51
|
Singh A, Lelis F, Braig S, Schäfer I, Hartl D, Rieber N. Differential Regulation of Myeloid-Derived Suppressor Cells by Candida Species. Front Microbiol 2016; 7:1624. [PMID: 27790210 PMCID: PMC5061774 DOI: 10.3389/fmicb.2016.01624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterized by their ability to suppress T-cell responses. Recently, we demonstrated that the human-pathogenic fungi Candida albicans and Aspergillus fumigatus induced a distinct subset of neutrophilic MDSCs. To dissect Candida-mediated MDSC induction in more depth, we studied the relative efficacy of different pathogenic non-albicans Candida species to induce and functionally modulate neutrophilic MDSCs, including C. glabrata, C. parapsilosis, C. dubliniensis, and C. krusei. Our data demonstrate that the extent of MDSC generation is largely dependent on the Candida species with MDSCs induced by C. krusei and C. glabrata showing a higher suppressive activity compared to MDSCs induced by C. albicans. In summary, these studies show that fungal MDSC induction is differentially regulated at the species level and differentially affects effector T-cell responses.
Collapse
Affiliation(s)
- Anurag Singh
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Felipe Lelis
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Stefanie Braig
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Iris Schäfer
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Dominik Hartl
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen Tübingen, Germany
| | - Nikolaus Rieber
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of TübingenTübingen, Germany; Department of Pediatrics, Kinderklinik München Schwabing, StKM GmbH und Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany
| |
Collapse
|
52
|
Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework. Infect Immun 2016; 84:2724-39. [PMID: 27430274 DOI: 10.1128/iai.00469-16] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses.
Collapse
|
53
|
Liu F, Fan X, Auclair S, Ferguson M, Sun J, Soong L, Hou W, Redfield RR, Birx DL, Ratto-Kim S, Robb ML, Kim JH, Michael NL, Hu H. Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection. PLoS Pathog 2016; 12:e1005663. [PMID: 27280548 PMCID: PMC4900544 DOI: 10.1371/journal.ppat.1005663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022] Open
Abstract
Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. HIV infection is closely associated with enhanced host susceptibility to various opportunistic infections (OIs), among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is an early and common manifestation. Even in the era of effective ART, mucosal candidiasis is still a clinically relevant presentation in HIV-infected patients. The underlying mechanisms are not well defined. CD4-mediated immunity is the major host defense mechanism against C. albicans. We here investigated a group of ART naïve, HIV-infected human subjects and examined longitudinally the impact of HIV on C. albicans-specific CD4 T-cell immunity as compared to CD4 T-cell immunity specific for CMV, another opportunistic pathogen that usually does not cause active disease in early HIV infection. We found that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo and were preferentially depleted in progressive HIV-infected individuals as compared to CMV-specific CD4 T cells. Of importance, we also found that in these HIV-infected subjects C. albicans-specific CD4 T cell response manifested a sequential dysfunction with earlier impairment of Th17, but not Th1, functions. Our study suggests an immunological basis that helps explain the earlier and more common onsets of mucosal candidiasis in progressive HIV-infected patients.
Collapse
Affiliation(s)
- Fengliang Liu
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiuzhen Fan
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sarah Auclair
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Monique Ferguson
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Robert R. Redfield
- Institute of Human Virology and Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah L. Birx
- U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Silvia Ratto-Kim
- U.S. Military HIV Research Program, Henry M. Jackson Foundation, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Henry M. Jackson Foundation, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea; U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Haitao Hu
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
54
|
Whibley N, Tritto E, Traggiai E, Kolbinger F, Moulin P, Brees D, Coleman BM, Mamo AJ, Garg AV, Jaycox JR, Siebenlist U, Kammüller M, Gaffen SL. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis. J Leukoc Biol 2016; 99:1153-64. [PMID: 26729813 PMCID: PMC4952011 DOI: 10.1189/jlb.4a0915-428r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency.
Collapse
Affiliation(s)
- Natasha Whibley
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elaine Tritto
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | | | - Frank Kolbinger
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Pierre Moulin
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Bianca M Coleman
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna J Mamo
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abhishek V Garg
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jillian R Jaycox
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ulrich Siebenlist
- National Institute of Allergy and Infectious Disease, Laboratory of Molecular Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Basel, Switzerland; and
| | - Sarah L Gaffen
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
55
|
Effect of Nitric Oxide on the Antifungal Activity of Oxidative Stress and Azoles Against Candida albicans. Indian J Microbiol 2016; 56:214-218. [PMID: 27570314 DOI: 10.1007/s12088-016-0580-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles.
Collapse
|
56
|
Gaffen SL, Herzberg MC, Taubman MA, Van Dyke TE. Recent advances in host defense mechanisms/therapies against oral infectious diseases and consequences for systemic disease. Adv Dent Res 2016; 26:30-7. [PMID: 24736702 DOI: 10.1177/0022034514525778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate and adaptive immune systems are both crucial to oral disease mechanisms and their impact on systemic health status. Greater understanding of these interrelationships will yield opportunities to identify new therapeutic targets to modulate disease processes and/or increase host resistance to infectious or inflammatory insult. The topics addressed reflect the latest advances in our knowledge of the role of innate and adaptive immune systems and inflammatory mechanisms in infectious diseases affecting the oral cavity, including periodontitis and candidiasis. In addition, several potential links with systemic inflammatory conditions, such as cardiovascular disease, are explored. The findings elucidate some of the defense mechanisms utilized by host tissues, including the role of IL-17 in providing immunity to oral candidiasis, the antimicrobial defense of mucosal epithelial cells, and the pro-resolution effects of the natural inflammatory regulators, proresolvins and lipoxins. They also describe the role of immune cells in mediating pathologic bone resorption in periodontal disease. These insights highlight the potential for therapeutic benefit of immunomodulatory interventions that bolster or modulate host defense mechanisms in both oral and systemic disease. Among the promising new therapeutic approaches discussed here are epithelial cell gene therapy, passive immunization against immune cell targets, and the use of proresolvin agents.
