cultured bone rudiments from thanatophoric dysplasia type II mice. Our findings reveal that FGFR3 promotes the degradation of BMPR1a, which plays an important role in the pathogenesis of FGFR3-related skeletal dysplasia.
Collapse
Affiliation(s)
- Huabing Qi
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Jin
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yaqi Duan
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, China
| | - Yuanquan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fangli Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qingyun Tian
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, USA
| | - Xiaofeng Wang
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Quan Wang
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Ying Zhu
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chuanju Liu
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Di Chen
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Chu-xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 10/9N105, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Lin Chen
- Center of Bone Metabolism and Repair (CBMR), Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400042, China; Department of Rehabilitation Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
52
|
Li JY, Walker LD, Tyagi AM, Adams J, Weitzmann MN, Pacifici R. The sclerostin-independent bone anabolic activity of intermittent PTH treatment is mediated by T-cell-produced Wnt10b. J Bone Miner Res 2014; 29:43-54. [PMID: 24357520 PMCID: PMC4326235 DOI: 10.1002/jbmr.2044] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/11/2013] [Accepted: 06/29/2013] [Indexed: 12/29/2022]
Abstract
Both blunted osteocytic production of the Wnt inhibitor sclerostin (Scl) and increased T-cell production of the Wnt ligand Wnt10b contribute to the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. However, the relative contribution of these mechanisms is unknown. In this study, we modeled the repressive effects of iPTH on Scl production in mice by treatment with a neutralizing anti-Scl antibody (Scl-Ab) to determine the contribution of T-cell-produced Wnt10b to the Scl-independent modalities of action of iPTH. We report that combined treatment with Scl-Ab and iPTH was more potent than either iPTH or Scl-Ab alone in increasing stromal cell production of OPG, osteoblastogenesis, osteoblast life span, bone turnover, bone mineral density, and trabecular bone volume and structure in mice with T cells capable of producing Wnt10b. In T-cell-null mice and mice lacking T-cell production of Wnt10b, combined treatment increased bone turnover significantly more than iPTH or Scl-Ab alone. However, in these mice, combined treatment with Scl-Ab and iPTH was equally effective as Scl-Ab alone in increasing the osteoblastic pool, bone volume, density, and structure. These findings demonstrate that the Scl-independent activity of iPTH on osteoblasts and bone mass is mediated by T-cell-produced Wnt10b. The data provide a proof of concept of a more potent therapeutic effect of combined treatment with iPTH and Scl-Ab than either alone.
Collapse
Affiliation(s)
- Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Lindsey D Walker
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
53
|
Pacifici R. Role of T cells in the modulation of PTH action: physiological and clinical significance. Endocrine 2013; 44:576-82. [PMID: 23729167 PMCID: PMC3815684 DOI: 10.1007/s12020-013-9960-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/10/2013] [Indexed: 12/24/2022]
Abstract
Osteoimmunology is new field of research dedicated to the study of the interactions between the immune system and bone. Among the cells of the immune system that regulate bone and hemopoietic cells are T lymphocytes. These cells secrete osteoclastogenic cytokines such as RANKL and TNF, as well as factors that stimulate bone formation and hemopoietic cells, one of which is Wnt10b. This article will review the evidence that T cells are implicated in the mechanism of action of parathyroid hormone (PTH) in bone and on the hemopoietic system.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Room 1309, Atlanta, GA, 30322, USA,
| |
Collapse
|
54
|
Deprez PML, Nichane MG, Lengelé BG, Rezsöhazy R, Nyssen-Behets C. Molecular study of a Hoxa2 gain-of-function in chondrogenesis: a model of idiopathic proportionate short stature. Int J Mol Sci 2013; 14:20386-98. [PMID: 24129174 PMCID: PMC3821620 DOI: 10.3390/ijms141020386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022] Open
Abstract
In a previous study using transgenic mice ectopically expressing Hoxa2 during chondrogenesis, we associated the animal phenotype to human idiopathic proportionate short stature. Our analysis showed that this overall size reduction was correlated with a negative influence of Hoxa2 at the first step of endochondral ossification. However, the molecular pathways leading to such phenotype are still unknown. Using protein immunodetection and histological techniques comparing transgenic mice to controls, we show here that the persistent expression of Hoxa2 in chondrogenic territories provokes a general down-regulation of the main factors controlling the differentiation cascade, such as Bapx1, Bmp7, Bmpr1a, Ihh, Msx1, Pax9, Sox6, Sox9 and Wnt5a. These data confirm the impairment of chondrogenic differentiation by Hoxa2 overexpression. They also show a selective effect of Hoxa2 on endochondral ossification processes since Gdf5 and Gdf10, and Bmp4 or PthrP were up-regulated and unmodified, respectively. Since Hoxa2 deregulation in mice induces a proportionate short stature phenotype mimicking human idiopathic conditions, our results give an insight into understanding proportionate short stature pathogenesis by highlighting molecular factors whose combined deregulation may be involved in such a disease.
Collapse
Affiliation(s)
- Pierre M. L. Deprez
- Ecole de Kinésiologie et Récréologie, Faculté des Sciences de la Santé et Services Communautaires, Université de Moncton, Moncton, NB E1A 3E9, Canada; E-Mail:
| | - Miloud G. Nichane
- Embryologie Moléculaire et Cellulaire Animale, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium; E-Mails: (M.G.N.); (R.R.)
| | - Benoît G. Lengelé
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels 1200, Belgium; E-Mail:
| | - René Rezsöhazy
- Embryologie Moléculaire et Cellulaire Animale, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium; E-Mails: (M.G.N.); (R.R.)
| | - Catherine Nyssen-Behets
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels 1200, Belgium; E-Mail:
| |
Collapse
|
55
|
|
56
|
Ono K, Karolak MR, Ndong JDLC, Wang W, Yang X, Elefteriou F. The ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation. Hum Mol Genet 2013; 22:3048-62. [PMID: 23571107 DOI: 10.1093/hmg/ddt162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The severe defects in growth plate development caused by chondrocyte extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) gain or loss-of-function suggest that tight spatial and temporal regulation of mitogen-activated protein kinase signaling is necessary to achieve harmonious growth plate elongation and structure. We provide here evidence that neurofibromin, via its Ras guanosine triphosphatase -activating activity, controls ERK1/2-dependent fibroblast growth factor receptor (FGFR) signaling in chondrocytes. We show first that neurofibromin is expressed in FGFR-positive prehypertrophic and hypertrophic chondrocytes during growth plate endochondral ossification. Using mice lacking neurofibromin 1 (Nf1) in type II collagen-expressing cells, (Nf1col2(-/-) mutant mice), we then show that lack of neurofibromin in post-mitotic chondrocytes triggers a number of phenotypes reminiscent of the ones observed in mice characterized by FGFR gain-of-function mutations. Those include dwarfism, constitutive ERK1/2 activation, strongly reduced Ihh expression and decreased chondrocyte proliferation and maturation, increased chondrocytic expression of Rankl, matrix metalloproteinase 9 (Mmp9) and Mmp13 and enhanced growth plate osteoclastogenesis, as well as increased sensitivity to caspase-9 mediated apoptosis. Using wildtype (WT) and Nf1(-/-) chondrocyte cultures in vitro, we show that FGF2 pulse-stimulation triggers rapid ERK1/2 phosphorylation in both genotypes, but that return to the basal level is delayed in Nf1(-/-) chondrocytes. Importantly, in vivo ERK1/2 inhibition by daily injection of a recombinant form of C-type natriuretic peptide to post-natal pups for 18 days was able to correct the short stature of Nf1col2(-/-) mice. Together, these results underscore the requirement of neurofibromin and ERK1/2 for normal endochondral bone formation and support the notion that neurofibromin, by restraining RAS-ERK1/2 signaling, is a negative regulator of FGFR signaling in differentiating chondrocytes.
Collapse
Affiliation(s)
- Koichiro Ono
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
Intermittent parathyroid hormone (iPTH) treatment expands hemopoietic stem and progenitor cells (HSPCs), but the involved mechanisms and the affected HSPC populations are mostly unknown. Here we show that T cells are required for iPTH to expand short-term HSPCs (ST-HSPCs) and improve blood cell engraftment and host survival after BM transplantation. Silencing of PTH/PTH-related protein receptor (PPR) in T cells abrogates the effects of iPTH, thus demonstrating a requirement for direct PPR signaling in T cells. Mechanistically, iPTH expands ST-HSPCs by activating Wnt signaling in HSPCs and stromal cells (SCs) through T-cell production of the Wnt ligand Wnt10b. Attesting to the relevance of Wnt10b, iPTH fails to expand ST-HSPCs in mice with Wnt10b(-/-) T cells. Moreover, iPTH fails to promote engraftment and survival after BM transplantation in Wnt10b null mice. In summary, direct PPR signaling in T cells and the resulting production of Wnt10b play a pivotal role in the mechanism by which iPTH expands ST-HSPCs. The data suggest that T cells may provide pharmacologic targets for HSPC expansion.
