51
|
Du Y, Fang Q, Zheng SG. Regulatory T Cells: Concept, Classification, Phenotype, and Biological Characteristics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:1-31. [PMID: 33523440 DOI: 10.1007/978-981-15-6407-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.
Collapse
Affiliation(s)
- Yang Du
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China.,Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
52
|
Wara AK, Wang S, Wu C, Fang F, Haemmig S, Weber BN, Aydogan CO, Tesmenitsky Y, Aliakbarian H, Hawse JR, Subramaniam M, Zhao L, Sage PT, Tavakkoli A, Garza A, Lynch L, Banks AS, Feinberg MW. KLF10 Deficiency in CD4 + T Cells Triggers Obesity, Insulin Resistance, and Fatty Liver. Cell Rep 2020; 33:108550. [PMID: 33378664 PMCID: PMC7816773 DOI: 10.1016/j.celrep.2020.108550] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/15/2019] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
CD4+ T cells regulate inflammation and metabolism in obesity. An imbalance of CD4+ T regulatory cells (Tregs) is critical in the development of insulin resistance and diabetes. Although cytokine control of this process is well understood, transcriptional regulation is not. KLF10, a member of the Kruppel-like transcription factor family, is an emerging regulator of immune cell function. We generated CD4+-T-cell-specific KLF10 knockout (TKO) mice and identified a predisposition to obesity, insulin resistance, and fatty liver due to defects of CD4+ Treg mobilization to liver and adipose tissue depots and decreased transforming growth factor β3 (TGF-β3) release in vitro and in vivo. Adoptive transfer of wild-type CD4+ Tregs fully rescued obesity, insulin resistance, and fatty liver. Mechanistically, TKO Tregs exhibit reduced mitochondrial respiration and glycolysis, phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR signaling, and consequently impaired chemotactic properties. Collectively, our study identifies CD4+ T cell KLF10 as an essential regulator of obesity and insulin resistance by altering Treg metabolism and mobilization.
Collapse
Affiliation(s)
- Akm Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shijia Wang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Wu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Fang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brittany N Weber
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ceren O Aydogan
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpasa District, Kocamustafapasa Street, Number 34/E, Fatih, Istanbul, Turkey
| | - Yevgenia Tesmenitsky
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hassan Aliakbarian
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ali Tavakkoli
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpasa District, Kocamustafapasa Street, Number 34/E, Fatih, Istanbul, Turkey
| | - Amanda Garza
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lydia Lynch
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexander S Banks
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
53
|
Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17:719-739. [PMID: 32759983 DOI: 10.1038/s41575-020-0334-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In the past 40 years, liver transplantation has evolved from a high-risk procedure to one that offers high success rates for reversal of liver dysfunction and excellent patient and graft survival. The liver is the most tolerogenic of transplanted organs; indeed, immunosuppressive therapy can be completely withdrawn without rejection of the graft in carefully selected, stable long-term liver recipients. However, in other recipients, chronic allograft injury, late graft failure and the adverse effects of anti-rejection therapy remain important obstacles to improved success. The liver has a unique composition of parenchymal and immune cells that regulate innate and adaptive immunity and that can promote antigen-specific tolerance. Although the mechanisms underlying liver transplant tolerance are not well understood, important insights have been gained into how the local microenvironment, hepatic immune cells and specific molecular pathways can promote donor-specific tolerance. These insights provide a basis for the identification of potential clinical biomarkers that might correlate with tolerance or rejection and for the development of novel therapeutic targets. Innovative approaches aimed at promoting immunosuppressive drug minimization or withdrawal include the adoptive transfer of donor-derived or recipient-derived regulatory immune cells to promote liver transplant tolerance. In this Review, we summarize and discuss these developments and their implications for liver transplantation.
Collapse
Affiliation(s)
- Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julien Vionnet
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK.,Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK
| |
Collapse
|
54
|
Mock JR, Dial CF, Tune MK, Gilmore RC, O'Neal WK, Dang H, Doerschuk CM. Impact of Regulatory T Cells on Type 2 Alveolar Epithelial Cell Transcriptomes during Resolution of Acute Lung Injury and Contributions of IFN-γ. Am J Respir Cell Mol Biol 2020; 63:464-477. [PMID: 32543909 DOI: 10.1165/rcmb.2019-0399oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
By enhancing tissue repair and modulating immune responses, Foxp3+ regulatory T cells (Tregs) play essential roles in resolution from lung injury. The current study investigated the effects that Tregs exert directly or indirectly on the transcriptional profiles of type 2 alveolar epithelial (AT2) cells during resolution in an experimental model of acute lung injury. Purified AT2 cells were isolated from uninjured mice or mice recovering from LPS-induced lung injury, either in the presence of Tregs or in Treg-depleted mice, and transcriptome profiling identified differentially expressed genes. Depletion of Tregs resulted in altered expression of 49 genes within AT2 cells during resolution, suggesting that Tregs present in this microenvironment influence AT2-cell function. Biological processes from Gene Ontology enriched in the absence of Tregs included those describing responses to IFN. Neutralizing IFN-γ in Treg-depleted mice reversed the effect of Treg depletion on inflammatory macrophages and B cells by preventing the increase in inflammatory macrophages and the decrease in B cells. Our results provide insight into the effects of Tregs on AT2 cells. Tregs directly or indirectly impact many AT2-cell functions, including IFN type I and II-mediated signaling pathways. Inhibition of IFN-γ expression and/or function may be one mechanism through which Tregs accelerate resolution after acute lung injury.
Collapse
Affiliation(s)
- Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Catherine F Dial
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | | | - Wanda K O'Neal
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | | | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and.,Center for Airways Disease, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
55
|
|
56
|
Abstract
Over the last decade, there has been a considerable progress in the development of cell therapy products for the treatment of liver diseases. The quest to generate well-defined homogenous cell populations with defined mechanism(s) of action has enabled the progression from use of autologous bone marrow stem cells comprising of heterogeneous cell populations to allogeneic cell types such as monocyte-derived macrophages, regulatory T cells, mesenchymal stromal cells, macrophages, etc. There is growing evidence regarding the multiple molecular mechanisms pivotal to various therapeutic effects and hence, careful selection of cell therapy product for the desired putative effects is crucial. In this review, we have presented an overview of the cell therapies that have been developed thus far, with preclinical and clinical evidence for their use in liver disease. Limitations associated with these therapies have also been discussed. Despite the advances made, there remain multiple challenges to overcome before cell therapies can be considered as viable treatment options, and these include larger scale clinical trials, scalable production of cells according to good manufacturing practice standards, pathways for delivery of cell therapy within hospital environments, and costs associated with the production.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Reenam S Khan
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
57
|
Matar AJ, Crepeau RL, Duran-Struuck R. Cellular Immunotherapies in Preclinical Large Animal Models of Transplantation. Transplant Cell Ther 2020; 27:36-44. [PMID: 33017660 DOI: 10.1016/j.bbmt.2020.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation and solid organ transplantation remain the only curative options for many hematologic malignancies and end-stage organ diseases. Unfortunately, the sequelae of long-term immunosuppression, as well as acute and chronic rejection, carry significant morbidities, including infection, malignancy, and graft loss. Numerous murine models have demonstrated the efficacy of adjunctive cellular therapies using HSCs, regulatory T cells, mesenchymal stem cells, and regulatory dendritic cells in modulating the alloimmune response in favor of graft tolerance; however, translation of such murine approaches to other preclinical models and in the clinic has yielded mixed results. Large animals, including nonhuman primates, swine, and canines, provide a more immunologically rigorous model in which to test the clinical translatability of these cellular therapies. Here, we highlight the contributions of large animal models to the development and optimization of HSCs and additional cellular therapies to improve organ transplantation outcomes.
Collapse
Affiliation(s)
- Abraham J Matar
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca L Crepeau
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
58
|
Passerini L, Gregori S. Induction of Antigen-Specific Tolerance in T Cell Mediated Diseases. Front Immunol 2020; 11:2194. [PMID: 33133064 PMCID: PMC7550404 DOI: 10.3389/fimmu.2020.02194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
The development of novel approaches to control unwanted immune responses represents an ambitious goal in the management of a number of clinical conditions, including autoimmunity, autoinflammatory diseases, allergies and replacement therapies, in which the T cell response to self or non-harmful antigens threatens the physiological function of tissues and organs. Current treatments for these conditions rely on the use of non-specific immunosuppressive agents and supportive therapies, which may efficiently dampen inflammation and compensate for organ dysfunction, but they require lifelong treatments not devoid of side effects. These limitations induced researchers to undertake the development of definitive and specific solutions to these disorders: the underlying principle of the novel approaches relies on the idea that empowering the tolerogenic arm of the immune system would restore the immune homeostasis and control the disease. Researchers effort resulted in the development of cell-free strategies, including gene vaccination, protein-based approaches and nanoparticles, and an increasing number of clinical trials tested the ability of adoptive transfer of regulatory cells, including T and myeloid cells. Here we will provide an overview of the most promising approaches currently under development, and we will discuss their potential advantages and limitations. The field is teaching us that the success of these strategies depends primarily on our ability to dampen antigen-specific responses without impairing protective immunity, and to manipulate directly or indirectly the immunomodulatory properties of antigen presenting cells, the ultimate in vivo mediators of tolerance.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
59
|
Picarda E, Bézie S, Usero L, Ossart J, Besnard M, Halim H, Echasserieau K, Usal C, Rossjohn J, Bernardeau K, Gras S, Guillonneau C. Cross-Reactive Donor-Specific CD8 + Tregs Efficiently Prevent Transplant Rejection. Cell Rep 2020; 29:4245-4255.e6. [PMID: 31875536 DOI: 10.1016/j.celrep.2019.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
To reduce the use of non-specific immunosuppressive drugs detrimental to transplant patient health, therapies in development aim to achieve antigen-specific tolerance by promoting antigen-specific regulatory T cells (Tregs). However, identification of the natural antigens recognized by Tregs and the contribution of their dominance in transplantation has been challenging. We identify epitopes derived from distinct major histocompatibility complex (MHC) class II molecules, sharing a 7-amino acid consensus sequence positioned in a central mobile section in complex with MHC class I, recognized by cross-reactive CD8+ Tregs, enriched in the graft. Antigen-specific CD8+ Tregs can be induced in vivo with a 16-amino acid-long peptide to trigger transplant tolerance. Peptides derived from human HLA class II molecules, harboring the rat consensus sequence, also activate and expand human CD8+ Tregs, suggesting its potential in human transplantation. Altogether, this work should facilitate the development of therapies with peptide epitopes for transplantation and improve our understanding of CD8+ Treg recognition.
