51
|
Monoamine oxidase A drives neuroendocrine differentiation in prostate cancer. Biochem Biophys Res Commun 2022; 606:135-141. [DOI: 10.1016/j.bbrc.2022.03.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
|
52
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
53
|
Li M, Peng Z, Wang X, Wang Y. Monoamine oxidase A attenuates chondrocyte loss and extracellular matrix degradation in osteoarthritis by inducing autophagy. Int Immunopharmacol 2022; 109:108772. [PMID: 35461155 DOI: 10.1016/j.intimp.2022.108772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by cartilage destruction and extracellular matrix (ECM) degeneration. Here, we studied the potential function of monoamine oxidase A (MAOA) in OA pathogenesis. METHODS Cartilage tissue samples were collected from 33 patients with knee OA and nine normal healthy controls. Sprague-Dawley rats with anterior cruciate ligament transection (ACLT) and primary chondrocytes treated with interleukin (IL)-1β were used as OA animal and cell models, respectively. The effects of adenovirus-mediated MAOA overexpression in OA models were studied using Safranin-O staining, immunohistochemistry, CCK-8 assay, EdU assay, flow cytometry, qRT-PCR, western blotting, and immunofluorescence. RESULTS MAOA was identified as an overlapping downregulating gene in the GSE82107, GSE1919, GSE169077, and GSE29746 datasets. MAOA expression was negatively correlated with OA severity. MAOA downregulation was confirmed in ACLT rats and IL-1β-treated chondrocytes. Notably, MAOA overexpression significantly inhibited ACLT-induced OA pathogenesis in rats, as was evidenced by the reduced Osteoarthritis Research Society International (OARSI) score and serum crosslinked C-telopeptides of type II collagen (CTX-II) and cartilage oligomeric matrix protein (COMP) levels. These findings show that MAOA overexpression inhibits extracellular matrix (ECM) degradation and promotes ACLT-induced autophagy. The effects of MAOA on ECM degradation and autophagy were also confirmed in IL-1β-treated primary chondrocytes. Additionally, MAOA protects chondrocytes against IL-1β-induced apoptosis. Furthermore, treating chondrocytes with 3-MA significantly attenuated the protective effects of MAOA. CONCLUSION MAOA was identified as a downregulated gene in OA. Restoring MAOA expression protects against chondrocyte loss and ECM degradation through autophagy regulation.
Collapse
Affiliation(s)
- Ming Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Zhibin Peng
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150070, Heilongjiang, PR China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, PR China
| | - Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150070, Heilongjiang, PR China.
| |
Collapse
|
54
|
Fioravanti R, Rodriguez V, Caroli J, Chianese U, Benedetti R, Di Bello E, Noce B, Zwergel C, Corinti D, Viña D, Altucci L, Mattevi A, Valente S, Mai A. Heterocycle-containing tranylcypromine derivatives endowed with high anti-LSD1 activity. J Enzyme Inhib Med Chem 2022; 37:973-985. [PMID: 35317680 PMCID: PMC8942502 DOI: 10.1080/14756366.2022.2052869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As regioisomers/bioisosteres of 1a, a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives 1b-6, in which the 4-phenyl moiety of 1a was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the meta derivatives were more effective than the para analogues, with the meta thienyl analogs 4b and 5b being the most potent (IC50 values = 0.015 and 0.005 μM) and the most selective over MAO-B (selectivity indexes: 24.4 and 164). When tested in U937 AML and prostate cancer LNCaP cells, selected compounds 1a,b, 2b, 3b, 4b, and 5a,b displayed cell growth arrest mainly in LNCaP cells. Western blot analyses showed increased levels of H3K4me2 and/or H3K9me2 confirming the involvement of LSD1 inhibition in these assays.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Veronica Rodriguez
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| |
Collapse
|
55
|
Tu SM, Estecio MR, Lin SH, Zacharias NM. Stem Cell Theory of Cancer: Rude Awakening or Bad Dream from Cancer Dormancy? Cancers (Basel) 2022; 14:655. [PMID: 35158923 PMCID: PMC8833524 DOI: 10.3390/cancers14030655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
To be dormant or not depends on the origin and nature of both the cell and its niche. Similar to other cancer hallmarks, dormancy is ingrained with stemness, and stemness is embedded within dormancy. After all, cancer dormancy is dependent on multiple factors such as cell cycle arrest, metabolic inactivity, and the microenvironment. It is the net results and sum effects of a myriad of cellular interactions, interconnections, and interplays. When we unite all cancer networks and integrate all cancer hallmarks, we practice and preach a unified theory of cancer. From this perspective, we review cancer dormancy in the context of a stem cell theory of cancer. We revisit the seed and soil hypothesis of cancer. We reexamine its implications in both primary tumors and metastatic lesions. We reassess its roles in cell cycle arrest, metabolic inactivity, and stemness property. Cancer dormancy is particularly revealing when it informs us about the mysteries of late relapse, prolonged remission, and second malignancy. It is paradoxically rewarding when it delivers us the promises and power of cancer prevention and maintenance therapy in patient care.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcos R. Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niki M. Zacharias
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
56
|
Mehndiratta S, Qian B, Chuang JY, Liou JP, Shih JC. N-Methylpropargylamine-Conjugated Hydroxamic Acids as Dual Inhibitors of Monoamine Oxidase A and Histone Deacetylase for Glioma Treatment. J Med Chem 2022; 65:2208-2224. [PMID: 35005974 DOI: 10.1021/acs.jmedchem.1c01726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioma treatment remains a challenge with a low survival rate due to the lack of effective therapeutics. Monoamine oxidase A (MAO A) plays a role in glioma development, and MAO A inhibitors reduce glioma growth. Histone deacetylase (HDAC) inhibition has emerged as a promising therapy for various malignancies including gliomas. We have synthesized and evaluated N-methylpropargylamine-conjugated hydroxamic acids as dual inhibitors of MAO A and HDAC. Compounds display potent MAO A inhibition with IC50 from 0.03 to <0.0001 μM and inhibit HDAC isoforms and cell growth in the micromolar to nanomolar IC50 range. These selective MAO A inhibitors increase histone H3 and α-tubulin acetylation and induce cell death via nonapoptotic mechanisms. Treatment with 15 reduced tumor size, reduced MAO A activity in brain and tumor tissues, and prolonged the survival. This first report on dual inhibitors of MAO A and HDAC establishes the basis of translational research for an improved treatment of glioma.
Collapse
Affiliation(s)
- Samir Mehndiratta
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Bin Qian
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States.,Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States.,USC-Taiwan Center for Translational Research, Los Angeles, California 90089, United States.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
57
|
Eksi SE, Chitsazan A, Sayar Z, Thomas GV, Fields AJ, Kopp RP, Spellman PT, Adey AC. Epigenetic loss of heterogeneity from low to high grade localized prostate tumours. Nat Commun 2021; 12:7292. [PMID: 34911933 PMCID: PMC8674326 DOI: 10.1038/s41467-021-27615-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying precise molecular subtypes attributable to specific stages of localized prostate cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a population-average, which mask the heterogeneity that exists at the single-cell level. In this work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-frozen prostate tumours. We observe shared chromatin features among low-grade prostate cancer cells are lost in high-grade tumours. Despite this loss, high-grade tumours exhibit an enrichment for FOXA1, HOXB13 and CDX2 transcription factor binding sites, indicating a shared trans-regulatory programme. We identify two unique genes encoding neuronal adhesion molecules that are highly accessible in high-grade prostate tumours. We show NRXN1 and NLGN1 expression in epithelial, endothelial, immune and neuronal cells in prostate cancer using cyclic immunofluorescence. Our results provide a deeper understanding of the active gene regulatory networks in primary prostate tumours, critical for molecular stratification of the disease.
Collapse
Affiliation(s)
- Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA.
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR, 97209, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew J Fields
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Ryan P Kopp
- Department of Urology, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, 97239, USA.
- Department of Molecular and Medical Genetics, School of Medicine, OHSU, Portland, OR, 97239, USA.
| |
Collapse
|
58
|
Near-Infrared MAO A Inhibitor (NMI) Outperformed FDA-Approved Chemotherapeutic Agents in Brain and Other Cancers: A Bioinformatic Analysis of NCI60 Screening Data. Brain Sci 2021; 11:brainsci11101318. [PMID: 34679383 PMCID: PMC8534240 DOI: 10.3390/brainsci11101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Our previous work has shown that monoamine oxidase A (MAO A) is overexpressed in glioma and prostate cancer. Near-infrared dye conjugate MAO A Inhibitor (NMI) inhibited the growth of these cancers. This study investigated the effects of NMI on other cancers by NCI60 screening. Our results showed that 48 out of 59 screened cell lines from nine types of cancer had 100% growth inhibition at 10 μM NMI treatment. The in vitro efficacy of NMI determined by growth inhibition (GI50 and TGI) and lethal doses (LC50) has been further studied in various cell lines of CNS cancer, prostate cancer, and non-small cell lung cancer (NSCLC), these three cancers showed increased MAO A expression in tumors compared to normal tissues. Based on the waterfall plots and the 3D scatter plot of GI50, TGI, and LC50 data, NMI showed higher potency to several CNS cancer and NSCLC cell lines than prostate cancer cell lines. In vitro efficacy of NMI outperformed FDA-approved drugs for CNS cancer, prostate cancer, and NSCLC, respectively. The Pairwise Pearson Correlation Coefficient (PCC) showed that NMI has a unique mechanism compared to the existing anticancer drugs. This study shows that NMI is a novel theragnostic drug with high potency and unique mechanisms for brain, prostate, NSCLC, and other cancers.
Collapse
|
59
|
Aljanabi R, Alsous L, Sabbah DA, Gul HI, Gul M, Bardaweel SK. Monoamine Oxidase (MAO) as a Potential Target for Anticancer Drug Design and Development. Molecules 2021; 26:molecules26196019. [PMID: 34641563 PMCID: PMC8513016 DOI: 10.3390/molecules26196019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidases (MAOs) are oxidative enzymes that catalyze the conversion of biogenic amines into their corresponding aldehydes and ketones through oxidative deamination. Owing to the crucial role of MAOs in maintaining functional levels of neurotransmitters, the implications of its distorted activity have been associated with numerous neurological diseases. Recently, an unanticipated role of MAOs in tumor progression and metastasis has been reported. The chemical inhibition of MAOs might be a valuable therapeutic approach for cancer treatment. In this review, we reported computational approaches exploited in the design and development of selective MAO inhibitors accompanied by their biological activities. Additionally, we generated a pharmacophore model for MAO-A active inhibitors to identify the structural motifs to invoke an activity.
Collapse
Affiliation(s)
- Reem Aljanabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Lina Alsous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
| | - Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan;
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Yakutiye 25030, Turkey;
| | - Mustafa Gul
- Department of Physiology, School of Medicine, Ataturk University, Yakutiye 25030, Turkey;
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan; (R.A.); (L.A.)
