51
|
Fu D, Zhang B, Wu S, Zhang Y, Xie J, Ning W, Jiang H. Prognosis and Characterization of Immune Microenvironment in Acute Myeloid Leukemia Through Identification of an Autophagy-Related Signature. Front Immunol 2021; 12:695865. [PMID: 34135913 PMCID: PMC8200670 DOI: 10.3389/fimmu.2021.695865] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies that has an unfavorable outcome and a high rate of relapse. Autophagy plays a vital role in the development of and therapeutic responses to leukemia. This study identifies a potential autophagy-related signature to monitor the prognoses of patients of AML. Transcriptomic profiles of AML patients (GSE37642) with the relevant clinical information were downloaded from Gene Expression Omnibus (GEO) as the training set while TCGA-AML and GSE12417 were used as validation cohorts. Univariate regression analyses and multivariate stepwise Cox regression analysis were respectively applied to identify the autophagy-related signature. The univariate Cox regression analysis identified 32 autophagy-related genes (ARGs) that were significantly associated with the overall survival (OS) of the patients, and were mainly rich in signaling pathways for autophagy, p53, AMPK, and TNF. A prognostic signature that comprised eight ARGs (BAG3, CALCOCO2, CAMKK2, CANX, DAPK1, P4HB, TSC2, and ULK1) and had good predictive capacity was established by LASSO–Cox stepwise regression analysis. High-risk patients were found to have significantly shorter OS than patients in low-risk group. The signature can be used as an independent prognostic predictor after adjusting for clinicopathological parameters, and was validated on two external AML sets. Differentially expressed genes analyzed in two groups were involved in inflammatory and immune signaling pathways. An analysis of tumor-infiltrating immune cells confirmed that high-risk patients had a strong immunosuppressive microenvironment. Potential druggable OS-related ARGs were then investigated through protein–drug interactions. This study provides a systematic analysis of ARGs and develops an OS-related prognostic predictor for AML patients. Further work is needed to verify its clinical utility and identify the underlying molecular mechanisms in AML.
Collapse
Affiliation(s)
- Denggang Fu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Shiyong Wu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yinghua Zhang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jingwu Xie
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,The IU Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
| | - Wangbin Ning
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Jiang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
52
|
Papuc SM, Erbescu A, Cisleanu D, Ozunu D, Enache C, Dumitru I, Lupoaia Andrus E, Gaman M, Popov VM, Dobre M, Stanca O, Angelescu S, Berbec N, Colita A, Vladareanu AM, Bumbea H, Arghir A. Delineation of Molecular Lesions in Acute Myeloid Leukemia Patients at Diagnosis: Integrated Next Generation Sequencing and Cytogenomic Studies. Genes (Basel) 2021; 12:genes12060846. [PMID: 34070898 PMCID: PMC8229708 DOI: 10.3390/genes12060846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by a wide range of genetic defects. Cytogenetics, molecular and genomic technologies have proved to be helpful for deciphering the mutational landscape of AML and impacted clinical practice. Forty-eight new AML patients were investigated with an integrated approach, including classical and molecular cytogenetics, array-based comparative genomic hybridization and targeted next generation sequencing (NGS). Various genetic defects were identified in all the patients using our strategy. Targeted NGS revealed known pathogenic mutations as well as rare or unreported variants with deleterious predictions. The mutational screening of the normal karyotype (NK) group identified clinically relevant variants in 86.2% of the patients; in the abnormal cytogenetics group, the mutation detection rate was 87.5%. Overall, the highest mutation prevalence was observed for the NPM1 gene, followed by DNMT3A, FLT3 and NRAS. An unexpected co-occurrence of KMT2A translocation and DNMT3A-R882 was identified; alterations of these genes, which are involved in epigenetic regulation, are considered to be mutually exclusive. A microarray analysis detected CNVs in 25% of the NK AML patients. In patients with complex karyotypes, the microarray analysis made a significant contribution toward the accurate characterization of chromosomal defects. In summary, our results show that the integration of multiple investigative strategies increases the detection yield of genetic defects with potential clinical relevance.
Collapse
Affiliation(s)
- Sorina Mihaela Papuc
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Alina Erbescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Diana Cisleanu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Diana Ozunu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Cristina Enache
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Ion Dumitru
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Elena Lupoaia Andrus
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Mihaela Gaman
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | | | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Oana Stanca
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Silvana Angelescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Nicoleta Berbec
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Andrei Colita
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana-Maria Vladareanu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Horia Bumbea
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
- Correspondence: ; Tel.: +40-2-1319-2732-207; Fax: +40-2-1319-4528
| |
Collapse
|
53
|
Tlili H, Macovei A, Buonocore D, Lanzafame M, Najjaa H, Lombardi A, Pagano A, Dossena M, Verri M, Arfa AB, Neffati M, Doria E. The polyphenol/saponin-rich Rhus tripartita extract has an apoptotic effect on THP-1 cells through the PI3K/AKT/mTOR signaling pathway. BMC Complement Med Ther 2021; 21:153. [PMID: 34044827 PMCID: PMC8161611 DOI: 10.1186/s12906-021-03328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background Hyperactivation of mechanistic target of rapamycin (mTOR) signaling pathway is involved in the regulation of cellular growth, proliferation, and more in general, is a common phenomenon in most types of cancers. Thus, natural substances targeting this pathway can be of great therapeutic potential in supporting the treatment of tumor patients. Rhus tripartita (Ucria) Grande is a plant growing in desertic areas which is traditionally used for the treatment of several diseases in Tunisia. In the present work, the biochemical profile of the main compounds present in the plant leaf extract was determined and the anti-leukemic potential of the plant extracts against acute monocytic leukaemia (AML) THP-1 cells was investigated. Methods After HPLC identification of some phenolic compounds present in the plant extract and the quantification of saponin content, the cytotoxic effect of Rhus tripartita extracts on THP-1 cell culture was evaluated using the colorimetric MTT assay for cell viability. THP-1 cells were incubated with medium containing the relative IC50 concentrations of total plant extract, saponin extract and some standard compounds (rutin (R); kaempferol (K); mixture of catechin, epicatechin, and epicatechin-gallate (CEEG); ellagic acid (EA). Finally, qRT-PCR and western blotting analysis were used to evaluate the effect of some flavonoids present in a crude extract of polyphenols and the total extract of saponins on cell survival and apoptosis. Results Analysis of expression level of some gene (PIK3CA, PTEN, AKT1, mTOR, EIF4E, RPS6KB1, and TSC1) involved in the mTOR pathway and the phosphorylation of S6 and AKT proteins allowed to observe that a total Rhus tripartita extract and some of the compounds found in the extract controls THP-1 cell proliferation and apoptosis via regulation of the PI3K-Akt-mTOR signaling pathway. Conclusion Rhus tripartita-induced inhibition of cell cycle and induction of apoptosis may involve the mTOR pathway. Therefore, Rhus tripartita extract may be a useful candidate as a natural anti-cancer drug to support the treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03328-9.