Collapse
Affiliation(s)
- Elodie Picarda
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Séverine Bézie
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Lorena Usero
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jason Ossart
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Marine Besnard
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Hanim Halim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Klara Echasserieau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Claire Usal
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karine Bernardeau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Stéphanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Carole Guillonneau
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.
| |
Collapse
|
60
|
Zhao Y, Hu W, Chen P, Cao M, Zhang Y, Zeng C, Hara H, Cooper DKC, Mou L, Luan S, Gao H. Immunosuppressive and metabolic agents that influence allo‐ and xenograft survival by in vivo expansion of T regulatory cells. Xenotransplantation 2020; 27:e12640. [PMID: 32892428 DOI: 10.1111/xen.12640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanli Zhao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | | | - Pengfei Chen
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Mengtao Cao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Yingwei Zhang
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Changchun Zeng
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hidetaka Hara
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - David K. C. Cooper
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
| | - Shaodong Luan
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hanchao Gao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| |
Collapse
|
61
|
Atif M, Mohr A, Conti F, Scatton O, Gorochov G, Miyara M. Metabolic Optimisation of Regulatory T Cells in Transplantation. Front Immunol 2020; 11:2005. [PMID: 33013855 PMCID: PMC7495149 DOI: 10.3389/fimmu.2020.02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells expressing the FOXP3 transcription factor are presently under investigation by many teams globally as a cellular therapy to induce tolerance in transplantation. This is primarily due to their immunosuppressive and homeostatic functions. Depending on the type of allograft, Treg cells will need to infiltrate and function in metabolically diverse microenvironments. This means that any resident and circulating Treg cells need to differentially adapt to counter acute or chronic allograft rejection. However, the links between Treg cell metabolism and function are still not entirely delineated. Current data suggest that Treg cells and their effector counterparts have different metabolite dependencies and metabolic programs. These properties could be exploited to optimize intragraft Treg cell function. In this review, we discuss the current paradigms regarding Treg cell metabolism and outline critical intracellular axes that link metabolism and function. Finally, we discuss how this knowledge could be clinically translated for the benefit of transplant patients.
Collapse
Affiliation(s)
- Mo Atif
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Centre for Liver and Gastrointestinal Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Audrey Mohr
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Filomena Conti
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Olivier Scatton
- Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Guy Gorochov
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Makoto Miyara
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
62
|
Tanimine N, Ohira M, Tahara H, Ide K, Tanaka Y, Onoe T, Ohdan H. Strategies for Deliberate Induction of Immune Tolerance in Liver Transplantation: From Preclinical Models to Clinical Application. Front Immunol 2020; 11:1615. [PMID: 32849546 PMCID: PMC7412931 DOI: 10.3389/fimmu.2020.01615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
The liver exhibits intrinsic immune regulatory properties that maintain tolerance to endogenous and exogenous antigens, and provide protection against pathogens. Such an immune privilege contributes to susceptibility to spontaneous acceptance despite major histocompatibility complex mismatch when transplanted in animal models. Furthermore, the presence of a liver allograft can suppress the rejection of other solid tissue/organ grafts from the same donor. Despite this immune privilege of the livers, to control the undesired alloimmune responses in humans, most liver transplant recipients require long-term treatment with immune-suppressive drugs that predispose to cardiometabolic side effects and renal insufficiency. Understanding the mechanism of liver transplant tolerance and crosstalk between a variety of hepatic immune cells, such as dendritic cells, Kupffer cells, liver sinusoidas endothelial cells, hepatic stellate cells and so on, and alloreactive T cells would lead to the development of strategies for deliberate induction of more specific immune tolerance in a clinical setting. In this review article, we focus on results derived from basic studies that have attempted to elucidate the immune modulatory mechanisms of liver constituent cells and clinical trials that induced immune tolerance after liver transplantation by utilizing the immune-privilege potential of the liver.
Collapse
Affiliation(s)
- Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Medical Center for Translational and Clinical Research Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Onoe
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Kure Medical Center and Chugoku Cancer Center, National Hospital Organization, Kure, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
63
|
Chutipongtanate A, Prukviwat S, Pongsakul N, Srisala S, Kamanee N, Arpornsujaritkun N, Gesprasert G, Apiwattanakul N, Hongeng S, Ittichaikulthol W, Sumethkul V, Chutipongtanate S. Effects of Desflurane and Sevoflurane anesthesia on regulatory T cells in patients undergoing living donor kidney transplantation: a randomized intervention trial. BMC Anesthesiol 2020; 20:215. [PMID: 32854613 PMCID: PMC7450591 DOI: 10.1186/s12871-020-01130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Volatile anesthetic agents used during surgery have immunomodulatory effects which could affect postoperative outcomes. Recognizing that regulatory T cells (Tregs) plays crucial roles in transplant tolerance and high peripheral blood Tregs associated with stable kidney graft function, knowing which volatile anesthetic agents can induce peripheral blood Tregs increment would have clinical implications. This study aimed to compare effects of desflurane and sevoflurane anesthesia on peripheral blood Tregs induction in patients undergoing living donor kidney transplantation. METHODS A prospective, randomized, double-blind trial in living donor kidney transplant recipients was conducted at a single center, tertiary-care, academic university hospital in Thailand during August 2015 - June 2017. Sixty-six patients were assessed for eligibility and 40 patients who fulfilled the study requirement were equally randomized and allocated to desflurane versus sevoflurane anesthesia during transplant surgery. The primary outcome included absolute changes of peripheral blood CD4+CD25+FoxP3+Tregs which measured by flow cytometry and expressed as the percentage of the total population of CD4+ T lymphocytes at pre-exposure (0-h) and post-exposure (2-h and 24-h) to anesthetic gas. P-value < 0.05 denoted statistical significance. RESULTS Demographic data were comparable between groups. No statistical difference of peripheral blood Tregs between desflurane and sevoflurane groups observed at the baseline pre-exposure (3.6 ± 0.4% vs. 3.1 ± 0.4%; p = 0.371) and 2-h post-exposure (3.0 ± 0.3% vs. 3.5 ± 0.4%; p = 0.319). At 24-h post-exposure, peripheral blood Tregs was significantly higher in desflurane group (5.8 ± 0.5% vs. 4.1 ± 0.3%; p = 0.008). Within group analysis showed patients receiving desflurane, but not sevoflurane, had 2.7% increase in peripheral blood Treg over 24-h period (p < 0.001). CONCLUSION This study provides the clinical trial-based evidence that desflurane induced peripheral blood Tregs increment after 24-h exposure, which could be beneficial in the context of kidney transplantation. Mechanisms of action and clinical advantages of desflurane anesthesia based on Treg immunomodulation should be investigated in the future. TRIAL REGISTRATION ClinicalTrials.gov, NCT02559297 . Registered 22 September 2015 - retrospectively registered.
Collapse
Affiliation(s)
- Arpa Chutipongtanate
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sasichol Prukviwat
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nutkridta Pongsakul
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Supanart Srisala
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nakarin Kamanee
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttapon Arpornsujaritkun
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Goragoch Gesprasert
- Vascular and Transplantation Unit, Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Nopporn Apiwattanakul
- Division of Infectious Disease, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Wichai Ittichaikulthol
- Department of Anesthesiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Vasant Sumethkul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
64
|
Han JW, Joo DJ, Kim JH, Rha MS, Koh JY, Park HJ, Lee JG, Kim MS, Kim SI, Shin EC, Park JY, Park SH. Early reduction of regulatory T cells is associated with acute rejection in liver transplantation under tacrolimus-based immunosuppression with basiliximab induction. Am J Transplant 2020; 20:2058-2069. [PMID: 31965710 DOI: 10.1111/ajt.15789] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
Abstract
Regulatory T (Treg) cells are important in preventing acute rejection (AR) in solid organ transplantation, but the clinical relevance of the different kinetics early after liver transplantation (LT) in acute rejectors and non-rejectors is unclear. We analyzed peripheral blood samples of 128 LT recipients receiving basiliximab induction plus tacrolimus immunosuppression. Samples were obtained at pretransplant, D7, and D30 after LT. Frequency and phenotype of Tregs were analyzed by flow cytometry. The predictive value of Treg frequency at D7 was assessed for suspected acute rejection (SAR) and was validated for biopsy-proven AR (BPAR). We found that the frequencies of total and activated Tregs at D7 were significantly lower in recipients with SAR and BPAR. Treg was more reduced in BPARs by in vitro tacrolimus treatment in the presence of basiliximab. Moreover, an early reduction of Treg frequency in rejectors was associated with a greater increase in Treg apoptosis and further attenuated IL-2 signaling. D7 Treg frequency was an independent risk factor for SAR, which was also validated for BPAR. In conclusion, first-week peripheral blood Treg frequency correlates with AR after LT under tacrolimus-based immunosuppression, which needs to be proven in larger, geographically and clinically diverse populations.