Collapse
Affiliation(s)
- S L Gaffen
- Department of Medicine, University of Pittsburgh, Division of Rheumatology & Clinical Immunology, S702 BST, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
57
|
Teoh F, Pavelka N. How Chemotherapy Increases the Risk of Systemic Candidiasis in Cancer Patients: Current Paradigm and Future Directions. Pathogens 2016; 5:pathogens5010006. [PMID: 26784236 PMCID: PMC4810127 DOI: 10.3390/pathogens5010006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is a fungal commensal and a major colonizer of the human skin, as well as of the gastrointestinal and genitourinary tracts. It is also one of the leading causes of opportunistic microbial infections in cancer patients, often presenting in a life-threatening, systemic form. Increased susceptibility to such infections in cancer patients is attributed primarily to chemotherapy-induced depression of innate immune cells and weakened epithelial barriers, which are the body’s first-line defenses against fungal infections. Moreover, classical chemotherapeutic agents also have a detrimental effect on components of the adaptive immune system, which further play important roles in the antifungal response. In this review, we discuss the current paradigm regarding the mechanisms behind the increased risk of systemic candidiasis in cancer patients. We also highlight some recent findings, which suggest that chemotherapy may have more extensive effects beyond the human host, in particular towards C. albicans itself and the bacterial microbiota. The extent to which these additional effects contribute towards the development of candidiasis in chemotherapy-treated patients remains to be investigated.
Collapse
Affiliation(s)
- Flora Teoh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Norman Pavelka
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Building, Singapore 138648, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
58
|
Berenji F, Zabolinejad N, Badiei Z, Kakhi S, Andalib Aliabadi Z, Ganjbakhsh M. Oropharyngeal candidiasis in children with lymphohematopoietic malignancies in Mashhad, Iran. Curr Med Mycol 2015; 1:33-36. [PMID: 28681002 PMCID: PMC5490279 DOI: 10.18869/acadpub.cmm.1.4.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background and Purpose: Over the past years, the role of fungi as a cause of nosocomial infections in hospitalized patients has been accentuated. Candida species constitute an important group of fungi causing diseases in immunocompromised patients. Oropharyngeal candidiasis continues to be a prevalent infection in immunodeficient patients. In this study, we aimed to determine the incidence of oropharyngeal candidiasis in children with lymphohematopoietic malignancies. Materials and Methods: In total, 102 patients with lymphohematopoietic malignancies and 50 healthy controls were examined in terms of Candida infections via direct sampling of the oropharyngeal cavity. Fresh smears were prepared with 10% potassium hydroxide and Gram staining was carried out. Subsequently, the obtained specimens were cultured on Sabouraud dextrose agar for further analysis. Results: The most common Candida species were Candida albicans (31%), other non-C. albicans species (14.7%), C. glabrata (6.8%), and C. krusei (0.98%) in the case group, while in the control group, other non-C. albicans species (10%) and C. albicans (8%) were the most common species. Conclusion: In the present study, Candida species were the most common fungal pathogens in pediatric cancer patients; therefore, efforts should be made to prevent fungemia and fungal pneumonia. Also, non-C. albicans species must be considered as a new risk factor for pediatric cancer patients.
Collapse
Affiliation(s)
- F Berenji
- Professor of Parasitology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - N Zabolinejad
- Associate Professor of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Z Badiei
- Associate Professor of Pediatric Hematology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Kakhi
- MD, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Z Andalib Aliabadi
- MSc of Parasitology School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Ganjbakhsh
- MSc Student of Mycology School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
59
|
Development and In Vivo Evaluation of a Novel Histatin-5 Bioadhesive Hydrogel Formulation against Oral Candidiasis. Antimicrob Agents Chemother 2015; 60:881-9. [PMID: 26596951 DOI: 10.1128/aac.02624-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/18/2015] [Indexed: 01/09/2023] Open
Abstract
Oral candidiasis (OC), caused by the fungal pathogen Candida albicans, is the most common opportunistic infection in HIV(+) individuals and other immunocompromised populations. The dramatic increase in resistance to common antifungals has emphasized the importance of identifying unconventional therapeutic options. Antimicrobial peptides have emerged as promising candidates for therapeutic intervention due to their broad antimicrobial properties and lack of toxicity. Histatin-5 (Hst-5) specifically has exhibited potent anticandidal activity indicating its potential as an antifungal agent. To that end, the goal of this study was to design a biocompatible hydrogel delivery system for Hst-5 application. The bioadhesive hydroxypropyl methylcellulose (HPMC) hydrogel formulation was developed for topical oral application against OC. The new formulation was evaluated in vitro for gel viscosity, Hst-5 release rate from the gel, and killing potency and, more importantly, was tested in vivo in our mouse model of OC. The findings demonstrated a controlled sustained release of Hst-5 from the polymer and rapid killing ability. Based on viable C. albicans counts recovered from tongues of treated and untreated mice, three daily applications of the formulation beginning 1 day postinfection with C. albicans were effective in protection against development of OC. Interestingly, in some cases, Hst-5 was able to clear existing lesions as well as associated tissue inflammation. These findings were confirmed by histopathology analysis of tongue tissue. Coupled with the lack of toxicity as well as anti-inflammatory and wound-healing properties of Hst-5, the findings from this study support the progression and commercial feasibility of using this compound as a novel therapeutic agent.