- Correspondence: ; Tel.: +962-6535-5000 (ext. 23318)
| |
Collapse
|
60
|
Abstract
We have structure, a wealth of kinetic data, thousands of chemical ligands and clinical information for the effects of a range of drugs on monoamine oxidase activity in vivo. We have comparative information from various species and mutations on kinetics and effects of inhibition. Nevertheless, there are what seem like simple questions still to be answered. This article presents a brief summary of existing experimental evidence the background and poses questions that remain intriguing for chemists and biochemists researching the chemical enzymology of and drug design for monoamine oxidases (FAD-containing EC 4.1.3.4).
Collapse
|
61
|
Ye D, Xu H, Tang Q, Xia H, Zhang C, Bi F. The role of 5-HT metabolism in cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188618. [PMID: 34428515 DOI: 10.1016/j.bbcan.2021.188618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) metabolism has long been linked to tumorigenesis and tumor progression. Numerous studies have shown the functions of 5-HT and its metabolites in the regulation of tumor biological processes like cell proliferation, invasion, metastasis, tumor angiogenesis and immunomodulatory through multi-step complex mechanisms. Reprogramming of 5-HT metabolism has been revealed in various tumors paving way for development of drugs that target enzymes, metabolites or receptors involved in 5-HT metabolic pathway. However, information on the role of 5-HT metabolism in cancer is scanty. This review briefly describes the main metabolic routes of 5-HT, the role of 5-HT metabolism in cancer and systematically summarizes the most recent advances in 5-HT metabolism-targeted cancer therapy.
Collapse
Affiliation(s)
- Di Ye
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Hongwei Xia
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Chenliang Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
62
|
Ghosh S, Dutta N, Banerjee P, Gajbhiye RL, Sareng HR, Kapse P, Pal S, Burdelya L, Mandal NC, Ravichandiran V, Bhattacharjee A, Kundu GC, Gudkov AV, Pal M. Induction of monoamine oxidase A-mediated oxidative stress and impairment of NRF2-antioxidant defence response by polyphenol-rich fraction of Bergenia ligulata sensitizes prostate cancer cells in vitro and in vivo. Free Radic Biol Med 2021; 172:136-151. [PMID: 34097996 DOI: 10.1016/j.freeradbiomed.2021.05.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3β activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of β-TrCP-GSK-3β axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Naibedya Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Rahul L Gajbhiye
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | | | - Prachi Kapse
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Srabani Pal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lyudmila Burdelya
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Velyutham Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India; National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| |
Collapse
|
63
|
Lai Y, Lin F, Wang X, Zhang J, Xia J, Sun Y, Wen M, Li X, Zhang Z, Zhao J. STYK1/NOK Promotes Metastasis and Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer by Suppressing FoxO1 Signaling. Front Cell Dev Biol 2021; 9:621147. [PMID: 34295886 PMCID: PMC8290174 DOI: 10.3389/fcell.2021.621147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022] Open
Abstract
Aims Serine/threonine/tyrosine kinase 1 (STYK1) has been previously shown to have oncogenic properties, and emerging evidence suggests that STYK1 expression correlates with epithelial-mesenchymal transition (EMT). However, the mechanism of STYK1 involvement in oncogenesis remains unknown. The present study aimed to elucidate how STYK1 expression level relates to the metastasis, migration, invasion, and EMT in non-small cell lung cancer (NSCLC) and to determine the molecular mechanism of STYK1 effects. Methods Serine/threonine/tyrosine kinase 1 (STYK1) expression level and its relationship with the prognosis of NSCLC were determined using the ONCOMINE database and clinical cases. Non-small cell lung cancer cell lines with the overexpression or knockdown of STYK1 were established to determine whether STYK1 promotes cell migration, invasion, and EMT in vitro and in vivo. In addition, a constitutively active FoxO1 mutant (FoxO1AAA) was used to examine the role of FoxO1 in the STYK1-mediated upregulation of metastasis and EMT in NSCLC. Results Serine/threonine/tyrosine kinase 1 (STYK1) was upregulated in NSCLC tissues and cell lines, and its overexpression correlated with poor prognosis in patients with NSCLC after surgery. Enhanced expression of STYK1 potentiated the migration, invasion, and EMT in SW900 cells, thereby promoting metastasis, whereas knockdown of STYK1 inhibited these cellular phenomena in Calu-1 cells. Furthermore, STYK1 expression was positively related to the level of phosphorylated-FoxO1, whereas the constitutively active FoxO1 mutant protected against the positive effect of STYK1 overexpression on cell migration, invasion, and EMT. Conclusion Serine/threonine/tyrosine kinase 1 (STYK1) was upregulated in NSCLC and correlated with poor clinical outcomes. In addition, STYK1 suppressed FoxO1 functions, thereby promoting metastasis and EMT in NSCLC.
Collapse
Affiliation(s)
- Yuanyang Lai
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Fang Lin
- Department of Clinical Diagnosis, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Xuejiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|
64
|
Genetic and Proteinic Linkage of MAO and COMT with Oral Potentially Malignant Disorders and Cancers of the Oral Cavity and Pharynx. Cancers (Basel) 2021; 13:cancers13133268. [PMID: 34209963 PMCID: PMC8268107 DOI: 10.3390/cancers13133268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The prevention and treatment of cancers of the oral cavity and pharynx are currently important issues for national health. Currently, the incidence of oral cavity and pharynx cancers is globally the highest in Taiwanese men. Regarding the occurrence of oral cavity and pharynx cancers and oral potentially malignant disorders (OPMD), no report has ascertained how betel quid (BQ) can induce the expression of monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). We aimed to explore the role and clinical significance of specific markers of BQ exposure and human susceptibility to MAO and COMT. Our findings highlight the association of MAO and COMT biomarkers to risks of oral and pharyngeal cancers and OPMD. These novel findings will provide important strategies for disease prevention, early clinical diagnosis, and treatment effectiveness, and will offer a strong foundation to reduce BQ-related cancers of the oral cavity and pharynx and OPMD. Abstract Betel quid (BQ), a group I human carcinogen, strongly contributes to an increased risk of oral potentially malignant disorders (OPMD) and cancers of the oral cavity and pharynx. This study was conducted to discover whether monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) variants play a potential role in the risk assessment of oral cavity and pharynx cancers and OPMD, particularly among BQ users. We applied a case–control study to confirm the polymorphism of MAO and COMT using single-nucleotide polymorphisms. We used qRT-PCR, Western blotting, and immunohistochemistry (IHC) to determine MAO and COMT expression. Carriers of the MAOA rs6323 G-allele, MAOB rs6324 G-allele, and COMT rs4633 C/C-genotype had a prominently increased risk of oral cavity and pharynx cancers (AOR = 56.99; p < 0.001). Compared to adjacent noncancerous tissues, a significant downregulation of MAO and COMT expression was exhibited in cancerous tissues (p < 0.01). Furthermore, in different cell models, MAO and COMT expression was significantly downregulated with an increased dose of arecoline (p < 0.01). In personalized preventive medicine for oral and pharyngeal cancers, our findings are the first to demonstrate the potential role of lower MAO and COMT expression levels, with the risk polymorphisms utilized as clinical biomarkers.
Collapse
|
65
|
Wei J, Yin L, Li J, Wang J, Pu T, Duan P, Lin TP, Gao AC, Wu BJ. Bidirectional Cross-talk between MAOA and AR Promotes Hormone-Dependent and Castration-Resistant Prostate Cancer. Cancer Res 2021; 81:4275-4289. [PMID: 34167949 DOI: 10.1158/0008-5472.can-21-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023]
Abstract
Androgen receptor (AR) is the primary oncogenic driver of prostate cancer, including aggressive castration-resistant prostate cancer (CRPC). The molecular mechanisms controlling AR activation in general and AR reactivation in CRPC remain elusive. Here we report that monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines, reciprocally interacts with AR in prostate cancer. MAOA was induced by androgens through direct AR binding to a novel intronic androgen response element of the MAOA gene, which in turn promoted AR transcriptional activity via upregulation of Shh/Gli-YAP1 signaling to enhance nuclear YAP1-AR interactions. Silencing MAOA suppressed AR-mediated prostate cancer development and growth, including CRPC, in mice. MAOA expression was elevated and positively associated with AR and YAP1 in human CRPC. Finally, genetic or pharmacologic targeting of MAOA enhanced the growth-inhibition efficacy of enzalutamide, darolutamide, and apalutamide in both androgen-dependent and CRPC cells. Collectively, these findings identify and characterize an MAOA-AR reciprocal regulatory circuit with coamplified effects in prostate cancer. Moreover, they suggest that cotargeting this complex may be a viable therapeutic strategy to treat prostate cancer and CRPC. SIGNIFICANCE: MAOA and AR comprise a positive feedback loop in androgen-dependent and CRPC, providing a mechanistic rationale for combining MAOA inhibition with AR-targeted therapies for prostate cancer treatment.