Collapse
Affiliation(s)
- Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Department of Dermatology, Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - June Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
65
|
Liu H, Qiu F, Wang Y, Liang F, Liang J, Lin C, Liang J, Gong B, Chan S, De Zhang Z, Lai X, Hou S, Dai Z. A recombinant protein rLZ-8, originally extracted from Ganoderma lucidum, ameliorates OVA-induced lung inflammation by regulating Th17/Treg balance. J Leukoc Biol 2020; 108:531-545. [PMID: 32578901 DOI: 10.1002/jlb.5ma0420-453r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is one of the most common chronic and inflammatory respiratory diseases, which is estimated to affect 1-10% of the population in different regions across the world. Previous studies have shown that recombinant Ling-Zhi 8 (rLZ-8), an immunoregulatory protein originally extracted from Ganoderma lucidum, plays multiple roles in regulating murine immune cells, including T cells. Here, we examined whether rLZ-8 would ameliorate pulmonary inflammation in a model of asthma-like mice. We found that rLZ-8 significantly inhibited the lung inflammation and reduced infiltration of inflammatory cells, including dendritic cells and eosinophils, in OVA-induced asthmatic mice. It also deceased IL-17A level but increased IL-10 level in bronchoalveolar lavage fluid (BALF) while reducing RORγt mRNA expression and enhancing Foxp3 mRNA level in the lung tissue. Flow cytometry studies demonstrated that rLZ-8 remarkably down-regulated Th17 cells but upregulated Foxp3+ regulatory T (Treg) cells, rather than influencing Th1 versus Th2 cells. Experiments in vitro also showed that rLZ-8 suppressed murine CD3+ T cell proliferation and reduced the frequency of Th17 cells while promoting the differentiation of CD4+ Foxp3+ Tregs. Moreover, rIL-8 similarly altered human Th17/Treg generation or their balance in vitro. Finally, we found that rLZ-8 suppressed signaling pathways of both STAT3 and NF-κB (P100/P52) in murine lung tissue as well as cultured T cells. Thus, we have demonstrated that rLZ-8 attenuates pulmonary inflammation through regulating the balance of Th17/Treg cells in OVA-induced asthmatic mice and that rLZ-8 may be a potential therapeutic agent for the treatment of asthma in clinic.
Collapse
Affiliation(s)
- Huazhen Liu
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Feifei Qiu
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Yuanyuan Wang
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Feng Liang
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Jian Liang
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Chengchuan Lin
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Jiandong Liang
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Boliang Gong
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Shamyuen Chan
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Zhong- De Zhang
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Shaozhen Hou
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Zhenhua Dai
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
66
|
Alvarez P, Augustín JJ, Tamayo E, Iglesias M, Acinas O, Mendiguren MA, Vázquez JA, Genre F, San Segundo D, Merino J, Merino R. Therapeutic Effects of Anti-Bone Morphogenetic Protein and Activin Membrane-Bound Inhibitor Treatment in Psoriasis and Arthritis. Arthritis Rheumatol 2020; 72:1547-1558. [PMID: 32249544 DOI: 10.1002/art.41272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The transforming growth factor β (TGFβ) inhibitor BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) has been shown to control differentiation of CD4+ T lymphocytes into either tolerogenic Treg cells or pathogenic Th17 cells, through the regulation of TGFβ and interleukin-2 (IL-2) signaling strength. The present study was undertaken to explore the potential beneficial effects of this strategy of pharmacologic inhibition using novel anti-BAMBI monoclonal antibodies (mAb) in different experimental murine models of chronic skin and joint inflammatory/autoimmune disease. METHODS Development of Saccharomyces cerevisiae mannan-induced psoriatic arthritis (MIP) (n = 18-30 mice per group), imiquimod-induced skin psoriasis (n = 20-30 mice per group), or type II collagen-induced arthritis (CIA) (n = 13-16 mice per group) was analyzed in a total of 2-5 different experiments with either wild-type (WT) or BAMBI-deficient B10.RIII mice that were left untreated or treated with mAb B101.37 (mouse IgG1 anti-BAMBI), a mouse IgG1 anti-TNP isotype control, anti-CD25, or anti-TGFβ mAb. RESULTS Treatment of normal mice with IgG1 anti-BAMBI mAb clone B101.37 led to expansion of Treg cells in vivo, and had both preventive and therapeutic effects in mice with MIP (each P < 0.05 versus controls). The conferred protection against disease progression was found to be mediated by Treg cells, which controlled the activation and expansion of pathogenic IL-17-producing cells, and was dependent on the level of TGFβ activity. Furthermore, treatment with B101.37 mAb blocked both the development of skin psoriasis induced by imiquimod and the development of CIA in mice (each P < 0.05 versus controls). Finally, pharmacologic inhibition of BAMBI with the IgM anti-BAMBI mAb B143.14 also potentiated the suppressive activity of Treg cells in vitro (P < 0.001 versus controls). CONCLUSION These results in murine models identify BAMBI as a promising new therapeutic target for chronic inflammatory diseases and other pathologic conditions modulated by Treg cells.
Collapse
Affiliation(s)
- Pilar Alvarez
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain
| | | | - Esther Tamayo
- IDIVAL and Universidad de Cantabria, Santander, Spain
| | | | - Olga Acinas
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | - Jesús Merino
- IDIVAL and Universidad de Cantabria, Santander, Spain
| | - Ramón Merino
- IDIVAL and Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain
| |
Collapse
|
67
|
Abstract
Purpose of the review The adoptive transfer of alloantigen-specific regulatory T cells (Tregs) following organ transplantation is an emerging treatment paradigm that may induce tolerance and reduce the risk for graft rejection. In particular, redirecting Treg specificity via expression of synthetic chimeric antigen receptors (CARs) has demonstrated therapeutic promise in several preclinical studies. In this review, we highlight recent progress and remaining barriers to the clinical translation of CAR-Treg therapies. Recent findings CAR Tregs targeting human leukocyte antigen (HLA)-A2 showed antigen-specific in vitro activation and superior in vivo protective function relative to polyclonal Tregs. Adoptively transferred anti-HLA-A2 CAR Tregs prolonged the survival of HLA-A2-positive grafts in humanized mouse models. Summary Donor HLA molecules are attractive candidate antigens to target with CAR Tregs in transplantation due to mismatched HLA only expressed on the transplanted organ. The feasibility of this approach has been demonstrated by several independent groups in recent years. However, substantial challenges in CAR design and preclinical modeling must be more extensively addressed prior to clinical application.
Collapse
|
68
|
Dai H, Zheng Y, Thomson AW, Rogers NM. Transplant Tolerance Induction: Insights From the Liver. Front Immunol 2020; 11:1044. [PMID: 32582167 PMCID: PMC7289953 DOI: 10.3389/fimmu.2020.01044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
A comparison of pre-clinical transplant models and of solid organs transplanted in routine clinical practice demonstrates that the liver is most amenable to the development of immunological tolerance. This phenomenon arises in the absence of stringent conditioning regimens that accompany published tolerizing protocols for other organs, particularly the kidney. The unique immunologic properties of the liver have assisted our understanding of the alloimmune response and how it can be manipulated to improve graft function and survival. This review will address important findings following liver transplantation in both animals and humans, and how these have driven the understanding and development of therapeutic immunosuppressive options. We will discuss the liver's unique system of immune and non-immune cells that regulate immunity, yet maintain effective responses to pathogens, as well as mechanisms of liver transplant tolerance in pre-clinical models and humans, including current immunosuppressive drug withdrawal trials and biomarkers of tolerance. In addition, we will address innovative therapeutic strategies, including mesenchymal stem cell, regulatory T cell, and regulatory dendritic cell therapy to promote liver allograft tolerance or minimization of immunosuppression in the clinic.
Collapse
Affiliation(s)
- Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Yawen Zheng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China.,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal Division, Westmead Hospital, Westmead, NSW, Australia.,Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
69
|
Thomson AW, Tevar AD. Kidney transplantation: a safe step forward for regulatory immune cell therapy. Lancet 2020; 395:1589-1591. [PMID: 32446400 DOI: 10.1016/s0140-6736(20)30803-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15238, USA.
| | - Amit D Tevar
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15238, USA
| |
Collapse
|
70
|
Walton K, Fernandez MR, Sagatys EM, Reff J, Kim J, Lee MC, Kiluk JV, Hui JYC, McKenna D, Hupp M, Forster C, Linden MA, Lawrence NJ, Lawrence HR, Pidala J, Pavletic SZ, Blazar BR, Sebti SM, Cleveland JL, Anasetti C, Betts BC. Metabolic reprogramming augments potency of human pSTAT3-inhibited iTregs to suppress alloreactivity. JCI Insight 2020; 5:136437. [PMID: 32255769 DOI: 10.1172/jci.insight.136437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
Immunosuppressive donor Tregs can prevent graft-versus-host disease (GVHD) or solid-organ allograft rejection. We previously demonstrated that inhibiting STAT3 phosphorylation (pSTAT3) augments FOXP3 expression, stabilizing induced Tregs (iTregs). Here we report that human pSTAT3-inhibited iTregs prevent human skin graft rejection and xenogeneic GVHD yet spare donor antileukemia immunity. pSTAT3-inhibited iTregs express increased levels of skin-homing cutaneous lymphocyte-associated antigen, immunosuppressive GARP and PD-1, and IL-9 that supports tolerizing mast cells. Further, pSTAT3-inhibited iTregs significantly reduced alloreactive conventional T cells, Th1, and Th17 cells implicated in GVHD and tissue rejection and impaired infiltration by pathogenic Th2 cells. Mechanistically, pSTAT3 inhibition of iTregs provoked a shift in metabolism from oxidative phosphorylation (OxPhos) to glycolysis and reduced electron transport chain activity. Strikingly, cotreatment with coenzyme Q10 restored OxPhos in pSTAT3-inhibited iTregs and augmented their suppressive potency. These findings support the rationale for clinically testing the safety and efficacy of metabolically tuned, human pSTAT3-inhibited iTregs to control alloreactive T cells.