Collapse
|
58
|
Zhang S, Kaplan FS, Shore EM. Different roles of GNAS and cAMP signaling during early and late stages of osteogenic differentiation. Horm Metab Res 2012; 44:724-31. [PMID: 22903279 PMCID: PMC3557937 DOI: 10.1055/s-0032-1321845] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progressive osseous heteroplasia (POH) and fibrous dysplasia (FD) are genetic diseases of bone formation at opposite ends of the osteogenic spectrum: imperfect osteogenesis of the skeleton occurs in FD, while heterotopic ossification in skin, subcutaneous fat, and skeletal muscle forms in POH. POH is caused by heterozygous inactivating germline mutations in GNAS, which encodes G-protein subunits regulating the cAMP pathway, while FD is caused by GNAS somatic activating mutations. We used pluripotent mouse ES cells to examine the effects of Gnas dysregulation on osteoblast differentiation. At the earliest stages of osteogenesis, Gnas transcripts Gsα, XLαs and 1A are expressed at low levels and cAMP levels are also low. Inhibition of cAMP signaling (as in POH) by 2',5'-dideoxyadenosine enhanced osteoblast differentiation while conversely, increased cAMP signaling (as in FD), induced by forskolin, inhibited osteoblast differentiation. Notably, increased cAMP was inhibitory for osteogenesis only at early stages after osteogenic induction. Expression of osteogenic and adipogenic markers showed that increased cAMP enhanced adipogenesis and impaired osteoblast differentiation even in the presence of osteogenic factors, supporting cAMP as a critical regulator of osteoblast and adipocyte lineage commitment. Furthermore, increased cAMP signaling decreased BMP pathway signaling, indicating that G protein-cAMP pathway activation (as in FD) inhibits osteoblast differentiation, at least in part by blocking the BMP-Smad pathway, and suggesting that GNAS inactivation as occurs in POH enhances osteoblast differentiation, at least in part by stimulating BMP signaling. These data support that differences in cAMP levels during early stages of cell differentiation regulate cell fate decisions. Supporting information available online at http:/www.thieme-connect.de/ejournals/toc/hmr.
Collapse
Affiliation(s)
- S. Zhang
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - F. S. Kaplan
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - E. M. Shore
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
59
|
Zuo C, Huang Y, Bajis R, Sahih M, Li YP, Dai K, Zhang X. Osteoblastogenesis regulation signals in bone remodeling. Osteoporos Int 2012; 23:1653-63. [PMID: 22290242 DOI: 10.1007/s00198-012-1909-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 12/15/2011] [Indexed: 01/07/2023]
Abstract
Bone remodeling is essential for adult bone homeostasis. The failure of this process often leads to the development of osteoporosis, a present major global health concern. The most important factor that affects normal bone remodeling is the tightly controlled and orchestrated regulation of osteoblasts and osteoclasts. The present review summarized the recent discoveries related to osteoblast regulation from several signals, including transforming growth factor-β, bone morphogenetic proteins, Wnt signal, Notch, Eph-Ephrin interaction, parathyroid hormone/parathyroid hormone-related peptide, and the leptin-serotonin-sympathetic nervous systemic pathway. The awareness of these mechanisms will facilitate further research that explores bone remodeling and osteoporosis. Future investigations on the endogenous regulation of osteoblastogenesis will increase the current knowledge required for the development of potential drug targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
- C Zuo
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
60
|
McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 2012; 27:1231-9. [PMID: 22549910 PMCID: PMC4871126 DOI: 10.1002/jbmr.1617] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/04/2012] [Accepted: 03/20/2012] [Indexed: 01/30/2023]
Abstract
Twenty-five years ago a "new" protein was identified from cancers that caused hypercalcemia. It was credited for its ability to mimic parathyroid hormone (PTH), and hence was termed parathyroid hormone-related protein (PTHrP). Today it is recognized for its widespread distribution, its endocrine, paracrine, and intracrine modes of action driving numerous physiologic and pathologic conditions, and its central role in organogenesis. The multiple biological activities within a complex molecule with paracrine modulation of adjacent target cells present boundless possibilities. The protein structure of PTHrP has been traced, dissected, and deleted comprehensively and conditionally, yet numerous questions lurk in its past that will carry into the future. Issues of the variable segments of the protein, including the enigmatic nuclear localization sequence, are only recently being clarified. Aspects of PTHrP production and action in the menacing condition of cancer are emerging as dichotomies that may represent intended temporal actions of PTHrP. Relative to PTH, the hormone regulating calcium homeostasis, PTHrP "controls the show" locally at the PTH/PTHrP receptor throughout the body. Great strides have been made in our understanding of PTHrP actions, yet years of exciting investigation and discovery are imminent. © 2012 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
61
|
Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 2012; 287:15718-27. [PMID: 22403399 DOI: 10.1074/jbc.m112.344994] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The differentiation of osteoblasts from their precursors, mesenchymal stem cells, is an important component of bone homeostasis as well as fracture healing. The A2B adenosine receptor (A2BAR) is a Gα(s)/α(q)-protein-coupled receptor that signals via cAMP. cAMP-mediated signaling has been demonstrated to regulate the differentiation of mesenchymal stem cells (MSCs) into various skeletal tissue lineages. Here, we studied the role of this receptor in the differentiation of MSCs to osteoblasts. In vitro differentiation of bone marrow-derived MSCs from A2BAR KO mice resulted in lower expression of osteoblast differentiation transcription factors and the development of fewer mineralized nodules, as compared with WT mice. The mechanism of effect involves, at least partially, cAMP as indicated by experiments involving activation of the A2BAR or addition of a cAMP analog during differentiation. Intriguingly, in vivo, microcomputed tomography analysis of adult femurs showed lower bone density in A2BAR KO mice as compared with WT. Furthermore, A2BAR KO mice display a delay in normal fracture physiology with lower expression of osteoblast differentiation genes. Thus, our study identified the A2BAR as a new regulator of osteoblast differentiation, bone formation, and fracture repair.
Collapse
Affiliation(s)
- Shannon H Carroll
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
62
|
Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci U S A 2012; 109:E725-33. [PMID: 22393015 DOI: 10.1073/pnas.1120735109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intermittent parathyroid hormone (iPTH) treatment stimulates T-cell production of the osteogenic Wnt ligand Wnt10b, a factor required for iPTH to activate Wnt signaling in osteoblasts and stimulate bone formation. However, it is unknown whether iPTH induces Wnt10b production and bone anabolism through direct activation of the parathyroid hormone (PTH)/PTH-related protein receptor (PPR) in T cells. Here, we show that conditional silencing of PPR in T cells blunts the capacity of iPTH to induce T-cell production of Wnt10b; activate Wnt signaling in osteoblasts; expand the osteoblastic pool; and increase bone turnover, bone mineral density, and trabecular bone volume. These findings demonstrate that direct PPR signaling in T cells plays an important role in PTH-induced bone anabolism by promoting T-cell production of Wnt10b and suggest that T cells may provide pharmacological targets for bone anabolism.
Collapse
|
63
|
Abstract
Patterns of variation in bone size and shape provide crucial data for reconstructing hominin paleobiology, including ecogeographic adaptation, life history, and functional morphology. Measures of bone strength, including robusticity (diaphyseal thickness relative to length) and cross-sectional geometric properties such as moments of area, are particularly useful for inferring behavior because bone tissue adapts to its mechanical environment. Particularly during skeletal growth, exercise-induced strains can stimulate periosteal modeling so that, to some extent, bone thickness reflects individual behavior. Thus, patterns of skeletal robusticity have been used to identify gender-based activity differences, temporal shifts in mobility, and changing subsistence strategies. Although there is no doubt that mechanical loading leaves its mark on the skeleton, less is known about whether individuals differ in their skeletal responses to exercise. For example, the potential effects of hormones or growth factors on bone-strain interactions are largely unexplored. If the hormonal background can increase or decrease the effects of exercise on skeletal robusticity, then the same mechanical loads might cause different degrees of bone response in different individuals. Here I focus on the role of the hormone estrogen in modulating exercise-induced changes in human bone thickness.
Collapse
Affiliation(s)
- Maureen J Devlin
- Orthopedic Biomechanics Laboratory of Beth Israel Deaconess Medical Center, USA.
| |
Collapse
|
64
|
Mahalingam CD, Datta T, Patil RV, Kreider J, Bonfil RD, Kirkwood KL, Goldstein SA, Abou-Samra AB, Datta NS. Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone. J Endocrinol 2011; 211:145-56. [PMID: 21852324 PMCID: PMC3783352 DOI: 10.1530/joe-11-0144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2-MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (8-46%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (1-34) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Rump P, Jongbloed JDH, Sikkema-Raddatz B, Mundlos S, Klopocki E, van der Luijt RB. Madelung deformity in a girl with a novel and de novo mutation in the GNAS gene. Am J Med Genet A 2011; 155A:2566-70. [PMID: 21910239 DOI: 10.1002/ajmg.a.34218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/21/2011] [Indexed: 11/05/2022]
Abstract
Madelung deformity, a congenital anomaly of the wrist with subluxation of the ulna head, is not a widely recognized feature of Albright hereditary osteodystrophy. Here, we describe a young female with a bilateral Madelung deformity, mild cognitive disability, some dysmorphic facial features, and a type E-like brachydactyly, in whom we identified a novel and de novo mutation (c.476T>C; p.Val159Ala) in exon 6 of the GNAS gene.