Collapse
Affiliation(s)
- Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Peng Duan
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.,Department of Urology, School of Medicine, Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| |
Collapse
|
66
|
Wang YC, Wang X, Yu J, Ma F, Li Z, Zhou Y, Zeng S, Ma X, Li YR, Neal A, Huang J, To A, Clarke N, Memarzadeh S, Pellegrini M, Yang L. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat Commun 2021; 12:3530. [PMID: 34112755 PMCID: PMC8192781 DOI: 10.1038/s41467-021-23164-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Targeting tumor-associated macrophages (TAMs) is a promising strategy to modify the immunosuppressive tumor microenvironment and improve cancer immunotherapy. Monoamine oxidase A (MAO-A) is an enzyme best known for its function in the brain; small molecule MAO inhibitors (MAOIs) are clinically used for treating neurological disorders. Here we observe MAO-A induction in mouse and human TAMs. MAO-A-deficient mice exhibit decreased TAM immunosuppressive functions corresponding with enhanced antitumor immunity. MAOI treatment induces TAM reprogramming and suppresses tumor growth in preclinical mouse syngeneic and human xenograft tumor models. Combining MAOI and anti-PD-1 treatments results in synergistic tumor suppression. Clinical data correlation studies associate high intratumoral MAOA expression with poor patient survival in a broad range of cancers. We further demonstrate that MAO-A promotes TAM immunosuppressive polarization via upregulating oxidative stress. Together, these data identify MAO-A as a critical regulator of TAMs and support repurposing MAOIs for TAM reprogramming to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Xi Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Samuel Zeng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Xiaoya Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Adam Neal
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Angela To
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Nicole Clarke
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Sanaz Memarzadeh
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
67
|
Ayoup MS, Abu-Serie MM, Awad LF, Teleb M, Ragab HM, Amer A. Halting colorectal cancer metastasis via novel dual nanomolar MMP-9/MAO-A quinoxaline-based inhibitors; design, synthesis, and evaluation. Eur J Med Chem 2021; 222:113558. [PMID: 34116327 DOI: 10.1016/j.ejmech.2021.113558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) and monoamine oxidase-A (MAO-A) are central signaling nodes in CRC and promotors of distant metastasis associated with high mortality rates. Novel series of quinoxaline-based dual MMP-9/MAO-A inhibitors were synthesized to suppress CRC progression. The design rationale combines the thematic pharmacophoric features of MMP-9 and MAO-A inhibitors in hybrid scaffolds. All derivatives were initially screened via MTT assay for cytotoxic effects on normal colonocytes to assess their safety profiles, then evaluated for their anticancer potential on HCT116 cells overexpressing MMP-9 and MAO-A. The most promising derivatives 8, 16, 17, 19, and 28 exhibited single digit nanomolar IC50 against HCT116 cells within their safe doses (EC100) on normal colonocytes. They suppressed HCT116 cell migration by 73.32, 61.29, 21.27, 28.82, and 27.48%, respectively as detected by wound healing assay. Enzymatic assays revealed that the selected derivatives were superior to the reference MMP-9 and MAO-A inhibitors (quercetin and clorgyline, respectively). The nanomolar dual MMP-9/MAO-A inhibitor 19 was identified as the most potent and balanced dual inhibitor among the evaluated series with considerable selectivity against MAO-A over MAO-B. Besides, qRT-PCR analysis was conducted to explore the hit compounds' potential to downregulate hypoxia-inducing factor (HIF-1α) in HCT116 cells being correlated with MAO-A mediated CRC migration and invasion. The five above-mentioned compounds significantly downregulated HIF-1α by more than 5 folds. Docking simulations predicted their possible binding modes with MMP-9 and MAO-A and highlighted their essential structural features. Finally, they recorded drug-like in silico physicochemical parameters and ADMET profiles.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Laila F Awad
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
| |
Collapse
|
68
|
Zhang L, Li Y, Wang X, Ping Y, Wang D, Cao Y, Dai Y, Liu W, Tao Z. Five-gene signature associating with Gleason score serve as novel biomarkers for identifying early recurring events and contributing to early diagnosis for Prostate Adenocarcinoma. J Cancer 2021; 12:3626-3647. [PMID: 33995639 PMCID: PMC8120165 DOI: 10.7150/jca.52170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Compared to non-recurrent type, recurrent prostate adenocarcinoma (PCa) is highly fatal, and significantly shortens the survival time of affected patients. Early and accurate laboratory diagnosis is particularly important in identifying patients at high risk of recurrence, necessary for additional systemic intervention. We aimed to develop efficient and accurate diagnostic and prognostic biomarkers for new PCa following radical therapy. Methods: We identified differentially expressed genes (DEGs) and clinicopathological data of PCa patients from Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) repositories. We then uncovered the most relevant clinical traits and genes modules associated with PCa prognosis using the Weighted gene correlation network analysis (WGCNA). Univariate Cox regression analysis and multivariate Cox proportional hazards (Cox-PH) models were performed to identify candidate gene signatures related to Disease-Free Interval (DFI). Data for internal and external cohorts were utilized to test and validate the accuracy and clinical utility of the prognostic models. Results: We constructed and validated an accurate and reliable model for predicting the prognosis of PCa using 5 Gleason score-associated gene signatures (ZNF695, CENPA, TROAP, BIRC5 and KIF20A). The ROC and Kaplan-Meier analysis revealed the model was highly accurate in diagnosing and predicting the recurrence and metastases of PCa. The accuracy of the model was validated using the calibration curves based on internal TCGA cohort and external GEO cohort. Using the model, patients could be prognostically stratified in to various groups including TNM classification and Gleason score. Multivariate analysis revealed the model could independently predict the prognosis of PCa patients and its utility was superior to that of clinicopathological characteristics. In addition, we fund the expression of the 5 gene signatures strongly and positively correlated with tumor purity but negatively correlated with infiltration CD8+ T cells to the tumor microenvironment. Conclusions: A 5 gene signatures can accurately be used in the diagnosis and prediction of PCa prognosis. Thus this can guide the treatment and management prostate adenocarcinoma.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yu Li
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Ping
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Danhua Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
69
|
Ostadkarampour M, Putnins EE. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Front Pharmacol 2021; 12:676239. [PMID: 33995107 PMCID: PMC8120032 DOI: 10.3389/fphar.2021.676239] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammatory diseases are debilitating, affect patients' quality of life, and are a significant financial burden on health care. Inflammation is regulated by pro-inflammatory cytokines and chemokines that are expressed by immune and non-immune cells, and their expression is highly controlled, both spatially and temporally. Their dysregulation is a hallmark of chronic inflammatory and autoimmune diseases. Significant evidence supports that monoamine oxidase (MAO) inhibitor drugs have anti-inflammatory effects. MAO inhibitors are principally prescribed for the management of a variety of central nervous system (CNS)-associated diseases such as depression, Alzheimer's, and Parkinson's; however, they also have anti-inflammatory effects in the CNS and a variety of non-CNS tissues. To bolster support for their development as anti-inflammatories, it is critical to elucidate their mechanism(s) of action. MAO inhibitors decrease the generation of end products such as hydrogen peroxide, aldehyde, and ammonium. They also inhibit biogenic amine degradation, and this increases cellular and pericellular catecholamines in a variety of immune and some non-immune cells. This decrease in end product metabolites and increase in catecholamines can play a significant role in the anti-inflammatory effects of MAO inhibitors. This review examines MAO inhibitor effects on inflammation in a variety of in vitro and in vivo CNS and non-CNS disease models, as well as their anti-inflammatory mechanism(s) of action.
Collapse
Affiliation(s)
- Mahyar Ostadkarampour
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Edward E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
70
|
Puhr M, Eigentler A, Handle F, Hackl H, Ploner C, Heidegger I, Schaefer G, Brandt MP, Hoefer J, Van der Pluijm G, Klocker H. Targeting the glucocorticoid receptor signature gene Mono Amine Oxidase-A enhances the efficacy of chemo- and anti-androgen therapy in advanced prostate cancer. Oncogene 2021; 40:3087-3100. [PMID: 33795839 PMCID: PMC8084733 DOI: 10.1038/s41388-021-01754-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Despite increasing options for treatment of castration-resistant prostate cancer, development of drug resistance is inevitable. The glucocorticoid receptor (GR) is a prime suspect for acquired therapy resistance, as prostate cancer (PCa) cells are able to increase GR signaling during anti-androgen therapy and thereby circumvent androgen receptor (AR)-blockade and cell death. As standard AR-directed therapies fail to block the GR and GR inhibitors might result in intolerable side effects, the identification of GR signature genes, which are better suited for a targeted approach, is of clinical importance. Therefore, the specific epithelial and stromal GR signature was determined in cancer-associated fibroblasts as well as in abiraterone and enzalutamide-resistant cells after glucocorticoid (GC) treatment. Microarray and ChIP analysis identified MAO-A as a directly up-regulated mutual epithelial and stromal GR target, which is induced after GC treatment and during PCa progression. Elevated MAO-A levels were confirmed in in vitro cell models, in primary tissue cultures after GC treatment, and in patients after neoadjuvant chemotherapy with GCs. MAO-A expression correlates with GR/AR activity as well as with a reduced progression-free survival. Pharmacological MAO-A inhibition combined with 2nd generation AR signaling inhibitors or chemotherapeutics results in impaired growth of androgen-dependent, androgen-independent, and long-term anti-androgen-treated cells. In summary, these findings demonstrate that targeting MAO-A represents an innovative therapeutic strategy to synergistically block GR and AR dependent PCa cell growth and thereby overcome therapy resistance.
Collapse
MESH Headings
- Male
- Humans
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Phenylthiohydantoin/pharmacology
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Nitriles/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Benzamides/pharmacology
- Androstenes/pharmacology
- Androstenes/therapeutic use
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Cancer-Associated Fibroblasts/drug effects
- Glucocorticoids/pharmacology
Collapse
Affiliation(s)
- Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schaefer
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian P Brandt
- Department of Urology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Julia Hoefer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabri Van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
71
|
Gross ME, Agus DB, Dorff TB, Pinski JK, Quinn DI, Castellanos O, Gilmore P, Shih JC. Phase 2 trial of monoamine oxidase inhibitor phenelzine in biochemical recurrent prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:61-68. [PMID: 32123315 PMCID: PMC7483294 DOI: 10.1038/s41391-020-0211-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Monoamine oxidase A (MAOA) influences prostate cancer growth and metastasis in pre-clinical models. We examined effects of phenelzine (a monoamine oxidase inhibitor) in patients with biochemical recurrent castrate-sensitive prostate cancer. MATERIALS AND METHODS An open-label single arm clinical trial enrolled subjects with biochemical recurrent prostate cancer defined by PSA ≥ 0.4 ng/ml (post prostatectomy) or PSA ≥ 2 ng/ml above nadir (post-radiation therapy); no evidence of metastasis on imaging; and normal androgen levels. Subjects received phenelzine 30 mg orally twice daily. Mood symptoms were assessed with the hospital anxiety depression score (HADS) questionnaire. The primary endpoint was the proportion of patients who achieved a PSA decline of ≥50% from baseline. RESULTS Characteristics of the 20 eligible patients enrolled included: mean ± SD age 66.9 ± 4.8 years and PSA 4.7 ± 5.8 ng/dl. Maximal PSA declines ≥30% and ≥50% were observed in 25% (n = 5/20) and 10% (n = 2/20) of subjects, respectively. At 12 weeks, 17 subjects remained on treatment with PSA declines ≥30% and ≥50% of 24% (n = 4/17) and 6% (n = 1/17), respectively. Common toxicities observed included dizziness (grade 1 = 45%, grade 2 = 35%), hypertension (grade ≥ 2 = 30%), and edema (grade 1 = 25%, grade 2 = 10%). There was one episode of grade 4 hypertension (cycle 4) and two episodes of grade 3 syncope (cycle 12 and cycle 14) requiring treatment discontinuation. HADS questionnaires demonstrated a significant decrease in anxiety with no change in depressive symptoms on treatment. CONCLUSIONS Phenelzine demonstrated efficacy in patients with biochemical recurrent castrate-sensitive prostate cancer. Most treatment-related toxicities were mild, but rare significant and reversible cardiovascular toxicities were observed. Therapies directed at MAOA may represent a new avenue for treatment in patients with recurrent prostate cancer.
Collapse
Affiliation(s)
- Mitchell E Gross
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - David B Agus
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tanya B Dorff
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jacek K Pinski
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David I Quinn
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Olga Castellanos
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patrick Gilmore
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jean C Shih
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Integrative Anatomical Sciences, University of Southern California, Los Angeles, CA, USA.