Collapse
Affiliation(s)
- Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, and
| | | | - John V Kiluk
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - David McKenna
- Department of Laboratory Medicine and Pathology, and
| | - Meghan Hupp
- Department of Laboratory Medicine and Pathology, and
| | - Colleen Forster
- Bionet Histology Research Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - Joseph Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Said M Sebti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia USA
| | | | - Claudio Anasetti
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
71
|
Schroth S, Glinton K, Luo X, Thorp EB. Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Front Immunol 2020; 11:869. [PMID: 32431717 PMCID: PMC7214785 DOI: 10.3389/fimmu.2020.00869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Survival rates after heart transplant have significantly improved over the last decade. Nevertheless, long-term allograft viability after 10 years remains poor and the sequelae of transplant-associated immunosuppression increases morbidity. Although several studies have implicated roles for lymphocyte-mediated rejection, less is understood with respect to non-major histocompatibility, and innate immune reactivity, which influence graft viability. As immature and mature dendritic cells (DCs) engage in both Major Histocompatibility Complex (MHC)-dependent and MHC-independent immune responses, these cells are at the crossroads of therapeutic strategies that seek to achieve both allograft tolerance and suppression of innate immunity to the allograft. Here we review emerging roles of DC subsets and their molecular protagonists during allograft tolerance and allograft rejection, with a focus on cardiac transplant. New insight into emerging DC subsets in transplant will inform novel strategies for operational tolerance and amelioration of cardiac vasculopathy.
Collapse
Affiliation(s)
- Samantha Schroth
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Medicine, School of Medicine, Duke University, Durham, NC, United States
| | - Edward B. Thorp
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
72
|
Castro-Rojas CM, Godarova A, Shi T, Hummel SA, Shields A, Tremblay S, Alloway RR, Jordan MB, Woodle ES, Hildeman DA. mTOR Inhibitor Therapy Diminishes Circulating CD8+ CD28- Effector Memory T Cells and Improves Allograft Inflammation in Belatacept-refractory Renal Allograft Rejection. Transplantation 2020; 104:1058-1069. [PMID: 31415033 PMCID: PMC7012662 DOI: 10.1097/tp.0000000000002917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Renal allograft rejection is more frequent under belatacept-based, compared with tacrolimus-based, immunosuppression. We studied kidney transplant recipients experiencing rejection under belatacept-based early corticosteroid withdrawal following T-cell-depleting induction in a recent randomized trial (Belatacept-based Early Steroid Withdrawal Trial, clinicaltrials.gov NCT01729494) to determine mechanisms of rejection and treatment. METHODS Peripheral mononuclear cells, serum creatinine levels, and renal biopsies were collected from 8 patients undergoing belatacept-refractory rejection (BRR). We used flow cytometry, histology, and immunofluorescence to characterize CD8 effector memory T cell (TEM) populations in the periphery and graft before and after mammalian target of rapamycin (mTOR) inhibition. RESULTS Here, we found that patients with BRR did not respond to standard antirejection therapy and had a substantial increase in alloreactive CD8 T cells with a CD28/DR/CD38/CD45RO TEM. These cells had increased activation of the mTOR pathway, as assessed by phosphorylated ribosomal protein S6 expression. Notably, everolimus (an mTOR inhibitor) treatment of patients with BRR halted the in vivo proliferation of TEM cells and their ex vivo alloreactivity and resulted in their significant reduction in the peripheral blood. The frequency of circulating FoxP3 regulatory T cells was not altered. Importantly, everolimus led to rapid resolution of rejection as confirmed by histology. CONCLUSIONS Thus, while prior work has shown that concomitant belatacept + mTOR inhibitor therapy is effective for maintenance immunosuppression, our preliminary data suggest that everolimus may provide an available means for effecting "rescue" therapy for rejections occurring under belatacept that are refractory to traditional antirejection therapy with corticosteroids and polyclonal antilymphocyte globulin.
Collapse
Affiliation(s)
| | - Alzbeta Godarova
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Sarah A. Hummel
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - Adele Shields
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Simon Tremblay
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Rita R. Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
73
|
Poli A, Fiume R, Mongiorgi S, Zaurito A, Sheth B, Vidalle MC, Hamid SA, Kimber S, Campagnoli F, Ratti S, Rusciano I, Faenza I, Manzoli L, Divecha N. Exploring the controversial role of PI3K signalling in CD4 + regulatory T (T-Reg) cells. Adv Biol Regul 2020; 76:100722. [PMID: 32362560 DOI: 10.1016/j.jbior.2020.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.
Collapse
Affiliation(s)
- Alessandro Poli
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Sara Mongiorgi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Antonio Zaurito
- Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Magdalena Castellano Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Shidqiyyah Abdul Hamid
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - ScottT Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Francesca Campagnoli
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Isabella Rusciano
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
74
|
Emamgolizadeh Gurt Tapeh B, Mosayyebi B, Samei M, Beyrampour Basmenj H, Mohammadi A, Alivand MR, Hassanpour P, Solali S. microRNAs involved in T-cell development, selection, activation, and hemostasis. J Cell Physiol 2020; 235:8461-8471. [PMID: 32324267 DOI: 10.1002/jcp.29689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) characterized by small, noncoding RNAs have a fundamental role in the regulation of gene expression at the post-transcriptional level. Additionally, miRNAs have recently been identified as potential regulators of various genes involved in the pathogenesis of the autoimmune and inflammatory disease. So far, the interaction between miRNAs and T lymphocytes in the immune response as a new and significant topic has not been emphasized substantially. The role of miRNAs in different biological processes including apoptosis, immune checkpoints and the activation of immune cells is still unclear. Aberrant miRNA expression profile affects various aspects of T-cell function. Accordingly, in this literature review, we summarized the role of significant miRNAs in T-cell development processes. Consequently, we demonstrated precise mechanisms that candidate miRNAs interfere in Immune response mediated by different types of T cells. We believe that a good understanding of the interaction between miRNAs and immune response contributes to the new therapeutic strategies in relation to disease with an immunological origin.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Samei
- Department of Immunology, Gorgan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammadi
- Department of cancer and inflammation, University of Southern Denmark, Odense, Denmark
| | - Mohammad R Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Hassanpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
75
|
Adhikary SR, Cuthbertson P, Turner RJ, Sluyter R, Watson D. A single-nucleotide polymorphism in the human ENTPD1 gene encoding CD39 is associated with worsened graft-versus-host disease in a humanized mouse model. Immunol Cell Biol 2020; 98:397-410. [PMID: 32181525 DOI: 10.1111/imcb.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) protect against graft-versus-host disease (GVHD), a life-threatening complication of allogeneic hematopoietic stem cell transplantation. The ectoenzyme CD39 is important for increasing the immunosuppressive function of Tregs. The rs10748643 (A → G) single-nucleotide polymorphism (SNP) in intron 1 of the human ENTPD1 gene is associated with increased proportions of CD39+ Tregs. This study aimed to determine whether the rs10748643 SNP corresponded to increased proportions of CD39+ Tregs in an Australian donor population, and whether this SNP influences clinical GVHD in a humanized mouse model. Donors were genotyped for the rs10748643 SNP by Sanger sequencing, and the proportion of CD39+ T cells in donor peripheral blood was determined by flow cytometry. Donors encoding the G allele (donorsAG/GG ) demonstrated higher proportions of CD39+ CD3+ CD4+ CD25+ CD127lo Tregs, but not CD39+ CD3+ CD8+ T cells or CD39+ CD3+ CD4+ conventional T cells, compared with donors homozygous for the A allele (donorsAA ). NOD-SCID-IL2Rγnull mice were injected with human peripheral blood mononuclear cells from either donorsAA (hCD39AA mice) or donorsAG/GG (hCD39AG/GG mice). hCD39AG/GG mice demonstrated significantly greater weight loss and GVHD clinical scores, and significantly reduced survival, compared with hCD39AA mice. hCD39AG/GG mice showed significantly higher hCD4+ :hCD8+ T-cell ratios than hCD39AA mice, but displayed similar proportions of CD3+ hCD4+ hCD25+ hCD127lo Tregs and hCD39+ Tregs. However, the proportion of human Tregs corresponded to survival in hCD39AA mice, but not in hCD39AG/GG mice. This study demonstrates that donors encoding the G allele show higher percentages of CD39+ Tregs, but cause worsened GVHD in humanized mice compared with donors homozygous for the A allele.
Collapse
Affiliation(s)
- Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ross J Turner
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
76
|
Histone Deacetylation Inhibitors as Modulators of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21072356. [PMID: 32235291 PMCID: PMC7177531 DOI: 10.3390/ijms21072356] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Tregs) are important mediators of immunological self-tolerance and homeostasis. Being cluster of differentiation 4+Forkhead box protein3+ (CD4+FOXP3+), these cells are a subset of CD4+ T lymphocytes and can originate from the thymus (tTregs) or from the periphery (pTregs). The malfunction of CD4+ Tregs is associated with autoimmune responses such as rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), inflammatory bowel diseases (IBD), psoriasis, systemic lupus erythematosus (SLE), and transplant rejection. Recent evidence supports an opposed role in sepsis. Therefore, maintaining functional Tregs is considered as a therapy regimen to prevent autoimmunity and allograft rejection, whereas blocking Treg differentiation might be favorable in sepsis patients. It has been shown that Tregs can be generated from conventional naïve T cells, called iTregs, due to their induced differentiation. Moreover, Tregs can be effectively expanded in vitro based on blood-derived tTregs. Taking into consideration that the suppressive role of Tregs has been mainly attributed to the expression and function of the transcription factor Foxp3, modulating its expression and binding to the promoter regions of target genes by altering the chromatin histone acetylation state may turn out beneficial. Hence, we discuss the role of histone deacetylation inhibitors as epigenetic modulators of Tregs in this review in detail.
