51
|
Yang DX, Yang H, Cao YC, Jiang M, Zheng J, Peng B. Succinate Promotes Phagocytosis of Monocytes/Macrophages in Teleost Fish. Front Mol Biosci 2021; 8:644957. [PMID: 33937328 PMCID: PMC8082191 DOI: 10.3389/fmolb.2021.644957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Development of immunity-based strategy to manage bacterial infection is urgently needed in aquaculture due to the widespread of antibiotic-resistant bacteria. Phagocytosis serves as the first line defense in innate immunity that engulfs bacteria and restricts their proliferations and invasions. However, the mechanism underlying the regulation of phagocytosis is not fully elucidated and the way to boost phagocytosis is not yet explored. In this manuscript, we profiled the metabolomes of monocytes/macrophages isolated from Nile tilapia, prior and after phagocytosis on Vibrio alginolyticus. Monocytes/macrophages showed a metabolic shift following phagocytosis. Interestingly, succinate was accumulated after phagocytosis and was identified as a crucial biomarker to distinguish before and after phagocytosis. Exogenous succinate increased the phagocytotic rate of monocytes/macrophages in a dose-dependent manner. This effect was dependent on the TCA cycle as the inhibitor of malonate that targets succinate dehydrogenase abrogated the effect. Meanwhile, exogenous succinate regulated the expression of genes associated with innate immune and phagocytosis. In addition, succinate-potentiated phagocytosis was applicable to both gram-negative and -positive cells, including V. alginolyticus, Edwardsiella tarda, Streptococcus agalactiae, and Streptococcus iniae. Our study shed light on the understanding of how modulation on host's metabolism regulates immune response, and this can be a potent therapeutic approach to control bacterial infections in aquaculture.
Collapse
Affiliation(s)
- Dai-Xiao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yun-Chao Cao
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Ming Jiang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
52
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Tukaj Z, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Therapeutic Implications of Targeting Heat Shock Protein 70 by Immunization or Antibodies in Experimental Skin Inflammation. Front Immunol 2021; 12:614320. [PMID: 33708208 PMCID: PMC7940535 DOI: 10.3389/fimmu.2021.614320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (Hsp) are constitutive and stress-induced molecules which have been reported to impact innate and adaptive immune responses. Here, we evaluated the role of Hsp70 as a treatment target in the imiquimod-induced, psoriasis-like skin inflammation mouse model and related in vitro assays. We found that immunization of mice with Hsp70 resulted in decreased clinical and histological disease severity associated with expansion of T cells in favor of regulatory subtypes (CD4+FoxP3+/CD4+CD25+ cells). Similarly, anti-Hsp70 antibody treatment led to lowered disease activity associated with down-regulation of pro-inflammatory Th17 cells. A direct stimulating action of Hsp70 on regulatory T cells and its anti-proliferative effects on keratinocytes were confirmed in cell culture experiments. Our observations suggest that Hsp70 may be a promising therapeutic target in psoriasis and potentially other autoimmune dermatoses.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
53
|
Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021; 397:754-766. [PMID: 33515492 DOI: 10.1016/s0140-6736(21)00184-7] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/09/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Psoriasis is a chronic inflammatory disease characterised by sharply demarcated erythematous and scaly skin lesions accompanied by systemic manifestations. Classified by WHO as one of the most serious non-infectious diseases, psoriasis affects 2-3% of the global population. Mechanistically, psoriatic lesions result from hyperproliferation and disturbed differentiation of epidermal keratinocytes that are provoked by immune mediators of the IL-23 and IL-17 pathway. Translational immunology has had impressive success in understanding and controlling psoriasis. Psoriasis is the first disease to have been successfully treated with therapeutics that directly block the action of the cytokines of this pathway; in fact, therapeutics that specifically target IL-23, IL-17, and IL-17RA are approved for clinical use and show excellent efficacy. Furthermore, inhibitors of IL-23 and IL-17 intracellular signalling, such as TYK2 or RORγt, are in clinical development. Although therapies that target the IL-23 and IL-17 pathway also improve psoriatic arthritis symptoms, their effects on long-term disease modification and psoriasis-associated comorbidities still need to be explored.
Collapse
Affiliation(s)
- Kamran Ghoreschi
- Department of Dermatology, Venereology, and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Sabat
- Psoriasis Research and Treatment Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
54
|
Enjalbert F, Dewan P, Caley MP, Jones EM, Morse MA, Kelsell DP, Enright AJ, O'Toole EA. 3D model of harlequin ichthyosis reveals inflammatory therapeutic targets. J Clin Invest 2021; 130:4798-4810. [PMID: 32544098 PMCID: PMC7456239 DOI: 10.1172/jci132987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/10/2020] [Indexed: 02/04/2023] Open
Abstract
The biology of harlequin ichthyosis (HI), a devastating skin disorder caused by loss-of-function mutations in the gene ABCA12, is poorly understood, and to date, no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI that could lead to the identification of new treatments for improving patients' quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12 using HI patient skin samples and an engineered CRISPR/Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin, whereas the innate immune inhibitor IL-37 was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) as being upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor 1400W or the JAK inhibitor tofacitinib dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.
Collapse
Affiliation(s)
- Florence Enjalbert
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew P Caley
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Eleri M Jones
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mary A Morse
- Adaptive Immunity Research Unit, GlaxoSmithKline Medicine's Research Centre, Stevenage, United Kingdom
| | - David P Kelsell
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anton J Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A O'Toole
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, Royal London Hospital, Barts Health NHS Trust ERN-Skin, London, United Kingdom
| |
Collapse
|
55
|
Yang MJ, Xu D, Yang DX, Li L, Peng XX, Chen ZG, Li H. Malate enhances survival of zebrafish against Vibrio alginolyticus infection in the same manner as taurine. Virulence 2021; 11:349-364. [PMID: 32316833 PMCID: PMC7199751 DOI: 10.1080/21505594.2020.1750123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of low-cost and eco-friendly approaches to fight bacterial pathogens is especially needed in aquaculture. We previously showed that exogenous malate reprograms zebrafish’s metabolome to potentiate zebrafish survival against Vibrio alginolyticus infection. However, the underlying mechanism is unknown. Here, we use GC-MS based metabolomics to identify the malate-triggered metabolic shift. An activated TCA cycle and elevated taurine are identified as the key metabolic pathways and the most crucial biomarker of the reprogrammed metabolome, respectively. Taurine elevation is attributed to the activated TCA cycle, which is further supported by the increased expression of genes in the metabolic pathway of taurine biosynthesis from the isocitrate of the TCA cycle to taurine. Exogenous taurine increases the survival of zebrafish against V. alginolyticus infection as malate did. Moreover, exogenous taurine and malate regulate the expression of innate immunity genes and promote the generation of reactive oxygen species and nitrogen oxide in a similar way. The two metabolites can alleviate the excessive immune response to bacterial challenge, which protects fish from bacterial infection. These results indicate that malate enhances the survival of zebrafish to V. alginolyticus infection via taurine. Thus, our study highlights a metabolic approach to enhance a host’s ability to fight bacterial infection.