Collapse
Affiliation(s)
- Hajer Tlili
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | | | - Hanen Najjaa
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | | | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Abdelkarim Ben Arfa
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | - Mohamed Neffati
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Microorganisms, Institute of Arid Regions (IRA), Tunis, Medenine, Tunisia
| | - Enrico Doria
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
54
|
Dembitz V, Gallipoli P. The Role of Metabolism in the Development of Personalized Therapies in Acute Myeloid Leukemia. Front Oncol 2021; 11:665291. [PMID: 34094959 PMCID: PMC8170311 DOI: 10.3389/fonc.2021.665291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite significant recent advances in our understanding of the biology and genetics of acute myeloid leukemia (AML), current AML therapies are mostly based on a backbone of standard chemotherapy which has remained mostly unchanged for over 20 years. Several novel therapies, mostly targeting neomorphic/activating recurrent mutations found in AML patients, have only recently been approved following encouraging results, thus providing the first evidence of a more precise and personalized approach to AML therapy. Rewired metabolism has been described as a hallmark of cancer and substantial evidence of its role in AML establishment and maintenance has been recently accrued in preclinical models. Interestingly, unique metabolic changes are generated by specific AML recurrent mutations or in response to diverse AML therapies, thus creating actionable metabolic vulnerabilities in specific patient groups. In this review we will discuss the current evidence supporting a role for rewired metabolism in AML pathogenesis and how these metabolic changes can be leveraged to develop novel personalized therapies.
Collapse
Affiliation(s)
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
55
|
Fajardo-Orduña GR, Ledesma-Martínez E, Aguiñiga-Sánchez I, Mora-García MDL, Weiss-Steider B, Santiago-Osorio E. Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review. Int J Mol Sci 2021; 22:ijms22094955. [PMID: 34066940 PMCID: PMC8124548 DOI: 10.3390/ijms22094955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common type of leukemia in older adults, is a heterogeneous disease that originates from the clonal expansion of undifferentiated hematopoietic progenitor cells. These cells present a remarkable variety of genes and proteins with altered expression and function. Despite significant advances in understanding the molecular panorama of AML and the development of therapies that target mutations, survival has not improved significantly, and the therapy standard is still based on highly toxic chemotherapy, which includes cytarabine (Ara-C) and allogeneic hematopoietic cell transplantation. Approximately 60% of AML patients respond favorably to these treatments and go into complete remission; however, most eventually relapse, develop refractory disease or chemoresistance, and do not survive for more than five years. Therefore, drug resistance that initially occurs in leukemic cells (primary resistance) or that develops during or after treatment (acquired resistance) has become the main obstacle to AML treatment. In this work, the main molecules responsible for generating chemoresistance to Ara-C in AML are discussed, as well as some of the newer strategies to overcome it, such as the inclusion of molecules that can induce synergistic cytotoxicity with Ara-C (MNKI-8e, emodin, metformin and niclosamide), subtoxic concentrations of chemotherapy (PD0332991), and potently antineoplastic treatments that do not damage nonmalignant cells (heteronemin or hydroxyurea + azidothymidine).
Collapse
Affiliation(s)
- Guadalupe Rosario Fajardo-Orduña
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Edgar Ledesma-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico;
| | - Benny Weiss-Steider
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico; (G.R.F.-O.); (E.L.-M.); (I.A.-S.); (B.W.-S.)
- Correspondence: ; Tel.: +52-55-57-73-41-08
| |
Collapse
|
56
|
Wu M, Wang S, Chen JY, Zhou LJ, Guo ZW, Li YH. Therapeutic cancer vaccine therapy for acute myeloid leukemia. Immunotherapy 2021; 13:863-877. [PMID: 33955237 DOI: 10.2217/imt-2020-0277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antitumor function of the immune system has been harnessed to eradicate tumor cells as cancer therapy. Therapeutic cancer vaccines aim to help immune cells recognize tumor cells, which are difficult to target owing to immune escape. Many attempts at vaccine designs have been conducted throughout the last decades. In addition, as the advanced understanding of immunosuppressive mechanisms mediated by tumor cells, combining cancer vaccines with other immune therapies seems to be more efficient for cancer treatment. Acute myeloid leukemia (AML) is the most common acute leukemia in adults with poor prognosis. Evidence has shown T-cell-mediated immune responses in AML, which encourages the utility of immune therapies in AML. This review discusses cancer vaccines in AML from vaccine design as well as recent progress in vaccination combination with other immune therapies.