Collapse
|
77
|
Thomson AW, Ezzelarab MB. Generation and functional assessment of nonhuman primate regulatory dendritic cells and their therapeutic efficacy in renal transplantation. Cell Immunol 2020; 351:104087. [PMID: 32197811 DOI: 10.1016/j.cellimm.2020.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/29/2022]
Abstract
Nonhuman primates (NHP) are important pre-clinical models for evaluation of the safety and efficacy of the most promising potential therapeutic advances in organ transplantation based on rodent studies. Although rare, dendritic cells (DC) play important roles in preservation of self tolerance and DC with immunoregulatory properties (regulatory DC; DCreg) can promote transplant tolerance in rodents when adoptively transferred to allograft recipients. NHP DCreg can be generated ex vivo from bone marrow precursors or blood monocytes of cynomolgus or rhesus macaques or baboons. NHP DCreg generated in the presence of anti-inflammatory factors that confer stability and resistance to maturation, subvert alloreactive T cell responses. When infused into rhesus renal allograft recipients before transplant, they safely prolong MHC mis-matched graft survival, associated with attenuation of anti-donor immune reactivity. In this concise review we describe the properties of NHP DCreg and discuss their influence on T cell responses, alloimmunity and organ transplant survival.
Collapse
Affiliation(s)
- Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
78
|
Raffin C, Vo LT, Bluestone JA. T reg cell-based therapies: challenges and perspectives. Nat Rev Immunol 2020; 20:158-172. [PMID: 31811270 PMCID: PMC7814338 DOI: 10.1038/s41577-019-0232-6] [Citation(s) in RCA: 462] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/25/2022]
Abstract
Cellular therapies using regulatory T (Treg) cells are currently undergoing clinical trials for the treatment of autoimmune diseases, transplant rejection and graft-versus-host disease. In this Review, we discuss the biology of Treg cells and describe new efforts in Treg cell engineering to enhance specificity, stability, functional activity and delivery. Finally, we envision that the success of Treg cell therapy in autoimmunity and transplantation will encourage the clinical use of adoptive Treg cell therapy for non-immune diseases, such as neurological disorders and tissue repair.
Collapse
Affiliation(s)
- Caroline Raffin
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Linda T Vo
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
79
|
Atif M, Conti F, Gorochov G, Oo YH, Miyara M. Regulatory T cells in solid organ transplantation. Clin Transl Immunology 2020; 9:e01099. [PMID: 32104579 PMCID: PMC7036337 DOI: 10.1002/cti2.1099] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
The induction of graft tolerance remains the holy grail of transplantation. This is important as chronic allograft dysfunction and the side effects of immunosuppression regimens place a major burden on the lives of transplant patients and their healthcare systems. This has mandated the need to understand the immunobiology of graft rejection and identify novel therapeutics. Regulatory T (Treg) cells play an important role in modulating pro-inflammatory microenvironments and maintaining tissue homeostasis. However, there are fundamental unanswered questions regarding Treg cell immunobiology. These cells are a heterogeneous entity with functionally diverse roles. Moreover, the adoption of novel deeper immunophenotyping and genomic sequencing technologies has identified this phenotype and function to be more complex than expected. Hence, a comprehensive understanding of Treg cell heterogeneity is needed to safely and effectively exploit their therapeutic potential. From a clinical perspective, the recent decade has seen different clinical teams commence and complete first-in-man clinical trials utilising Treg cells as an adoptive cellular therapy. In this review, we discuss these trials from a translational perspective with an important focus on safety. Finally, we identify crucial knowledge gaps for future study.
Collapse
Affiliation(s)
- Muhammad Atif
- Sorbonne UniversitéInserm U1135Centre d'Immunologie et des Maladies Infectieuses (CIMI‐Paris)Hôpital Pitié‐SalpêtrièreAP‐HPParisFrance
- Unité de Transplantation HépatiqueHôpital Pitié‐SalpêtrièreAP‐HPParisFrance
- Centre for Liver and Gastro ResearchNIHR Birmingham Biomedical Research CentreUniversity of BirminghamBirminghamUK
- Academic Department of SurgeryUniversity of BirminghamBirminghamUK
| | - Filomena Conti
- Unité de Transplantation HépatiqueHôpital Pitié‐SalpêtrièreAP‐HPParisFrance
| | - Guy Gorochov
- Sorbonne UniversitéInserm U1135Centre d'Immunologie et des Maladies Infectieuses (CIMI‐Paris)Hôpital Pitié‐SalpêtrièreAP‐HPParisFrance
| | - Ye Htun Oo
- Centre for Liver and Gastro ResearchNIHR Birmingham Biomedical Research CentreUniversity of BirminghamBirminghamUK
- Liver Transplant and HPB UnitQueen Elizabeth HospitalUniversity Hospital Birmingham NHS Foundation TrustBirminghamUK
| | - Makoto Miyara
- Sorbonne UniversitéInserm U1135Centre d'Immunologie et des Maladies Infectieuses (CIMI‐Paris)Hôpital Pitié‐SalpêtrièreAP‐HPParisFrance
| |
Collapse
|
80
|
Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T Cells and Human Disease. Annu Rev Immunol 2020; 38:541-566. [PMID: 32017635 DOI: 10.1146/annurev-immunol-042718-041717] [Citation(s) in RCA: 677] [Impact Index Per Article: 135.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.
Collapse
Affiliation(s)
- Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; .,Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - James B Wing
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Atsushi Tanaka
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kenji Ichiyama
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
81
|
Han F, Dou M, Wang Y, Xu C, Li Y, Ding X, Xue W, Zheng J, Tian P, Ding C. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2020; 52:125-132. [PMID: 31951250 DOI: 10.1093/abbs/gmz145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Cordycepin (3'-deoxyadenosine) is a naturally occurring adenosine analog and one of the bioactive constituents isolated from Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. However, the actions of cordycepin against renal ischemia/reperfusion injury (I/R) are still unknown. In the present study, rats were subject to I/R and cordycepin was intragastrically administered for seven consecutive days before surgery to investigate the effects and mechanisms of cordycepin against renal I/R injury. The test results of kidney and peripheral blood samples of experimental animals showed that cordycepin significantly decreased serum blood urea nitrogen and creatinine levels and markedly attenuated cell injury. Mechanistic studies showed that cordycepin significantly regulated inflammation, apoptosis, and oxidative stress. These data provide new insights for investigating the natural product with the nephroprotective effect against I/R, which should be developed as a new therapeutic agent for the treatment of I/R in the future.
Collapse
Affiliation(s)
- Feng Han
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuxiang Wang
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Cuixiang Xu
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Center of Shaanxi Provincial Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - XiaoMing Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - WuJun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
82
|
Urbano PCM, He X, van Heeswijk B, Filho OPS, Tijssen H, Smeets RL, Joosten I, Koenen HJPM. TNFα-Signaling Modulates the Kinase Activity of Human Effector Treg and Regulates IL-17A Expression. Front Immunol 2020; 10:3047. [PMID: 32038615 PMCID: PMC6986271 DOI: 10.3389/fimmu.2019.03047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Maintenance of regulatory T cells CD4+CD25highFOXP3+ (Treg) stability is vital for proper Treg function and controlling the immune equilibrium. Treg cells are heterogeneous and can reveal plasticity, exemplified by their potential to express IL-17A. TNFα-TNFR2 signaling controls IL-17A expression in conventional T cells via the anti-inflammatory ubiquitin-editing and kinase activity regulating enzyme TNFAIP3/A20 (tumor necrosis factor-alpha-induced protein 3). To obtain a molecular understanding of TNFα signaling on IL-17 expression in the human effector (effTreg, CD25highCD45RA−) Treg subset, we here studied the kinome activity regulation by TNFα signaling. Using FACS-sorted naïve (naïveTreg, CD25highCD45RA+) and effTreg subsets, we demonstrated a reciprocal relationship between TNFα and IL-17A expression; effTreg (TNFαlow/IL-17Ahigh) and naïveTreg (TNFαhigh/IL-17Alow). In effTreg, TNFα-TNFR2 signaling prevented IL-17A expression, whereas inhibition of TNFα signaling by clinically applied anti-TNF antibodies led to increased IL-17A expression. Inhibition of TNFα signaling led to reduced TNFAIP3 expression, which, by using siRNA inhibition of TNFAIP3, appeared causally linked to increased IL-17A expression in effTreg. Kinome activity screening of CD3/CD28-activated effTreg revealed that anti-TNF-mediated neutralization led to increased kinase activity. STRING association analysis revealed that the TNF suppression effTreg kinase activity network was strongly associated with kinases involved in TCR, JAK, MAPK, and PKC pathway signaling. Small-molecule-based inhibition of TCR and JAK pathways prevented the IL-17 expression in effTreg. Together, these findings stress the importance of TNF-TNFR2 in regulating the kinase architecture of antigen-activated effTreg and controlling IL-17 expression of the human Treg. These findings might be relevant for optimizing anti-TNF-based therapy and may aid in preventing Treg plasticity in case of Treg-based cell therapy.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xuehui He
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bennie van Heeswijk
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Omar P S Filho
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Henk Tijssen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruben L Smeets
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
83
|
Casiraghi F, Perico N, Gotti E, Todeschini M, Mister M, Cortinovis M, Portalupi V, Plati AR, Gaspari F, Villa A, Introna M, Longhi E, Remuzzi G. Kidney transplant tolerance associated with remote autologous mesenchymal stromal cell administration. Stem Cells Transl Med 2019; 9:427-432. [PMID: 31872574 PMCID: PMC7103624 DOI: 10.1002/sctm.19-0185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Here we report the case of successful immune tolerance induction in a living‐donor kidney transplant recipient remotely treated with autologous bone marrow‐derived mesenchymal stromal cells (MSC). This case report, which to the best of our knowledge is the first in the world in this setting, provides evidence that the modulation of the host immune system with MSC can enable the safe withdrawal of maintenance immunosuppressive drugs while preserving optimal long‐term kidney allograft function.