Collapse
|
60
|
Simpson-Abelson MR, Childs EE, Ferreira MC, Bishu S, Conti HR, Gaffen SL. C/EBPβ Promotes Immunity to Oral Candidiasis through Regulation of β-Defensins. PLoS One 2015; 10:e0136538. [PMID: 26317211 PMCID: PMC4552893 DOI: 10.1371/journal.pone.0136538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022] Open
Abstract
Humans or mice subjected to immunosuppression, such as corticosteroids or anti-cytokine biologic therapies, are susceptible to mucosal infections by the commensal fungus Candida albicans. Recently it has become evident that the Th17/IL-17 axis is essential for immunity to candidiasis, but the downstream events that control immunity to this fungus are poorly understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) transcription factor is important for signaling by multiple inflammatory stimuli, including IL-17. C/EBPβ is regulated in a variety of ways by IL-17, and controls several downstream IL-17 target genes. However, the role of C/EBPβ in vivo is poorly understood, in part because C/EBPβ-deficient mice are challenging to breed and work with. In this study, we sought to understand the role of C/EBPβ in the context of an IL-17-dependent immune response, using C. albicans infection as a model system. Confirming prior findings, we found that C/EBPβ is required for immunity to systemic candidiasis. In contrast, C/EBPβ(-/-) mice were resistant to oropharyngeal candidiasis (OPC), in a manner indistinguishable from immunocompetent WT mice. However, C/EBPβ(-/-) mice experienced more severe OPC than WT mice in the context of cortisone-induced immunosuppression. Expression of the antimicrobial peptide β-defensin (BD)-3 correlated strongly with susceptibility in C/EBPβ(-/-) mice, but no other IL-17-dependent genes were associated with susceptibility. Therefore, C/EBPβ contributes to immunity to mucosal candidiasis during cortisone immunosuppression in a manner linked to β-defensin 3 expression, but is apparently dispensable for the IL-17-dependent response.
Collapse
Affiliation(s)
- Michelle R. Simpson-Abelson
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Erin E. Childs
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - M. Carolina Ferreira
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Shrinivas Bishu
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Heather R. Conti
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sarah L. Gaffen
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
61
|
Whibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine 2015; 76:42-52. [PMID: 26276374 DOI: 10.1016/j.cyto.2015.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.
Collapse
Affiliation(s)
- Natasha Whibley
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Rheumatology & Clinical Immunology, BST S702, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
62
|
Wibawa T, Praseno, Aman AT. Virulence of Candida albicans isolated from HIV infected and non infected individuals. SPRINGERPLUS 2015; 4:408. [PMID: 26266079 PMCID: PMC4530540 DOI: 10.1186/s40064-015-1215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 08/03/2015] [Indexed: 11/10/2022]
Abstract
Candida sp contributes 33.1 % of fungal infections among HIV patients. Among the species of the genus Candida, Candida albicans is the most frequently isolated from HIV patients. This study aimed to analyze putative virulence factors of C. albicans isolated from oral cavities of HIV infected patients and healthy individuals. Twenty isolates from HIV infected patients and fourteen from healthy individuals were analyzed for phenotypic switching, cell growth rate, hyphae formation, hemolytic activity and biofilm formation characteristics. The frequency of phenotypic switching was low in both groups. The cell growth rate of C. albicans from HIV infected patients were significantly higher than those from healthy individuals (p < 0.001). After 48 h incubation, the concentration of C. albicans isolated from HIV infected patients was 8.6 × 106 cells/ml while the concentration of C. albicans isolated from healthy individuals was 7.8 × 106 cells/ml. After 72 h incubation, the concentration of C. albicans isolated from HIV infected patients was 9.5 × 106 cells/ml while the concentration of C. albicans isolated from healthy individuals was 8.2 × 106 cells/ml. In contrast, the hemolytic activity of C. albicans isolated from healthy individuals were significantly higher compared to those from HIV infected patients (p < 0.001) at both aerobic (6 vs. 3.5 mm) and anaerobic (3.8 vs. 1.3 mm) conditions. The percentages of hyphae forming cells were higher in C. albicans collected from HIV infected patients (27.5 %) compared to the healthy individual group (14.7 %). However, this trend was not statistically significant (p = 0.1). Candida albicans isolated from HIV infected patients have similar ability to develop biofilms compared to those from healthy individuals. (OR = 4.2; 95 % CI 0.724–26.559). The virulence factors of C. albicans isolated from HIV infected patients were not significantly different from those of healthy individuals. The results add new insights into the contribution of virulence factors in the pathogenesis of C. albicans infection in HIV infected patients.