Collapse
Affiliation(s)
- Ming Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Hematology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Sheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jian-Yu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Li-Juan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zi-Wen Guo
- Department of Hematology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Yu-Hua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
57
|
Skou AS, Juul-Dam KL, Ommen HB, Hasle H. Peripheral blood molecular measurable residual disease is sufficient to identify patients with acute myeloid leukaemia with imminent clinical relapse. Br J Haematol 2021; 195:310-327. [PMID: 33851435 DOI: 10.1111/bjh.17449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/03/2023]
Abstract
Longitudinal molecular measurable residual disease (MRD) sampling after completion of therapy serves as a refined tool for identification of imminent relapse of acute myeloid leukaemia (AML) among patients in long-term haematological complete remission. Tracking of increasing quantitative polymerase chain reaction MRD before cytomorphological reappearance of blasts may instigate individual management decisions and has paved the way for development of pre-emptive treatment strategies to substantially delay or perhaps even revert leukaemic regrowth. Traditionally, MRD monitoring is performed using repeated bone marrow aspirations, albeit the current European LeukemiaNet MRD recommendations acknowledge the use of peripheral blood as an alternative source for MRD assessment. Persistent MRD positivity in the bone marrow despite continuous morphological remission is frequent in both core binding factor leukaemias and nucleophosmin 1-mutated AML. In contrast, monthly assessment of MRD in peripheral blood superiorly separates patients with imminent haematological relapse from long-term remitters and may allow pre-emptive therapy of AML relapse.
Collapse
Affiliation(s)
- Anne-Sofie Skou
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
58
|
Oltvai ZN, Harley SE, Koes D, Michel S, Warlick ED, Nelson AC, Yohe S, Mroz P. Assessing acquired resistance to IDH1 inhibitor therapy by full-exon IDH1 sequencing and structural modeling. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006007. [PMID: 33832922 PMCID: PMC8040736 DOI: 10.1101/mcs.a006007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Somatic mutations in hotspot regions of the cytosolic or mitochondrial isoforms of the isocitrate dehydrogenase gene (IDH1 and IDH2, respectively) contribute to the pathogenesis of acute myeloid leukemia (AML) by producing the oncometabolite 2-hydroxyglutarate (2-HG). The allosteric IDH1 inhibitor, ivosidenib, suppresses 2-HG production and induces clinical responses in relapsed/refractory IDH1-mutant AML. Herein, we describe a clinical case of AML in which we detected the neomorphic IDH1 p.R132C mutation in consecutive patient samples with a mutational hotspot targeted next-generation sequencing (NGS) assay. The patient had a clinical response to ivosidenib, followed by relapse and disease progression. Subsequent sequencing of the relapsed sample using a newly developed all-exon, hybrid-capture-based NGS panel identified an additional IDH1 p.S280F mutation known to cause renewed 2-HG production and drug resistance. Structural modeling confirmed that serine-to-phenylalanine substitution at this codon sterically hinders ivosidenib from binding to the mutant IDH1 dimer interface and predicted a similar effect on the pan-IDH inhibitor AG-881. Joint full-exon NGS and structural modeling enables monitoring IDH1 inhibitor-treated AML patients for acquired drug resistance and choosing follow-up therapy.
Collapse
Affiliation(s)
- Zoltán N Oltvai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York 14642, USA
| | - Susan E Harley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - David Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Stephen Michel
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Erica D Warlick
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sophia Yohe
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Pawel Mroz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
59
|
Prognostic Significance of CD56 Antigen Expression in Patients with De Novo Non-M3 Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1929357. [PMID: 33928145 PMCID: PMC8049794 DOI: 10.1155/2021/1929357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/02/2021] [Accepted: 03/20/2021] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of disorders with distinct characteristics and prognoses. Although cytogenetic changes and gene mutations are associated with AML prognosis, there is a need to identify further factors. CD56 is considered a prognostic factor for AML, which is abnormally expressed in leukemia cells. However, a clear consensus for this surface molecule is lacking, which has prompted us to investigate its prognostic significance. Bone marrow samples of de novo non-M3 AML were collected to detect CD56 expression using multiparameter flow cytometry (FCM). As a result, the CD56 expression in de novo non-M3 AML was found to be significantly higher than that in acute lymphoma leukemia (ALL, P = 0.017) and healthy controls (P = 0.02). The X-Tile program produced a CD56 cutoff point at a relative expression level of 24.62%. Based on this cutoff point, high CD56 expression was observed in 29.21% of de novo non-M3 AML patients. CD56-high patients had a poor overall survival (OS, P = 0.015) compared to CD56-low patients. Bone marrow transplantation (BMT) improved OS (P = 0.004), but a poor genetic risk was associated with an inferior OS (P = 0.002). Compared with CD56-low patients, CD56-high patients had lower peripheral blood platelet (PLT) counts (P = 0.010). Our research confirmed that high CD56 expression is associated with adverse clinical outcomes in de novo non-M3 AML patients, indicating that CD56 could be used as a prognostic marker for a more precise stratification of de novo non-M3 AML patients.
Collapse
|
60
|
Synergistic targeting of FLT3 mutations in AML via combined menin-MLL and FLT3 inhibition. Blood 2021; 136:2442-2456. [PMID: 32589720 DOI: 10.1182/blood.2020005037] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.