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
72
|
Antonucci S, Di Sante M, Tonolo F, Pontarollo L, Scalcon V, Alanova P, Menabò R, Carpi A, Bindoli A, Rigobello MP, Giorgio M, Kaludercic N, Di Lisa F. The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity. Antioxid Redox Signal 2021; 34:531-550. [PMID: 32524823 PMCID: PMC7885901 DOI: 10.1089/ars.2019.7929] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Doxorubicin cardiomyopathy is a lethal pathology characterized by oxidative stress, mitochondrial dysfunction, and contractile impairment, leading to cell death. Although extensive research has been done to understand the pathophysiology of doxorubicin cardiomyopathy, no effective treatments are available. We investigated whether monoamine oxidases (MAOs) could be involved in doxorubicin-derived oxidative stress, and in the consequent mitochondrial, cardiomyocyte, and cardiac dysfunction. Results: We used neonatal rat ventricular myocytes (NRVMs) and adult mouse ventricular myocytes (AMVMs). Doxorubicin alone (i.e., 0.5 μM doxorubicin) or in combination with H2O2 induced an increase in mitochondrial formation of reactive oxygen species (ROS), which was prevented by the pharmacological inhibition of MAOs in both NRVMs and AMVMs. The pharmacological approach was supported by the genetic ablation of MAO-A in NRVMs. In addition, doxorubicin-derived ROS caused lipid peroxidation and alterations in mitochondrial function (i.e., mitochondrial membrane potential, permeability transition, redox potential), mitochondrial morphology (i.e., mitochondrial distribution and perimeter), sarcomere organization, intracellular [Ca2+] homeostasis, and eventually cell death. All these dysfunctions were abolished by MAO inhibition. Of note, in vivo MAO inhibition prevented chamber dilation and cardiac dysfunction in doxorubicin-treated mice. Innovation and Conclusion: This study demonstrates that the severe oxidative stress induced by doxorubicin requires the involvement of MAOs, which modulate mitochondrial ROS generation. MAO inhibition provides evidence that mitochondrial ROS formation is causally linked to all disorders caused by doxorubicin in vitro and in vivo. Based upon these results, MAO inhibition represents a novel therapeutic approach for doxorubicin cardiomyopathy.
Collapse
Affiliation(s)
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Federica Tonolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Laura Pontarollo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Petra Alanova
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Institute for Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Roberta Menabò
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alberto Bindoli
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | | | - Marco Giorgio
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,European Institute of Oncology (IEO), Milan, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| |
Collapse
|
73
|
Santin Y, Resta J, Parini A, Mialet-Perez J. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Res Rev 2021; 66:101256. [PMID: 33434685 DOI: 10.1016/j.arr.2021.101256] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
Population aging is one of the most significant social changes of the twenty-first century. This increase in longevity is associated with a higher prevalence of chronic diseases, further rising healthcare costs. At the molecular level, cellular senescence has been identified as a major process in age-associated diseases, as accumulation of senescent cells with aging leads to progressive organ dysfunction. Of particular importance, mitochondrial oxidative stress and consequent organelle alterations have been pointed out as key players in the aging process, by both inducing and maintaining cellular senescence. Monoamine oxidases (MAOs), a class of enzymes that catalyze the degradation of catecholamines and biogenic amines, have been increasingly recognized as major producers of mitochondrial ROS. Although well-known in the brain, evidence showing that MAOs are also expressed in a variety of peripheral organs stimulated a growing interest in the extra-cerebral roles of these enzymes. Besides, the fact that MAO-A and/or MAO-B are frequently upregulated in aged or dysfunctional organs has uncovered new perspectives on their roles in pathological aging. In this review, we will give an overview of the major results on the regulation and function of MAOs in aging and age-related diseases, paying a special attention to the mechanisms linked to the increased degradation of MAO substrates or related to MAO-dependent ROS formation.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
74
|
Shang J, Shi W, Li X, Ma H. Water-Soluble Near-Infrared Fluorescent Probes for Specific Detection of Monoamine Oxidase A in Living Biosystems. Anal Chem 2021; 93:4285-4290. [DOI: 10.1021/acs.analchem.0c05283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jizhen Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
75
|
MED19 alters AR occupancy and gene expression in prostate cancer cells, driving MAOA expression and growth under low androgen. PLoS Genet 2021; 17:e1008540. [PMID: 33513133 PMCID: PMC7875385 DOI: 10.1371/journal.pgen.1008540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a mainstay of prostate cancer treatment, given the dependence of prostate cells on androgen and the androgen receptor (AR). However, tumors become ADT-resistant, and there is a need to understand the mechanism. One possible mechanism is the upregulation of AR co-regulators, although only a handful have been definitively linked to disease. We previously identified the Mediator subunit MED19 as an AR co-regulator, and reported that MED19 depletion inhibits AR transcriptional activity and growth of androgen-insensitive LNCaP-abl cells. Therefore, we proposed that MED19 upregulation would promote AR activity and drive androgen-independent growth. Here, we show that stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. To delineate the mechanism, we determined the MED19 and AR transcriptomes and cistromes in control and MED19-overexpressing LNCaP cells. We also examined genome-wide H3K27 acetylation. MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. Under conditions of androgen deprivation, genes regulated by MED19 correspond to genes regulated by ELK1, a transcription factor that binds the AR N-terminus to induce select AR target gene expression and proliferation, and genomic sites occupied by MED19 and AR are enriched for motifs associated with ELK1. Strikingly, MED19 upregulates expression of monoamine oxidase A (MAOA), a factor that promotes prostate cancer growth. MAOA depletion reduces androgen-independent growth. MED19 and AR occupy the MAOA promoter, with MED19 overexpression enhancing AR occupancy and H3K27 acetylation. Furthermore, MED19 overexpression increases ELK1 occupancy at the MAOA promoter, and ELK1 depletion reduces MAOA expression and androgen-independent growth. This suggests that MED19 cooperates with ELK1 to regulate AR occupancy and H3K27 acetylation at MAOA, upregulating its expression and driving androgen independence in prostate cancer cells. This study provides important insight into the mechanisms of prostate cancer cell growth under low androgen, and underscores the importance of the MED19-MAOA axis in this process.
Collapse
|
76
|
Yin L, Li J, Wang J, Pu T, Wei J, Li Q, Wu BJ. MAOA promotes prostate cancer cell perineural invasion through SEMA3C/PlexinA2/NRP1-cMET signaling. Oncogene 2021; 40:1362-1374. [PMID: 33420365 DOI: 10.1038/s41388-020-01615-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
Perineural invasion (PNI), a pathologic feature defined as cancer cell invasion in, around, and through nerves, is an indicator of poor prognosis and survival in prostate cancer (PC). Despite widespread recognition of the clinical significance of PNI, the molecular mechanisms are largely unknown. Here, we report that monoamine oxidase A (MAOA) is a clinically and functionally important mediator of PNI in PC. MAOA promotes PNI of PC cells in vitro and tumor innervation in an orthotopic xenograft model. Mechanistically, MAOA activates SEMA3C in a Twist1-dependent transcriptional manner, which in turn stimulates cMET to facilitate PNI via autocrine or paracrine interaction with coactivated PlexinA2 and NRP1. Furthermore, MAOA inhibitor treatment effectively reduces PNI of PC cells in vitro and tumor-infiltrating nerve fiber density along with suppressed xenograft tumor growth and progression in mice. Collectively, these findings characterize the contribution of MAOA to the pathogenesis of PNI and provide a rationale for using MAOA inhibitors as a targeted treatment for PNI in PC.
Collapse
Affiliation(s)
- Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.,Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
77
|
Li X, Song L, Xu S, Tippin M, Meng S, Xie J, Uchio E, Zi X. Kava root extracts hinder prostate cancer development and tumorigenesis by involvement of dual inhibition of MAO-A and LSD1. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:163-172. [PMID: 34368644 PMCID: PMC8341175 DOI: 10.20517/jtgg.2021.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Here, we aim to evaluate the chemopreventive efficacy of kava root extracts (KRE) in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice and investigate potential molecular targets of kavalactones, the main components of kava. METHODS TRAMP mice were administrated with KRE formulated food for different periods of time, and then the incidences of high-grade prostatic intraepithelial neoplasia (HG-PIN) and adenocarcinomas and tumor burdens were compared between vehicle control and KRE food fed groups. In addition, the inhibitory effect of the KRE and kavalactones on monoamine oxidase A (MAO-A) and lysine-specific demethylase 1 (LSD1) enzyme activities were examined by commercially available inhibitor screening kits. Histone H3 lysine 9 dimethylation was also evaluated in prostate cancer cells and tumor tissues using Western blotting analysis. RESULTS Dietary feeding of 0.3% and 0.6% KRE to TRAMP mice from ages of 6 weeks to 12 weeks inhibited HG-PIN by 43.5% and 59.7%, respectively, and prostate adenocarcinoma by 53.5% and 66.4%, respectively. In addition, 0.6% KRE fed TRAMP mice from ages of 6 weeks to 24 weeks exhibited a significant reduction of genitourinary weight (a surrogate of tumor burden) by 54.5% and reduced body weight gain. Furthermore, the KRE and kavalactones showed a significant inhibition of LSD1 and MAO-A enzyme activities. CONCLUSION Our results suggest that consumption of kava products through diet can delay prostate cancer development and progression and that kavalactones may be a new structure model for developing a potent dual inhibitor of LSD1 and MAO-A.
Collapse
Affiliation(s)
- Xuesen Li
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Shan Xu
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Matthew Tippin
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Shuan Meng
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Jun Xie
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Edward Uchio
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California, Orange, CA 92868, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
78
|
Fan X, Zhou J, Bi X, Liang J, Lu S, Yan X, Luo L, Yin Z. L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail. J Nutr Biochem 2020; 89:108556. [PMID: 33249185 DOI: 10.1016/j.jnutbio.2020.108556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is a very prevalent male-specific malignancy; most PCa patients eventually die as a result of metastasis. L-theanine (C7H14N2O3), a nonprotein amino acid derivative from green tea leaves, has been demonstrated to act as an anticarcinogen through proapoptotic and antiproliferative effects. However, the antimetastatic effect of L-theanine in tumor cells and its underlying mechanism are still unclear. Here, we found that L-theanine could suppress invasion, migration, and increase cell-cell adhesion of prostate cancer cells in vitro and in vivo. We also found that L-theanine could inhibit the epithelial-mesenchymal transition process in PCa. Our study revealed that L-theanine could downregulate MMP9, N-cadherin, Vimentin, Snail, and upregulate E-cadherin. Furthermore, L-theanine suppressed the transcription of MMP9 and Snail by significantly inhibiting the ERK/NF-κB signaling pathway and the binding activity of p65 to the promoter regions of MMP9 and Snail. All of these findings suggest that L-theanine has therapeutic potential for metastatic PCa and may be considered a promising candidate for antimetastatic therapy of prostate cancer.