Collapse
Affiliation(s)
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Eliana Gotti
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marta Todeschini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marilena Mister
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Valentina Portalupi
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Rita Plati
- Unit of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Flavio Gaspari
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandro Villa
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology, UOC Coordinamento Trapianti IRCCS Fondazione Ca' Granda - Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
84
|
Scheinecker C, Göschl L, Bonelli M. Treg cells in health and autoimmune diseases: New insights from single cell analysis. J Autoimmun 2019; 110:102376. [PMID: 31862128 DOI: 10.1016/j.jaut.2019.102376] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases, such as Systemic Lupus Erythematosus (SLE) or Rheumatoid Arthritis (RA) are characterized by the breakdown of immunological tolerance. Defects of regulatory T cells have been described among the various mechanisms, that are important for the development of autoimmune diseases, due to their critical role as regulators of peripheral immune tolerance and homeostasis. Initially T suppressor cells have been described as one population of peripheral T cells. Based on new technological advances a new understanding of the heterogeneity of different Treg cell populations in the lymphoid and non-lymphoid tissue has evolved over the last years. While initially Foxp3 has been defined as the main master regulator of Treg cells, we have learned that Treg cells from various tissue can be identified by a specific transcriptomic and epigenetic signature. Epigenetic mechanisms allow Treg cell stability, but we have also learned that certain Treg subsets are plastic and can under specific circumstances even enhance autoimmunity and inflammatory processes. Quantitative and functional defects of Treg cells have been observed in a variety of autoimmune diseases. Due to our understanding of the nature of this cell population, Treg cells have been a target of new Treg based therapies, such as low-dose IL-2. In addition, ongoing clinical trials aim to test safety and efficacy of transferred, in vitro expanded Treg cells in patients with autoimmune diseases and transplant patients.
Collapse
Affiliation(s)
- Clemens Scheinecker
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Lisa Göschl
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Michael Bonelli
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
85
|
Ye S, Liu H, Chen Y, Qiu F, Liang CL, Zhang Q, Huang H, Wang S, Zhang ZD, Lu W, Dai Z. A Novel Immunosuppressant, Luteolin, Modulates Alloimmunity and Suppresses Murine Allograft Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:3436-3446. [PMID: 31732527 DOI: 10.4049/jimmunol.1900612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
An allograft is rejected in the absence of any immunosuppressive treatment because of vigorous alloimmunity and thus requires extensive immunosuppression for its survival. Although there are many conventional immunosuppressants for clinical use, it is necessary to seek alternatives to existing drugs, especially in case of transplant patients with complicated conditions. Luteolin, a natural ingredient, exists in many plants. It exhibits multiple biological and pharmacological effects, including anti-inflammatory properties. In particular, luteolin has been shown to upregulate CD4+CD25+ regulatory T cells (Tregs) in the context of airway inflammation. However, it remains unknown whether luteolin regulates alloimmune responses. In this study, we demonstrated that luteolin significantly prolonged murine skin allograft survival, ameliorated cellular infiltration, and downregulated proinflammatory cytokine gene expression in skin allografts. Furthermore, luteolin increased the percentage of CD4+Foxp3+ Tregs while reducing frequency of mature dendritic cells and CD44highCD62Llow effector CD4+/CD8+ T cells posttransplantation. It also suppressed the proliferation of T cells and their production of cytokines IFN-γ and IL-17A in vitro while increasing IL-10 level in the supernatant. Moreover, luteolin promoted CD4+Foxp3+ Treg generation from CD4+CD25- T cells in vitro. Depleting Tregs largely, although not totally, reversed luteolin-mediated extension of allograft survival. More importantly, luteolin inhibited AKT/mTOR signaling in T cells. Thus, for the first time, to our knowledge, we found that luteolin is an emerging immunosuppressant as an mTOR inhibitor in allotransplantation. This finding could be important for the suppression of human allograft rejection, although it remains to be determined whether luteolin has an advantage over other conventional immunosuppressants in suppression of allograft rejection.
Collapse
Affiliation(s)
- Shulin Ye
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Haiding Huang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Sumei Wang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhong-De Zhang
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Weihui Lu
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- Section of Immunology and Joint Immunology Program, Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| |
Collapse
|
86
|
Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer 2019; 7:267. [PMID: 31627733 PMCID: PMC6798343 DOI: 10.1186/s40425-019-0749-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and confers a poor prognosis. Beyond standard systemic therapy with multikinase inhibitors, recent studies demonstrate the potential for robust and durable responses from immune checkpoint inhibition in subsets of HCC patients across disease etiologies. The majority of HCC arises in the context of chronic inflammation and from within a fibrotic liver, with many cases associated with hepatitis virus infections, toxins, and fatty liver disease. Many patients also have concomitant cirrhosis which is associated with both local and systemic immune deficiency. Furthermore, the liver is an immunologic organ in itself, which may enhance or suppress the immune response to cancer arising within it. Here, we explore the immunobiology of the liver from its native state to chronic inflammation, fibrosis, cirrhosis and then to cancer, and summarize how this unique microenvironment may affect the response to immunotherapy.
Collapse
Affiliation(s)
- Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robin K Kelley
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, Room M1286, 505 Parnassus Ave., San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
87
|
Ferreira LMR, Muller YD, Bluestone JA, Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019; 18:749-769. [PMID: 31541224 PMCID: PMC7773144 DOI: 10.1038/s41573-019-0041-4] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T cells (Treg cells) are a small subset of immune cells that are dedicated to curbing excessive immune activation and maintaining immune homeostasis. Accordingly, deficiencies in Treg cell development or function result in uncontrolled immune responses and tissue destruction and can lead to inflammatory disorders such as graft-versus-host disease, transplant rejection and autoimmune diseases. As Treg cells deploy more than a dozen molecular mechanisms to suppress immune responses, they have potential as multifaceted adaptable smart therapeutics for treating inflammatory disorders. Indeed, early-phase clinical trials of Treg cell therapy have shown feasibility, tolerability and potential efficacy in these disease settings. In the meantime, progress in the development of chimeric antigen receptors and in genome editing (including the application of CRISPR-Cas9) over the past two decades has facilitated the genetic optimization of primary T cell therapy for cancer. These technologies are now being used to enhance the specificity and functionality of Treg cells. In this Review, we describe the key advances and prospects in designing and implementing Treg cell-based therapy in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA
| | - Yannick D Muller
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA, USA.
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
88
|
Ezzelarab MB, Perez-Gutierrez A, Humar A, Wijkstrom M, Zahorchak AF, Lu-Casto L, Wang YC, Wiseman RW, Minervini M, Thomson AW. Preliminary assessment of the feasibility of autologous myeloid-derived suppressor cell infusion in non-human primate kidney transplantation. Transpl Immunol 2019; 56:101225. [PMID: 31330261 PMCID: PMC6698203 DOI: 10.1016/j.trim.2019.101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogenous population of immunosuppressive myeloid cells now considered important immune regulatory cells in diverse clinical conditions, including cancer, chronic inflammatory disorders and transplantation. In rodents, MDSC administration can inhibit graft-versus-host disease lethality and enhance organ or pancreatic islet allograft survival. There is also evidence, however, that under systemic inflammatory conditions, adoptively-transferred MDSC can rapidly lose their suppressive function. To our knowledge, there are no reports of autologous MDSC administration to either human or clinically-relevant non-human primate (NHP) transplant recipients. Monocytic (m) MDSC have been shown to be more potent suppressors of T cell responses than other subsets of MDSC. Following their characterization in rhesus macaques, we have conducted a preliminary analysis of the feasibility and preliminary efficacy of purified mMDSC infusion into MHC-mismatched rhesus kidney allograft recipients. The graft recipients were treated with rapamycin and the high affinity variant of the T cell co-stimulation blocking agent cytotoxic T lymphocyte antigen 4 Ig (Belatacept) that targets the B7-CD28 pathway. Graft survival and histology were not affected by infusions of autologous, leukapheresis product-derived mMDSC on days 7 and 14 post-transplant (cumulative totals of 3.19 and 1.98 × 106 cells/kg in n = 2 recipients) compared with control monkeys that did not receive MDSC (n = 2). Sequential analyses of effector T cell populations revealed no differences between the groups. While these initial findings do not provide evidence of efficacy under the conditions adopted, further studies in NHP, designed to ascertain the appropriate mMDSC source and dose, timing and anti-inflammatory/immunosuppressive agent support are likely to prove instructive regarding the therapeutic potential of MDSC in organ transplantation.
Collapse
Affiliation(s)
- Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Angelica Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abhinav Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Martin Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Alan F Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Lien Lu-Casto
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Yu-Chao Wang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marta Minervini
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
89
|
Bergström M, Müller M, Karlsson M, Scholz H, Vethe NT, Korsgren O. Comparing the Effects of the mTOR Inhibitors Azithromycin and Rapamycin on In Vitro Expanded Regulatory T Cells. Cell Transplant 2019; 28:1603-1613. [PMID: 31512504 PMCID: PMC6923545 DOI: 10.1177/0963689719872488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adoptive transfer of autologous polyclonal regulatory T cells (Tregs) is a promising
option for reducing graft rejection in allogeneic transplantation. To gain therapeutic
levels of Tregs there is a need to expand obtained cells ex vivo, usually in the presence
of the mTOR inhibitor Rapamycin due to its ability to suppress proliferation of non-Treg T
cells, thus promoting a purer Treg yield. Azithromycin is a bacteriostatic macrolide with
mTOR inhibitory activity that has been shown to exert immunomodulatory effects on several
types of immune cells. In this study we investigated the effects of Azithromycin, compared
with Rapamycin, on Treg phenotype, growth, and function when expanding bulk, naïve, and
memory Tregs. Furthermore, the intracellular concentration of Rapamycin in CD4+ T cells as
well as in the culture medium was measured for up to 48 h after supplemented. Treg
phenotype was assessed by flow cytometry and Treg function was measured as inhibition of
responder T-cell expansion in a suppression assay. The concentration of Rapamycin was
quantified with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).