Collapse
Affiliation(s)
- Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Depok, Sleman, Yogyakarta, 55281 Indonesia
| | - Praseno
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Depok, Sleman, Yogyakarta, 55281 Indonesia
| | - Abu Tholib Aman
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Depok, Sleman, Yogyakarta, 55281 Indonesia
| |
Collapse
|
63
|
Conti HR, Gaffen SL. IL-17-Mediated Immunity to the Opportunistic Fungal Pathogen Candida albicans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:780-8. [PMID: 26188072 PMCID: PMC4507294 DOI: 10.4049/jimmunol.1500909] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal microbe of the human oral cavity, gastrointestinal tract, and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of proinflammatory cytokines, including IL-6, neutrophil-recruiting chemokines (e.g., CXCL1 and CXCL5), and antimicrobial peptides (e.g., defensins), which act in concert to limit fungal overgrowth. This review focuses on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections.
Collapse
Affiliation(s)
- Heather R Conti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
64
|
Huppler AR, Verma AH, Conti HR, Gaffen SL. Neutrophils Do Not Express IL-17A in the Context of Acute Oropharyngeal Candidiasis. Pathogens 2015. [PMID: 26213975 PMCID: PMC4584272 DOI: 10.3390/pathogens4030559] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IL-17 protects against pathogens by acting on nonhematopoietic cells to induce neutrophil recruitment through upregulation of chemokines and G-CSF. IL-17- and Th17-deficient humans and mice are susceptible to mucosal Candida albicans infections, linked to impaired neutrophil responses. IL-17 production is traditionally associated with CD4+ Th17 cells. However, IL-17 is also expressed during innate responses to facilitate rapid pathogen clearance. Innate IL-17-expressing cells include various lymphocyte-type subsets, including ILC3, NKT, γδ-T and “natural” Th17 (nTh17) cells. Some reports suggest that neutrophils can express IL-17 during fungal infections. Here, we asked whether neutrophils serve as a source of IL-17 during acute oropharyngeal candidiasis (OPC) using an IL-17A fate-tracking reporter mouse. Mice were subjected to OPC for two days, and oral tissue was analyzed by flow cytometry. IL-17A was expressed by γδ-T cells and TCRβ+ natural Th17 (nTh17) cells, as recently reported. Although infiltrating neutrophils were recruited to the tongue following infection, they did not express the IL-17A reporter. Moreover, neutrophil-depleted mice exhibited normal transcription of both Il17a and downstream IL-17-dependent gene targets after Candida challenge. Thus, in acute OPC, neutrophils are not a measurable source of IL-17 production, nor are they necessary to trigger IL-17-dependent gene expression, although they are essential for ultimate pathogen control.
Collapse
Affiliation(s)
- Anna R Huppler
- Children's Hospital of Pittsburgh of UPMC, Department of Pediatrics, Pittsburgh, PA 15224, USA.
- Medical College of Wisconsin, Department of Pediatrics, Division of Infectious Diseases, Milwaukee, WI 53201, USA.
| | - Akash H Verma
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, BST S702, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Heather R Conti
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, BST S702, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | - Sarah L Gaffen
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Pittsburgh, BST S702, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
65
|
de Repentigny L, Goupil M, Jolicoeur P. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene. Pathogens 2015; 4:406-21. [PMID: 26110288 PMCID: PMC4493482 DOI: 10.3390/pathogens4020406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023] Open
Abstract
IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC). Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Mathieu Goupil
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110, avenue des Pins Ouest, Montreal, PQ H2W 1R7, Canada.
| |
Collapse
|
66
|
Oouchi M, Hasebe A, Hata H, Segawa T, Yamazaki Y, Yoshida Y, Kitagawa Y, Shibata KI. Age-related alteration of expression and function of TLRs and NK activity in oral candidiasis. Oral Dis 2015; 21:645-51. [PMID: 25704085 DOI: 10.1111/odi.12329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/09/2015] [Accepted: 02/14/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Roles of aging or immune responses mediated by Toll-like receptors and natural killer cell in the onset or progression of human candidiasis remain unclear. This study was designed to elucidate the roles using peripheral blood mononuclear cells from healthy donors and patients with oral candidiasis. SUBJECTS AND METHODS Subjects tested were healthy volunteers and patients who visited Dental Clinical Division of Hokkaido University Hospital. The patients with oral candidiasis included 39 individuals (25-89 years of age) with major complaints on pain in oral mucosa and/or dysgeusia. Healthy volunteers include students (25-35 years of age) and teaching staffs (50-65 years of age) of Hokkaido University Graduate School of Dental Medicine. RESULTS Functions of Toll-like receptors 2 and 4 were downregulated significantly and the natural killer activity was slightly, but not significantly downregulated in aged healthy volunteers compared with healthy young volunteers. Functions of Toll-like receptors 2 and 4 and the natural killer activity were significantly downregulated in patients with oral candidiasis compared with healthy volunteers. CONCLUSION Downregulation of functions of Toll-like receptors 2 and 4 as well as natural killer activity is suggested to be associated with the onset or progression of oral candidiasis in human.