Collapse
|
61
|
Lin X, Wang J, Huang X, Wang H, Li F, Ye W, Huang S, Pan J, Ling Q, Wei W, Mao S, Qian Y, Jin J, Huang J. Global, regional, and national burdens of leukemia from 1990 to 2017: a systematic analysis of the global burden of disease 2017 study. Aging (Albany NY) 2021; 13:10468-10489. [PMID: 33820874 PMCID: PMC8064161 DOI: 10.18632/aging.202809] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/23/2021] [Indexed: 01/19/2023]
Abstract
We described the spatial and temporal trends of the annual leukemia incidence, prevalence, mortality, and disability-adjusted life years (DALYs) from 1990 to 2017. Leukemia case numbers and age-standardized rates (ASRs) were extracted from the Global Burden of Disease (GBD) study 2017. The estimated annual percentage change (EAPC) in the ASR was calculated using a generalized linear model with a Gaussian distribution. The risk factors for death and DALYs due to leukemia were estimated within the comparative risk assessment framework of the GBD study. Globally, the prevalence, age-standardized prevalence rate (ASPR), and EAPC in leukemia cases in 2017 were 2.43 (95% uncertainty interval (UI) 2.19 to 2.59) million, 32.26 (95% UI 29.02 to 34.61), and 0.22% (95% CI 0.13 to 0.31, P<0.01), respectively, during 1990-2017. The trends of the age-standardized incidence, deaths, and DALY rate all significantly decreased globally. The burden of leukemia was higher in males than in female. An increasing leukemia burden was found in high-middle-sociodemographic index (SDI) countries and territories. The burden of leukemia tended to be lower in high-SDI regions than that in lower SDI regions. The rapid increases in the prevalent cases and prevalence rate of leukemia is urgent to be solved in the future.
Collapse
Affiliation(s)
- Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
62
|
Richardson DR, Swoboda DM, Moore DT, Johnson SM, Chan O, Galeotti J, Esparza S, Hussaini MO, Van Deventer H, Foster MC, Coombs CC, Montgomery ND, Sallman DA, Zeidner JF. Genomic characteristics and prognostic significance of co-mutated ASXL1/SRSF2 acute myeloid leukemia. Am J Hematol 2021; 96:462-470. [PMID: 33502020 DOI: 10.1002/ajh.26110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022]
Abstract
The ASXL1 and SRSF2 mutations in AML are frequently found in patients with preexisting myeloid malignancies and are individually associated with poor outcomes. In this multi-institutional retrospective analysis, we assessed the genetic features and clinical outcomes of 43 patients with ASXL1mut SRSF2mut AML and compared outcomes to patients with either ASXL1 (n = 57) or SRSF2 (n = 70) mutations. Twenty-six (60%) had secondary-AML (s-AML). Variant allele fractions suggested that SRSF2 mutations preceded ASXL1 mutational events. Median overall survival (OS) was 7.0 months (95% CI:3.8,15.3) and was significantly longer in patients with de novo vs s-AML (15.3 vs 6.4 months, respectively; P = .04 on adjusted analysis). Compared to ASXL1mut SRSF2wt and ASXL1wt SRSF2mut , co-mutated patients had a 1.4 and 1.6 times increase in the probability of death, respectively (P = .049), with a trend towards inferior OS (median OS = 7.0 vs 11.5 vs 10.9 months, respectively; P = .10). Multivariable analysis suggests this difference in OS is attributable to the high proportion of s-AML patients in the co-mutated cohort (60% vs 32% and 23%, respectively). Although this study is limited by the retrospective data collection and the relatively small sample size, these data suggest that ASXL1mut SRSF2mut AML is a distinct subgroup of AML frequently associated with s-AML and differs from ASXL1mut SRSF2wt /ASXL1wt SRSF2mut with respect to etiology and leukemogenesis.
Collapse
Affiliation(s)
- Daniel R. Richardson
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- Division of Hematology, Department of Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- The Cecil G. Sheps Center for Health Services Research University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - David M. Swoboda
- Department of Malignant Hematology H. Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
| | - Dominic T. Moore
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - Steven M. Johnson
- Department of Pathology and Laboratory Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - Onyee Chan
- Department of Malignant Hematology H. Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
| | - Jonathan Galeotti
- Department of Pathology and Laboratory Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - Sonia Esparza
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- Division of Hematology, Department of Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - Mohammad O. Hussaini
- Department of Malignant Hematology H. Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
| | - Hendrick Van Deventer
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- Division of Hematology, Department of Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - Matthew C. Foster
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- Division of Hematology, Department of Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - Catherine C. Coombs
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- Division of Hematology, Department of Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - Nathan D. Montgomery
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- Department of Pathology and Laboratory Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| | - David A. Sallman
- Department of Malignant Hematology H. Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
| | - Joshua F. Zeidner
- Lineberger Comprehensive Cancer Center The University of North Carolina School of Medicine Chapel Hill North Carolina USA
- Division of Hematology, Department of Medicine The University of North Carolina School of Medicine Chapel Hill North Carolina USA
| |
Collapse
|
63
|