Collapse
Affiliation(s)
- Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China.,Tibet Vocational Technical College, Lhasha, People's Republic of China
| | - Di Xu
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Dai-Xiao Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Lu Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhuang-Gui Chen
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
56
|
Pandey R, Al-Nuaimi Y, Mishra RK, Spurgeon SK, Goodfellow M. Role of subnetworks mediated by [Formula: see text], IL-23/IL-17 and IL-15 in a network involved in the pathogenesis of psoriasis. Sci Rep 2021; 11:2204. [PMID: 33500449 PMCID: PMC7838322 DOI: 10.1038/s41598-020-80507-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease clinically characterized by the appearance of red colored, well-demarcated plaques with thickened skin and with silvery scales. Recent studies have established the involvement of a complex signalling network of interactions between cytokines, immune cells and skin cells called keratinocytes. Keratinocytes form the cells of the outermost layer of the skin (epidermis). Visible plaques in psoriasis are developed due to the fast proliferation and unusual differentiation of keratinocyte cells. Despite that, the exact mechanism of the appearance of these plaques in the cytokine-immune cell network is not clear. A mathematical model embodying interactions between key immune cells believed to be involved in psoriasis, keratinocytes and relevant cytokines has been developed. The complex network formed of these interactions poses several challenges. Here, we choose to study subnetworks of this complex network and initially focus on interactions involving [Formula: see text], IL-23/IL-17, and IL-15. These are chosen based on known evidence of their therapeutic efficacy. In addition, we explore the role of IL-15 in the pathogenesis of psoriasis and its potential as a future drug target for a novel treatment option. We perform steady state analyses for these subnetworks and demonstrate that the interactions between cells, driven by cytokines could cause the emergence of a psoriasis state (hyper-proliferation of keratinocytes) when levels of [Formula: see text], IL-23/IL-17 or IL-15 are increased. The model results explain and support the clinical potentiality of anti-cytokine treatments. Interestingly, our results suggest different dynamic scenarios underpin the pathogenesis of psoriasis, depending upon the dominant cytokines of subnetworks. We observed that the increase in the level of IL-23/IL-17 and IL-15 could lead to psoriasis via a bistable route, whereas an increase in the level of [Formula: see text] would lead to a monotonic and gradual disease progression. Further, we demonstrate how this insight, bistability, could be exploited to improve the current therapies and develop novel treatment strategies for psoriasis.
Collapse
Affiliation(s)
- Rakesh Pandey
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Present Address: Bioinformatics, Mahila Mahavidyalay, Banaras Hindu University, Varanasi, India
| | - Yusur Al-Nuaimi
- Department of Dermatology, Royal Devon and Exeter Hospital, Exeter, UK
| | - Rajiv Kumar Mishra
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
- Present Address: iOligos Technologies Private Limited, Noida, India
| | - Sarah K. Spurgeon
- Department of Electronic and Electrical Engineering, University College London, London, UK
| | - Marc Goodfellow
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| |
Collapse
|
57
|
Salviano-Silva A, Farias TDJ, Bumiller-Bini V, Castro MDS, Lobo-Alves SC, Busch H, Pföhler C, Worm M, Goebeler M, van Beek N, Franke A, Wittig M, Zillikens D, de Almeida RC, Hundt JE, Boldt ABW, Ibrahim S, Augusto DG, Petzl-Erler ML, Schmidt E, Malheiros D. Genetic variability of immune-related lncRNAs: polymorphisms in LINC-PINT and LY86-AS1 are associated with pemphigus foliaceus susceptibility. Exp Dermatol 2021; 30:831-840. [PMID: 33394553 DOI: 10.1111/exd.14275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023]
Abstract
Pemphigus foliaceus (PF) is an autoimmune blistering disease of the skin, clinically characterized by erosions and, histopathologically, by acantholysis. PF is endemic in the Brazilian Central-Western region. Numerous single nucleotide polymorphisms (SNPs) have been shown to affect the susceptibility for PF, including SNPs at long non-coding RNA (lncRNA) genes, which are known to participate in many physiological and pathogenic processes, such as autoimmunity. Here, we investigated whether the genetic variation of immune-related lncRNA genes affects the risk for endemic and sporadic forms of PF. We analysed 692 novel SNPs for PF from 135 immune-related lncRNA genes in 227 endemic PF patients and 194 controls. The SNPs were genotyped by Illumina microarray and analysed by applying logistic regression at additive model, with correction for sex and population structure. Six associated SNPs were also evaluated in an independent German cohort of 76 sporadic PF patients and 150 controls. Further, we measured the expression levels of two associated lncRNA genes (LINC-PINT and LY86-AS1) by quantitative PCR, stratified by genotypes, in peripheral blood mononuclear cells of healthy subjects. We found 27 SNPs in 11 lncRNA genes associated with endemic PF (p < .05 without overlapping with protein-coding genes). Among them, the LINC-PINT SNP rs10228040*A (OR = 1.47, p = .012) was also associated with increased susceptibility for sporadic PF (OR = 2.28, p = .002). Moreover, the A+ carriers of LY86-AS1*rs12192707 mark lowest LY86-AS1 RNA levels, which might be associated with a decreasing autoimmune response. Our results suggest a critical role of lncRNA variants in immunopathogenesis of both PF endemic and sporadic forms.
Collapse
Affiliation(s)
- Amanda Salviano-Silva
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | - Valéria Bumiller-Bini
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Mariana de Sousa Castro
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Sara Cristina Lobo-Alves
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Nina van Beek
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | | | | | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Danillo Gardenal Augusto
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
58
|
Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol 2021; 184:14-24. [PMID: 32628773 DOI: 10.1111/bjd.19380] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease with a strong genetic component that can be triggered by environmental factors. Disease pathogenesis is mainly driven by type 1 and type 17 cytokine-producing cells which, in healthy individuals, are modulated by regulatory T cells (Tregs). Tregs play a fundamental role in immune homeostasis and contribute to the prevention of autoimmune disease by suppressing immune responses. In psoriasis, Tregs are impaired in their suppressive function leading to an altered T-helper 17/Treg balance. Although Treg dysfunction in patients with psoriasis is associated with disease exacerbation, it is unknown how they are functionally regulated. In this review, we discuss recent insights into Tregs in the setting of psoriasis with an emphasis on the effect of current treatments on Tregs and how already available therapeutics that modulate Treg frequency or functionality could be exploited for treatment of psoriasis.
Collapse
Affiliation(s)
- L Nussbaum
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Y L Chen
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - G S Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
59
|
Đuretić J, Bufan B. Safety and efficacy of interleukin inhibitors in elderly patients with rheumatoid arthritis, psoriasis, and psoriatic arthritis. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-30505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Elderly patients with rheumatoid arthritis, psoriasis and psoriatic arthritis encompass those with elderly-onset disease, over 60 years of age, but also those with earlier disease onset who entered old age. Considering the age-related changes of the immune system, possible frailty, susceptibility to infection and concomitant comorbidity that implies multiple medicines, the treatment of these diseases in elderly patients can be challenging. Interleukin inhibitors have been shown to be an efficient and safe treatment for these diseases. However, elderly patients with these diseases were often included in the pivotal clinical trials for interleukin inhibitors in numbers insufficient to determine whether they responded differently from younger subjects. The aim of this paper was to review the findings on the efficacy and safety of interleukin inhibitor treatment in elderly patients with rheumatoid arthritis, psoriasis, and psoriatic arthritis. The findings suggest that, for all the interleukin inhibitors reviewed herein, used in elderly patients with rheumatoid arthritis, or with psoriasis and psoriatic arthritis, the efficacy was comparable to younger patients. Furthermore, the incidence of reported adverse events was similar in these two age groups. Severe adverse events, which were related to sarilumab treatment for rheumatoid arthritis and secukinumab treatment for psoriasis, were higher in elderly patients. The reviewed findings suggest that the interleukin inhibitors approved and currently in use in clinical practice for the treatment of rheumatoid arthritis, psoriasis, and psoriatic arthritis can be considered a safe and efficient option for these diseases in elderly patients.