Collapse
Affiliation(s)
- M Oouchi
- Division of Oral Diagnosis, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Japan.,Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Japan
| | - A Hasebe
- Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Japan
| | - H Hata
- Division of Oral Diagnosis, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Japan
| | - T Segawa
- Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Japan
| | - Y Yamazaki
- Department of Gerondontology, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Japan
| | - Y Yoshida
- Department of Biomaterials and Bioengineering, Division of Oral Health Sciences, Hokkaido University Graduate School of Dental Medicine, Japan
| | - Y Kitagawa
- Division of Oral Diagnosis, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Japan
| | - K-I Shibata
- Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Japan
| |
Collapse
|
67
|
Conti HR, Whibley N, Coleman BM, Garg AV, Jaycox JR, Gaffen SL. Signaling through IL-17C/IL-17RE is dispensable for immunity to systemic, oral and cutaneous candidiasis. PLoS One 2015; 10:e0122807. [PMID: 25849644 PMCID: PMC4388490 DOI: 10.1371/journal.pone.0122807] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/13/2015] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.
Collapse
Affiliation(s)
- Heather R. Conti
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Natasha Whibley
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Bianca M. Coleman
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Abhishek V. Garg
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| | - Jillian R. Jaycox
- Carnegie Mellon University, Dept. of Biological Sciences, Pittsburgh, PA, United States of America
| | - Sarah L. Gaffen
- University of Pittsburgh, Department of Medicine, Division of Rheumatology & Clinical Immunology, Pittsburgh, PA, United States of America
| |
Collapse
|
68
|
Affiliation(s)
- Eric Kong
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland, Baltimore, Maryland, United States of America
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
69
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
70
|
Khan MA, Aljarbou AN, Khan A, Younus H. Liposomal thymoquinone effectively combats fluconazole-resistant Candida albicans in a murine model. Int J Biol Macromol 2015; 76:203-8. [PMID: 25709021 DOI: 10.1016/j.ijbiomac.2015.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 01/10/2023]
Abstract
The aim of the present study was to develop a novel liposomal formulation of thymoquinone (TQ) to treat fluconazole-susceptible and -resistant Candida albicans (C. albicans) infections. The liposomal preparation of TQ (Lip-TQ) was used against a fluconazole-susceptible or -resistant isolate of C. albicans. Various doses of fluconazole (0, 5, 10, 20 and 40 mg/kg) or free TQ or Lip-TQ (0, 1, 2 and 5mg/kg) were used to treat C. albicans infected mice. Mice were observed for 40 days post C. albicans infection, and their kidneys were assessed for the fungal load. Fluconazole showed anti-fungal activity against the drug-susceptible, but not against the -resistant isolate of C. albicans. Free TQ showed its activity against both fluconazole-susceptible or -resistant C. albicans, however, Lip-TQ was found to be the most effective and imparted ∼ 100% and ∼ 90% survival of mice infected with fluconazole-susceptible and -resistant isolates of C. albicans, respectively. Mice treated with Lip-TQ showed highly reduced severity of infection in their tissue homogenates. Therefore, Lip-TQ may effectively be used in the treatment of C. albicans infections, including those which are not responding to fluconazole.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ahmad N Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
71
|
Abstract
Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.
Collapse
Affiliation(s)
- Jonathan P Richardson
- a Mucosal and Salivary Biology Division ; Dental Institute; King's College London ; London , UK
| | | |
Collapse
|
72
|
Clinical implications of oral candidiasis: host tissue damage and disseminated bacterial disease. Infect Immun 2014; 83:604-13. [PMID: 25422264 DOI: 10.1128/iai.02843-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The clinical significance of polymicrobial interactions, particularly those between commensal species with high pathogenic potential, remains largely understudied. Although the dimorphic fungal species Candida albicans and the bacterium Staphylococcus aureus are common cocolonizers of humans, they are considered leading opportunistic pathogens. Oral candidiasis specifically, characterized by hyphal invasion of oral mucosal tissue, is the most common opportunistic infection in HIV(+) and immunocompromised individuals. In this study, building on our previous findings, a mouse model was developed to investigate whether the onset of oral candidiasis predisposes the host to secondary staphylococcal infection. The findings demonstrated that in mice with oral candidiasis, subsequent exposure to S. aureus resulted in systemic bacterial infection with high morbidity and mortality. Histopathology and scanning electron microscopy of tongue tissue from moribund animals revealed massive C. albicans hyphal invasion coupled with S. aureus deep tissue infiltration. The crucial role of hyphae in the process was demonstrated using a non-hypha-producing and a noninvasive hypha-producing mutant strains of C. albicans. Further, in contrast to previous findings, S. aureus dissemination was aided but not contingent upon the presence of the Als3p hypha-specific adhesion. Importantly, impeding development of mucosal C. albicans infection by administering antifungal fluconazole therapy protected the animals from systemic bacterial disease. The combined findings from this study demonstrate that oral candidiasis may constitute a risk factor for disseminated bacterial disease warranting awareness in terms of therapeutic management of immunocompromised individuals.
Collapse
|
73
|
Conti HR, Peterson AC, Brane L, Huppler AR, Hernández-Santos N, Whibley N, Garg AV, Simpson-Abelson MR, Gibson GA, Mamo AJ, Osborne LC, Bishu S, Ghilardi N, Siebenlist U, Watkins SC, Artis D, McGeachy MJ, Gaffen SL. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. ACTA ACUST UNITED AC 2014; 211:2075-84. [PMID: 25200028 PMCID: PMC4172215 DOI: 10.1084/jem.20130877] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conti et al. show that IL-17 is produced by tongue-resident populations of γδ T cells and nTh17 cells in response to oropharyngeal candidiasis in mice. Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα−/−, and Rag1−/− mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1–2 d by tongue-resident populations of γδ T cells and CD3+CD4+CD44hiTCRβ+CCR6+ natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-β−/− and TCR-δ−/− mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-β clonal diversity, and was absent in Rag1−/−, IL-7Rα−/−, and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens.