Collapse
Affiliation(s)
- Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
79
|
Li Y, Jiao Q, Du X, Jiang H. Sirt1/FoxO1-Associated MAO-A Upregulation Promotes Depressive-Like Behavior in Transgenic Mice Expressing Human A53T α-Synuclein. ACS Chem Neurosci 2020; 11:3838-3848. [PMID: 33155799 DOI: 10.1021/acschemneuro.0c00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonmotor symptoms are of pivotal importance in Parkinson's disease (PD), among which depressive disorder occurs in more than 45% of PD cases. Decreased levels of noradrenaline (NA) and serotonin (5-HT) in the central nervous system are relevant to it; however, the underlying mechanism is largely unknown. To this end, we conducted behavioral assays to analyze the depressive phenotype in transgenic mice with overexpressed A53T human α-synuclein (A53T mice) and examined alterations of NAergic and 5-HTergic systems in the neuron degeneration, neurotransmitter production, and degradation aspects of the mouse. As compared to controls, A53T mice displayed elevated depressive-like behavior at 6 months, which presents earlier than motor deficits do at 12 months. We detected reduced levels of NA and 5-HT in the hippocampus and NA in the locus coeruleus of 6-month A53T mice. There was no loss of NAergic and 5-HTergic neurons or decreased neurotransmitter synthesis in the brain. However, the expression of MAO-A, an enzyme responsible for NA and 5-HT degradation, was upregulated in A53T mice. Mechanistically, Sirt1 was downregulated which lead to an increase in FoxO1 acetylation, which subsequently increased the transcription of MAO-A. Activation of Sirt1 by resveratrol or inhibition of MAO-A by moclobemide administration could restore brain NA and 5-HT levels and attenuate the depressive-like behavior of A53T mice. Taken together, our results provided a novel correlation between Sirt1 and MAO-A, and compounds targeting on these molecules are beneficial for improving depression in the A53T mouse model of PD.
Collapse
Affiliation(s)
- Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| |
Collapse
|
80
|
Abstract
Metastatic dissemination occurs very early in the malignant progression of a cancer but the clinical manifestation of metastases often takes years. In recent decades, 5-year survival of patients with many solid cancers has increased due to earlier detection, local disease control and adjuvant therapies. As a consequence, we are confronted with an increase in late relapses as more antiproliferative cancer therapies prolong disease courses, raising questions about how cancer cells survive, evolve or stop growing and finally expand during periods of clinical latency. I argue here that the understanding of early metastasis formation, particularly of the currently invisible phase of metastatic colonization, will be essential for the next stage in adjuvant therapy development that reliably prevents metachronous metastasis.
Collapse
Affiliation(s)
- Christoph A Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany.
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany.
| |
Collapse
|
81
|
Meenu M, Verma VK, Seth A, Sahoo RK, Gupta P, Arya DS. Association of Monoamine Oxidase A with Tumor Burden and Castration Resistance in Prostate Cancer. CURRENT THERAPEUTIC RESEARCH 2020; 93:100610. [PMID: 33245296 PMCID: PMC7674122 DOI: 10.1016/j.curtheres.2020.100610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/18/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Metastatic burden and aggressive behavior determine severity stratification and guide treatment decisions in prostate cancer (PCa). Monoamine oxidase A (MAOA) may promote tumor burden and drug/castration resistance in PCa. A positive association will pave the way for MAOA inhibitors such as moclobemide for PCa therapy. OBJECTIVE To analyze MAOA in peripheral blood mononuclear cells qualitatively and p38, c-Jun N-terminal kinases, nuclear factor kappa B, and their phosphorylated forms, vascular endothelial growth factor (angiogenesis), transforming growth factor beta, interleukin 6, and tumor necrosis factor-α (cytokines), Bcl-2 associated X, B-cell lymphoma 2, and P53 (apoptosis), prostate-specific membrane antigen, and epithelial cell adhesion molecules (surface markers) in plasma of patients with PCa. METHODS This was a 1-year pilot study in which patients with PCa were recruited and stratified into 2 groups and subgroups: treatment-naive with (M1) (n = 23) or without (M0) (n = 23) bone metastasis; hormone-sensitive prostate cancer (n = 26) or hormone/castration-resistant prostate cancer (n = 26). MAOA was detected using ELISA and other proteins were detected using immunoblotting technique. RESULTS MAOA was detected in 8.6% of M0 compared with 30.4% of M1 patients, and in 7.7% of hormone-sensitive compared with 27% of hormone/castration resistant PCa patients, associating it with bone metastasis and castration resistance. Multivariable regression analysis showed a correlation of MAOA with serum prostate-specific antigen, a marker for progression in PCa (Pearson correlation coefficient r = 0.30; P < 0.01). In patients with positive MAOA, there was overexpression of p38, phosphorylated-p38, c-Jun N-terminal kinases, phosphorylated c-Jun N-terminal kinases, nuclear factor kappa B, phosphorylated nuclear factor kappa B, transforming growth factor beta, vascular endothelial growth factor, interleukin 6, tumor necrosis factor α, Bcl-2 associated X, B-cell lymphoma 2, prostate-specific membrane antigen, and epithelial cell adhesion molecule in M1 compared with M0 group patients, associating these proteins with tumor burden. Overexpression of Bcl-2 associated X, tumor protein 53, c-Jun N-terminal kinases, nuclear factor kappa B, transforming growth factor beta, vascular endothelial growth factor, and prostate-specific membrane antigen and underexpression of B-cell lymphoma 2 and phosphorylated nuclear factor kappa B were observed in hormone-sensitive prostate cancer compared with hormone/castration-resistant prostate cancer, associating these proteins with castration resistance. CONCLUSIONS Association of key molecules of oncogenesis and metastasis with MAOA suggests that MAOA inhibitors such as moclobemide might be effective in the management of PCa.
Collapse
Affiliation(s)
- Meenakshi Meenu
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
82
|
Casas AI, Nogales C, Mucke HAM, Petraina A, Cuadrado A, Rojo AI, Ghezzi P, Jaquet V, Augsburger F, Dufrasne F, Soubhye J, Deshwal S, Di Sante M, Kaludercic N, Di Lisa F, Schmidt HHHW. On the Clinical Pharmacology of Reactive Oxygen Species. Pharmacol Rev 2020; 72:801-828. [PMID: 32859763 DOI: 10.1124/pr.120.019422] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No. One key misconception in the ROS field has been its consideration as a rather detrimental metabolic by-product of cell metabolism, and thus, any approach eliminating ROS to a certain tolerable level would be beneficial. We now know, instead, that ROS at every concentration, low or high, can serve many essential signaling and metabolic functions. This likely explains why systemic, nonspecific antioxidants have failed in the clinic, often with neutral and sometimes even detrimental outcomes. Recently, drug development has focused, instead, on identifying and selectively modulating ROS enzymatic sources that in a given constellation cause disease while leaving ROS physiologic signaling and metabolic functions intact. As sources, the family of NADPH oxidases stands out as the only enzyme family solely dedicated to ROS formation. Selectively targeting disease-relevant ROS-related proteins is already quite advanced, as evidenced by several phase II/III clinical trials and the first drugs having passed registration. The ROS field is expanding by including target enzymes and maturing to resemble more and more modern, big data-enhanced drug discovery and development, including network pharmacology. By defining a disease based on a distinct mechanism, in this case ROS dysregulation, and not by a symptom or phenotype anymore, ROS pharmacology is leaping forward from a clinical underperformer to a proof of concept within the new era of mechanism-based precision medicine. SIGNIFICANCE STATEMENT: Despite being correlated to almost every human disease, nearly no ROS modulator has been translated to the clinics yet. Here, we move far beyond the old-fashioned misconception of ROS as detrimental metabolic by-products and suggest 1) novel pharmacological targeting focused on selective modulation of ROS enzymatic sources, 2) mechanism-based redefinition of diseases, and 3) network pharmacology within the ROS field, altogether toward the new era of ROS pharmacology in precision medicine.
Collapse
Affiliation(s)
- Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Cristian Nogales
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Hermann A M Mucke
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Alexandra Petraina
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Antonio Cuadrado
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Ana I Rojo
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Pietro Ghezzi
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Vincent Jaquet
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fiona Augsburger
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Francois Dufrasne
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Jalal Soubhye
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Soni Deshwal
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Moises Di Sante
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Nina Kaludercic
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands (A.I.C., C.N., A.P., H.H.H.W.S.); H. M. Pharma Consultancy, Wien, Austria (H.A.M.M.); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain (A.C., A.I.R.); Brighton and Sussex Medical School, Falmer, United Kingdom (P.G.); Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland (V.J., F.A.); Microbiology, Bioorganic and Macromolecular Chemistry, RD3, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (F.D., J.S.); and Department of Biomedical Sciences (S.D., M.D.S., F.D.L.) and CNR Neuroscience Institute (N.K., F.D.L.), University of Padova, Padova, Italy
| |
Collapse
|
83
|
Yang X, Zhao D, Li Y, Li Y, Cui W, Li Y, Li H, Li X, Wang D. Potential monoamine oxidase A inhibitor suppressing paclitaxel-resistant non-small cell lung cancer metastasis and growth. Thorac Cancer 2020; 11:2858-2866. [PMID: 32875729 PMCID: PMC7529581 DOI: 10.1111/1759-7714.13617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND High expression of monoamine oxidase A (MAOA) in non-small cell lung cancer (NSCLC) is related to epithelial-mesenchymal transition (EMT) and the development of clinicopathological features of NSCLC. Nevertheless, the role of MAOA in drug resistance still remains unclear. Hence, the aim of this article was to evaluate a previously synthesized MAOA inhibitor (G11) on inhibiting paclitaxel-resistant NSCLC metastasis and growth. METHODS First, MAOA expression level was evaluated in several NSCLC cell lines. An MTT assay was used to validate the inhibitory effect of G11 on NSCLC cells in vitro. Second, gene expression in G11-treated H460/PTX cells was analyzed by microarray gene expression. Third, transwell assay was performed to assess the invasion and metastasis of G11-treated A549/PTX and H460/PTX cells and western blot assay used to analyze vital protein expression level in G11-treated H460/PTX cells. Finally, the antimetastatic effect of G11 was tested in an NSCLC in vivo model. RESULTS Our data revealed that G11 significantly inhibited the viability of paclitaxel (PTX)-resistant NSCLC cell lines (A549/PTX and H460/PTX). G11 dramatically reduced the expression of MAOA in A549/PTX and H460/PTX cells, which exhibited relatively high MAOA expression levels. Additionally, G11 was found to hinder A549/PTX and H460/PTX cell migration and invasion. Furthermore, the in vivo study indicated that the coadministration of G11 and paclitaxel significantly suppressed tumor metastasis in H460/PTX lung metastasis models. CONCLUSIONS These findings indicated G11 showed a moderate inhibitory effect on paclitaxel-resistant NSCLC metastasis and growth, and support further investigation on MAOA potentially as a promising therapeutic target for paclitaxel-resistant NSCLC treatment. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Inhibition of MAOA might contribute to the suppression of metastasis and growth in PTX-resistant NSCLC cells. What this study adds This study explored the potential function of MAOA in drug-resistant NSCLC and might consider MAOA as a promising target for the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Xiaoguang Yang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Dongxue Zhao
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Yanfeng Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Yanyu Li
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| | - Wei Cui
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Yuxin Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Han Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Xinyu Li
- Department of pharmacology, School of Life Science and BiopharmaceuticalShenyang Pharmaceutical UniversityShenyangChina
| | - Dun Wang
- School of Pharmaceutical EngineeringShenyang Pharmaceutical UniversityShenyangChina
| |
Collapse
|
84
|
Wu KZ, Xu XH, Zhan CP, Li J, Jiang JL. Identification of a nine-gene prognostic signature for gastric carcinoma using integrated bioinformatics analyses. World J Gastrointest Oncol 2020; 12:975-991. [PMID: 33005292 PMCID: PMC7509999 DOI: 10.4251/wjgo.v12.i9.975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 08/01/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric carcinoma (GC) is one of the most aggressive primary digestive cancers. It has unsatisfactory therapeutic outcomes and is difficult to diagnose early.