Heimbruch KE, Fisher JB, Stelloh CT, Phillips E, Reimer MH, Wargolet AJ, Meyer AE, Pulakanti K, Viny AD, Loppnow JJ, Levine RL, Pulikkan JA, Zhu N, Rao S. DOT1L inhibitors block abnormal self-renewal induced by cohesin loss. Sci Rep 2021; 11:7288. [PMID: 33790356 PMCID: PMC8012605 DOI: 10.1038/s41598-021-86646-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine. Heterozygous inactivating mutations in cohesin complex genes contribute to AML in adults by increasing the self-renewal capacity of hematopoietic stem and progenitor cells (HSPCs) by altering PRC2 targeting to induce HOXA9 expression, a key self-renewal transcription factor. Here we sought to delineate the epigenetic mechanism underpinning the enhanced self-renewal conferred by cohesin-haploinsufficiency. First, given the substantial difference in the mutational spectrum between pediatric and adult AML patients, we first sought to identify if HOXA9 was also elevated in children. Next, using primary HSPCs as a model we demonstrate that abnormal self-renewal due to cohesin loss is blocked by DOT1L inhibition. In cohesin-depleted cells, DOT1L inhibition is associated with H3K79me2 depletion and a concomitant increase in H3K27me3. Importantly, we find that there are cohesin-dependent gene expression changes that promote a leukemic profile, including HoxA overexpression, that are preferentially reversed by DOT1L inhibition. Our data further characterize how cohesin mutations contribute to AML development, identifying DOT1L as a potential therapeutic target for adult and pediatric AML patients harboring cohesin mutations.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph B Fisher
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Cary T Stelloh
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily Phillips
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael H Reimer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adam J Wargolet
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Alison E Meyer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica J Loppnow
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Anto Pulikkan
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
64
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
65
|
Redirecting the Immune Microenvironment in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061423. [PMID: 33804676 PMCID: PMC8003817 DOI: 10.3390/cancers13061423] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Despite remarkable progress in the outcome of childhood acute myeloid leukemia (AML), risk of relapse and refractory diseases remains high. Treatment of the chemo-refractory disease is restricted by dose-limiting therapy-related toxicities which necessitate alternative tolerable efficient therapeutic modalities. By disrupting its immune environment, leukemic blasts are known to gain the ability to evade immune surveillance and promote disease progression; therefore, many efforts have been made to redirect the immune system against malignant blasts. Deeper knowledge about immunologic alterations has paved the way to the discovery and development of novel targeted therapeutic concepts, which specifically override the immune evasion mechanisms to eradicate leukemic blasts. Herein, we review innovative immunotherapeutic strategies and their mechanisms of action in pediatric AML. Abstract Acute myeloid leukemia is a life-threatening malignant disorder arising in a complex and dysregulated microenvironment that, in part, promotes the leukemogenesis. Treatment of relapsed and refractory AML, despite the current overall success rates in management of pediatric AML, remains a challenge with limited options considering the heavy but unsuccessful pretreatments in these patients. For relapsed/refractory (R/R) patients, hematopoietic stem cell transplantation (HSCT) following ablative chemotherapy presents the only opportunity to cure AML. Even though in some cases immune-mediated graft-versus-leukemia (GvL) effect has been proven to efficiently eradicate leukemic blasts, the immune- and chemotherapy-related toxicities and adverse effects considerably restrict the feasibility and therapeutic power. Thus, immunotherapy presents a potent tool against acute leukemia but needs to be engineered to function more specifically and with decreased toxicity. To identify innovative immunotherapeutic approaches, sound knowledge concerning immune-evasive strategies of AML blasts and the clinical impact of an immune-privileged microenvironment is indispensable. Based on our knowledge to date, several promising immunotherapies are under clinical evaluation and further innovative approaches are on their way. In this review, we first focus on immunological dysregulations contributing to leukemogenesis and progression in AML. Second, we highlight the most promising therapeutic targets for redirecting the leukemic immunosuppressive microenvironment into a highly immunogenic environment again capable of anti-leukemic immune surveillance.
Collapse
|
66
|
Richardson DR, Oakes AH, Crossnohere NL, Rathsmill G, Reinhart C, O'Donoghue B, Bridges JFP. Prioritizing the worries of AML patients: Quantifying patient experience using best-worst scaling. Psychooncology 2021; 30:1104-1111. [PMID: 33544421 DOI: 10.1002/pon.5652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023]
Abstract
CONTEXT Although patients with acute myeloid leukemia (AML) experience significant toxicities and poor outcomes, few studies have quantified patients' experience. METHODS A community-centered approach was used to develop an AML-specific best-worst scaling (BWS) instrument involving 13 items in four domains (psychological, physical, decision-making, and treatment delivery) to quantify patient worry. A survey of patients and caregivers was conducted using the instrument. Data were analyzed using conditional logistic regression. RESULTS The survey was completed by 832 patients and 237 caregivers. Patients were predominantly white (88%), married/partnered (72%), and in remission (95%). The median age was 55 years (range: 19-87). Median time since diagnosis was 8 years (range: 1-40). Patients worried most about "the possibility of dying from AML" (BWS score = 15.5, confidence interval [CI] [14.2-16.7]) and "long-term side effects of treatments" (14.0, CI [12.9-15.2]). Patients found these items more than twice as worrisome as all items within the domains of care delivery and decision-making. Patients were least worried about "communicating openly with doctors" (2.50, CI [1.97-3.04]) and "having access to the best medical care" (3.90, CI [3.28-4.61]). Caregiver reports were highly correlated to patients' (Spearman's ρ = 0.89) though noted significantly more worry about the possibility of dying and spending time in the hospital. CONCLUSION This large convenience sample demonstrates that AML patients have two principal worries: dying from their disease and suffering long-term side effects from treatment. To better foster patient-centered care, therapeutic decision-making and drug development should reflect the importance of both potential outcomes. Further work should explore interventions to address these worries.