Collapse
Affiliation(s)
- Heather R Conti
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Alanna C Peterson
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lucas Brane
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Anna R Huppler
- Department of Infectious Diseases, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224
| | - Nydiaris Hernández-Santos
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Natasha Whibley
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michelle R Simpson-Abelson
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Gregory A Gibson
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Anna J Mamo
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lisa C Osborne
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shrinivas Bishu
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Simon C Watkins
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261 Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261 Division of Rheumatology and Clinical Immunology, and Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Department of Immunology, and Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
74
|
Promsong A, Chung WO, Satthakarn S, Nittayananta W. Ellagic acid modulates the expression of oral innate immune mediators: potential role in mucosal protection. J Oral Pathol Med 2014; 44:214-21. [DOI: 10.1111/jop.12223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Aornrutai Promsong
- Department of Biomedical Sciences; Faculty of Medicine; Prince of Songkla University; Hat Yai, Songkhla Thailand
| | - Whasun Oh Chung
- Department of Oral Health Sciences; University of Washington; Seattle WA USA
| | - Surada Satthakarn
- Department of Biomedical Sciences; Faculty of Medicine; Prince of Songkla University; Hat Yai, Songkhla Thailand
| | - Wipawee Nittayananta
- Excellent Research Laboratory; Phytomedicine and Pharmaceutical Biotechnology Excellence Center; Hat Yai, Songkhla Thailand
- Natural Product Research Center of Excellence; Faculty of Science; Prince of Songkla University; Hat Yai, Songkhla Thailand
- Graduate School; Prince of Songkla University; Hat Yai Songkhla Thailand
| |
Collapse
|
75
|
Li DD, Deng L, Hu GH, Zhao LX, Hu DD, Jiang YY, Wang Y. Using Galleria mellonella-Candida albicans infection model to evaluate antifungal agents. Biol Pharm Bull 2014; 36:1482-7. [PMID: 23995660 DOI: 10.1248/bpb.b13-00270] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Candida albicans is the most common fungal pathogen. Galleria mellonella is widely used as an infection model host. Nevertheless, the G. mellonella-C. albicans infection model had not been optimized for drug evaluation before this study. In this work, we revealed that 5 × 10(5) colony forming unit (CFU)/larva was a suitable inoculum to optimize the G. mellonella-C. albicans infection model in order to evaluate antifungal agents. Using our optimized model, the antifungal effect of fluconazole, amphotericin B and flucytosine, and the synergy between amphotericin B and flucytosine were successfully verified. Thus, this study provides a rapid, inexpensive and reliable way to evaluate antifungals in vivo.
Collapse
Affiliation(s)
- De-Dong Li
- New Drug Research and Development Center, School of Pharmacy, Second Military Medical University
| | | | | | | | | | | | | |
Collapse
|
76
|
Semlali A, Killer K, Alanazi H, Chmielewski W, Rouabhia M. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression. BMC Microbiol 2014; 14:61. [PMID: 24618025 PMCID: PMC3995653 DOI: 10.1186/1471-2180-14-61] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/07/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Smokers are more prone to oral infections than are non-smokers. Cigarette smoke reaches the host cells but also microorganisms present in the oral cavity. The contact between cigarette smoke and oral bacteria promotes such oral diseases as periodontitis. Cigarette smoke can also modulate C. albicans activities that promote oral candidiasis. The goal of this study was to investigate the effect of cigarette smoke condensate on C. albicans adhesion, growth, and biofilm formation as well as the activation of EAP1, HWP1 and secreted aspartic protease 2. RESULTS Cigarette smoke condensate (CSC) increased C. albicans adhesion and growth, as well as biofilm formation. These features may be supported by the activation of certain important genes. Using quantitative RT-PCR, we demonstrated that CSC-exposed C. albicans expressed high levels of EAP1, HWP1 and SAP2 mRNA and that this gene expression increased with increasing concentrations of CSC. CONCLUSION CSC induction of C. albicans adhesion, growth, and biofilm formation may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced oral diseases.
Collapse
Affiliation(s)
| | | | | | | | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 rue de la Terrasse, Québec G1V 0A6, Canada.