Collapse
|
60
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
61
|
Meier K, Schloegl A, Poddubnyy D, Ghoreschi K. Skin manifestations in spondyloarthritis. Ther Adv Musculoskelet Dis 2020; 12:1759720X20975915. [PMID: 33343725 PMCID: PMC7727049 DOI: 10.1177/1759720x20975915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Spondyloarthritides (SpA) like psoriatic arthritis, axial spondyloarthritis/ankylosing spondylitis, reactive arthritis and inflammatory bowel disease (IBD)-associated SpA can present with characteristic skin manifestations. These SpA-associated skin disorders may precede joint involvement, reflect a loss of efficacy of a current systemic treatment or can even be treatment associated. Cutaneous manifestations in SpA not only add additional morbidity with physical impact but also impose a psychosocial burden on affected patients. Psoriasis (PsO) - the main skin disease in SpA - has a variety of clinical presentations, including plaque-type PsO, inverse PsO, guttate PsO, erythrodermic PsO, nail PsO and pustular types. SpA associated with IBD presents with neutrophilic and granulomatous skin disorders, including pyoderma gangrenosum, hidradenitis suppurativa and cutaneous Crohn's disease. Reactive arthritides has a favourable prognosis and may feature keratoderma blenorrhagicum or balanitis circinatum as typical skin manifestations. Immunologically, SpA-associated skin diseases share interleukin (IL)-17 and IL-23 dysregulation but show distinctive genetic and immunological profiles. Therefore, they vary in their treatment responses to targeted therapies with biologicals or small molecules. In this review, we highlight the clinical presentation of skin manifestations in SpA and discuss therapeutic approaches in this interdisciplinary field.
Collapse
Affiliation(s)
- Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | | | - Denis Poddubnyy
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Kamran Ghoreschi
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
62
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
63
|
ROY PRITIKUMAR, ROY AMITKUMAR, KHAILOV EVGENIIN, AL BASIR FAHAD, GRIGORIEVA ELLINAV. A MODEL OF THE OPTIMAL IMMUNOTHERAPY OF PSORIASIS BY INTRODUCING IL-10 AND IL-22 INHIBITORS. J BIOL SYST 2020; 28:609-639. [DOI: 10.1142/s0218339020500084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Psoriasis is a chronic skin disease in which the process of hyper-proliferation (excessive division) of skin cells starts. Externally, psoriasis appears as red papules, on the surface of which there are scales of white–gray color. There is substantial evidence that T-helper cells take vital accountability for creating the hyper-proliferation of keratinocytes (skin cells), which causes itching of skin patches. In this paper, we propose a mathematical model describing the concentrations of T-helper and keratinocyte cell populations to predict cellular behaviors for psoriasis regulation under normal or anomalous immune circumstances. Local and global asymptotic stabilities of the model equilibria are investigated. Additionally, by introducing two scalar bounded controls into the model, the effect of combined immunotherapy using IL-10 and IL-22 inhibitors is analyzed. The optimal control problem of minimizing the cost of immune therapy and simultaneous optimizing the effect of this therapy on T-helper cells and keratinocytes proliferation is formulated and solved by applying the Pontryagin maximum principle. Within the restrictions of the proposed model, the obtained analytical and numerical outcomes suggest that the optimal strategy of injecting IL-10 and IL-22 inhibitors can be effective for psoriasis treatment.
Collapse
Affiliation(s)
- PRITI KUMAR ROY
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - AMIT KUMAR ROY
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - EVGENII N. KHAILOV
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - FAHAD AL BASIR
- Department of Mathematics, Asansol Girls College, Asansol-4, West Bengal 713304, India
| | - ELLINA V. GRIGORIEVA
- Department of Mathematics and Computer Sciences, Texas Woman’s University, Denton, TX 76204, USA
| |
Collapse
|
64
|
Halim SA, Khan A, Csuk R, Al-Rawahi A, Al-Harrasi A. Diterpenoids and Triterpenoids From Frankincense Are Excellent Anti-psoriatic Agents: An in silico Approach. Front Chem 2020; 8:486. [PMID: 32671018 PMCID: PMC7330179 DOI: 10.3389/fchem.2020.00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic autoimmune disease that affects 2–3% of the global population and requires an effective treatment. Frankincense has been long known for its potent anti-inflammatory activities. In this study, a structural bioinformatics approach was used to evaluate the efficacy of individual active components of frankincense, macrocyclic diterpenoid derivatives (1-27), and boswellic acids (28-46) in the treatment of psoriasis. Initially, major druggable targets of psoriasis were identified. Subsequently, structure-based screening was employed by using three different docking algorithms and scoring functions (MOE, AutoDock Vina, and MVD) for the target fishing of compounds against 18 possible targets of psoriasis. Janus Kinase 1, 2, 3 (JAK 1/2/3), eNOS, iNOS, interleukin-17 (IL-17), and Tumor necrosis factor-α (TNF-α) were identified as the preferred molecular targets for these compounds. This computational analysis reflects that frankincense diterpenoids and triterpenoids can serve as excellent anti-psoriatic agents by targeting major cytokines (TNF-α, IL-17, IL-13, IL-23, and IL-36γ,) exacerbated in psoriasis, and inflammatory pathways particularly JAK1/2/3, eNOS, iNOS, MAPK2, and IFNγ. The results were compared with the reported experimental findings which correlates well with our in-silico verdicts.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
65
|
Tsai YC, Tsai TF. Switching biologics in psoriasis - practical guidance and evidence to support. Expert Rev Clin Pharmacol 2020; 13:493-503. [PMID: 32394765 DOI: 10.1080/17512433.2020.1767590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Advances of biologic agents have changed the treatment paradigm of psoriasis to higher efficacy and better quality of life. However, the demand for biologic switch is increasing due to patient's greater expectation and decreasing efficacy in long-term use. Also, biologic-induced adverse effects necessitate the switching of biologics. AREAS COVERED This review article was divided into two parts. The first part focused on the biologic switch due to lack of efficacy. The second part provided switching suggestions related to adverse effects. EXPERT COMMENTARY Biologic switch in psoriasis was mainly due to lack of efficacy, and the subsequent biologic agent was usually given at the next scheduled time point without washout period. In pivotal randomized controlled trials, patients with poor response to TNF-alpha inhibitors and ustekinumab achieved better efficacy after switching to IL-23 and IL-17 inhibitors. In addition, real-world data showed that intra-class switch could still achieve a 50%-80% of PASI 75 response in individuals with anti-IL-17 failure histories. As for the biologic switch due to adverse effects, washout period was recommended and transition to a biologic agent with different modes of action was preferred, especially class-specific adverse events.