Collapse
Affiliation(s)
- Daniel R Richardson
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison H Oakes
- Center for Health Equity Research and Promotion, Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Penn Medicine Nudge Unit, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Norah L Crossnohere
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA.,Department of Health Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gary Rathsmill
- Leukemia & Lymphoma Society, White Plains, New York, USA
| | - Crystal Reinhart
- Center for Prevention Research and Development, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | | | - John F P Bridges
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA.,Department of Health Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
67
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
68
|
Sutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, Soh SY, Leung W, Tan AM. Excellent Survival Outcomes of Pediatric Patients With Acute Myeloid Leukemia Treated With the MASPORE 2006 Protocol. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e290-e300. [PMID: 33384264 DOI: 10.1016/j.clml.2020.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the prognostic factors in pediatric patients with acute myeloid leukemia (AML) and to assess whether their outcomes have improved over time. PATIENTS AND METHODS Sixty-two patients with AML excluding acute promyelocytic leukemia were retrospectively analyzed. Patients in the earlier cohort (n = 36) were treated on the Medical Research Council (MRC) AML12 protocol, whereas those in the recent cohort (n = 26) were treated on the Malaysia-Singapore AML protocol (MASPORE 2006), which differed in terms of risk group stratification, cumulative anthracycline dose, and timing of hematopoietic stem-cell transplantation for high-risk patients. RESULTS Significant improvements in 10-year overall survival and event-free survival were observed in patients treated with the recent MASPORE 2006 protocol compared to the earlier MRC AML12 protocol (overall survival: 88.0% ± 6.5% vs 50.1% ± 8.6%, P = .002; event-free survival: 72.1% ± 9.0 vs 50.1% ± 8.6%, P = .045). In univariate analysis, patients in the recent cohort had significantly lower intensive care unit admission rate (11.5% vs 47.2%, P = .005) and numerically lower relapse rate (26.9% vs 50.0%, P = .068) compared to the earlier cohort. Multivariate analysis showed that treatment protocol was the only independent predictive factor for overall survival (hazard ratio = 0.21; 95% confidence interval, 0.06-0.73, P = .014). CONCLUSION Outcomes of pediatric AML patients have improved over time. The more recent MASPORE 2006 protocol led to significant improvement in long-term survival rates and reduction in intensive care unit admission rate.
Collapse
Affiliation(s)
| | - Mya Soe Nwe
- Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | - Eunice En Ni Lai
- Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | - Denyse Kawai Lee
- Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | - Mei Yoke Chan
- Duke-NUS Medical School, Singapore; Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | - Allen Eng-Juh Yeoh
- Division of Paediatric Haematology/Oncology, Department of Paediatrics, National University Hospital, Singapore
| | - Shui Yen Soh
- Duke-NUS Medical School, Singapore; Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| | - Wing Leung
- Duke-NUS Medical School, Singapore; Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore.
| | - Ah Moy Tan
- Duke-NUS Medical School, Singapore; Haematology/Oncology Service, Department of Paediatric Subspecialties, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
69
|
Peng S, Yang Q, Li H, Pan Y, Wang J, Hu P, Zhang N. CTSB Knockdown Inhibits Proliferation and Tumorigenesis in HL-60 Cells. Int J Med Sci 2021; 18:1484-1491. [PMID: 33628106 PMCID: PMC7893552 DOI: 10.7150/ijms.54206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Cathepsin B (CTSB) was well documented in solid tumors, up-regulated of CTSB expression is linked with progression of tumors. However, the study of CTSB in adult leukemia has not been reported. Methods: Total RNA was isolated from PBMC (peripheral blood mononuclear cell) of AML patients and healthy donors. qRT-PCR was performed to detect the expression of CTSB. The association of CTSB expression with the patients' overall survival (OS) and disease-free survival (DFS) were analyzed. Stable HL-60 CTSB-shRNA cell lines were established by retrovirus infection and puromycin selection. Cell proliferation was detected by CCK-8 analysis. Tumorigenesis ability was analyzed by soft agar and xenograft nude mice model. Western blot was performed to detect the expression of CTSB and the proteins of cell signaling pathway. Results: The mRNA expression level of CTSB was up-regulated in AML patients compared to healthy control (p<0.001), and CTSB expression was significantly higher in M1, M2, M4 and M5 AML samples than healthy control. The CTSB expression in AML was associated with WBC count (p=0.037). Patients with high CTSB expression had a relatively poor OS (p=0.007) and a shorter DFS (p=0.018). Moreover, the expression level of CTSB may act as an independent prognostic factor for both OS (p=0.011) and DFS (p=0.004). Knockdown CTSB expression in HL-60 cells could inhibit the cells' proliferation and tumorigeneses in vitro and in vivo. Further study showed knockdown CTSB expression in HL-60 cells could inactive the AKT signaling pathway. Conclusions: CTSB mRNA was upregulated in AML patients. CTSB overexpression was correlated with poor prognosis and may serve as an independent prognostic factor for both OS and DFS in AML patients. Knockdown CTSB expression in HL-60 cells could inhibit the cells' proliferation and tumorigenesis. The underlying mechanism may be the inhibition of the AKT signaling pathway.
Collapse
Affiliation(s)
- Sida Peng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.,Cell genetics laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Qingqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.,Cell genetics laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Huan Li
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Yuhang Pan
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Pan Hu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Nana Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| |
Collapse
|
70
|
A new era of immuno-oncology in acute myeloid leukemia - antibody-based therapies and immune checkpoint inhibition. Best Pract Res Clin Haematol 2020; 33:101220. [PMID: 33279176 DOI: 10.1016/j.beha.2020.101220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) remains a therapeutically challenging malignancy with high rate of relapse and poor outcomes. There has been increased understanding of the molecular characteristics of AML and the various roles of the immune system in its pathogenesis, the result of which has led to the study and development of multiple immune-based approaches for this disease. In this review, we aim to provide an overview of the recent advancements made in antibody-based approaches to the treatment of AML including monoclonal antibodies, antibody-drug conjugates, and immune checkpoint inhibition. In addition, we provide insight and discuss the promise of these agents, some of which may soon enter the therapeutic armamentarium we currently employ against this lethal disease.