AIM To identify prognostic biomarkers for GC patients using comprehensive bioinformatics analyses.
METHODS Differentially expressed genes (DEGs) were screened using gene expression data from The Cancer Genome Atlas and Gene Expression Omnibus databases for GC. Overlapping DEGs were analyzed using univariate and multivariate Cox regression analyses. A risk score model was then constructed and its prognostic value was validated utilizing an independent Gene Expression Omnibus dataset (GSE15459). Multiple databases were used to analyze each gene in the risk score model. High-risk score-associated pathways and therapeutic small molecule drugs were analyzed and predicted, respectively.
RESULTS A total of 95 overlapping DEGs were found and a nine-gene signature (COL8A1, CTHRC1, COL5A2, AADAC, MAMDC2, SERPINE1, MAOA, COL1A2, and FNDC1) was constructed for the GC prognosis prediction. Receiver operating characteristic curve performance in the training dataset (The Cancer Genome Atlas-stomach adenocarcinoma) and validation dataset (GSE15459) demonstrated a robust prognostic value of the risk score model. Multiple database analyses for each gene provided evidence to further understand the nine-gene signature. Gene set enrichment analysis showed that the high-risk group was enriched in multiple cancer-related pathways. Moreover, several new small molecule drugs for potential treatment of GC were identified.
CONCLUSION The nine-gene signature-derived risk score allows to predict GC prognosis and might prove useful for guiding therapeutic strategies for GC patients.
Collapse
Affiliation(s)
- Kun-Zhe Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Xiao-Hua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Cui-Ping Zhan
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jin-Lan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
85
|
Li PC, Chen SY, Xiangfei D, Mao C, Wu CH, Shih JC. PAMs inhibits monoamine oxidase a activity and reduces glioma tumor growth, a potential adjuvant treatment for glioma. BMC Complement Med Ther 2020; 20:252. [PMID: 32799864 PMCID: PMC7429690 DOI: 10.1186/s12906-020-03041-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monoamine oxidase (MAO) A catalyzes oxidative deamination of monoamine neurotransmitters and dietary amines and regulates brain development and functions. Recently, we showed that MAO A mediates the progression and migration of glioma and MAO A inhibitors reduce glioma cell growth. Glioblastoma (GBM) is a common and most malignant brain tumor which is difficult to treat. Temozolomide (TMZ) is the current standard chemotherapy for glioma, but tumors usually become resistant and recur. So far, no effective therapy for TMZ-resistant glioma is available. Natural plant antimicrobial solution (PAMs) is a Chinese herbal medicine which has been used for decades without toxicity and has multiple medical functions including anti- inflammatory effects. Here, we report the effects of PAMs on glioblastoma growth. METHODS The growth of TMZ -sensitive (U251S),-resistant (U251R) human glioma cells, and mouse glioma cell line GL-26 were assessed by MTS colorimetric assay, colony formation, and cell migration assays. Male C57BL/6 mice were implanted subcutaneously or intracranial with luciferase-positive mouse glioma GL-26 cells and treated with vehicle; MAO A inhibitor clorgyline (10 mg/kg); TMZ (1 mg/kg); PAMs (48 mg/kg) alone or in combination with TMZ (1 mg/kg) for 14 days. At the end of the treatment, mice were sacrificed, MAO A catalytic activity in tumors was measured, and tumor sizes were determined by imaging and weight. RESULTS These results show that PAMs inhibits MAO A catalytic activity in all three glioma cell lines studied U251S, U251R, and GL-26. PAMs reduced glioma growth and has greater effects in combination with low dose of TMZ than PAMS or TMZ alone in all three cell lines as shown by MTS, colony formation, and cell migration assays. Using the subcutaneous or intracranial GL-26 glioma mouse model, PAMs reduced the tumor growth and MAO A activity, similar to the MAO A inhibitor clorgyline. Combining PAMs with non-toxic dose TMZ increased survival to a greater extent than those of PAMs or TMZ alone. CONCLUSIONS This is the first study which suggests that PAMs alone or co-administration with low doses of TMZ may be a potential adjuvant to reduce the toxicity of TMZ and to abrogate drug resistance for the effective treatment of glioma.
Collapse
Affiliation(s)
- Pei-Chuan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 518, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shih-Yi Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 518, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.,School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Canquan Mao
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Chieh-His Wu
- School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Jean Chen Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 518, 1985 Zonal Ave, Los Angeles, CA, 90089, USA. .,USC-Taiwan Center for Translational Research, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
86
|
Huang B, Zhou Z, Liu J, Wu X, Li X, He Q, Zhang P, Tang X. The role of monoamine oxidase A in HPV-16 E7-induced epithelial-mesenchymal transition and HIF-1α protein accumulation in non-small cell lung cancer cells. Int J Biol Sci 2020; 16:2692-2703. [PMID: 32792865 PMCID: PMC7415426 DOI: 10.7150/ijbs.46966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous studies have found that human papillomavirus (HPV)-16 E7 oncoprotein promotes epithelial-mesenchymal transition (EMT) and hypoxia-inducible factor-1α (HIF-1α) protein accumulation in non-small cell lung cancer (NSCLC) cells and monoamine oxidase A (MAOA) is highly expressed in NSCLC tissues. Here, we further explored the role of MAOA in HPV-16 E7-induced EMT and HIF-1α protein accumulation in A549 and NCI-H460 NSCLC cells. Our results showed that HPV-16 E7 enhanced MAOA expression in NSCLC cells. Additionally, MAOA knockout inhibited HPV-16 E7-induced migration, invasion, and EMT, and significantly reduced HPV-16 E7-induced ROS generation and HIF-1α protein accumulation via promoting its degradation. Furthermore, MAOA knockout suppressed HPV-16 E7-induced ERK1/2 activation. In vivo, MAOA knockout inhibited tumor growth, metastasis, and the expression of EMT-related markers and HIF-1α proteins induced by HPV-16 E7 in NCI-H460 NSCLC subcutaneous xenograft and in situ intrapulmonary models of nude mice. Taken together, our findings provide evidence that MAOA plays a key role in EMT and HIF-1α protein accumulation induced by HPV-16 E7 in NSCLC cells, suggesting that MAOA may be a potential therapeutic target for HPV-related NSCLC.
Collapse
Affiliation(s)
- Bingyu Huang
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zhiyuan Zhou
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Jiao Liu
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xin Wu
- Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xiangyong Li
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Qiang He
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P.R. China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P.R. China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative innovation center for antitumor active substance research and development, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P.R. China
| |
Collapse
|
87
|
Cuvitoglu A, Zhou JX, Huang S, Isik Z. Predicting drug synergy for precision medicine using network biology and machine learning. J Bioinform Comput Biol 2020; 17:1950012. [PMID: 31057072 DOI: 10.1142/s0219720019500124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Identification of effective drug combinations for patients is an expensive and time-consuming procedure, especially for in vitro experiments. To accelerate the synergistic drug discovery process, we present a new classification model to identify more effective anti-cancer drug pairs using in silico network biology approach. Based on the hypotheses that the drug synergy comes from the collective effects on the biological network, therefore, we developed six network biology features, including overlap and distance of drug perturbation network, that were derived by using individual drug-perturbed transcriptome profiles and the relevant biological network analysis. Using publicly available drug synergy databases and three machine-learning (ML) methods, the model was trained to discriminate the positive (synergistic) and negative (nonsynergistic) drug combinations. The proposed models were evaluated on the test cases to predict the most promising network biology feature, which is the network degree activity, i.e. the synergistic effect between drug pairs is mainly accounted by the complementary signaling pathways or molecular networks from two drugs.
Collapse
Affiliation(s)
- Ali Cuvitoglu
- 1 Computer Engineering Department, Dokuz Eylul University, Tinaztepe Kampusu, Izmir 35160, Turkey
| | - Joseph X Zhou
- 2 Institute for Systems Biology, 401 Terry Ave. N. Seattle, WA 98109, USA
| | - Sui Huang
- 2 Institute for Systems Biology, 401 Terry Ave. N. Seattle, WA 98109, USA
| | - Zerrin Isik
- 1 Computer Engineering Department, Dokuz Eylul University, Tinaztepe Kampusu, Izmir 35160, Turkey
| |
Collapse
|
88
|
León-Mateos L, Abalo A, Casas H, Anido U, Rapado-González Ó, Vieito M, Suárez-Cunqueiro M, Gómez-Tato A, Abal M, López-López R, Muinelo-Romay L. Global Gene Expression Characterization of Circulating Tumor Cells in Metastasic Castration-Resistant Prostate Cancer Patients. J Clin Med 2020; 9:jcm9072066. [PMID: 32630240 PMCID: PMC7408664 DOI: 10.3390/jcm9072066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Current therapeutic options in the course of metastatic castration-resistant prostate cancers (mCRPC) reinforce the need for reliable tools to characterize the tumor in a dynamic way. Circulating tumor cells (CTCs) have emerged as a viable solution to the problem, whereby patients with a variety of solid tumors, including PC, often do not have recent tumor tissue available for analysis. The biomarker characterization in CTCs could provide insights into the current state of the disease and an overall picture of the intra-tumor heterogeneity. Methods: in the present study, we applied a global gene expression characterization of the CTC population from mCRPC (n = 9), with the goal to better understand the biology of these cells and identify the relevant molecules favoring this tumor progression. Results: This analysis allowed the identification of 50 genes specifically expressed in CTCs from patients. Six of these markers (HOXB13, QKI, MAOA, MOSPD1, SDK1, and FGD4), were validated in a cohort of 28 mCRPC, showing clinical interest for the management of these patients. Of note, the activity of this CTC signature was related to the regulation of MYC, a gene strongly implicated in the biology of mCRPC. Conclusions: Overall, our results represent new evidence on the great value of CTCs as a non-invasive biopsy to characterize PC.