Collapse
Affiliation(s)
- Patrick Rump
- Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
66
|
Guelcher SA, Sterling JA. Contribution of bone tissue modulus to breast cancer metastasis to bone. CANCER MICROENVIRONMENT 2011; 4:247-59. [PMID: 21789687 DOI: 10.1007/s12307-011-0078-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/08/2011] [Indexed: 01/16/2023]
Abstract
Certain tumors, such as breast, frequently metastasize to bone where they can induce bone destruction. Currently, it is well-accepted that the tumor cells are influenced by other cells and growth factors present in the bone microenvironment that lead to tumor-induced bone disease. Over the past 20 years, many groups have studied this process and determined the major contributing factors; however, these results do not fully explain the changes in gene expression and cell behavior that occur when tumor cells metastasize to bone. More recently, groups studying metastasis from soft tissue sites have determined that the rigidity of the microenvironment, which increases during tumor progression in soft tissue, can regulate tumor cell behavior and gene expression. Therefore, we began to investigate the role of the rigid bone extracellular matrix in the regulation of genes that stimulate tumor-induced bone disease. We found that the rigidity of bone specifically regulates parathyroid hormone-related protein (PTHrP) and Gli2 expression in a transforming growth factor β (TGF-β) and mechanotransduction-dependent mechanism. In this review, we summarize the mechanotransduction signaling pathway and how this influences TGF-β signaling and osteolytic gene expression.
Collapse
Affiliation(s)
- Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue, 107 Olin Hall, Nashville, TN, 37235-1604, USA,
| | | |
Collapse
|
67
|
Kadmiel M, Fritz-Six K, Pacharne S, Richards GO, Li M, Skerry TM, Caron KM. Research resource: Haploinsufficiency of receptor activity-modifying protein-2 (RAMP2) causes reduced fertility, hyperprolactinemia, skeletal abnormalities, and endocrine dysfunction in mice. Mol Endocrinol 2011; 25:1244-53. [PMID: 21566080 DOI: 10.1210/me.2010-0400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Receptor activity-modifying protein-2 (RAMP2) is a single-pass transmembrane protein that can regulate the trafficking, ligand binding, and signaling of several G protein-coupled receptors (GPCR). The most well-characterized role of RAMP2 is in the regulation of adrenomedullin (AM) binding to calcitonin receptor-like receptor (CLR), and our previous studies using knockout mouse models support this canonical signaling paradigm. For example, Ramp2(-/-) mice die at midgestation with a precise phenocopy of the AM(-/-) and Calcrl(-/-) mice. In contrast, Ramp2(+/-) mice are viable and exhibit an expanded variety of phenotypes that are distinct from those of Calcrl(+/-) mice. Using Ramp2(+/-) female mice, we demonstrate that a modest decrease in Ramp2 expression causes severe reproductive defects characterized by fetal growth restriction, fetal demise, and postnatal lethality that is independent of the genotype and gender of the offspring. Ramp2(+/-) female mice also exhibit hyperprolactinemia during pregnancy and in basal conditions. Consistent with hyperprolactinemia, Ramp2(+/-) female mice have enlarged pituitary glands, accelerated mammary gland development, and skeletal abnormalities including delayed bone development and decreased bone mineral density. Because RAMP2 has been shown to associate with numerous GPCR, it is likely that signaling of one or more of these GPCR is compromised in Ramp2(+/-) mice, yet the precise identification of these receptors remains to be elucidated. Taken together, this work reveals an essential role for RAMP2 in endocrine physiology and provides the first in vivo evidence for a physiological role of RAMP2 beyond that of AM/CLR signaling.
Collapse
Affiliation(s)
- Mahita Kadmiel
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Correa D, Hesse E, Seriwatanachai D, Kiviranta R, Saito H, Yamana K, Neff L, Atfi A, Coillard L, Sitara D, Maeda Y, Warming S, Jenkins NA, Copeland NG, Horne WC, Lanske B, Baron R. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell 2010; 19:533-46. [PMID: 20951345 DOI: 10.1016/j.devcel.2010.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 08/13/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
Abstract
In the growth plate, the interplay between parathyroid hormone-related peptide (PTHrP) and Indian hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional coregulator, in prehypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zfp521 resembled PTHrP(-/-) and chondrocyte-specific PTHR1(-/-) mice, with decreased chondrocyte proliferation, early hypertrophic transition, and reduced growth plate thickness. Deleting Zfp521 increased expression of Runx2 and Runx2 target genes, and decreased Cyclin D1 and Bcl-2 expression while increasing Caspase-3 activation and apoptosis. Zfp521 associated with Runx2 in chondrocytes, antagonizing its activity via an HDAC4-dependent mechanism. PTHrP failed to upregulate Cyclin D1 and to antagonize Runx2, Ihh, and collagen X expression when Zfp521 was absent. Thus, Zfp521 is an important PTHrP target gene that regulates growth plate chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Diego Correa
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Frazier-Bowers SA, Puranik CP, Mahaney MC. The etiology of eruption disorders - further evidence of a 'genetic paradigm'. Semin Orthod 2010; 16:180-185. [PMID: 20830195 DOI: 10.1053/j.sodo.2010.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical spectrum of tooth eruption disorders includes both syndromic and non-syndromic problems ranging from delayed eruption to a complete failure of eruption. A defect in the differential apposition/resorption mechanism in alveolar bone can cause conditions such as tooth ankylosis, primary failure of eruption, failure of eruption due to inadequate arch length and canine impaction. As our knowledge of the molecular events underlying normal tooth eruption has increased, so too has our understanding of clinical eruption disorders. The recent finding that one gene, parathyroid hormone receptor 1 (PTH1R), is causative for familial cases of primary failure of eruption (PFE) suggests that other disturbances in tooth eruption may have a genetic etiology. In this report, we evaluated the current terminology (ankylosis, PFE, secondary retention, etc.) used to describe non-syndromic eruption disorders, in light of this genetic discovery. We observed that some individuals previously diagnosed with ankylosis were subsequently found to have alterations in the PTH1R gene, indicating the initial misdiagnosis of ankylosis and the necessary re-classification of PFE. We further investigated the relationship of the PTH1R gene, using a network pathway analysis, to determine its connectivity to previously identified genes that are critical to normal tooth eruption. We found that PTH1R acts in a pathway with genes such as PTHrP that have been shown to be important in bone remodeling, hence eruption, in a rat model. Thus, recent advances in our understanding of normal and abnormal tooth eruption should allow us in the future to develop a clinical nomenclature system based more on the molecular genetic cause of the eruption failures versus the clinical appearance of the various eruption disorders.
Collapse
Affiliation(s)
- Sylvia A Frazier-Bowers
- Department of Orthodontics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Tel: (919) 966-2762, ,
| | | | | |
Collapse
|
70
|
Pacifici R. T cells: critical bone regulators in health and disease. Bone 2010; 47:461-71. [PMID: 20452473 PMCID: PMC2926258 DOI: 10.1016/j.bone.2010.04.611] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 04/27/2010] [Accepted: 04/30/2010] [Indexed: 01/16/2023]
Abstract
Postmenopausal osteoporosis and hyperparathyroidism are to two common forms of bone loss caused primarily by an expansion of the osteoclastic pool only partially compensated by a stimulation of bone formation. The intimate mechanisms by which estrogen deficiency and excessive production of PTH cause bone loss remain to be determined in part because in vitro studies do not provide the means to adequately reproduce the effects of ovx and PTH overproduction observed in vivo. This article examines the connection between T cells and bone in health and disease and reviews the evidence in favor of the hypothesis that T cells play an unexpected critical role in the mechanism of action of estrogen and PTH in bone.
Collapse
Affiliation(s)
- Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
71
|
Tawfeek H, Bedi B, Li JY, Adams J, Kobayashi T, Weitzmann MN, Kronenberg HM, Pacifici R. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS One 2010; 5:e12290. [PMID: 20808842 PMCID: PMC2924900 DOI: 10.1371/journal.pone.0012290] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/24/2010] [Indexed: 11/24/2022] Open
Abstract
Background Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs. Methodology/Principal Findings Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor α (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio. Conclusions/Significance These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism.