Collapse
|
71
|
Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in Acute Myeloid Leukemia: Recently Approved Therapies and Drugs in Development. Cancers (Basel) 2020; 12:E3225. [PMID: 33139625 PMCID: PMC7692236 DOI: 10.3390/cancers12113225] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy comprised of various cytogenetic and molecular abnormalities that has notoriously been difficult to treat with an overall poor prognosis. For decades, treatment options were limited to either intensive chemotherapy with anthracycline and cytarabine-based regimens (7 + 3) or lower intensity regimens including hypomethylating agents or low dose cytarabine, followed by either allogeneic stem cell transplant or consolidation chemotherapy. Fortunately, with the influx of rapidly evolving molecular technologies and new genetic understanding, the treatment landscape for AML has dramatically changed. Advances in the formulation and delivery of 7 + 3 with liposomal cytarabine and daunorubicin (Vyxeos) have improved overall survival in secondary AML. Increased understanding of the genetic underpinnings of AML has led to targeting actionable mutations such as FLT3, IDH1/2 and TP53, and BCL2 or hedgehog pathways in more frail populations. Antibody drug conjugates have resurfaced in the AML landscape and there have been numerous advances utilizing immunotherapies including immune checkpoint inhibitors, antibody-drug conjugates, bispecific T cell engager antibodies, chimeric antigen receptor (CAR)-T therapy and the development of AML vaccines. While there are dozens of ongoing studies and new drugs in the pipeline, this paper serves as a review of the advances achieved in the treatment of AML in the last several years and the most promising future avenues of advancement.
Collapse
Affiliation(s)
- Michele Stanchina
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (D.S.)
| | - Deborah Soong
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (D.S.)
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Binbin Zheng-Lin
- Department of Medicine, Icahn School of Medicine Mount Sinai West-Morningside, New York, NY 10025, USA;
| | - Justin M. Watts
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
72
|
Nair R, Salinas-Illarena A, Baldauf HM. New strategies to treat AML: novel insights into AML survival pathways and combination therapies. Leukemia 2020; 35:299-311. [PMID: 33122849 DOI: 10.1038/s41375-020-01069-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
The effective treatment of acute myeloid leukemia (AML) is very challenging. Due to the immense heterogeneity of this disease, treating it using a "one size fits all" approach is ineffective and only benefits a subset of patients. Instead, there is a shift towards more personalized treatment based on the patients' genomic signature. This shift has facilitated the increased revelation of novel insights into pathways that lead to the survival and propagation of AML cells. These AML survival pathways are involved in drug resistance, evasion of the immune system, reprogramming metabolism, and impairing differentiation. In addition, based on the reports of enhanced clinical efficiencies when combining drugs or treatments, deeper investigation into possible pathways, which can be targeted together to increase treatment response in a wider group of patients, is warranted. In this review, not only is a comprehensive summary of targets involved in these pathways provided, but also insights into the potential of targeting these molecules in combination therapy will be discussed.
Collapse
Affiliation(s)
- Ramya Nair
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Alejandro Salinas-Illarena
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
| |
Collapse
|
73
|
Poh C, Brunson A, Keegan T, Wun T, Mahajan A. Incidence of Upper Extremity Deep Vein Thrombosis in Acute Leukemia and Effect on Mortality. TH OPEN 2020; 4:e309-e317. [PMID: 33134806 PMCID: PMC7593117 DOI: 10.1055/s-0040-1718883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The cumulative incidence, risk factors, rate of subsequent venous thromboembolism (VTE) and bleeding and impact on mortality of isolated upper extremity deep vein thrombosis (UE DVT) in acute leukemia are not well-described. The California Cancer Registry, used to identify treated patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) diagnosed between 2009 and 2014, was linked with the statewide hospitalization database to determine cumulative incidences of UE DVT and subsequent VTE and bleeding after UE DVT diagnosis. Cox proportional hazards regression models were used to assess the association of UE DVT on the risk of subsequent pulmonary embolism (PE) or lower extremity deep vein thrombosis (LE DVT) and subsequent bleeding, and the impact of UE DVT on mortality. There were 5,072 patients identified: 3,252 had AML and 1,820 had ALL. Three- and 12-month cumulative incidences of UE DVT were 4.8% (95% confidence interval [CI]: 4.1–5.6) and 6.6% (95% CI: 5.8–7.5) for AML and 4.1% (95% CI: 3.2–5.1) and 5.9% (95% CI: 4.9–7.1) for ALL, respectively. Twelve-month cumulative incidences of subsequent VTE after an incident UE DVT diagnosis were 5.3% for AML and 12.2% for ALL. Twelve-month cumulative incidences of subsequent bleeding after an incident UE DVT diagnosis were 15.4% for AML and 21.1% for ALL. UE DVT was associated with an increased risk of subsequent bleeding for both AML (hazard ratio [HR]: 2.07; 95% CI: 1.60–2.68) and ALL (HR: 1.62; 95% CI: 1.02–2.57) but was not an independent risk factor for subsequent PE or LE DVT for either leukemia subtype. Isolated incident UE DVT was associated with increased leukemia-specific mortality for AML (HR: 1.42; 95% CI: 1.16–1.73) and ALL (HR: 1.80; 95% CI: 1.31–2.47). UE DVT is a relatively common complication among patients with AML and ALL and has a significant impact on bleeding and mortality. Further research is needed to determine appropriate therapy for this high-risk population.