| |
Collapse
|
77
|
Abstract
Limited information is available about the effects of HIV and subsequent antiretroviral treatment on host-microbe interactions. This study aimed to determine the salivary microbial composition for 10 HIV-seropositive subjects, before and 6 months after highly active antiretroviral therapy (HAART), compared with that for 10 HIV-seronegative subjects. A conventional culture and two culture-independent analyses were used and consistently demonstrated differences in microbial composition among the three sets of samples. HIV-positive subjects had higher levels of total cultivable microbes, including oral streptococci, lactobacilli, Streptococcus mutans, and Candida, in saliva than did HIV-negative subjects. The total cultivable microbial levels were significantly correlated with CD4+ T cell counts. Denaturing gradient gel electrophoresis (DGGE), which compared the overall microbial profiles, showed distinct fingerprinting profiles for each group. The human oral microbe identification microarray (HOMIM) assay, which compared the 16S rRNA genes, showed clear separation among the three sample groups. Veillonella, Synergistetes, and Streptococcus were present in all 30 saliva samples. Only minor changes or no changes in the prevalence of Neisseria, Haemophilus, Gemella, Leptotrichia, Solobacterium, Parvimonas, and Rothia were observed. Seven genera, Capnocytophaga, Slackia, Porphyromonas, Kingella, Peptostreptococcaceae, Lactobacillus, and Atopobium, were detected only in HIV-negative samples. The prevalences of Fusobacterium, Campylobacter, Prevotella, Capnocytophaga, Selenomonas, Actinomyces, Granulicatella, and Atopobium were increased after HAART. In contrast, the prevalence of Aggregatibacter was significantly decreased after HAART. The findings of this study suggest that HIV infection and HAART can have significant effects on salivary microbial colonization and composition.
Collapse
|
78
|
Hasimoto e Souza LK, Costa CR, Fernandes ODFL, Abrão FY, Silva TC, Treméa CM, Silva MDRR. Clinical and microbiological features of cryptococcal meningitis. Rev Soc Bras Med Trop 2014; 46:343-7. [PMID: 23856876 DOI: 10.1590/0037-8682-0061-2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/21/2013] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION In this study, the clinical features, underlying diseases and clinical outcomes of patients with cryptococcosis were investigated. In addition, a molecular analysis of the Cryptococcus neoformans species complex isolated from these patients was performed. METHODS A prospective study of 62 cases of patients with cryptococcal infection was conducted at the Hospital de Doenças Tropicais de Goiás Dr. Anuar Auad from 2009-2010. Cryptococcal meningitis cases were diagnosed by direct examination and cerebrospinal fluid (CSF) sample culture. The profiling of these patients was assessed. The CSF samples were submitted to India ink preparation and cultured on Sabouraud dextrose agar, and C. neoformans was identified by the production of urease, a positive phenoloxidase test and assimilation of carbohydrates. C. neoformans and C. gattii isolates were distinguished by growth on L-canavanine-glycine-bromothymol blue medium, and molecular analysis was conducted via PCR fingerprinting reactions using M13 and (GACA)4 primers. RESULTS From the 62 patients with cryptococcosis, 71 isolates of CSF were obtained; 67 (94.4%) isolates were identified as C. neoformans var. grubii/VNI, and 4 (5.6%) were identified as C. gattii/VGII. Of these patients, 53 had an HIV diagnosis. The incidence of cryptococcosis was higher among patients 20-40 years of age, with 74.2% of the cases reported in males. Cryptococcus-related mortality was noted in 48.4% of the patients, and the symptoms were altered sensorium, headache, fever and stiff neck. CONCLUSIONS The high morbidity and mortality observed among patients with cryptococcosis demonstrate the importance of obtaining information regarding the epidemiological profile and clinical course of the disease in the State of Goiás, Brazil.
Collapse
Affiliation(s)
- Lúcia Kioko Hasimoto e Souza
- Laboratório de Micologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goias, Goiânia, GO, Brazil.
| | | | | | | | | | | | | |
Collapse
|
79
|
The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect Immun 2013; 82:1173-80. [PMID: 24379290 DOI: 10.1128/iai.01335-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate "type 17" cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9(-/-) mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9(-/-) mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses.
Collapse
|
80
|
Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis. Infect Immun 2013; 82:1030-5. [PMID: 24343647 DOI: 10.1128/iai.01389-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2(-/-) mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA(-/-) or Act1(-/-) mice). However, Lcn2(-/-) mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis.
Collapse
|
81
|
Hernández-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 2013; 6:900-10. [PMID: 23250275 PMCID: PMC3608691 DOI: 10.1038/mi.2012.128] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 11/13/2012] [Indexed: 02/04/2023]
Abstract
Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts.
Collapse
Affiliation(s)
| | - Anna R. Huppler
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Alanna C. Peterson
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | | | | | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh,Correspondence: Division of Rheumatology & Clinical Immunology, BST S703, 3500 Terrace St, Pittsburgh PA 15261, USA. 412-383-8903, Fax: 412-383-8864,
| |
Collapse
|
82
|
Rodriguez Rodrigues C, Remes Lenicov F, Jancic C, Sabatté J, Cabrini M, Ceballos A, Merlotti A, Gonzalez H, Ostrowski M, Geffner J. Candida albicans delays HIV-1 replication in macrophages. PLoS One 2013; 8:e72814. [PMID: 24009706 PMCID: PMC3751824 DOI: 10.1371/journal.pone.0072814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/21/2013] [Indexed: 11/19/2022] Open
Abstract
Macrophages are one of the most important HIV-1 target cells. Unlike CD4(+) T cells, macrophages are resistant to the cytophatic effect of HIV-1. They are able to produce and harbor the virus for long periods acting as a viral reservoir. Candida albicans (CA) is a commensal fungus that colonizes the portals of HIV-1 entry, such as the vagina and the rectum, and becomes an aggressive pathogen in AIDS patients. In this study, we analyzed the ability of CA to modulate the course of HIV-1 infection in human monocyte-derived macrophages. We found that CA abrogated HIV-1 replication in macrophages when it was evaluated 7 days after virus inoculation. A similar inhibitory effect was observed in monocyte-derived dendritic cells. The analysis of the mechanisms responsible for the inhibition of HIV-1 production in macrophages revealed that CA efficiently sequesters HIV-1 particles avoiding its infectivity. Moreover, by acting on macrophages themselves, CA diminishes their permissibility to HIV-1 infection by reducing the expression of CD4, enhancing the production of the CCR5-interacting chemokines CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES, and stimulating the production of interferon-α and the restriction factors APOBEC3G, APOBEC3F, and tetherin. Interestingly, abrogation of HIV-1 replication was overcome when the infection of macrophages was evaluated 2-3 weeks after virus inoculation. However, this reactivation of HIV-1 infection could be silenced by CA when added periodically to HIV-1-challenged macrophages. The induction of a silent HIV-1 infection in macrophages at the periphery, where cells are continuously confronted with CA, might help HIV-1 to evade the immune response and to promote resistance to antiretroviral therapy.