Collapse
Affiliation(s)
- Hesham Tawfeek
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Brahmchetna Bedi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Atlanta VA Medical Center, Decatur, Georgia, United States of America
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
72
|
Karasik D, Hsu YH, Zhou Y, Cupples LA, Kiel DP, Demissie S. Genome-wide pleiotropy of osteoporosis-related phenotypes: the Framingham Study. J Bone Miner Res 2010; 25:1555-63. [PMID: 20200953 PMCID: PMC3153998 DOI: 10.1002/jbmr.38] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genome-wide association studies offer an unbiased approach to identify new candidate genes for osteoporosis. We examined the Affymetrix 500K + 50K SNP GeneChip marker sets for associations with multiple osteoporosis-related traits at various skeletal sites, including bone mineral density (BMD, hip and spine), heel ultrasound, and hip geometric indices in the Framingham Osteoporosis Study. We evaluated 433,510 single-nucleotide polymorphisms (SNPs) in 2073 women (mean age 65 years), members of two-generational families. Variance components analysis was performed to estimate phenotypic, genetic, and environmental correlations (rho(P), rho(G), and rho(E)) among bone traits. Linear mixed-effects models were used to test associations between SNPs and multivariable-adjusted trait values. We evaluated the proportion of SNPs associated with pairs of the traits at a nominal significance threshold alpha = 0.01. We found substantial correlation between the proportion of associated SNPs and the rho(P) and rho(G) (r = 0.91 and 0.84, respectively) but much lower with rho(E) (r = 0.38). Thus, for example, hip and spine BMD had 6.8% associated SNPs in common, corresponding to rho(P) = 0.55 and rho(G) = 0.66 between them. Fewer SNPs were associated with both BMD and any of the hip geometric traits (eg, femoral neck and shaft width, section moduli, neck shaft angle, and neck length); rho(G) between BMD and geometric traits ranged from -0.24 to +0.40. In conclusion, we examined relationships between osteoporosis-related traits based on genome-wide associations. Most of the similarity between the quantitative bone phenotypes may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in defining the best phenotypes to be used in genetic studies of osteoporosis.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA 02131, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Pacifici R. The immune system and bone. Arch Biochem Biophys 2010; 503:41-53. [PMID: 20599675 DOI: 10.1016/j.abb.2010.05.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 02/06/2023]
Abstract
T cells and B cells produce large amounts of cytokines which regulate bone resorption and bone formation. These factors play a critical role in the regulation of bone turnover in health and disease. In addition, immune cells of the bone marrow regulate bone homeostasis by cross-talking with bone marrow stromal cells and osteoblastic cells via cell surface molecules. These regulatory mechanisms are particularly relevant for postmenopausal osteoporosis and hyperparathyroidism, two common forms of bone loss caused primarily by an expansion of the osteoclastic pool only partially compensated by a stimulation of bone formation. This article describes the cytokines and immune factors that regulate bone cells, the immune cells relevant to bone, examines the connection between T cells and bone in health and disease, and reviews the evidence in favor of a link between T cells and the mechanism of action of estrogen and PTH in bone.
Collapse
|
74
|
Weiss S, Hennig T, Bock R, Steck E, Richter W. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 2010; 223:84-93. [PMID: 20049852 DOI: 10.1002/jcp.22013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Common in vitro protocols for chondrogenesis of mesenchymal stem cells (MSCs) induce an inadequate, hypertrophic differentiation cascade reminiscent of endochondral bone formation. We aimed to modify chondrogenic protocols in order to identify potent inducers, promotors, and inhibitors to achieve better chondrogenesis. Nine factors suspected to stimulate or inhibit chondrogenesis were used for chondrogenic in vitro induction of MSC. Differentiation was assessed by immunohistochemistry, alcian-blue staining, qRT-PCR, and quantification of alkaline phosphatase (ALP) activity. Pre-differentiated pellets were transplanted subcutaneously into SCID mice to investigate stable cartilage formation. Transforming growth factor (TGF)-beta was always required for chondrogenic differentiation and deposition of a collagen-type-II-positive extracellular matrix, while bone morphogenetic protein (BMP)-2, -4, -6, -7, aFGF, and IGF-I (10 ng/ml) were alone not sufficiently inductive. Each of these factors allowed differentiation in combination with TGF-beta, however, without preventing collagen type X expression. bFGF or parathyroid hormone-like peptide (PTHrP) inhibited the TGF-beta-responsive COL2A1 and COL10A1 expression and ALP induction when added from day 0 or 21. In line with a reversible ALP inhibition, in vivo calcification of pellets was not prevented. Late up-regulation of PTH1R mRNA suggests that early PTHrP effects may be mediated by a receptor-independent pathway. While TGF-beta was a full inducer, bFGF and PTHrP were potent inhibitors for early and late chondrogenesis, seemed to induce a shift from matrix anabolism to catabolism, but did not selectively suppress COL10A1 expression. Within a developmental window of collagen type II(+)/collagen type X(-) cells, bFGF and PTHrP may allow inhibition of further differentiation toward hypertrophy to obtain stable chondrocytes for transplantation purposes.
Collapse
Affiliation(s)
- S Weiss
- Division of Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
75
|
Datta NS, Kolailat R, Fite A, Pettway G, Abou-Samra AB. Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation. Cell Signal 2010; 22:457-66. [PMID: 19892016 DOI: 10.1016/j.cellsig.2009.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 12/22/2022]
Abstract
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.
Collapse
Affiliation(s)
- Nabanita S Datta
- Wayne State University School of Medicine, Department Internal Medicine, Division Endocrinology, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
76
|
TGF-beta type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol 2010; 12:224-34. [PMID: 20139972 DOI: 10.1038/ncb2022] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
Parathyroid hormone (PTH) regulates calcium homeostasis and bone metabolism by activating PTH type I receptor (PTH1R). Here we show that transforming growth factor (TGF)-beta type II receptor (TbetaRII) forms an endocytic complex with PTH1R in response to PTH and regulates signalling by PTH and TGF-beta. TbetaRII directly phosphorylates the PTH1R cytoplasmic domain, which modulates PTH-induced endocytosis of the PTH1R-TbetaRII complex. Deletion of TbetaRII in osteoblasts increases the cell-surface expression of PTH1R and augments PTH signalling. Conditional knockout of TbetaRII in osteoblasts in mice results in a high bone mass with increased trabecular bone and decreased cortical bone, similar to the bone phenotype in mice expressing a constitutively active PTH1R. Disruption of PTH signalling by injection of PTH(7-34) or ablation of PTH1R rescues the bone phenotype of TbetaRII knockout mice. These studies reveal a previously unrecognized function for TbetaRII and a mechanism for integration of PTH and local growth factor at the membrane receptor level.
Collapse
|
77
|
Bellon E, Luyten FP, Tylzanowski P. delta-EF1 is a negative regulator of Ihh in the developing growth plate. ACTA ACUST UNITED AC 2009; 187:685-99. [PMID: 19948490 PMCID: PMC2806579 DOI: 10.1083/jcb.200904034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Indian hedgehog (Ihh) regulates proliferation and differentiation of chondrocytes in the growth plate. Although the biology of Ihh is currently well documented, its transcriptional regulation is poorly understood. delta-EF1 is a two-handed zinc finger/homeodomain transcriptional repressor. Targeted inactivation of mouse delta-EF1 leads to skeletal abnormalities including disorganized growth plates, shortening of long bones, and joint fusions, which are reminiscent of defects associated with deregulation of Ihh signaling. Here, we show that the absence of delta-EF1 results in delayed hypertrophic differentiation of chondrocytes and increased cell proliferation in the growth plate. Further, we demonstrate that delta-EF1 binds to the putative regulatory elements in intron 1 of Ihh in vitro and in vivo, resulting in down-regulation of Ihh expression. Finally, we show that delta-EF1 haploinsufficiency leads to a postnatal increase in trabecular bone mass associated with enhanced Ihh expression. In summary, we have identified delta-EF1 as an in vivo negative regulator of Ihh expression in the growth plate.
Collapse
Affiliation(s)
- Ellen Bellon
- Laboratory of Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, University of Leuven, Leuven 3000, Belgium
| | | | | |
Collapse
|
78
|
Abstract
The striking clinical benefit of PTH in osteoporosis began a new era of skeletal anabolic agents. Several studies have been performed, new studies are emerging out and yet controversies remain on PTH anabolic action in bone. This review focuses on the molecular aspects of PTH and PTHrP signaling in light of old players and recent advances in understanding the control of osteoblast proliferation, differentiation and function.
Collapse
Affiliation(s)
- Nabanita S Datta
- Division Endocrinology, Department Internal Medicine, Wayne State University School of Medicine, 421 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
79
|
Clark CA, Li TF, Kim KO, Drissi H, Zuscik MJ, Zhang X, O'Keefe RJ. Prostaglandin E2 inhibits BMP signaling and delays chondrocyte maturation. J Orthop Res 2009; 27:785-92. [PMID: 19023895 PMCID: PMC2737521 DOI: 10.1002/jor.20805] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While cyclooxygenases are important in endochondral bone formation during fracture healing, mechanisms involved in prostaglandin E2 (PGE2) regulation of chondrocyte maturation are incompletely understood. The present study was undertaken to determine if PGE2 effects on chondrocyte differentiation are related to modulation of the bone morphogenetic protein (BMP) signaling pathway. In primary murine sternal chondrocytes, PGE2 differentially regulated genes involved in differentiation. PGE2 induced type II collagen and MMP-13, had minimal effects on alkaline phosphatase, and inhibited the expression of the maturational marker, type X collagen. In BMP-2-treated cultures, PGE2 blocked the induction of type X collagen. All four EP receptors were expressed in chondrocytes and tended to be inhibited by BMP-2 treatment. RCJ3.1C5.18 chondrocytes transfected with the protein kinase A (PKA) responsive reporter, CRE-luciferase, showed luciferase induction following exposure to PGE2, consistent with activation of PKA signaling and the presence of the EP2 and EP4 receptors. Both PGE2 and the PKA agonist, dibutyryl cAMP, blocked the induction of the BMP-responsive reporter, 12XSBE, by BMP-2 in RCJ3.1C5.18 chondrocytes. In contrast, PGE2 increased the ability of TGF-beta to activate the TGF-beta-responsive reporter, 4XSBE. Finally, PGE2 down-regulated BMP-mediated phosphorylation of Smads 1, 5, and 8 in RCJ3.1C5.18 cells and in primary murine sternal chondrocytes. Altogether, the findings show that PGE2 regulates chondrocyte maturation in part by targeting BMP/Smad signaling and suggest an important role for PGE2 in endochondral bone formation.