Collapse
Affiliation(s)
- Ya-Chu Tsai
- Department of Dermatology, Far Eastern Memorial Hospital , New Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei, Taiwan
| |
Collapse
|
66
|
Sharma V, Chouhan P, Pandey RK, Ojha R, Aathmanathan VS, Krishnan M, Prajapati VK. Immunoglobulin interface redesigning to enhance lebrikizumab mediated immunomodulation of IL-13 hyper-response. J Biomol Struct Dyn 2020; 39:4051-4065. [PMID: 32448082 DOI: 10.1080/07391102.2020.1773316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The overexpression of interleukin-13 (IL-13) leads to autoimmune and inflammatory diseases. These adverse responses can be neutralized by using lebrikizumab as a therapeutic monoclonal antibody (mAb). Herein, we have attempted to modulate the lebrikizumab mAb to enhance its binding affinity towards IL-13. The interface residues of the lebrikizumab-IL-13 complex were determined by the PyMOL and verified by the artificial neural network-based B-cell epitope prediction server (ABCpred server) and the Paratome web server. The Cologne University Protein Stability Analysis Tool (CUPSAT) web server based mutational approach was used to identify the stable and favorable interface mutations in the lebrikizumab. Only 40 mutations were selected to generate a single mutant library, and their binding affinity for IL-13 was analyzed by using the Z-Dock server. Based on high Z-score, mutants having a better affinity with IL-13 were selected to create a multi-mutant library. The multi-mutant library was again subjected to the Z-Dock server, and their binding affinity was determined. The highest-scoring ten mAb mutants were validated by using PatchDock and ClusPro servers. The best two potential mAb mutants were identified and subjected to molecular dynamics (MD) simulations to ensure its structural stability at the microscopic level. The changes in the different bonds as the effect of mutation were assessed by LigPlot + v2.1. The AllerTOP and ToxinPred web servers were used to analyze the non-allergic and nontoxic nature of the selected mutants. Therefore, these redesigned mAb could be used for potential treatment against IL-13 associated diseased conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Priya Chouhan
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Muthukalingan Krishnan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India.,Madurai Kamraj University, Madurai, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
67
|
Abstract
Psoriasis is chronic, immune-mediated, inflammatory disease with a multifactorial etiology that affects the skin tissue and causes the appearance of dry and scaly lesions of anywhere on the body. The study of the pathophysiology of psoriasis reveals a network of immune cells that, together with their cytokines, initiates a chronic inflammatory response. Previously attributed to T helper (Th)1 cytokines, currently the Th17 cytokine family is the major effector in the pathogenesis of psoriatic disease and strongly influences the inflammatory pattern established during the disease activity. In addition, the vast network of cells that orchestrates the pathophysiology makes psoriasis complex to study. Along with this, variations in genes that code the cytokines make psoriasis more clinically heterogeneous and present a challenge for the development of drugs that can be used in the treatment of the patients with this disease. Therefore, it is important to clarify the mechanisms by which the cytokines are involved in the pathophysiology of psoriasis and how this knowledge is translated to the medical practice.
Collapse
Affiliation(s)
| | - Edna Maria Vissoci Reiche
- Research Laboratory in Applied Immunology, State University of Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Paraná, Brazil
| | - Andréa Name Colado Simão
- Research Laboratory in Applied Immunology, State University of Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Paraná, Brazil.
| |
Collapse
|
68
|
Samotij D, Nedoszytko B, Bartosińska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasienicka A, Krasowska D, Kalinowski L, Macieja-Stawczyk M, Nowicki RJ, Owczarczyk-Saczonek A, Płoska A, Purzycka-Bohdan D, Radulska A, Reszka E, Siekierzycka A, Słomiński A, Słomiński R, Sobalska-Kwapis M, Strapagiel D, Szczerkowska-Dobosz A, Szczęch J, Żmijewski M, Reich A. Pathogenesis of psoriasis in the "omic" era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol 2020; 37:135-153. [PMID: 32489346 PMCID: PMC7262814 DOI: 10.5114/ada.2020.94832] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Dominik Samotij
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Joanna Bartosińska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Batycka-Baran
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venereology, Faculty of Medicine, Ludwik Rydygier Medical College in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Lawrence W. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Magdalena Górecka-Sokołowska
- Department of Dermatology, Sexually Transmitted Disorders and Immunodermatology, Jurasz University Hospital No. 1, Bydgoszcz, Poland
| | - Anna Janaszak-Jasienicka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Marta Macieja-Stawczyk
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure, (BBMRI.PL), Gdansk, Poland
| | - Andrzej Słomiński
- Department of Dermatology, Birmingham, AL, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| | - Radomir Słomiński
- Department of Medicine, Division of Rheumatology, University of Alabama, Birmingham, AL, USA
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Justyna Szczęch
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| | - Michał Żmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Adam Reich
- Department of Dermatology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
69
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
70
|
Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current Developments in the Immunology of Psoriasis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:97-110. [PMID: 32226340 PMCID: PMC7087066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Psoriasis is a frequent inflammatory skin disease. Fundamental research on the pathogenesis of psoriasis has substantially increased our understanding of skin immunology, which has helped to introduce innovative and highly effective therapies. Psoriasis is a largely T lymphocyte-mediated disease in which activation of innate immune cells and pathogenic T cells result in skin inflammation and hyperproliferation of keratinocytes. B cells have thus far largely been neglected regarding their role for the pathogenesis of psoriasis. However, recent data shed light on their role in inflammatory skin diseases. Interestingly, interleukin (IL)-10-producing regulatory B cells have been assumed to ameliorate psoriasis. In this review, we will discuss the development of disease, pathogenicity, and current developments in therapeutic options. We describe different roles of T cells, B cells, and cytokines for the immunopathology and disease course of psoriasis.
Collapse
Affiliation(s)
- Franziska Grän
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany,Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,To whom all correspondence should be addressed: K. Muhammad, Tel: +971 3 713 6517, Fax: +971 3 713 4927;
| |
Collapse
|
71
|
Di Domizio J, Castagna J, Algros MP, Prati C, Conrad C, Gilliet M, Wendling D, Aubin F. Baricitinib-induced paradoxical psoriasis. J Eur Acad Dermatol Venereol 2020; 34:e391-e393. [PMID: 32052886 DOI: 10.1111/jdv.16293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- J Di Domizio
- Department of Dermatology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - J Castagna
- Department of Dermatology, UMR Inserm 1098, Besançon University Hospital, University of Bourgogne Franche Comté, Besançon, France
| | - M P Algros
- Deparment of Pathology, University Hospital, Besançon, France
| | - C Prati
- Deparment of Rheumatology, UMR Inserm 1098, Besançon University Hospital, University of Bourgogne Franche Comté, Besançon, France
| | - C Conrad
- Department of Dermatology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - M Gilliet
- Department of Dermatology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - D Wendling
- Deparment of Rheumatology, UMR Inserm 1098, Besançon University Hospital, University of Bourgogne Franche Comté, Besançon, France
| | - F Aubin
- Department of Dermatology, UMR Inserm 1098, Besançon University Hospital, University of Bourgogne Franche Comté, Besançon, France
| |
Collapse
|
72
|
Arbués A, Brees D, Chibout SD, Fox T, Kammüller M, Portevin D. TNF-α antagonists differentially induce TGF-β1-dependent resuscitation of dormant-like Mycobacterium tuberculosis. PLoS Pathog 2020; 16:e1008312. [PMID: 32069329 PMCID: PMC7048311 DOI: 10.1371/journal.ppat.1008312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/28/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
TNF-α- as well as non-TNF-α-targeting biologics are prescribed to treat a variety of immune-mediated inflammatory disorders. The well-documented risk of tuberculosis progression associated with anti-TNF-α treatment highlighted the central role of TNF-α for the maintenance of protective immunity, although the rate of tuberculosis detected among patients varies with the nature of the drug. Using a human, in-vitro granuloma model, we reproduce the increased reactivation rate of tuberculosis following exposure to Adalimumab compared to Etanercept, two TNF-α-neutralizing biologics. We show that Adalimumab, because of its bivalence, specifically induces TGF-β1-dependent Mycobacterium tuberculosis (Mtb) resuscitation which can be prevented by concomitant TGF-β1 neutralization. Moreover, our data suggest an additional role of lymphotoxin-α–neutralized by Etanercept but not Adalimumab–in the control of latent tuberculosis infection. Furthermore, we show that, while Secukinumab, an anti-IL-17A antibody, does not revert Mtb dormancy, the anti-IL-12-p40 antibody Ustekinumab and the recombinant IL-1RA Anakinra promote Mtb resuscitation, in line with the importance of these pathways in tuberculosis immunity. Mycobacterium tuberculosis (Mtb) is the world’s leading infectious killer. Multi-cellular immune structures called granulomas may constitute a latent form of Mtb infection and a potential reservoir for future cases. Post-marketing surveillance data suggested that Mtb protective immunity is unequally impacted by different TNF-α-targeting drugs used to treat inflammatory disorders. We used an in-vitro granuloma model to reproduce these clinical observations and gain mechanistic insights and, in addition, to assess the risk of tuberculosis reactivation associated with the use of other immunomodulatory drugs. These results may inspire pharmacologists to design future drug-development strategies of biologics in particular, while immunologists and microbiologists will find a relevant experimental approach to disentangle the complex interactions involved in Mtb protective immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Ainhoa Arbués
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Todd Fox
- Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail: (MK); (DP)
| | - Damien Portevin
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (MK); (DP)
| |
Collapse
|
73
|
Ge Y, Westphalen CB, Ma WW, Vega KJ, Weygant N. Implications for Tumor Microenvironment and Epithelial Crosstalk in the Management of Gastrointestinal Cancers. JOURNAL OF ONCOLOGY 2019; 2019:4835318. [PMID: 32082375 PMCID: PMC7012231 DOI: 10.1155/2019/4835318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/23/2019] [Accepted: 10/12/2019] [Indexed: 02/08/2023]
Abstract
Rapid advances in technology are revealing previously unknown organization, cooperation, and limitations within the population of nontumor cells surrounding the tumor epithelium known as the tumor microenvironment (TME). Nowhere are these findings more pertinent than in the gastrointestinal (GI) tract where exquisite cell specialization supports a complex microenvironmental niche characterized by rapid stemness-associated cell turnover, pathogen sensing, epithelial orchestration of immune signaling, and other facets that maintain the complex balance between homeostasis, inflammation, and disease. Here, we summarize and discuss select emerging concepts in the precancerous microenvironment, TME, and tumor epithelial-TME crosstalk as well as their implications for the management of GI cancers.