Azithromycin and Rapamycin both promoted a FoxP3-positive Treg phenotype in bulk Tregs,
while Rapamycin also increased FoxP3 and FoxP3+Helios positivity in naïve and memory
Tregs. Furthermore, Rapamycin inhibited the expansion of naïve Tregs, but also increased
their suppressive effect. Rapamycin was quickly degraded in 37°C medium, yet was retained
intracellularly. While both compounds may benefit expansion of FoxP3+ Tregs in vitro,
further studies elucidating the effects of Azithromycin treatment on Tregs are needed to
determine its potential use.
Collapse
Affiliation(s)
- Marcus Bergström
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Malin Müller
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Marie Karlsson
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
90
|
Motaei J, Yaghmaie M, Ahmadvand M, Pashaiefar H, Kerachian MA. MicroRNAs as Potential Diagnostic, Prognostic, and Predictive Biomarkers for Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2019; 25:e375-e386. [PMID: 31419566 DOI: 10.1016/j.bbmt.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Successful treatment of various hematologic diseases with allogeneic hematopoietic stem cell transplantation is often limited due to the occurrence of acute graft-versus-host disease (aGVHD). So far, there are no approved molecular biomarkers for the diagnosis and prediction of aGVHD at the clinical level due to our incomplete understanding of the molecular biology of the disease. Various studies have been conducted on animal models and humans to investigate the role of microRNAs in aGVHD pathogenesis to implicate them as biomarkers and therapeutic targets. Because of their high stability, tissue specificity, ease of measurement, low cost, and simplicity, they are excellent targets for biomarkers. In this review, we focused on microRNA expression profiling studies that were performed recently in both animal models and human cases of aGVHD to identify diagnostic and predictive biomarkers for this disease. The expression pattern of microRNAs can be specific to cells and tissues. Because aGVHD affects several organs, microRNA signatures in target tissues may help to understand the molecular pathology of the disease. Identification of organ-specific microRNAs in aGVHD can be promising to categorize patients for organ-specific therapies. Thus, microRNAs can be used as noninvasive diagnostic tests in clinic to improve prophylaxis, predict incidence and severity, and reduce morbidity.
Collapse
Affiliation(s)
- Jamshid Motaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| |
Collapse
|
91
|
Ulbar F, Montemurro T, Jofra T, Capri M, Comai G, Bertuzzo V, Lavazza C, Mandelli A, Viganò M, Budelli S, Bacalini MG, Pirazzini C, Garagnani P, Giudice V, Sollazzo D, Curti A, Arpinati M, La Manna G, Cescon M, Pinna AD, Franceschi C, Battaglia M, Giordano R, Catani L, Lemoli RM. Regulatory T cells from patients with end-stage organ disease can be isolated, expanded and cryopreserved according good manufacturing practice improving their function. J Transl Med 2019; 17:250. [PMID: 31383037 PMCID: PMC6683529 DOI: 10.1186/s12967-019-2004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Here, we isolated, expanded and functionally characterized regulatory T cells (Tregs) from patients with end stage kidney and liver disease, waiting for kidney/liver transplantation (KT/LT), with the aim to establish a suitable method to obtain large numbers of immunomodulatory cells for adoptive immunotherapy post-transplantation. METHODS We first established a preclinical protocol for expansion/isolation of Tregs from peripheral blood of LT/KT patients. We then scaled up and optimized such protocol according to good manufacturing practice (GMP) to obtain high numbers of purified Tregs which were phenotypically and functionally characterized in vitro and in vivo in a xenogeneic acute graft-versus-host disease (aGVHD) mouse model. Specifically, immunodepressed mice (NOD-SCID-gamma KO mice) received human effector T cells with or without GMP-produced Tregs to prevent the onset of xenogeneic GVHD. RESULTS Our small scale Treg isolation/expansion protocol generated functional Tregs. Interestingly, cryopreservation/thawing did not impair phenotype/function and DNA methylation pattern of FOXP3 gene of the expanded Tregs. Fully functional Tregs were also isolated/expanded from KT and LT patients according to GMP. In the mouse model, GMP Tregs from LT or KT patient proved to be safe and show a trend toward reduced lethality of acute GVHD. CONCLUSIONS These data demonstrate that expanded/thawed GMP-Tregs from patients with end-stage organ disease are fully functional in vitro. Moreover, their infusion is safe and results in a trend toward reduced lethality of acute GVHD in vivo, further supporting Tregs-based adoptive immunotherapy in solid organ transplantation.
Collapse
Affiliation(s)
- Francesca Ulbar
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Tiziana Montemurro
- Cell Factory, Unit of Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tatiana Jofra
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giorgia Comai
- Nephrology Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valentina Bertuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cristiana Lavazza
- Cell Factory, Unit of Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Mandelli
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariele Viganò
- Cell Factory, Unit of Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Budelli
- Cell Factory, Unit of Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
- Unit of Bologna, CNR Institute of Molecular Genetics, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valeria Giudice
- Azienda Ospedaliero-Universitaria di Bologna S. Orsola-Malpighi, Bologna, Italy
| | - Daria Sollazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Mario Arpinati
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Nephrology Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosaria Giordano
- Cell Factory, Unit of Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia Catani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Roberto Massimo Lemoli
- Azienda Ospedaliero-Universitaria di Bologna S. Orsola-Malpighi, Bologna, Italy
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
92
|
Knechtle SJ, Shaw JM, Hering BJ, Kraemer K, Madsen JC. Translational impact of NIH-funded nonhuman primate research in transplantation. Sci Transl Med 2019; 11:eaau0143. [PMID: 31292263 PMCID: PMC7197021 DOI: 10.1126/scitranslmed.aau0143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
Abstract
The National Institutes of Health (NIH) has long supported using nonhuman primate (NHP) models for research on kidney, pancreatic islet, heart, and lung transplantation. The primary purpose of this research has been to develop new treatments for down-modulating or preventing deleterious immune responses after transplantation in human patients. Here, we discuss NIH-funded NHP studies of immune cell depletion, costimulation blockade, regulatory cell therapy, desensitization, and mixed hematopoietic chimerism that either preceded clinical trials or prevented the human application of therapies that were toxic or ineffective.
Collapse
Affiliation(s)
- Stuart J Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Julia M Shaw
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristy Kraemer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
93
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
94
|
Tanimine N, Germana SK, Fan M, Hippen K, Blazar BR, Markmann JF, Turka LA, Priyadharshini B. Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell subsets. PLoS One 2019; 14:e0217761. [PMID: 31170216 PMCID: PMC6553739 DOI: 10.1371/journal.pone.0217761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/19/2019] [Indexed: 01/11/2023] Open
Abstract
Regulatory T cells (Tregs) are required for the maintenance of immune tolerance and adoptive Treg infusion therapy has become a promising approach to suppress immune responses in diseases such as autoimmunity and transplant rejection. However, one critical challenge of Treg therapy is the requirement of in vitro expansion of functionally stable Tregs while preventing either the contamination of T effector and/or emergence of unstable pathogenic Tregs. Recent studies showing distinct metabolic requirements of T effectors and Tregs suggest that manipulation of cell metabolism may be an attractive strategy to achieve this goal. Here we show that human thymically derived Tregs (tTregs) and in vitro induced Tregs (iTregs) from naive T cells engage glycolysis equivalently upon activation. However, inhibiting glucose metabolism via 2-deoxy-D-glucose (2DG) has distinct effects on each of these subsets. While 2DG treatment at the onset of activation significantly reduced the proliferation and expression of suppressive molecules such as ICOS and CTLA-4 in tTregs, its effect on FOXP3 expression was small. In contrast, 2DG treatment during iTreg induction modestly decreased their proliferation but strongly reduced both ICOS and FOXP3 expression. Importantly, both Treg subsets became insensitive to 2DG after day 3 post activation with little effect on either proliferation or FOXP3 expression while T conventional Th0 cells showed reduced proliferation under the same conditions. Moreover, 2DG treatment at day 3 did not impair the suppressive capabilities of Treg subsets. Collectively, these findings suggest that there is a distinct temporal requirement of glycolysis in each of the activated human Treg subsets and T conventional cells. Furthermore, 2DG treatment at the onset as a strategy to impair contaminating T effector cell proliferation is unfavorable for optimal Treg generation as well.
Collapse
Affiliation(s)
- Naoki Tanimine
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sharon K. Germana
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Martin Fan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Keli Hippen
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - James F. Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Laurence A. Turka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Rheos Medicines, Boston, Massachusetts, United States of America
| | - Bhavana Priyadharshini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Rheos Medicines, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
95
|
Abstract
With the advent of the concept of dominant tolerance and the subsequent discovery of CD4+ regulatory T cells expressing the transcription factor FOXP3 (Tregs), almost all productive as well as nonproductive immune responses can be compartmentalized to a binary of immune effector T cells and immune regulatory Treg populations. A beneficial immune response warrants the timely regulation by Tregs, whereas a nonproductive immune response indicates insufficient effector functions or an outright failure of tolerance. There are ample reports supporting role of Tregs in suppressing spontaneous auto-immune diseases as well as promoting immune evasion by cancers. To top up their importance, several non-immune functions like tissue homeostasis and regeneration are also being attributed to Tregs. Hence, after being in the center stage of basic and translational immunological research, Tregs are making the next jump towards clinical studies. Therefore, newer small molecules, biologics as well as adoptive cell therapy (ACT) approaches are being tested to augment or undermine Treg responses in the context of autoimmunity and cancer. In this brief review, we present the strategies to modulate Tregs towards a favorable clinical outcome.