Collapse
Affiliation(s)
- Christine A Clark
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 2009; 136:1093-104. [PMID: 19224984 DOI: 10.1242/dev.029926] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bone morphogenetic protein (BMP) signaling is required for endochondral bone formation. However, whether or not the effects of BMPs are mediated via canonical Smad pathways or through noncanonical pathways is unknown. In this study we have determined the role of receptor Smads 1, 5 and 8 in chondrogenesis. Deletion of individual Smads results in viable and fertile mice. Combined loss of Smads 1, 5 and 8, however, results in severe chondrodysplasia. Smad1/5(CKO) (cartilage-specific knockout) mutant mice are nearly identical to Smad1/5(CKO);Smad8(-/-) mutants, indicating that Smads 1 and 5 have overlapping functions and are more important than Smad8 in cartilage. The Smad1/5(CKO) phenotype is more severe than that of Smad4(CKO) mice, challenging the dogma, at least in chondrocytes, that Smad4 is required to mediate Smad signaling through BMP pathways. The chondrodysplasia in Smad1/5(CKO) mice is accompanied by imbalances in cross-talk between the BMP, FGF and Ihh/PTHrP pathways. We show that Ihh is a direct target of BMP pathways in chondrocytes, and that FGF exerts antagonistic effects on Ihh expression. Finally, we tested whether FGF exerts its antagonistic effects directly through Smad linker phosphorylation. The results support the alternative conclusion that the effects of FGFs on BMP signaling are indirect in vivo.
Collapse
Affiliation(s)
- Kelsey N Retting
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
81
|
Gori F, Zhu ED, Demay MB. Perichondrial expression of Wdr5 regulates chondrocyte proliferation and differentiation. Dev Biol 2009; 329:36-43. [PMID: 19217897 DOI: 10.1016/j.ydbio.2009.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/22/2009] [Accepted: 02/05/2009] [Indexed: 12/24/2022]
Abstract
Wdr5 is developmentally expressed in osteoblasts and is required for osteoblast differentiation. Mice overexpressing Wdr5 under the control of the mouse alpha(1)I collagen promoter (Col I-Wdr5) display accelerated osteoblast differentiation as well as accelerated chondrocyte differentiation, suggesting that overexpression of Wdr5 in osteoblasts affects chondrocyte differentiation. To elucidate the molecular mechanism by which overexpression of Wdr5 in the perichondrium regulates chondrocyte differentiation, studies were undertaken using skeletal elements and cultured metatarsals isolated from wild-type and Col I-Wdr5 embryos. FGF18 mRNA levels were decreased in Col I-Wdr5 humeri. Furthermore, local delivery of FGF18 to the bone collar of ex vivo cultures of metatarsals attenuated the chondrocyte phenotype of the Col I-Wdr5 metatarsals. Impairing local FGF action in wild-type metatarsals resulted in a chondrocyte phenotype analogous to that of Col I-Wdr5 metatarsals implicating impaired FGF action as the cause of the phenotype observed. The expression of Twist-1, which regulates chondrocyte differentiation, was increased in Col I-Wdr5 humeri. Chromatin immunoprecipitation analyses demonstrated that Wdr5 is recruited to the Twist-1 promoter. These findings support a model in which overexpression of Wdr5 in the perichondrium promotes chondrocyte differentiation by modulating the expression of Twist-1 and FGF18.
Collapse
Affiliation(s)
- Francesca Gori
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
82
|
Ahlström M, Pekkinen M, Lamberg-Allardt C. Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells. Steroids 2009; 74:277-82. [PMID: 19121329 DOI: 10.1016/j.steroids.2008.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/28/2008] [Accepted: 12/04/2008] [Indexed: 11/26/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) has been shown to have anabolic effects in women with postmenopausal osteoporosis. PTHrP promotes the recruitment of osteogenic cells and prevents apoptotic death of osteoblasts and osteocytes. The receptor responsible for the effects of PTHrP is the common PTH/PTHrP receptor (PTH1R). Glucocorticoids (GC) are commonly used as drugs to treat inflammatory diseases. Long-term GC treatments are often associated with bone loss which can lead to GC-induced osteoporosis. The aim of this work was to study the effects of the glucocorticoid dexamethasone (Dex) on the expression of PTHrP and PTH1R in adult human mesenchymal stem cells, the progenitor cells of osteoblasts. Adult human mesenchymal stem cells (hMSC) were cultured and differentiated by standard methods. The expression of PTHrP and PTH1R mRNA was assayed by real-time qPCR. The PTHrP release into the culture media was measured by an immunoradiometric assay. Treatment with Dex (10 nM) resulted in an 80% drop in the PTHrP release within 6 h. A 24 h Dex treatment also reduced the expression of PTHrP mRNA by up to 90%. The expression of PTH1R receptor mRNA was simultaneously increased up to 20-fold by 10 nM Dex. The effects of Dex on PTHrP and PTH1R were dose-dependent and experiments with the GC-receptor antagonist mifepristone showed an involvement of GC-receptors in these effects. In addition to the Dex-induced effects on PTHrP and PTH1R, Dex also increased mineralization and the expression of the osteoblast markers Runx2 and alkaline phosphatase. In our studies, we show that dexamethasone decreases the expression of PTHrP and increases the expression of the PTH1R receptor. This could have an impact on PTHrP-mediated anabolic actions on bone and could also affect the responsiveness of circulating PTH. The results indicate that glucocorticoids affect the signalling pathway of PTHrP by regulating both PTHrP and PTH1R expression and these mechanisms could be involved in glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Mikael Ahlström
- Calcium Research Unit, Department of Applied Chemistry and Microbiology, P.O. Box 66, 00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
83
|
Torday JS, Rehan VK. Exploiting cellular-developmental evolution as the scientific basis for preventive medicine. Med Hypotheses 2009; 72:596-602. [PMID: 19147298 DOI: 10.1016/j.mehy.2008.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
In the post-genomic era, we must make maximal use of this technological advancement to broaden our perspective on biology and medicine. Our understanding of the evolutionary process is undermined by looking at it retrospectively, perpetuating a descriptive rather than a mechanistic approach. The reintroduction of developmental biologic principles into evolutionary studies, or evo-devo, allows us to apply embryologic cell-molecular biologic principles to the mechanisms of phylogeny, obviating the artificial space and time barriers between ontogeny and phylogeny. This perspective allows us to consider the continuum between the proximate and ultimate causes of speciation, which was unthinkable when looked at from the descriptive perspective. Using a cell-cell interactive 'middle-out' approach, we have gained insight to the evolution of the lung from the swim bladder of fish based on gene regulatory networks that generate both lung ontogeny and phylogeny, i.e. decreased alveolar size, decreased alveolar wall thickness, and increased alveolar wall strength. Vertical integration of cell-cell interactions predicts the adaptivity and maladaptivity of the lung, leading to novel insights for chronic lung disease. Since we have employed principles involved in all of development, this approach is amenable to all biologic structures, functions, adaptations, maladaptations, and diseases, providing an operational basis for preventive medicine.
Collapse
Affiliation(s)
- J S Torday
- Department of Pediatrics, David Geffen School of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, Los Angeles, California 90502, United States.
| | | |
Collapse
|
84
|
Ulici V, Hoenselaar KD, Gillespie JR, Beier F. The PI3K pathway regulates endochondral bone growth through control of hypertrophic chondrocyte differentiation. BMC DEVELOPMENTAL BIOLOGY 2008; 8:40. [PMID: 18405384 PMCID: PMC2329617 DOI: 10.1186/1471-213x-8-40] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/11/2008] [Indexed: 02/07/2023]
Abstract
Background The majority of our bones develop through the process of endochondral ossification that involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. A large number of growth factors and hormones have been implicated in the regulation of growth plate biology, however, less is known about the intracellular signaling pathways involved. PI3K/Akt has been identified as a major regulator of cellular proliferation, differentiation and death in multiple cell types. Results and Discussion Employing an organ culture system of embryonic mouse tibiae and LY294002, a pharmacological inhibitor of PI3K, we show that inhibition of the pathway results in significant growth reduction, demonstrating that PI3K is required for normal endochondral bone growth in vitro. PI3K inhibition reduces the length of the proliferating and particularly of the hypertrophic zone. Studies with organ cultures and primary chondrocytes in micromass culture show delayed hypertrophic differentiation of chondrocytes and increased apoptosis in the presence of LY294002. Surprisingly, PI3K inhibition had no strong effect on IGF1-induced bone growth, but partially blocked the anabolic effects of C-type natriuretic peptide. Conclusion Our data demonstrate an essential role of PI3K signaling in chondrocyte differentiation and as a consequence of this, in the endochondral bone growth process.