Collapse
Affiliation(s)
- Yang Ge
- Dept of Oncology, Beijing Chao-Yang Hospital, Capital Medical Univ., Beijing, China
| | | | - Wen Wee Ma
- Dept of Oncology, Mayo Clinic, Minneapolis, MN, USA
| | - Kenneth J. Vega
- Dept of Gastroenterology, Augusta University, Augusta, GA, USA
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
74
|
Catalan-Dibene J, McIntyre LL, Zlotnik A. Interleukin 30 to Interleukin 40. J Interferon Cytokine Res 2019; 38:423-439. [PMID: 30328794 DOI: 10.1089/jir.2018.0089] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cytokines are important molecules that regulate the ontogeny and function of the immune system. They are small secreted proteins usually produced upon activation of cells of the immune system, including lymphocytes and myeloid cells. Many cytokines have been described, and several have been recognized as pivotal players in immune responses and in human disease. In fact, several anticytokine antibodies have proven effective therapeutics, especially in various autoimmune diseases. In the last 15 years, new cytokines have been described, and many remain poorly understood. Among the most recent cytokines discovered are interleukins-30 (IL-30) to IL-40. Several of these are members of other cytokine superfamilies, including several IL-1 superfamily members (IL-33, IL-36, IL-37, and IL-38) as well as several new members of the IL-12 family (IL-30, IL-35, and IL-39). The rest (IL-31, IL-32, IL-34, and IL-40) are encoded by genes that do not belong to any cytokine superfamily. Our aim of this review was to present a concise version of the information available on these novel cytokines to facilitate their understanding by members of the immunological community.
Collapse
Affiliation(s)
- Jovani Catalan-Dibene
- 1 Department of Physiology and Biophysics and University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| | - Laura L McIntyre
- 3 Department of Molecular Biology and Biochemistry, University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| | - Albert Zlotnik
- 1 Department of Physiology and Biophysics and University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| |
Collapse
|
75
|
Zhong X, Peng Y, Liao H, Yao C, Li J, Yang Q, He Y, Qing Y, Guo X, Zhou J. Aberrant expression of long non-coding RNAs in peripheral blood mononuclear cells isolated from patients with gouty arthritis. Exp Ther Med 2019; 18:1967-1976. [PMID: 31452697 PMCID: PMC6704489 DOI: 10.3892/etm.2019.7816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Gouty arthritis (GA) is the most common inflammatory and immune-associated disease, and its prevalence and incidence exhibit yearly increases. The aim of the present study was to analyse the expression profile variation of long non-coding RNAs (lncRNAs) in GA patients and to explore the role of lncRNAs in the pathogenesis of GA. The peripheral blood mononuclear cells of GA patients and of healthy controls (HCs) were used to detect for the differentially expressed lncRNAs by microarray. The functional annotations and classifications of the differentially expressed transcripts were predicted using Gene Ontology (GO) and pathway analysis. The results were then verified by reverse transcription-quantitative (RT-q)PCR. A total of 1,815 lncRNAs and 971 mRNAs with a >2-fold difference in the levels of expression in the GA patients compared with those in the HCs were identified. According to the GO functional enrichment analysis, the differentially expressed lncRNAs were accumulated in terms including protein binding, catalytic activity and molecular transducer activity. The pathways predicted to be involved were the tumor necrosis factor signaling pathway, osteoclast differentiation, NOD-like receptor signaling pathway and NF-κB signaling pathway. The expression of six lncRNAs was measured by RT-qPCR and the results were consistent with those of the microarrays. Among these lncRNAs, AJ227913 was the most differentially expressed lncRNA in GA patients vs. HCs. The expression of several lncRNAs was significantly changed in GA patients compared with that in HCs, which suggests that these lncRNAs with differential expression levels may have an important role in the development and progression of GA.
Collapse
Affiliation(s)
- Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuanhong Peng
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hebin Liao
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Chengjiao Yao
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jiulong Li
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qibin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yonglong He
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yufeng Qing
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jingguo Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
76
|
Tadiotto Cicogna G, Messina F, Nalotto L, Szekely S, Alaibac M. Case Report: Paradoxical acrodermatitis of Hallopeau-like eruption following anti-IL-17 therapy. F1000Res 2019; 8:336. [PMID: 31448100 PMCID: PMC6685451 DOI: 10.12688/f1000research.18493.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 11/24/2022] Open
Abstract
Psoriasis is a chronic immune-mediated inflammatory disease. Up to 40% of patients with psoriasis may develop psoriatic arthritis. Currently, interleukin (IL)-17/IL-23 pathways are identified as key factors in the immunopathogenesis of both conditions. Here we describe the case of a patient who developed psoriasiform skin lesions 10 months after the initiation of anti-IL17 therapy for psoriatic arthritis. The underlying disease had responded well to the therapy, but the patient developed a striking pustular eruption at the fingers with nail involvement, onycholysis, yellow discoloration, and subungual keratosis. Clinical and histological findings were consistent with an acrodermatitis continua of Hallopeau-like eruption. Skin lesions subsided after discontinuation of the responsible anti-IL17 agent. The interpretation of this paradoxical side effect of biological therapies remains unclear but may relate to an unbalanced inflammatory cytokine response induced by the inhibition of TNF activity. It is likely that patients, who are genetically prone, may respond exaggeratedly to a cytokine imbalance. The identification of this kind of patient, in the future, could be useful in order to choose the correct therapy.