Collapse
Affiliation(s)
- Luis León-Mateos
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alicia Abalo
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
| | - Helena Casas
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
| | - Urbano Anido
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
| | - Óscar Rapado-González
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Vieito
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Mercedes Suárez-Cunqueiro
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Surgery and Medical Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Gómez-Tato
- School of Mathematics, University of Santiago de Compostela (Campus Vida), 15782 Santiago de Compostela, Spain;
| | - Miguel Abal
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Rafael López-López
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (L.L.-M.); (U.A.); (M.S.-C.); (M.A.)
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence: (R.L.-L.); (L.M.-R.)
| | - Laura Muinelo-Romay
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (A.A.); (H.C.)
- Correspondence: (R.L.-L.); (L.M.-R.)
| |
Collapse
|
89
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020; 9:725-727. [PMID: 32573117 PMCID: PMC7308636 DOI: 10.1002/sctm.20-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/20/2022] Open
|
90
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
91
|
The MAO inhibitors phenelzine and clorgyline revert enzalutamide resistance in castration resistant prostate cancer. Nat Commun 2020; 11:2689. [PMID: 32483206 PMCID: PMC7264333 DOI: 10.1038/s41467-020-15396-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
The antiandrogen enzalutamide (Enz) has improved survival in castration resistant prostate cancer (CRPC) patients. However, most patients eventually develop Enz resistance that may involve inducing the androgen receptor (AR) splicing variant 7 (ARv7). Here we report that high expression of monoamine oxidase-A (MAO-A) is associated with positive ARv7 detection in CRPC patients following Enz treatment. Targeting MAO-A with phenelzine or clorgyline, the FDA-approved drugs for antidepression, resensitize the Enz resistant (EnzR) cells to Enz treatment and further suppress EnzR cell growth in vitro and in vivo. Our findings suggest that Enz-increased ARv7 expression can transcriptionally enhance MAO-A expression resulting in Enz resistance via altering the hypoxia HIF-1α signals. Together, our results show that targeting the Enz/ARv7/MAO-A signaling with the antidepressants phenelzine or clorgyline can restore Enz sensitivity to suppress EnzR cell growth, which may indicate that these antidepression drugs can overcome the Enz resistance to further suppress the EnzR CRPC. Castration resistant prostate cancer patients treated with enzalutamide may develop resistance to the drug. Here, the authors report that monoamine oxidase-A expression is increased in these resistant tumors and that the antidepressants phenelzine/clorgyline can reverse such resistance to further suppress tumor growth
Collapse
|
92
|
Tan X, Tang H, Gong L, Xie L, Lei Y, Luo Z, He C, Ma J, Han S. Integrating Genome-Wide Association Studies and Gene Expression Profiles With Chemical-Genes Interaction Networks to Identify Chemicals Associated With Colorectal Cancer. Front Genet 2020; 11:385. [PMID: 32391058 PMCID: PMC7193025 DOI: 10.3389/fgene.2020.00385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate in global cancer. Exploring the associations between chemicals and CRC has great significance in prophylaxis and therapy of tumor diseases. This study aims to explore the relationships between CRC and environmental chemicals on genetic basis by bioinformatics analysis. The genome-wide association study (GWAS) datasets for CRC were obtained from the UK Biobank. The GWAS data for colon cancer (category C18) includes 2,581 individuals and 449,683 controls, while that of rectal cancer (category C20) includes 1,244 individuals and 451,020 controls. In addition, we derived CRC gene expression datasets from the NCBI-GEO (GSE106582). The chemicals related gene sets were acquired from the comparative toxicogenomics database (CTD). Transcriptome-wide association study (TWAS) analysis was applied to CRC GWAS summary data and calculated the expression association testing statistics by FUSION software. We performed chemicals related gene set enrichment analysis (GSEA) by integrating GWAS summary data, mRNA expression profiles of CRC and the CTD chemical-gene interaction networks to identify relationships between chemicals and genes of CRC. We observed several significant correlations between chemicals and CRC. Meanwhile, we also detected 5 common chemicals between colon and rectal cancer, including methylnitronitrosoguanidine, isoniazid, PD 0325901, sulindac sulfide, and importazole. Our study performed TWAS and GSEA analysis, linked prior knowledge to newly generated data and thereby helped identifying chemicals related to tumor genes, which provides new clues for revealing the associations between environmental chemicals and cancer.
Collapse
Affiliation(s)
- Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hanmin Tang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lina Xie
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yutiantian Lei
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
93
|
The Antiproliferative Effects of Flavonoid MAO Inhibitors on Prostate Cancer Cells. Molecules 2020; 25:molecules25092257. [PMID: 32403270 PMCID: PMC7249060 DOI: 10.3390/molecules25092257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer (PCa) patients commonly experience clinical depression. Recent reports indicated that monoamine oxidase-A (MAO-A) levels elevate in PCa, and antidepressant MAO-Is show anti-PCa properties. In this work, we aimed to find potential drugs for PCa patients suffering from depression by establishing novel anti-PCa reversible monoamine oxidase-A inhibitors (MAO-AIs/RIMA); with an endeavor to understand their mechanism of action. In this investigation, twenty synthesized flavonoid derivatives, defined as KKR compounds were screened for their inhibitory potentials against human MAO-A and MAO-B isozymes. Meanwhile, the cytotoxic and antiproliferative effects were determined in three human PCa cell lines. MAO-A-kinetics, molecular docking, SAR, cell morphology, and cell migration were investigated for the most potent compounds. The screened KKRs inhibited MAO-A more potently than MAO-B, and non-toxically inhibited LNCaP cell proliferation more than the DU145 and PC3 cell lines, respectively. The results showed that the three top MAO-AI KKRs compounds (KKR11, KKR20, and KKR7 (IC50s 0.02-16 μM) overlapped with the top six antiproliferative KKRs against LNCaP (IC50s ~9.4 μM). While KKR21 (MAO-AI) and KKR2A (MAO-I) were ineffective against the PCa cells. Furthermore, KKR21 and KKR11 inhibited MAO-A competitively (Kis ≤ 7.4 nM). Molecular docking of the two compounds predicted shared hydrophobic and distinctive hydrophilic interactions-between the KKR molecule and MAO-A amino acid residues-to be responsible for their reversibility. The combined results and SAR observations indicated that the presence of specific active groups-such as chlorine and hydroxyl groups-are essential in certain MAO-AIs with anti-PCa effects. Additionally, MAO-A inhibition was found to be associated more with anti-PCa property than MAO-B. Distinctively, KKR11 [(E)-3-(3,4-dichlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one] exhibited anti-metastatic effects on the DU145 cell line. The chlorine substitution groups might play vital roles in the KKR11 multiple actions. The obtained results indicated that the flavonoid derivative KKR11 could present a novel candidate for PCa patients with depression, through safe non-selective potent inhibition of MAOs.
Collapse
|
94
|
Yang YC, Chien MH, Lai TC, Su CY, Jan YH, Hsiao M, Chen CL. Monoamine Oxidase B Expression Correlates with a Poor Prognosis in Colorectal Cancer Patients and Is Significantly Associated with Epithelial-to-Mesenchymal Transition-Related Gene Signatures. Int J Mol Sci 2020; 21:ijms21082813. [PMID: 32316576 PMCID: PMC7215409 DOI: 10.3390/ijms21082813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Monoamine oxidases (MAOs) including MAOA and MAOB are enzymes located on the outer membranes of mitochondria, which are responsible for catalyzing monoamine oxidation. Recently, increased level of MAOs were shown in several cancer types. However, possible roles of MAOs have not yet been elucidated in the progression and prognosis of colorectal carcinoma (CRC). We therefore analyzed the importance of MAOs in CRC by an in silico analysis and tissue microarrays. Several independent cohorts indicated that high expression of MAOB, but not MAOA, was correlated with a worse disease stage and poorer survival. In total, 203 colorectal adenocarcinoma cases underwent immunohistochemical staining of MAOs, and associations with clinicopathological parameters and patient outcomes were evaluated. We found that MAOB is highly expressed in CRC tissues compared to normal colorectal tissues, and its expression was significantly correlated with a higher recurrence rate and a poor prognosis. Moreover, according to the univariate and multivariate analyses, we found that MAOB could be an independent prognostic factor for overall survival and disease-free survival, and its prognostic value was better than T and N stage. Furthermore, significant positive and negative correlations of MAOB with mesenchymal-type and epithelial-type gene expressions were observed in CRC tissues. According to the highlighted characteristics of MAOB in CRC, MAOB can be used as a novel indicator to predict the progression and prognosis of CRC patients.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.Y.); (M.-H.C.)
- Department of Medical Research, Tungs’ Taichung Metro Harbor Hospital, Taichung 433, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.Y.); (M.-H.C.)
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (T.-C.L.); (C.-Y.S.); (Y.-H.J.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2738-2126 (C.-L.C.); Fax: +886-2-2789-9931 (M.H.); +886-2-2377-0054 (C.-L.C.)
| | - Chi-Long Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-C.Y.); (M.-H.C.)