Collapse
Affiliation(s)
- Veronica Ulici
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology & Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | |
Collapse
|
85
|
Peng J, Bencsik M, Louie A, Lu W, Millard S, Nguyen P, Burghardt A, Majumdar S, Wronski TJ, Halloran B, Conklin BR, Nissenson RA. Conditional expression of a Gi-coupled receptor in osteoblasts results in trabecular osteopenia. Endocrinology 2008; 149:1329-37. [PMID: 18048501 PMCID: PMC2275363 DOI: 10.1210/en.2007-0235] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) coupled to activation of Gs, such as the PTH1 receptor (PTH1R), have long been known to regulate skeletal function and homeostasis. However, the role of GPCRs coupled to other G proteins such as Gi is not well established. We used the tet-off system to regulate the expression of an activated Gi-coupled GPCR (Ro1) in osteoblasts in vivo. Skeletal phenotypes were assessed in mice expressing Ro1 from conception, from late stages of embryogenesis, and after weaning. Long bones were assessed histologically and by microcomputed tomography. Expression of Ro1 from conception resulted in neonatal lethality that was associated with reduced bone mineralization. Expression of Ro1 starting at late embryogenesis resulted in a severe trabecular bone deficit at 12 wk of age (>51% reduction in trabecular bone volume fraction in the proximal tibia compared with sex-matched control littermates; n = 11; P < 0.01). Ro1 expression for 8 wk beginning at 4 wk of age resulted in a more than 20% reduction in trabecular bone volume fraction compared with sex-matched control littermates (n = 16; P < 0.01). Bone histomorphometry revealed that Ro1 expression is associated with reduced rates of bone formation and mineral apposition without a significant change in osteoblast or osteoclast surface. Our results indicate that signaling by a Gi-coupled GPCR in osteoblasts leads to osteopenia resulting from a reduction in trabecular bone formation. The severity of the phenotype is related to the timing and duration of Ro1 expression during growth and development. The skeletal phenotype in Ro1 mice bears some similarity to that produced by knockout of Gs-alpha expression in osteoblasts and thus may be due at least in part to Gi-mediated inhibition of adenylyl cyclase.
Collapse
MESH Headings
- Animals
- Bone Density/physiology
- Bone Development/physiology
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/pathology
- Bone and Bones/embryology
- Bone and Bones/metabolism
- Cells, Cultured
- Disease Models, Animal
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation, Developmental/physiology
- Male
- Mice
- Mice, Transgenic
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- J Peng
- Endocrine Research Unit, Veterans' Affairs Medical Center, and Department of Medicine, University of California, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Taschner MJ, Rafigh M, Lampert F, Schnaiter S, Hartmann C. Ca2+/Calmodulin-dependent kinase II signaling causes skeletal overgrowth and premature chondrocyte maturation. Dev Biol 2008; 317:132-46. [PMID: 18342847 DOI: 10.1016/j.ydbio.2008.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 11/17/2022]
Abstract
The long bones of vertebrate limbs originate from cartilage templates and are formed by the process of endochondral ossification. This process requires that chondrocytes undergo a progressive maturation from proliferating to postmitotic prehypertrophic to mature, hypertrophic chondrocytes. Coordinated control of proliferation and maturation regulates growth of the skeletal elements. Various signals and pathways have been implicated in orchestrating these processes, but the underlying intracellular molecular mechanisms are often not entirely known. Here we demonstrated in the chick using replication-competent retroviruses that constitutive activation of Calcium/Calmodulin-dependent kinase II (CaMKII) in the developing wing resulted in elongation of skeletal elements associated with premature differentiation of chondrocytes. The premature maturation of chondrocytes was a cell-autonomous effect of constitutive CaMKII signaling associated with down-regulation of cell-cycle regulators and up-regulation of chondrocyte maturation markers. In contrast, the elongation of the skeletal elements resulted from a non-cell autonomous up-regulation of the Indian hedgehog responsive gene encoding Parathyroid-hormone-related peptide. Reduction of endogenous CaMKII activity by overexpressing an inhibitory peptide resulted in shortening of the skeletal elements associated with a delay in chondrocyte maturation. Thus, CaMKII is an essential component of intracellular signaling pathways regulating chondrocyte maturation.
Collapse
Affiliation(s)
- Michael J Taschner
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
87
|
Tsutsui TW, Riminucci M, Holmbeck K, Bianco P, Robey PG. Development of craniofacial structures in transgenic mice with constitutively active PTH/PTHrP receptor. Bone 2008; 42:321-31. [PMID: 18063434 PMCID: PMC2262914 DOI: 10.1016/j.bone.2007.09.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/04/2007] [Accepted: 09/28/2007] [Indexed: 11/26/2022]
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) regulate calcium homeostasis, and PTHrP further regulates growth and development. A transgenic mouse carrying the constitutively active PTH/PTHrP receptor (HKrk-H223R) under the control of the mouse bone and odontoblast-specific alpha1(I) collagen promoter (Col1-caPPR) has been developed to demonstrate the complex actions of this mutant receptor in hard tissue formation. We have further characterized Col1-caPPR mice abnormalities in the craniofacial region as a function of development. Col1-caPPR mice exhibited a delay in embryonic bone formation, followed by expansion of a number of craniofacial bones including the maxilla and mandible, delay in tooth eruption and teratosis, and a disrupted temporomandibular joint (TMJ). These findings suggest that the Col1-caPPR mouse is a useful model for characterization of the downstream effects of the constitutively active receptor during development and growth, and as a model for development of treatments of human diseases with similar characteristics.
Collapse
Affiliation(s)
- T W Tsutsui
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department Health Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
88
|
Abzhanov A, Rodda SJ, McMahon AP, Tabin CJ. Regulation of skeletogenic differentiation in cranial dermal bone. Development 2007; 134:3133-44. [PMID: 17670790 DOI: 10.1242/dev.002709] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although endochondral ossification of the limb and axial skeleton is relatively well-understood, the development of dermal (intramembranous) bone featured by many craniofacial skeletal elements is not nearly as well-characterized. We analyzed the expression domains of a number of markers that have previously been associated with endochondral skeleton development to define the cellular transitions involved in the dermal ossification process in both chick and mouse. This led to the recognition of a series of distinct steps in the dermal differentiation pathways, including a unique cell type characterized by the expression of both osteogenic and chondrogenic markers. Several signaling molecules previously implicated in endochondrial development were found to be expressed during specific stages of dermal bone formation. Three of these were studied functionally using retroviral misexpression. We found that activity of bone morphogenic proteins (BMPs) is required for neural crest-derived mesenchyme to commit to the osteogenic pathway and that both Indian hedgehog (IHH) and parathyroid hormone-related protein (PTHrP, PTHLH)negatively regulate the transition from preosteoblastic progenitors to osteoblasts. These results provide a framework for understanding dermal bone development with an aim of bringing it closer to the molecular and cellular resolution available for the endochondral bone development.
Collapse
Affiliation(s)
- Arhat Abzhanov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
89
|
Weinstein LS, Xie T, Zhang QH, Chen M. Studies of the regulation and function of the Gs alpha gene Gnas using gene targeting technology. Pharmacol Ther 2007; 115:271-91. [PMID: 17588669 PMCID: PMC2031856 DOI: 10.1016/j.pharmthera.2007.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 01/14/2023]
Abstract
The heterotrimeric G protein alpha-subunit G(s)alpha is ubiquitously expressed and mediates receptor-stimulated intracellular cAMP generation. Its gene Gnas is a complex imprinted gene which uses alternative promoters and first exons to generate other gene products, including the G(s)alpha isoform XL alpha s and the chromogranin-like protein NESP55, which are specifically expressed from the paternal and maternal alleles, respectively. G(s)alpha itself is imprinted in a tissue-specific manner, being biallelically expressed in most tissues but paternally silenced in a few tissues. Gene targeting of specific Gnas transcripts demonstrates that heterozygous mutation of G(s)alpha on the maternal (but not the paternal) allele leads to early lethality, perinatal subcutaneous edema, severe obesity, and multihormone resistance, while the paternal mutation leads to only mild obesity and insulin resistance. These parent-of-origin differences are the consequence of tissue-specific G(s)alpha imprinting. XL alpha s deficiency leads to a perinatal suckling defect and a lean phenotype with increased insulin sensitivity. The opposite metabolic effects of G(s)alpha and XL alpha s deficiency are associated with decreased and increased sympathetic nervous system activity, respectively. NESP55 deficiency has no metabolic consequences. Other gene targeting experiments have shown Gnas to have 2 independent imprinting domains controlled by 2 different imprinting control regions. Tissue-specific G(s)alpha knockout models have identified important roles for G(s)alpha signaling pathways in skeletal development, renal function, and glucose and lipid metabolism. Our present knowledge gleaned from various Gnas gene targeting models are discussed in relation to the pathogenesis of human disorders with mutation or abnormal imprinting of the human orthologue GNAS.