Collapse
Affiliation(s)
- Christian Rodriguez Rodrigues
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Mercedes Cabrini
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Antonela Merlotti
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Heidi Gonzalez
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
83
|
Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS 2012; 26:1457-72. [PMID: 22472853 DOI: 10.1097/qad.0b013e3283536ba8] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this era of efficacious antiretroviral therapy and consequent immune reconstitution, oropharyngeal and esophageal candidiasis (OPC and OEC) still remain two clinically relevant presentations in the global HIV setting. Both diseases are predominantly caused by Candida albicans, a polymorphic fungus which is a commensal microbe in the healthy individual but can become an aggressive pathogen in a debilitated host. Actually, C. albicans commensalism is not the result of a benign behavior of one of the many components of human microbiota, but rather the result of host's potent innate and adaptive immune responses that restrict the growth of a potentially dangerous microrganism on the epithelia. An important asset guarding against the fungus is the Th17 functional subset of T helper cells. The selective loss of these cells with the progression of HIV infection causes the decay of fungal containment on the oral epithelium and allows C. albicans to express its pathogenic potential. An important part of this potential is represented by mechanisms to evade host immunity and enhance inflammation and immunoactivation. In C. albicans, these mechanisms are mostly incorporated into and expressed by characteristic morphogenic transitions such as the yeast-to-hyphal growth and the white-to-opaque switch. In addition, HIV infection generates an 'environment' selecting for overexpression of the virulence potential by the fungus, particularly concerning the secreted aspartyl proteinases (Saps). These enzymes can degrade critical host defense components such as complement and epithelial defensive proteins such as histatin-5 and E-cadherin. It appears that part of this enhanced Candida virulence could be induced by the binding of the fungus to HIV and/or induced by HIV proteins such as GP160 and tat. Both OPC and OEC can be controlled by old and new antimycotics, but in the absence of host collaboration, anticandidal therapy may become ineffective in the long run. For these reasons, new therapeutics targeting virulence factors and specific immune interventions are being addressed. Among these new approaches, vaccination is a promising one. Two subunit vaccines based on antigens dominantly expressed by C. albicans in vivo, that is the Als3 adhesin and Sap2, have recently undergone phase 1 clinical trials. Overall, studies of Candida and candidiasis in the HIV-positive patient while certainly contributing to a more effective control of the microorganism may also provide useful information on HIV-host relationship itself that can assist the fight against the virus.
Collapse
|
84
|
Abstract
Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity.
Collapse
|
85
|
Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 2011; 80:620-32. [PMID: 22104105 DOI: 10.1128/iai.05896-11] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is a commensal colonizer of the gastrointestinal tract of humans, where it coexists with highly diverse bacterial communities. It is not clear whether this interaction limits or promotes the potential of C. albicans to become an opportunistic pathogen. Here we investigate the interaction between C. albicans and three species of streptococci from the viridans group, which are ubiquitous and abundant oral commensal bacteria. The ability of C. albicans to form biofilms with Streptococcus oralis, Streptococcus sanguinis, or Streptococcus gordonii was investigated using flow cell devices that allow abiotic biofilm formation under salivary flow. In addition, we designed a novel flow cell system that allows mucosal biofilm formation under conditions that mimic the environment in the oral and esophageal mucosae. It was observed that C. albicans and streptococci formed a synergistic partnership where C. albicans promoted the ability of streptococci to form biofilms on abiotic surfaces or on the surface of an oral mucosa analogue. The increased ability of streptococci to form biofilms in the presence of C. albicans could not be explained by a growth-stimulatory effect since the streptococci were unaffected in their growth in planktonic coculture with C. albicans. Conversely, the presence of streptococci increased the ability of C. albicans to invade organotypic models of the oral and esophageal mucosae under conditions of salivary flow. Moreover, characterization of mucosal invasion by the biofilm microorganisms suggested that the esophageal mucosa is more permissive to invasion than the oral mucosa. In summary, C. albicans and commensal oral streptococci display a synergistic interaction with implications for the pathogenic potential of C. albicans in the upper gastrointestinal tract.
Collapse
|
86
|
Affiliation(s)
- M. Coogan
- Division of Oral Microbiology, University of the Witwatersrand, Johannesburg, South Africa
| | - S. Challacombe
- Department of Oral Medicine, Kings College London Dental Institute, London, United Kingdom
| |
Collapse
|