- Department of Pathology, Taipei Medical University Hospital and College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2738-2126 (C.-L.C.); Fax: +886-2-2789-9931 (M.H.); +886-2-2377-0054 (C.-L.C.)
| |
Collapse
|
95
|
Lee HM, Sia APE, Li L, Sathasivam HP, Chan MSA, Rajadurai P, Tsang CM, Tsao SW, Murray PG, Tao Q, Paterson IC, Yap LF. Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma. Sci Rep 2020; 10:6115. [PMID: 32273550 PMCID: PMC7145851 DOI: 10.1038/s41598-020-63150-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Hui Min Lee
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Alice Pei Eal Sia
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Melissa Sue Ann Chan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chi Man Tsang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong.,Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Pokfulam, Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong
| | - Paul G Murray
- Health Research Institute, University of Limerick, Limerick, Ireland.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
96
|
Tamaddoni A, Mohammadi E, Sedaghat F, Qujeq D, As'Habi A. The anticancer effects of curcumin via targeting the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Pharmacol Res 2020; 156:104798. [PMID: 32278045 DOI: 10.1016/j.phrs.2020.104798] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 01/19/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that has been considered as a key regulator of a large number of cellular processes, including cell growth, proliferation, differentiation, survival, and motility. Overactivation of mTOR (especially mTORC1) signaling is related to oncogenic cellular processes. Therefore targeting mTORC1 signaling is a new promising strategy in cancer therapy. In this regard, various studies have shown that curcumin, a polyphenol produced from the turmeric rhizome, has anti-inflammatory, antioxidant and anticancer properties. Curcumin may exert its anticancer function, at least in part, by suppressing mTOR-mediated signaling pathway in tumor cells. However, the exact underlying mechanisms by which curcumin blocks the mTORC1 signaling remain unclear. According to literature, curcumin inhibits insulin-like growth factor 1 (IGF-1)/phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 pathway which leads to apoptosis and cell cycle arrest via suppression of erythroblastosis virus transcription factor 2 and murine double minute 2 oncoprotein. In addition, activation of unc-51-like kinase 1 by curcumin, as a downstream target of IGF-1/PI3K/Akt/mTORC1 axis, enhances autophagy. Curcumin induces AMP-activated protein kinase, a negative regulator of mTORC1, via inhibition of F0F1-ATPase. Interestingly, curcumin suppresses IκB kinase β, the upstream kinase in mTORC1 pathway. Moreover, evidence revealed that curcumin downregulates the E3-ubiquitin ligases NEDD4, neural precursor cell-expressed developmentally downregulated 4. NEDD4 is frequently overexpressed in a wide range of cancers and degrades the phosphatase and tensin homolog, which is a negative regulator of mTORC1. Finally another suggested mechanism is suppression of MAOA/mTORC1/hypoxia-inducible factor 1α signaling pathway by curcumin.
Collapse
Affiliation(s)
- Ahmad Tamaddoni
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elahe Mohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - Fatemeh Sedaghat
- Department of Basic Medical Sciences, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Atefeh As'Habi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran; Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
97
|
MAOA-mediated reprogramming of stromal fibroblasts promotes prostate tumorigenesis and cancer stemness. Oncogene 2020; 39:3305-3321. [PMID: 32066880 DOI: 10.1038/s41388-020-1217-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/05/2023]
Abstract
The tumor microenvironment plays a critical role in prostate cancer (PC) development and progression. Inappropriate activation of the stroma potentiates the growth and transformation of epithelial tumor cells. Here, we show that upregulation of monoamine oxidase A (MAOA), a mitochondrial enzyme that degrades monoamine neurotransmitters and dietary amines, in stromal cells elevates production of reactive oxygen species, triggers an inflammatory response including activation of IL-6, and promotes tumorigenesis in vitro and in vivo. Mechanistically, MAOA enhances IL-6 transcription through direct Twist1 binding to a conserved E-box element at the IL-6 promoter. MAOA in stromal fibroblasts provides tumor cell growth advantages through paracrine IL-6/STAT3 signaling. Tissue microarray analysis revealed co-expression correlations between individual pairs of proteins of the stromal MAOA-induced Twist1/IL-6/STAT3 pathway in clinical specimens. Downstream of stromal MAOA, STAT3 also promotes cell stemness and transcriptionally activates expression of cancer stem cell marker CD44 in PC cells. MAOA inhibitor treatment effectively suppressed prostate tumor growth in mice in a stroma-specific targeted manner. Collectively, these findings characterize the contribution of MAOA to stromal activation in PC pathogenesis and provide a rationale for targeting MAOA in stromal cells to treat PC.
Collapse
|
98
|
Ruan Y, Dong W, Kang L, Lei X, Zhang R, Wang F, Zhu X. The Changes of Twist1 Pathway in Pulmonary Microvascular Permeability in a Newborn Rat Model of Hyperoxia-Induced Acute Lung Injury. Front Pediatr 2020; 8:190. [PMID: 32391293 PMCID: PMC7190807 DOI: 10.3389/fped.2020.00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Bronchopulmonary dysplasia (BPD) is a chronic lung disease in preterm infants, which is characterized by alveolar and vascular dysplasia and increased vascular permeability. Hyperoxia is a critical factor in the pathogenesis of BPD, hyperoxia-induced acute lung injury (HALI) model has similar pathological manifestations as human BPD, therefore, may provide insight into the pathogenesis of human BPD. Studies have shown that Twist1 regulates pulmonary vascular permeability of LPS-induced lung injury through the Ang-Tie2 pathway. However, the effect of Twist1 pathway on vascular permeability in HALI has not been reported. Methods: We randomly exposed newborn rats to the room air or hyperoxia for 14 days. Lung histopathology, immunofluorescence, vascular permeability, mRNA and protein expression was assessed on day 1,7,14. Results: Our results verified that hyperoxia caused alveolar and vascular developmental disorders and increased pulmonary vascular permeability, which was consistent with previous findings. In hyperoxia-exposed rat lungs, the expressions of Twist1, Ang1, Tie1, Tie2, and pTie2 were significantly reduced, whereas the expression of Ang2 was significantly increased. Next, we observed a significant down-regulation of the Akt/Foxo1 pathway. Conclusion: In HALI, the pulmonary microvascular permeability was increased, accompanied by changes in Twist1-Tie2 pathway which combined to Angs, and downregulation of Tie1 and Akt/Foxo1 pathway.
Collapse
Affiliation(s)
- Ying Ruan
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Kang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoping Lei
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Zhang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaodan Zhu
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
99
|
Gwynne WD, Shakeel MS, Wu J, Hallett RM, Girgis-Gabardo A, Dvorkin-Gheva A, Hassell JA. Monoamine oxidase-A activity is required for clonal tumorsphere formation by human breast tumor cells. Cell Mol Biol Lett 2019; 24:59. [PMID: 31754354 PMCID: PMC6852929 DOI: 10.1186/s11658-019-0183-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022] Open
Abstract
Background Breast tumor growth and recurrence are driven by an infrequent population of breast tumor-initiating cells (BTIC). We and others have reported that the frequency of BTIC is orders of magnitude higher when breast tumor cells are propagated in vitro as clonal spheres, termed tumorspheres, by comparison to adherent cells. We exploited the latter to screen > 35,000 small molecules to identify agents capable of targeting BTIC. We unexpectedly discovered that selective antagonists of serotonin signaling were among the hit compounds. To better understand the relationship between serotonin and BTIC we expanded our analysis to include monoamine oxidase-A (MAO-A), an enzyme that metabolizes serotonin. Methods We used the Nanostring technology and Western blotting to determine whether MAO-A is expressed in human breast tumor cell lines cultured as tumorspheres by comparison to those grown as adherent cells. We then determined whether MAO-A activity is required for tumorsphere formation, a surrogate in vitro assay for BTIC, by assessing whether selective MAO-A inhibitors affect the frequency of tumorsphere-forming cells. To learn whether MAO-A expression in breast tumor cells is associated with other reported properties of BTIC such as anticancer drug resistance or breast tumor recurrence, we performed differential gene expression analyses using publicly available transcriptomic datasets. Results Tumorspheres derived from human breast tumor cell lines representative of every breast cancer clinical subtype displayed increased expression of MAO-A transcripts and protein by comparison to adherent cells. Surprisingly, inhibition of MAO-A activity with selective inhibitors reduced the frequency of tumorsphere-forming cells. We also found that increased MAO-A expression is a common feature of human breast tumor cell lines that have acquired anticancer drug resistance and is associated with poor recurrence-free survival (RFS) in patients that experienced high-grade, ER-negative (ER−) breast tumors. Conclusions Our data suggests that MAO-A activity is required for tumorsphere formation and that its expression in breast tumor cells is associated with BTIC-related properties. The discovery that a selective MAO-A inhibitor targets tumorsphere-forming cells with potencies in the nanomolar range provides the first evidence of this agent’s anticancer property. These data warrant further investigation of the link between MAO-A and BTIC.
Collapse
Affiliation(s)
- William D Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario Canada
| | - Mirza S Shakeel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario Canada
| | - Jianhan Wu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario Canada
| | - Robin M Hallett
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario Canada
| | - Adele Girgis-Gabardo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario Canada
| | - Anna Dvorkin-Gheva
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario Canada
| | - John A Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
100
|
Yan W, Jamal M, Tan SH, Song Y, Young D, Chen Y, Katta S, Ying K, Ravindranath L, Woodle T, Kohaar I, Cullen J, Kagan J, Srivastava S, Dobi A, McLeod DG, Rosner IL, Sesterhenn IA, Srinivasan A, Srivastava S, Petrovics G. Molecular profiling of radical prostatectomy tissue from patients with no sign of progression identifies ERG as the strongest independent predictor of recurrence. Oncotarget 2019; 10:6466-6483. [PMID: 31741711 PMCID: PMC6849651 DOI: 10.18632/oncotarget.27294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND As a major cause of morbidity and mortality among men, prostate cancer is a heterogenous disease, with a vast heterogeneity in the biology of the disease and in clinical outcome. While it often runs an indolent course, local progression or metastasis may eventually develop, even among patients considered "low risk" at diagnosis. Therefore, biomarkers that can discriminate aggressive from indolent disease at an early stage would greatly benefit patients. We hypothesized that tissue specimens from early stage prostate cancers may harbor predictive signatures for disease progression. METHODS We used a cohort of radical prostatectomy patients with longitudinal follow-up, who had tumors with low grade and stage that revealed no signs of future disease progression at surgery. During the follow-up period, some patients either remained indolent (non-BCR) or progressed to biochemical recurrence (BCR). Total RNA was extracted from tumor, and adjacent normal epithelium of formalin-fixed-paraffin-embedded (FFPE) specimens. Differential gene expression in tumors, and in tumor versus normal tissues between BCR and non-BCR patients were analyzed by NanoString using a customized CodeSet of 151 probes. RESULTS After controlling for false discovery rates, we identified a panel of eight genes (ERG, GGT1, HDAC1, KLK2, MYO6, PLA2G7, BICD1 and CACNAID) that distinguished BCR from non-BCR patients. We found a clear association of ERG expression with non-BCR, which was further corroborated by quantitative RT-PCR and immunohistochemistry assays. CONCLUSIONS Our results identified ERG as the strongest predictor for BCR and showed that potential prognostic prostate cancer biomarkers can be identified from FFPE tumor specimens.
Collapse
Affiliation(s)
- Wusheng Yan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Muhammad Jamal
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Shyh-Han Tan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Yingjie Song
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Denise Young
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Yongmei Chen
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shilpa Katta
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kai Ying
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Lakshmi Ravindranath
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Tarah Woodle
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Indu Kohaar
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jennifer Cullen
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jacob Kagan
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Albert Dobi
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - David G. McLeod
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L. Rosner
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Alagarsamy Srinivasan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shiv Srivastava
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|