Collapse
Affiliation(s)
- Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20854, USA.
| | | | | | | |
Collapse
|
90
|
Mancilla EE, Galindo M, Fertilio B, Herrera M, Salas K, Gatica H, Goecke A. L-type calcium channels in growth plate chondrocytes participate in endochondral ossification. J Cell Biochem 2007; 101:389-98. [PMID: 17243114 DOI: 10.1002/jcb.21183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Longitudinal bone growth occurs by a process called endochondral ossification that includes chondrocyte proliferation, differentiation, and apoptosis. Recent studies have suggested a regulatory role for intracellular Ca(2+) (Ca(i) (2+)) in this process. Indirect studies, using Ca(2+) channel blockers and measurement of Ca(i) (2+), have provided evidence for the existence of Ca(2+) channels in growth plate chondrocytes. Furthermore, voltage-gated Ca(2+) channels (VGCC), and specifically L- and T-type VGCCs, have been recently described in murine embryonic growth plates. Our aim was to assess the effect of L-type Ca(2+) channel blockers on endochondral ossification in an organ culture. We used cultures of fetal rat metatarsal rudiments at 20 days post gestational age, with the addition of the L-type Ca(2+) channel blockers verapamil (10-100 microM) or diltiazem (10-200 microM) to the culture medium. Longitudinal bone growth, chondrocyte differentiation (number of hypertrophic chondrocytes), and cell proliferation (incorporation of tritiated thymidine) were measured. Verapamil dose-dependently decreased growth, the number of hypertrophic chondrocytes, and cell proliferation, at concentrations of 10-100 microM. Growth and the number of hypertrophic chondrocytes decreased significantly with diltiazem at 50-100 microM, and proliferation decreased significantly at concentrations of 10-200 microM. Additionally, there was no increase in apoptosis over physiological levels with either drug. We confirmed the presence of L-type VGCCs in rat rudiments using immunohistochemistry, and showed that the antagonists did not alter the pattern of VGCC expression. In conclusion, our data suggest that L-type Ca(2+) channel activity in growth plate chondrocytes is necessary for normal longitudinal growth, participating in chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Edna E Mancilla
- Program of Pathophysiology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
91
|
Chen M, Lichtler AC, Sheu TJ, Xie C, Zhang X, O'Keefe RJ, Chen D. Generation of a transgenic mouse model with chondrocyte-specific and tamoxifen-inducible expression of Cre recombinase. Genesis 2007; 45:44-50. [PMID: 17211877 PMCID: PMC2654410 DOI: 10.1002/dvg.20261] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Postnatal cartilage development and growth are regulated by key growth factors and signaling molecules. To fully understand the function of these regulators, an inducible and chondrocyte-specific gene deletion system needs to be established to circumvent the perinatal lethality. In this report, we have generated a transgenic mouse model (Col2a1-CreER(T2)) in which expression of the Cre recombinase is driven by the chondrocyte-specific col2a1 promoter in a tamoxifen-inducible manner. To determine the specificity and efficiency of the Cre recombination, we have bred Col2a1-CreER(T2) mice with Rosa26R reporter mice. The X-Gal staining showed that the Cre recombination is specifically achieved in cartilage tissues with tamoxifen-induction. In vitro experiments of chondrocyte cell culture also demonstrate the 4-hydroxy tamoxifen-induced Cre recombination. These results demonstrate that Col2a1-CreER(T2) transgenic mice can be used as a valuable tool for an inducible and chondrocyte-specific gene deletion approach.
Collapse
Affiliation(s)
- Mo Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Hutchison C, Pilote M, Roy S. The axolotl limb: a model for bone development, regeneration and fracture healing. Bone 2007; 40:45-56. [PMID: 16920050 DOI: 10.1016/j.bone.2006.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 11/18/2022]
Abstract
Among vertebrates, urodele amphibians (e.g., axolotls) have the unique ability to perfectly regenerate complex body parts after amputation. The limb has been the most widely studied due to the presence of three defined axes and its ease of manipulation. Hence, the limb has been chosen as a model to study the process of skeletogenesis during axolotl development, regeneration and to analyze this animal's ability to heal bone fractures. Extensive studies have allowed researchers to gain some knowledge of the mechanisms controlling growth and pattern formation in regenerating and developing limbs, offering an insight into how vertebrates are able to regenerate tissues. In this study, we report the cloning and characterization of two axolotl genes; Cbfa-1, a transcription factor that controls the remodeling of cartilage into bone and PTHrP, known for its involvement in the differentiation and maturation of chondrocytes. Whole-mount in situ hybridization and immunohistochemistry results show that Cbfa-1, PTHrP and type II collagen are expressed during limb development and regeneration. These genes are expressed during specific stages of limb development and regeneration which are consistent with the appearance of skeletal elements. The expression pattern for Cbfa-1 in late limb development was similar to the expression pattern found in the late stages of limb regeneration (i.e. re-development phase) and it did not overlap with the expression of type II collagen. It has been reported that the molecular mechanisms involved in the re-development phase of limb regeneration are a recapitulation of those used in developing limbs; therefore the detection of Cbfa-1 expression during regeneration supports this assertion. Conversely, PTHrP expression pattern was different during limb development and regeneration, by its intensity and by the localization of the signal. Finally, despite its unsurpassed abilities to regenerate, we tested whether the axolotl was able to regenerate non-union bone fractures. We show that while the axolotl is able to heal a non-stabilized union fracture, like other vertebrates, it is incapable of healing a bone gap of critical dimension. These results suggest that the axolotl does not use the regeneration process to repair bone fractures.
Collapse
Affiliation(s)
- Cara Hutchison
- Department of Biochemistry, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
93
|
Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 2006; 133:4667-78. [PMID: 17065231 DOI: 10.1242/dev.02680] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic protein (BMP) signaling pathways are essential regulators of chondrogenesis. However, the roles of these pathways in vivo are not well understood. Limb-culture studies have provided a number of essential insights, including the demonstration that BMP pathways are required for chondrocyte proliferation and differentiation. However, limb-culture studies have yielded contradictory results; some studies indicate that BMPs exert stimulatory effects on differentiation, whereas others support inhibitory effects. Therefore, we characterized the skeletal phenotypes of mice lacking Bmpr1a in chondrocytes (Bmpr1a(CKO)) and Bmpr1a(CKO);Bmpr1b+/- (Bmpr1a(CKO);1b+/-) in order to test the roles of BMP pathways in the growth plate in vivo. These mice reveal requirements for BMP signaling in multiple aspects of chondrogenesis. They also demonstrate that the balance between signaling outputs from BMP and fibroblast growth factor (FGF) pathways plays a crucial role in the growth plate. These studies indicate that BMP signaling is required to promote Ihh expression, and to inhibit activation of STAT and ERK1/2 MAPK, key effectors of FGF signaling. BMP pathways inhibit FGF signaling, at least in part, by inhibiting the expression of FGFR1. These results provide a genetic in vivo demonstration that the progression of chondrocytes through the growth plate is controlled by antagonistic BMP and FGF signaling pathways.
Collapse
Affiliation(s)
- Byeong S Yoon
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
|
95
|
Robertson KM, Norgård M, Windahl SH, Hultenby K, Ohlsson C, Andersson G, Gustafsson JA. Cholesterol-sensing receptors, liver X receptor alpha and beta, have novel and distinct roles in osteoclast differentiation and activation. J Bone Miner Res 2006; 21:1276-87. [PMID: 16869726 DOI: 10.1359/jbmr.060503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The liver X receptor (alpha,beta) is responsible for regulating cholesterol homeostasis in cells. However, our studies using the LXRalpha-/-, LXRbeta-/-, and LXRalpha-/-beta-/- mice show that both LXRalpha and beta are also important for bone turnover, mainly by regulating osteoclast differentiation/activity. INTRODUCTION The liver X receptors (alpha,beta) are primarily responsible for regulating cholesterol homeostasis within cells and the whole body. However, as recent studies show that the role for this receptor is expanding, we studied whether the LXRs could be implicated in bone homeostasis and development. MATERIALS AND METHODS pQCT was performed on both male and female LXRalpha-/-, LXRbeta-/-, LXRalpha-/-beta-/-, and WT mice at 4 months and 1 year of age. Four-month-old female mice were additionally analyzed with reference to qPCR, immunohistochemistry, histomorphometry, transmission electron microscopy, and serum bone turnover markers. RESULTS At the mRNA level, LXRbeta was more highly expressed than LXRalpha in both whole long bones and differentiating osteoblast-like MC3T3-E1 and osteoclast-like RAW 264.7 cells. Four-month-old female LXRalpha-/- mice had a significant increase in BMD because of an increase in all cortical parameters. No difference was seen regarding trabecular BMD. Quantitative histomorphometry showed that these mice had significantly more endosteal osteoclasts in the cortical bone; however, these cells appeared less active than normal cells as suggested by a significant reduction in serum levels of cross-linked carboxyterminal telopeptides of type I collagen (CTX) and a reduction in bone TRACP activity. Conversely, the female LXRbeta-/- mice exhibited no change in BMD, presumably because a significant decline in the number of the trabecular osteoclasts was compensated for by an increase in the expression of the osteoclast markers cathepsin K and TRACP. These mice also had a significant decrease in serum CTX, suggesting decreased bone resorption; however, in addition presented with an increase in the expression of osteoblast associated genes, bone formation markers, and serum leptin levels. CONCLUSIONS Our findings show that both LXRs influence cellular function within the bone, with LXRalpha having an impact on osteoclast activity, primarily in cortical bone, whereas LXRbeta modulates trabecular bone turnover.