Collapse
Affiliation(s)
| | - Francesco Messina
- Unit of Dermatology, Department of Medicine, University of Padua, Padova, 35121, Italy
| | - Linda Nalotto
- Unit of Reumathology, Department of Medicine, University of Padua, Padova, 35121, Italy
| | - Serena Szekely
- Unit of Dermatology, Department of Medicine, University of Padua, Padova, 35121, Italy
| | - Mauro Alaibac
- Unit of Dermatology, Department of Medicine, University of Padua, Padova, 35121, Italy
| |
Collapse
|
77
|
Abstract
The autoinflammatory diseases comprise a broad spectrum of disorders characterized by unchecked activation of the innate immune system. Whereas aberrations in adaptive immunity have long been identified in 'autoimmune' disorders, the concept of 'autoinflammation' emerged relatively recently, first describing a group of clinical disorders characterized by spontaneous episodes of systemic inflammation without manifestations typical of autoimmune disorders. Improved knowledge of innate immune mechanisms, coupled with remarkable progress in genomics and an expanding number of clinical cases, has since led to an increasing number of disorders classified as autoinflammatory or containing an autoinflammatory component. Biologic therapies targeting specific components of the innate immune system have provided immense clinical benefit, and have further elucidated the role of innate immunity in autoinflammatory disorders. This article reviews the basic mechanisms of autoinflammation, followed by an update on the pathophysiology and treatment of the monogenic and multifactorial autoinflammatory diseases, and the common dermatologic conditions in which autoinflammation plays a major role.
Collapse
|
78
|
Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019; 294:12370-12379. [PMID: 31235521 PMCID: PMC6699855 DOI: 10.1074/jbc.ra119.008902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus. Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8–Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17–56 and cyclic tcEv3 16–56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17–56 and tcEv3 16–56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany; German Center for Cardiovascular Research, 13316, Berlin, Germany; Partner Site Munich Heart Alliance, 80802 Munich, Germany; Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tilman M Hackeng
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
79
|
FitzGerald O, Ritchlin C. Opportunities and challenges in the treatment of psoriatic arthritis. Best Pract Res Clin Rheumatol 2019; 32:440-452. [PMID: 31171314 DOI: 10.1016/j.berh.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this chapter, we review the opportunities and challenges posed by the treatment options currently available in the treatment of psoriatic arthritis. Both established and new or emerging treatment options are discussed using a domain-based approach. Finally, approaches to how treatment can be optimized together with some clinical pearls are presented and discussed. With the increasing treatment options available, we need a better way of deciding which treatment should be considered for which patient. On the basis of current knowledge, some guidance is provided on how these choices might best be made.
Collapse
Affiliation(s)
- Oliver FitzGerald
- St. Vincent's University Hospital, Conway Institute for Biomolecular Research, University College Dublin, Ireland.
| | - Christopher Ritchlin
- Chief, Allergy, Immunology & Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
80
|
Kenealy S, Manils J, Raverdeau M, Munoz-Wolf N, Barber G, Liddicoat A, Lavelle EC, Creagh EM. Caspase-11-Mediated Cell Death Contributes to the Pathogenesis of Imiquimod-Induced Psoriasis. J Invest Dermatol 2019; 139:2389-2393.e3. [PMID: 31173764 DOI: 10.1016/j.jid.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sinéad Kenealy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joan Manils
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mathilde Raverdeau
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Natalia Munoz-Wolf
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gillian Barber
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Alex Liddicoat
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
81
|
Crowley J. Targeting granulocyte-monocyte colony-stimulating factor in psoriasis. What a negative study can teach us. Br J Dermatol 2019; 180:1286-1287. [PMID: 31157451 DOI: 10.1111/bjd.17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J Crowley
- Bakersfield Dermatology and Skin Cancer Medical Group, Bakersfield, CA, U.S.A
| |
Collapse
|
82
|
Buhl AL, Wenzel J. Interleukin-36 in Infectious and Inflammatory Skin Diseases. Front Immunol 2019; 10:1162. [PMID: 31191535 PMCID: PMC6545975 DOI: 10.3389/fimmu.2019.01162] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Interleukin-36 (IL-36) comprises to a cytokine family consisting of four isoforms IL-36α, IL-36β, IL-36γ, and IL-36 receptor antagonist (IL-36 Ra). These IL-36 cytokines, in turn, belong to the IL-1 superfamily. The IL-36 receptor (IL-1R6) is functional as a heterodimer formed of IL-1R6 and IL-1 receptor accessory protein (IL-1RAcP). IL-36α, IL-36β, and IL-36γ are regarded as pro-inflammatory ligands and IL-36 Ra as well as IL-38 as anti-inflammatory ligands of IL-1R6. IL-36 cytokines are mainly expressed on the barrier sites of the body e.g., bronchial, intestinal, and dermal epithelium. One of their most important biological functions is the bridging of innate and adaptive immune responses. A disturbed balance between pro-inflammatory and anti-inflammatory branches easily leads to inflammation of the corresponding tissue. The most prominent example for an altered IL-36 expression is the spectrum of psoriasis. In addition to inflammatory dermatoses, IL-36 also seems to play a role in infectious dermatoses. Microbial triggers, especially Staphylococcus aureus infection, increase the production of pro-inflammatory IL-36 cytokines and initiate/promote the inflammation of skin lesions. Due to the discovery of IL-36 as an important immune mediator, it has already been possible to develop important diagnostic tools for dermatitis. Not only in the field of inflammatory skin diseases, but also in pulmonary and intestinal inflammation, there is evidence that IL-36 cytokines might have diagnostic and/or therapeutic relevance.
Collapse
Affiliation(s)
- Anna-Lena Buhl
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
83
|
Biologics for psoriasis: What is new? Dermatol Ther 2019; 32:e12916. [DOI: 10.1111/dth.12916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/05/2019] [Indexed: 02/01/2023]
|
84
|
Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019; 50:851-870. [PMID: 30995503 PMCID: PMC6472917 DOI: 10.1016/j.immuni.2019.03.011] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Ave., Philadelphia, PA 19104-4539, USA.
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
85
|
McMichael A, Desai SR, Qureshi A, Rastogi S, Alexis AF. Efficacy and Safety of Brodalumab in Patients with Moderate-to-Severe Plaque Psoriasis and Skin of Color: Results from the Pooled AMAGINE-2/-3 Randomized Trials. Am J Clin Dermatol 2019; 20:267-276. [PMID: 30471012 DOI: 10.1007/s40257-018-0408-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Data on treatment outcomes in patients with psoriasis who have skin of color are limited. Brodalumab has shown efficacy in patients with moderate-to-severe plaque psoriasis. OBJECTIVE Our objective was to evaluate the efficacy, safety, and health-related quality of life associated with brodalumab in patients with skin of color participating in two phase III, multicenter, randomized, double-blind, placebo- and active comparator-controlled studies (AMAGINE-2/-3). METHODS Patients were self-categorized into racial subgroups (black, Asian, or white) or the non-mutually exclusive ethnic subgroup Hispanic/Latino. Patients were randomized to receive brodalumab 210 mg every 2 weeks (Q2W) or ustekinumab (45 mg in patients weighing ≤ 100 kg and 90 mg in patients weighing > 100 kg) for 52 weeks. Skin clearance was monitored using the Psoriasis Area and Severity Index (PASI) and Static Physician's Global Assessment (sPGA). Treatment-emergent adverse events (TEAEs) were summarized by treatment and racial and ethnic subgroup. Health-related quality of life was assessed using the Dermatology Life Quality Index (DLQI). RESULTS During the 12-week induction phase, 613 patients received ustekinumab (black, n = 20; Asian, n = 24; white, n = 551; Hispanic/Latino, n = 68) and 1236 patients received brodalumab 210 mg Q2W (black, n = 36; Asian, n = 39; white, n = 1116; Hispanic/Latino, n = 132). At week 52, a total of 590 patients received continuous ustekinumab (black, n = 19; Asian, n = 23; white, n = 532; Hispanic/Latino, n = 64) and 339 patients were re-randomized to continue receiving brodalumab 210 mg Q2W (black, n = 10; Asian, n = 7; white, n = 308; Hispanic/Latino, n = 40). Among patients who received brodalumab 210 mg Q2W, skin clearance response rates were similar across racial and ethnic subgroups at week 12 and week 52; rates of 75%, 90%, and 100% improvement in PASI from baseline were also higher, as was sPGA score ≤ 1, than in patients who received ustekinumab across all racial and ethnic subgroups. Rates of TEAEs and ≥ 5-point improvement in DLQI score were similar across racial and ethnic subgroups. CONCLUSIONS Brodalumab 210 mg Q2W is well tolerated and efficacious across diverse racial and ethnic subgroups in patients with psoriasis, including black, Asian, white, and Hispanic/Latino patients. TRIAL REGISTRY ClinicalTrials.gov identifier NCT01708603 (AMAGINE-2); NCT01708629 (AMAGINE-3).