Collapse
Affiliation(s)
- Amit Sharma
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS) , Pohang , Republic of Korea.,Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| |
Collapse
|
96
|
Harper IG, Gjorgjimajkoska O, Siu JHY, Parmar J, Mulder A, Claas FHJ, Hosgood SA, Nicholson ML, Motallebzadeh R, Pettigrew GJ. Prolongation of allograft survival by passenger donor regulatory T cells. Am J Transplant 2019; 19:1371-1379. [PMID: 30548563 PMCID: PMC6519070 DOI: 10.1111/ajt.15212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 01/25/2023]
Abstract
Tissue resident lymphocytes are present within many organs, and are presumably transferred at transplantation, but their impact on host immunity is unclear. Here, we examine whether transferred donor natural regulatory CD4 T cells (nT-regs) inhibit host alloimmunity and prolong allograft survival. Transfer of donor-strain lymphocytes was first assessed by identifying circulating donor-derived CD4 T cells in 21 consecutive human lung transplant recipients, with 3 patterns of chimerism apparent: transient, intermediate, and persistent (detectable for up to 6 weeks, 6 months, and beyond 1 year, respectively). The potential for transfer of donor nT-regs was then confirmed by analysis of leukocyte filters recovered from ex vivo normothermic perfusion circuits of human kidneys retrieved for transplantation. Finally, in a murine model of cardiac allograft vasculopathy, depletion of donor CD4 nT-regs before organ recovery resulted in markedly accelerated heart allograft rejection and augmented host effector antibody responses. Conversely, adoptive transfer or purified donor-strain nT-regs inhibited host humoral immunity and prolonged allograft survival, and more effectively so than following administration of recipient nT-regs. In summary, following transplantation, passenger donor-strain nT-regs can inhibit host adaptive immune responses and prolong allograft survival. Isolated donor-derived nT-regs may hold potential as a cellular therapy to improve transplant outcomes.
Collapse
Affiliation(s)
- Ines G. Harper
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | - Jacqueline H. Y. Siu
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Jasvir Parmar
- Department of Cardiothoracic TransplantationPapworth HospitalCambridgeUK
| | - Arend Mulder
- Department of Immunohaematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Frans H. J. Claas
- Department of Immunohaematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Sarah A. Hosgood
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Michael L. Nicholson
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Reza Motallebzadeh
- Centre for Surgical Innovation, Organ Repair & TransplantationUniversity College LondonLondonUK
- Centre for Transplantation, Department of Renal MedicineUniversity College LondonLondonUK
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Gavin J. Pettigrew
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
97
|
Gao J, Gu J, Pan X, Gan X, Ju Z, Zhang S, Xia Y, Lu L, Wang X. Blockade of miR-142-3p promotes anti-apoptotic and suppressive function by inducing KDM6A-mediated H3K27me3 demethylation in induced regulatory T cells. Cell Death Dis 2019; 10:332. [PMID: 30988391 PMCID: PMC6465300 DOI: 10.1038/s41419-019-1565-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
In vitro induced human regulatory T cells (iTregs) have in vivo therapeutic utility. MicroRNAs (miRNAs) are a family of approximately 22-nucleotide non-coding RNAs that are processed from longer precursors by the RNases Drosha and Dicer. miRNAs regulate post-transcriptional protein expression through messenger RNA destabilization or translational silencing; miR-142-3p regulates natural Treg function through autophagy. We hypothesized that this miRNA may also have an iTreg regulation function. Antagomir-mediated knockdown of miR-142-3p improved Foxp3 (forkhead box P3) expression, regulatory function, cytokine expression, and apoptosis of iTregs in vitro, with or without inflammatory cytokine stimulation. miR-142-3p knockdown increased autophagy-related protein 16-1-mediated autophagy. Target prediction and luciferase assay results indicated that miR-142-3p binds directly to lysine demethylase 6A (KDM6A), which resulted in demethylation of H3K27me3 and in turn upregulated expression of the anti-apoptotic protein Bcl-2. Based on these results, we propose a novel strategy that uses knockdown of miR-142-3p to enhance anti-apoptotic ability and function of iTregs by increasing KDM6A and Bcl-2 expression. This approach might be used as a treatment to control established chronic immune-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ji Gao
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jian Gu
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiongxiong Pan
- Department of Anesthesiology, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiaojie Gan
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zheng Ju
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Shaopeng Zhang
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yongxiang Xia
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Ling Lu
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Xuehao Wang
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
98
|
Zeng Q, Qiu F, Chen Y, Liu C, Liu H, Liang CL, Zhang Q, Dai Z. Shikonin Prolongs Allograft Survival via Induction of CD4 +FoxP3 + Regulatory T Cells. Front Immunol 2019; 10:652. [PMID: 30988670 PMCID: PMC6451963 DOI: 10.3389/fimmu.2019.00652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/11/2019] [Indexed: 01/16/2023] Open
Abstract
A transplanted organ is usually rejected without any major immunosuppressive treatment because of vigorous alloimmune responsiveness. However, continuous global immunosuppression may cause severe side effects, including nephrotoxicity, tumors, and infections. Therefore, it is necessary to seek novel immunosuppressive agents, especially natural ingredients that may provide sufficient efficacy in immunosuppression with minimal side effects. Shikonin is a bioactive naphthoquinone pigment, an ingredient originally extracted from the root of Lithospermum erythrorhizon. Previous studies have shown that shikonin regulates immunity and exerts anti-inflammatory effects. In particular, it can ameliorate arthritis in animal models. However, it is unclear whether shikonin inhibits alloimmunity or allograft rejection. In this study and for the first time, we demonstrated that shikonin significantly prolonged the survival of skin allografts in wild-type mice. Shikonin increased the frequencies of CD4+Foxp3+ regulatory T cells (Tregs) post-transplantation and induced CD4+Foxp3+ Tregs in vitro as well. Importantly, depleting the Tregs abrogated the extension of skin allograft survival induced by shikonin. It also decreased the frequencies of CD8+CD44highCD62Llow effector T cells and CD11c+CD80+/CD11c+CD86+ mature DCs after transplantation. Moreover, we found that shikonin inhibited the proliferation of T cells in vitro and suppressed their mTOR signaling. It also reduced the gene expression of pro-inflammatory cytokines, including IFNγ, IL-6, TNFα, and IL-17A, while increasing the gene expression of anti-inflammatory mediators IL-10, TGF-β1, and indoleamine-2, 3-dioxygenase (IDO) in skin allografts. Further, shikonin downregulated IDO protein expression in skin allografts and DCs in vitro. Taken together, shikonin inhibits allograft rejection via upregulating CD4+Foxp3+ Tregs. Thus, shikonin is a novel immunosuppressant that could be potentially used in clinical transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenhua Dai
- Section of Immunology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
99
|
Akbarpour M, Bharat A. Lung Injury and Loss of Regulatory T Cells Primes for Lung-Restricted Autoimmunity. Crit Rev Immunol 2019; 37:23-37. [PMID: 29431077 DOI: 10.1615/critrevimmunol.2017024944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung transplantation is a life-saving therapy for several end-stage lung diseases. However, lung allografts suffer from the lowest survival rate predominantly due to rejection. The pathogenesis of alloimmunity and its role in allograft rejection has been extensively studied and multiple approaches have been described to induce tolerance. However, in the context of lung transplantation, dysregulation of mechanisms, which maintain tolerance against self-antigens, can lead to lung-restricted autoimmunity, which has been recently identified to drive the immunopathogenesis of allograft rejection. Indeed, both preexisting as well as de novo lung-restricted autoimmunity can play a major role in the development of lung allograft rejection. The three most widely studied lung-restricted self-antigens include collagen type I, collagen type V, and k-alpha 1 tubulin. In this review, we discuss the role of lung-restricted autoimmunity in the development of both early as well as late lung allograft rejection and recent literature providing insight into the development of lung-restricted autoimmunity through the dysfunction of immune mechanisms which maintain peripheral tolerance.
Collapse
Affiliation(s)
- Mahzad Akbarpour
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
100
|
Mohr A, Atif M, Balderas R, Gorochov G, Miyara M. The role of FOXP3 + regulatory T cells in human autoimmune and inflammatory diseases. Clin Exp Immunol 2019; 197:24-35. [PMID: 30830965 DOI: 10.1111/cei.13288] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
CD4+ regulatory T cells (Treg ) expressing the forkhead box protein 3 (FOXP3) transcription factor (Tregs ) are instrumental for the prevention of autoimmune diseases. There is increasing evidence that the human T regulatory population is highly heterogeneous in phenotype and function. Numerous studies conducted in human autoimmune diseases have shown that Treg cells are impaired either in their suppressive function, in number, or both. However, the contribution of the FOXP3+ Treg subpopulations to the development of autoimmunity has not been delineated in detail. Rare genetic disorders that involve deficits in Treg function can be studied to develop a global idea of the impact of partial or complete deficiency in a specific molecular mechanism involved in Treg function. In patients with reduced Treg numbers (but no functional deficiency), the expansion of autologous Treg cells could be a suitable therapeutic approach: either infusion of in-vitro autologous expanded cells, infusion of interleukin (IL)-2/anti-IL-2 complex, or both. Treg biology-based therapies may not be suitable in patients with deficits of Treg function, unless their deficit can be corrected in vivo/in vitro. Finally, it is critical to consider the appropriate stage of autoimmune diseases at which administration of Treg cellular therapy can be most effective. We discuss conflicting data regarding whether Treg cells are more effectual at preventing the initiation of autoimmunity, ameliorating disease progression or curing autoimmunity itself.
Collapse
Affiliation(s)
- A Mohr
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France
| | - M Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France
| | | | - G Gorochov
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France.,Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris, France (Cimi-Paris), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - M Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (Cimi-Paris), Paris, France.,Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris, France (Cimi-Paris), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|