Collapse
|
96
|
Gori F, Friedman LG, Demay MB. Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev Biol 2006; 295:498-506. [PMID: 16730692 DOI: 10.1016/j.ydbio.2006.02.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/27/2006] [Accepted: 02/20/2006] [Indexed: 12/26/2022]
Abstract
Wdr5 accelerates osteoblast and chondrocyte differentiation in vitro, and is developmentally expressed in osteoblasts as well as in proliferating and hypertrophic chondrocytes. To investigate the role of Wdr5 during endochondral bone development, transgenic mice overexpressing Wdr5 under the control of the 2.3-kb fragment of the mouse alpha(1) I collagen promoter were generated. The transgene was specifically expressed in the osteoblasts of transgene positive mice and was absent in the growth plate. Histological analyses at embryonic day 14.5 demonstrated that the humeri of transgene positive embryos were longer than those isolated from wild-type littermates largely due to an expansion of the hypertrophic chondrocyte layer. Acceleration of osteoblast differentiation was observed with greater and more extensive expression of type I collagen and more extensive mineral deposition in the bone collar of transgene positive embryos. Acceleration of vascular invasion was also observed in transgene positive mice. Postnatal analyses of transgenic mice confirmed persistent acceleration of osteoblast differentiation. Targeted expression of Wdr5 to osteoblasts resulted in earlier activation of the canonical Wnt signaling pathway in the bone collar as well as in primary calvarial osteoblast cultures. In addition, overexpression of Wdr5 increased the expression of OPG, a target of the canonical Wnt signaling pathway. Overall, our findings suggest that Wdr5 accelerates osteoblast differentiation in association with activation of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Francesca Gori
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
97
|
Scillitani A, Jang C, Wong BYL, Hendy GN, Cole DEC. A functional polymorphism in the PTHR1 promoter region is associated with adult height and BMD measured at the femoral neck in a large cohort of young caucasian women. Hum Genet 2006; 119:416-21. [PMID: 16508749 DOI: 10.1007/s00439-006-0155-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 02/01/2006] [Indexed: 01/05/2023]
Abstract
The parathyroid hormone type 1 receptor (PTHR1) mediates the actions of parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHRP). Interacting with this receptor, PTHRP contributes to skeletal development through the regulation of chondrocyte proliferation and differentiation. Recently, a tetranucleotide repeat-(AAAG)( n )-in the P3 promoter of the PTHR1 gene has been shown to have functional activity in vitro, and homozygosity for (AAAG)(6), or the 6/6 genotype, has been associated with greater adult height compared to the 5/5 genotype. In this study, we evaluated the association of (AAAG)( n ) with height and bone mineral density (BMD) measured at lumbar spine (LS) and femoral neck (FN) in a cohort of 677 young caucasian women 18-35 years of age. Genomic DNA was amplified and genotyped by comparison with sequenced controls following electrophoretic separation through high-resolution polyacrylamide gels. Allele frequencies for (AAAG)( n ) were: 76.8% (n=5); 20.9% (n=6); 1.8% (n=7); 0.18% (n=8); 0.27% (n=9); 0.08% (n=2), and there was no evidence for Hardy-Weinberg disequilibrium. Analysis of variance showed that subjects bearing one or two (AAAG)(6) alleles (6/X & 6/6) were significantly taller (165.7+/-0.5 cm) than the others (X/X, 164.5+/-0.3 cm; P=0.034). This association was significant after adjusting for multiple covariates-current age, age at menarche, physical activity, smoking status, and intakes of caffeine and calcium. Comparison of genotype groups for BMD was not significant at LS, but BMD was significantly higher at FN in the group with at least one (AAAG)(6) allele (adjusted means: 1.021+/-0.008 vs. 0.999+/-0.006 g/cm(2), P=0.032). In conclusion, our data show that subjects bearing one or two (AAAG)(6) alleles are taller than subjects without, reinforcing the notion that in vivo variation in promoter activity of the PTHR1 gene may be a relevant genetic influence on final adult height and BMD.
Collapse
Affiliation(s)
- Alfredo Scillitani
- Department of Endocrinology, Istituto di Ricovero, Ospedale Casa Sollievo della Soffrenza, San Giovanni Rotondo, Italy
| | | | | | | | | |
Collapse
|
98
|
Baribault H, Danao J, Gupte J, Yang L, Sun B, Richards W, Tian H. The G-protein-coupled receptor GPR103 regulates bone formation. Mol Cell Biol 2006; 26:709-17. [PMID: 16382160 PMCID: PMC1346910 DOI: 10.1128/mcb.26.2.709-717.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GPR103 is a G-protein-coupled receptor with reported expression in brain, heart, kidney, adrenal gland, retina, and testis. It encodes a 455-amino-acid protein homologous to neuropeptide FF2, neuropeptide Y2, and galanin GalR1 receptors. Its natural ligand was recently identified as 26RFa, a novel human RF-amide-related peptide with orexigenic activity. To identify the function of GPR103, we generated GPR103-deficient mice. Homozygous mutant mice were viable and fertile. Their body weight was undistinguishable from that of their wild-type littermates. Histological analysis revealed that GPR103-/- mice exhibited a thinned osteochondral growth plate, a thickening of trabecular branches, and a reduction in osteoclast number, suggestive of an early arrest of osteochondral bone formation. Microcomputed tomography confirmed the reduction in trabecular bone and connective tissue densities in GPR103 knockout animals. Whole-body radiography followed by morphometric analysis revealed a kyphosis in mutant animals. Reverse transcription-PCR analysis showed that GPR103 was expressed in human skull, mouse spine, and several osteoblast cell lines. Dexamethasone, a known inhibitor of osteoblast growth and inducer of osteoblast differentiation, inhibited GPR103 expression in human osteoblast primary cultures. Altogether, these results suggest that osteopenia in GPR103-/- mice may be mediated directly by the loss of GPR103 expression in bone.
Collapse
Affiliation(s)
- Helene Baribault
- Department of Biology Research, Amgen, Mail Stop ASF1-1, 1120 Veterans Blvd., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Intrakrine, parakrine und autokrine Funktionen des PTH/PTHrP-Systems. MOLEKULARMEDIZINISCHE GRUNDLAGEN VON PARA- UND AUTOKRINEN REGULATIONSSTÖRUNGEN 2006. [PMCID: PMC7144038 DOI: 10.1007/3-540-28782-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int 2006; 17:337-47. [PMID: 16331359 DOI: 10.1007/s00198-005-2039-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
Osteoporosis is a major cause of morbidity and mortality through its association with age-related fractures. Although most effort in fracture prevention has been directed at retarding the rate of age-related bone loss and reducing the frequency and severity of trauma among elderly people, evidence is growing that peak bone mass is an important contributor to bone strength during later life. The normal patterns of skeletal growth have been well characterised in cross-sectional and longitudinal studies. It has been confirmed that boys have higher bone mineral content (BMC), but not volumetric bone density, than girls. Furthermore, there is a dissociation between the peak velocities for height gain and bone mineral accrual in both genders. Puberty is the period during which volumetric density appears to increase in both axial and appendicular sites. Many factors influence the accumulation of bone mineral during childhood and adolescence, including heredity, gender, diet, physical activity, endocrine status, and sporadic risk factors such as cigarette smoking. In addition to these modifiable factors during childhood, evidence has also accrued that fracture risk might be programmed during intrauterine life. Epidemiological studies have demonstrated a relationship between birth weight, weight in infancy, and adult bone mass. This appears to be mediated through modulation of the set-point for basal activity of pituitary-dependent endocrine systems such as the HPA and GH/IGF-1 axes. Maternal smoking, diet (particularly vitamin D deficiency), and physical activity also appear to modulate bone mineral acquisition during intrauterine life; furthermore, both low birth size and poor childhood growth are directly linked to the later risk of hip fracture. The optimisation of maternal nutrition and intrauterine growth should also be included within preventive strategies against osteoporotic fracture, albeit for future generations.
Collapse
Affiliation(s)
- Cyrus Cooper
- MRC Epidemiology Resource Centre and Centre for Developmental Origins of Health and Adult Disease, University of Southampton, Southampton General Hospital, Southampton , SO16 6YD, UK.
| | | | | | | | | | | |
Collapse
|