Collapse
Affiliation(s)
- Amy McMichael
- Department of Dermatology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27104, USA.
| | - Seemal R Desai
- Innovative Dermatology, Plano, TX, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Andrew F Alexis
- Mount Sinai St. Luke's and Mount Sinai West, New York, NY, USA
| |
Collapse
|
86
|
IL-36, IL-37, and IL-38 Cytokines in Skin and Joint Inflammation: A Comprehensive Review of Their Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20061257. [PMID: 30871134 PMCID: PMC6470667 DOI: 10.3390/ijms20061257] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL)-1 family of cytokines is composed of 11 members, including the most recently discovered IL-36α, β, γ, IL-37, and IL-38. Similar to IL-1, IL-36 cytokines are initiators and amplifiers of inflammation, whereas both IL-37 and IL-38 display anti-inflammatory activities. A few studies have outlined the role played by these cytokines in several inflammatory diseases. For instance, IL-36 agonists seem to be relevant for the pathogenesis of skin psoriasis whereas, despite being expressed within the synovial tissue, their silencing or overexpression do not critically influence the course of arthritis in mice. In this review, we will focus on the state of the art of the molecular features and biological roles of IL-36, IL-37, and IL-38 in representative skin- and joint-related inflammatory diseases, namely psoriasis, rheumatoid arthritis, and psoriatic arthritis. We will then offer an overview of the therapeutic potential of targeting the IL-36 axis in these diseases, either by blocking the proinflammatory agonists or enhancing the physiologic inhibitory feedback on the inflammation mediated by the antagonists IL-37 and IL-38.
Collapse
|
87
|
Kragstrup TW, Adams M, Lomholt S, Nielsen MA, Heftdal LD, Schafer P, Deleuran B. IL-12/IL-23p40 identified as a downstream target of apremilast in ex vivo models of arthritis. Ther Adv Musculoskelet Dis 2019; 11:1759720X19828669. [PMID: 30833991 PMCID: PMC6391542 DOI: 10.1177/1759720x19828669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Apremilast (Otezla®) is a phosphodiesterase 4 (PDE4) inhibitor approved for the treatment of psoriasis and psoriatic arthritis (PsA), but the reason why apremilast shows clinical effect is not fully understood. The objective of this study was to study the downstream effects of apremilast on cells of inflamed joints in immune-mediated inflammatory arthritis. METHODS Synovial fluid was obtained from patients with active rheumatoid arthritis (RA), PsA or peripheral spondyloarthritis (SpA; n = 18). The in vitro models consisted of synovial fluid mononuclear cells (SFMCs) or fibroblast-like synovial cells (FLSs) cultured for 48 h, SFMCs cultured for 21 days, an osteoclast pit formation assay, and a mineralization assay. RESULTS In SFMCs cultured for 48 h, apremilast decreased the production of interleukin (IL)-12/IL-23p40 (the shared subunit of IL-12 and IL-23), colony-stimulating factor 1, CD6, and CD40 and increased the production of C-X-C motif chemokine 5 dose-dependently. Apremilast had a very different response signature compared with the tumor necrosis factor alpha inhibitor adalimumab with a substantially greater inhibition of IL-12/IL-23p40. In SFMCs cultured for 21 days, apremilast increased the secretion of IL-10. In FLS cultures, apremilast decreased matrix metalloproteinase-3 production. Apremilast decreased osteoclastogenesis but did not affect mineralization by human osteoblasts. CONCLUSION This study reveals the downstream effects of apremilast in ex vivo models of arthritis with a strong inhibition of IL-12/IL-23p40 by SFMCs. Our findings could explain some of the efficacy of apremilast seen in IL-12/IL-23-driven immune-mediated inflammatory diseases such as psoriasis and PsA.
Collapse
Affiliation(s)
- Tue W. Kragstrup
- Department of Biomedicine, Wilhelm Meyers Allé 4, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mary Adams
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Søren Lomholt
- Department of Biomedicine, Aarhus University, Denmark
| | | | | | - Peter Schafer
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Denmark
- Department of Rheumatology, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
88
|
Ramani K, Biswas PS. Interleukin-17: Friend or foe in organ fibrosis. Cytokine 2019; 120:282-288. [PMID: 30772195 DOI: 10.1016/j.cyto.2018.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Fibrosis affects all vital organs accounting for a staggering 45% of deaths worldwide and no effective therapies are currently available. Unresolved inflammation triggers downstream signaling events that lead to organ fibrosis. In recent years, proinflammatory cytokine Interleukin-17 (IL-17) has been implicated in several chronic inflammatory diseases that often culminate in organ damage followed by impaired wound healing and fibrosis. In this review, we outline the contribution of the IL-17 in mediating fibrotic diseases in various organs. A comprehensive understanding of the inflammatory events, and particularly the details of IL-17 signaling in vivo, could be beneficial in designing new therapeutic or preventive approaches to treat fibrosis. Additionally, understanding organ-specific differences in IL-17 activity could lead to targeted therapies and help spare other organs from unwanted side effects.
Collapse
Affiliation(s)
- Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
89
|
Huang X, Yu P, Liu M, Deng Y, Dong Y, Liu Q, Zhang J, Wu T. ERK inhibitor JSI287 alleviates imiquimod-induced mice skin lesions by ERK/IL-17 signaling pathway. Int Immunopharmacol 2019; 66:236-241. [DOI: 10.1016/j.intimp.2018.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
|
90
|
Dainichi T, Kitoh A, Otsuka A, Nakajima S, Nomura T, Kaplan DH, Kabashima K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol 2018; 19:1286-1298. [PMID: 30446754 DOI: 10.1038/s41590-018-0256-2] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
The skin provides both a physical barrier and an immunologic barrier to external threats. The protective machinery of the skin has evolved to provide situation-specific responses to eliminate pathogens and to provide protection against physical dangers. Dysregulation of this machinery can give rise to the initiation and propagation of inflammatory loops in the epithelial microenvironment that result in inflammatory skin diseases in susceptible people. A defective barrier and microbial dysbiosis drive an interleukin 4 (IL-4) loop that underlies atopic dermatitis, while in psoriasis, disordered keratinocyte signaling and predisposition to type 17 responses drive a pathogenic IL-17 loop. Here we discuss the pathogenesis of atopic dermatitis and psoriasis in terms of the epithelial immune microenvironment-the microbiota, keratinocytes and sensory nerves-and the resulting inflammatory loops.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniel H Kaplan
- Department of Dermatology and Department of Immunology, Cutaneous Biology Research Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.
| |
Collapse
|
91
|
Israel L, Mellett M. Clinical and Genetic Heterogeneity of CARD14 Mutations in Psoriatic Skin Disease. Front Immunol 2018; 9:2239. [PMID: 30386326 PMCID: PMC6198054 DOI: 10.3389/fimmu.2018.02239] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 01/14/2023] Open
Abstract
The CARD: BCL10: MALT1 (CBM) complex is an essential signaling node for maintaining both innate and adaptive immune responses. CBM complex components have gained considerable interest due to the dramatic effects of associated mutations in causing severe lymphomas, immunodeficiencies, carcinomas and inflammatory disease. While MALT1 and BCL10 are ubiquitous proteins, the CARD-containing proteins differ in their tissue expression. CARD14 is primarily expressed in keratinocytes. The CARD14-BCL10-MALT1 complex is activated by upstream pathogen-associated molecular pattern-recognition in vitro, highlighting a potentially crucial role in innate immune defense at the epidermal barrier. Recent findings have demonstrated how CARD14 orchestrates activation of the NF-κB and MAPK signaling pathways via recruitment of BCL10 and MALT1, leading to the upregulation of pro-inflammatory genes encoding IL-36γ, IL-8, Ccl20 and anti-microbial peptides. Following the identification of CARD14 gain-of function mutations as responsible for the psoriasis susceptibility locus PSORS2, the past years have witnessed a large volume of case reports and association studies describing CARD14 variants as causal or predisposing to a wide range of inflammatory skin disorders. Recent publications of mouse models also helped to better understand the physiological contribution of CARD14 to psoriasis pathogenesis. In this review, we summarize the clinical, genetic and functional aspects of human and murine CARD14 mutations and their contribution to psoriatic disease pathogenesis.
Collapse
Affiliation(s)
- Laura Israel
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
92
|
A modified pectic polysaccharide from turmeric (Curcuma longa) with antiulcer effects via anti–secretary, mucoprotective and IL–10 mediated anti–inflammatory mechanisms. Int J Biol Macromol 2018; 118:864-880. [PMID: 29924982 DOI: 10.1016/j.ijbiomac.2018.06.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/03/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
|
93
|
Liu Y, Qin G, Meng Z, Du T, Wang X, Tang Y, Cao J. IL-1β, IL-17A and combined phototherapy predicts higher while previous systemic biologic treatment predicts lower treatment response to etanercept in psoriasis patients. Inflammopharmacology 2018; 27:57-66. [PMID: 30242748 DOI: 10.1007/s10787-018-0530-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study aimed to explore the correlation of circulating inflammatory cytokines' levels with treatment response to etanercept (ETN) treatment in psoriasis patients. METHODS 97 moderate-to-severe plaque-psoriasis patients were continuously recruited in this prospective cohort study, and all patients received ETN treatment. Serum samples were collected before and at 6 months (M6) after treatment, and nine inflammatory cytokines expressions were detected by enzyme-linked immuno sorbent assay. Psoriasis Area and Severity Index (PASI) score was evaluated at baseline (M0), 1 month (M1), 3 months (M3) and M6 after treatment, and the corresponding PASI 75/90 responses' rates were calculated. RESULTS Tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, IL-12, IL-17A, IL-22, IL-23, and IL-32 levels were reduced, while IL-10 level was elevated at M6 after ETN treatment compared to baseline. PASI 75/90 responses' rates to ETN were 69.1 and 38.1% at M6, respectively. IL-1β and IL-17A levels were elevated in PASI 75-response patients compared to PASI 75 non-response patients, while IL-17A level was also increased in PASI 90-response patients compared to PASI 90 non-response patients. Multivariate logistic regression revealed that IL-1β, IL-17A and combined phototherapy during study predicted higher, while previous systemic biologic treatment predicted lower PASI 75 response to ETN independently. In addition, IL-17A independently predicted higher PASI 90 response to ETN as well. CONCLUSIONS IL-1β, IL-17A, and combined phototherapy predicts higher while previous systemic biologic treatment predicts lower treatment response to ETN independently in psoriasis patients.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Dermatology, The People's Hospital of Shiyan, The Affiliated People's Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, 442000, China
| | - Guifang Qin
- Department of Dermatology, The People's Hospital of Shiyan, The Affiliated People's Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, 442000, China
| | - Zudong Meng
- Department of Dermatology, The People's Hospital of Shiyan, The Affiliated People's Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, 442000, China.
| | - Tianping Du
- Department of Neurosurgery, The People's Hospital of Shiyan, The Affiliated People's Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaolan Wang
- Department of Dermatology, The People's Hospital of Shiyan, The Affiliated People's Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, 442000, China
| | - Yong Tang
- Department of Rehabilitation, Sinopharm Dong Feng General Hospital, The Affiliated Dong Feng Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingjing Cao
- Department of Dermatology, The People's Hospital of Shiyan, The Affiliated People's Hospital, Hubei University of Medicine, 39 Middle Chaoyang Road, Shiyan, 442000, China
| |
Collapse
|
94
|
Chiu HY, Wang TS, Chen PH, Hsu SH, Tsai YC, Tsai TF. Psoriasis in Taiwan: From epidemiology to new treatments. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
95
|
Krah S, Kolmar H, Becker S, Zielonka S. Engineering IgG-Like Bispecific Antibodies-An Overview. Antibodies (Basel) 2018; 7:antib7030028. [PMID: 31544880 PMCID: PMC6640676 DOI: 10.3390/antib7030028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Monoclonal antibody therapeutics have proven to be successful treatment options for patients in various indications. Particularly in oncology, therapeutic concepts involving antibodies often rely on the so-called effector functions, such as antibody dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC), which are programed in the antibody Fc region. However, Fc-mediated effector mechanisms often seem to be insufficient in properly activating the immune system to act against tumor cells. Furthermore, long term treatments can lead to resistance against the applied drug, which is monospecific by nature. There is promise in using specific antibodies to overcome such issues due to their capability of recruiting and activating T-cells directly at the tumor site, for instance. During the last decade, two of these entities, which are referred to as Blinatumomab and Catumaxomab, have been approved to treat patients with acute lymphoblastic leukemia and malignant ascites. In addition, Emicizumab, which is a bispecific antibody targeting clotting factors IXa and X, was recently granted market approval by the FDA in 2017 for the treatment of hemophilia A. However, the generation of these next generation therapeutics is challenging and requires tremendous engineering efforts as two distinct paratopes need to be combined from two different heavy and light chains. This mini review summarizes technologies, which enable the generation of antibodies with dual specificities.
Collapse
Affiliation(s)
- Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany.
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293 Darmstadt, Germany.
| |
Collapse
|
96
|
Schön MP, Erpenbeck L. The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis. Front Immunol 2018; 9:1323. [PMID: 29963046 PMCID: PMC6013559 DOI: 10.3389/fimmu.2018.01323] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Research into the pathophysiology of psoriasis has shed light onto many fascinating immunological interactions and underlying genetic constellations. Most prominent among these is the crosstalk between components of the innate and the adaptive immune system and the crucial role of interleukins (IL)-23 and -17 within this network. While it is clear that IL-23 drives and maintains the differentiation of Th17 lymphocytes, many aspects of the regulation of IL-23 and IL-17 are not quite as straightforward and have been unraveled only recently. For example, we know now that Th17 cells are not the only source of IL-17 but that cells of the innate immune system also produce considerable amounts of this central effector cytokine. In addition, there is IL-23-independent production of IL-17. Besides other innate immune cells, neutrophilic granulocytes prominently contribute to IL-17-related immune regulations in psoriasis, and it appears that they employ several mechanisms including the formation of neutrophil extracellular traps. Here, we strive to put the central role of the IL-23/IL-17 axis into perspective within the crosstalk between components of the innate and the adaptive immune system. Our aim is to better understand the complex immune regulation in psoriasis, a disorder that has become a model disease for chronic inflammation.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.,Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, University of Osnabrück, Osnabrück, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
97
|
Disease Modification in Psoriatic Arthritis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2018. [DOI: 10.1007/s40674-018-0100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|