Collapse
Affiliation(s)
- Christina Poh
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology Oncology, University of California, Davis School of Medicine, Sacramento, California, United States.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Ann Brunson
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology Oncology, University of California, Davis School of Medicine, Sacramento, California, United States
| | - Theresa Keegan
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology Oncology, University of California, Davis School of Medicine, Sacramento, California, United States
| | - Ted Wun
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology Oncology, University of California, Davis School of Medicine, Sacramento, California, United States.,UC Davis Clinical and Translational Science Center, University of California, Davis, Sacramento, California, United States
| | - Anjlee Mahajan
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology Oncology, University of California, Davis School of Medicine, Sacramento, California, United States
| |
Collapse
|
74
|
Saxena K, Konopleva M. An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism. Expert Opin Investig Drugs 2020; 29:973-988. [PMID: 32746655 DOI: 10.1080/13543784.2020.1804856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive malignancy of clonal myeloid precursor cells. Curative therapy has classically involved the use of intensive induction chemotherapy followed by consolidation with additional chemotherapy or allogeneic hematopoietic stem cell transplant. For many patients, such an approach is prohibitive because of high treatment-related toxicities. Advancements in the molecular understanding of AML have led to the introduction of new targeted therapies that are changing the treatment landscape for AML. AREAS COVERED We review emerging small molecule inhibitors that have shown preclinical efficacy for the treatment of AML. The compounds discussed affect apoptosis, p53-mediated interactions, transcriptional regulation, and cellular metabolism. We performed a literature search of PubMed and primarily included relevant sources published from 2000 to the present, though earlier sources are also referenced. EXPERT OPINION Most clinical trials for AML currently employ novel targeted therapies that demonstrate promising activity in preclinical models. We anticipate that new small molecule inhibitors will continue to enter the clinical realm and alter the treatment paradigm for AML. In a field where clinical advancement was comparatively slow for many years, it appears that we are now starting to see the rapid growth borne out of the deepening molecular understanding of AML.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
75
|
Blum WG, Mims AS. Treating acute myeloid leukemia in the modern era: A primer. Cancer 2020; 126:4668-4677. [PMID: 32767757 DOI: 10.1002/cncr.32904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 11/11/2022]
Abstract
Recent years have seen tremendous advances in treating acute myeloid leukemia (AML), largely because of progress in understanding the genetic basis of the disease. The US Food and Drug Administration approved 7 agents for AML in the last 2 years: the first new drugs in decades. In this review, the authors discuss these new approvals in the backdrop of an overall strategy for treating AML today. Treating AML in the modern era requires: 1) access to and use of upfront genetic and cytogenetic testing, not only to describe prognosis but also to help identify the best available therapy; 2) effectively working new therapies into a conventional backbone of treatment, including transplantation; and 3) continued commitment to clinical trials designed to capitalize on advances in genetics and immunology to foster the next wave of drug approvals.
Collapse
Affiliation(s)
- William G Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Alice S Mims
- Division of Hematology, Department of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
76
|
Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Sanchez-Correa B, Guerrero B, Bergua JM, Arcos MJ, Bañas H, Casas-Avilés I, Sanchez-Garcia J, Serrano J, Martin C, Duran E, Alonso C, Solana R, Tarazona R. Characterization of the DNAM-1, TIGIT and TACTILE Axis on Circulating NK, NKT-Like and T Cell Subsets in Patients with Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12082171. [PMID: 32764229 PMCID: PMC7464787 DOI: 10.3390/cancers12082171] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) remains a major clinical challenge due to poor overall survival, which is even more dramatic in elderly patients. TIGIT, an inhibitory receptor that interacts with CD155 and CD112 molecules, is considered as a checkpoint in T and NK cell activation. This receptor shares ligands with the co-stimulatory receptor DNAM-1 and with TACTILE. The aim of this work was to analyze the expression of DNAM-1, TIGIT and TACTILE in NK cells and T cell subsets in AML patients. Methods: We have studied 36 patients at the time of diagnosis of AML and 20 healthy volunteers. The expression of DNAM-1, TIGIT and TACTILE in NK cells and T cells, according to the expression of CD3 and CD56, was performed by flow cytometry. Results: NK cells, CD56− T cells and CD56+ T (NKT-like) cells from AML patients presented a reduced expression of DNAM-1 compared with healthy volunteers. An increased expression of TIGIT was observed in mainstream CD56− T cells. No differences were observed in the expression of TACTILE. Simplified presentation of incredibly complex evaluations (SPICE) analysis of the co-expression of DNAM-1, TIGIT and TACTILE showed an increase in NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE. Low percentages of DNAM-1−TIGIT+TACTILE+ NK cells and DNAM-1− TIGIT+TACTILE+ CD56− T cells were associated with a better survival of AML patients. Conclusions: The expression of DNAM-1 is reduced in NK cells and in CD4+ and CD8+ T cells from AML patients compared with those from healthy volunteers. An increased percentage of NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE is associated with patient survival, supporting the role of TIGIT as a novel candidate for checkpoint blockade.
Collapse
Affiliation(s)
- Isabel Valhondo
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Fakhri Hassouneh
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Nelson Lopez-Sejas
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Alejandra Pera
- Department of Immunolgy and Allergy, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain;
| | - Beatriz Sanchez-Correa
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Beatriz Guerrero
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Juan M. Bergua
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Maria Jose Arcos
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Helena Bañas
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Ignacio Casas-Avilés
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Joaquin Sanchez-Garcia
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain; (J.S.-G.); (J.S.); (C.M.)
| | - Josefina Serrano
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain; (J.S.-G.); (J.S.); (C.M.)
| | - Carmen Martin
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain; (J.S.-G.); (J.S.); (C.M.)
| | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary, University of Extremadura, 10003 Cáceres, Spain;
| | - Corona Alonso
- Department of Immunolgy and Allergy, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Immunology and Allergology, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Correspondence: (C.A.); (R.S.); Tel.: +34-957-011-536 (C.A. & R.S.)
| | - Rafael Solana
- Department of Immunolgy and Allergy, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Immunology and Allergology, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Correspondence: (C.A.); (R.S.); Tel.: +34-957-011-536 (C.A. & R.S.)
| | - Raquel Tarazona
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| |
Collapse
|
77
|
Li B, Hu J, He D, Chen Q, Liu S, Zhu X, Yu M. PPM1D Knockdown Suppresses Cell Proliferation, Promotes Cell Apoptosis, and Activates p38 MAPK/p53 Signaling Pathway in Acute Myeloid Leukemia. Technol Cancer Res Treat 2020; 19:1533033820942312. [PMID: 32691668 PMCID: PMC7375723 DOI: 10.1177/1533033820942312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study was to explore the effect of protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown on proliferation and apoptosis as well as p38 MAPK/p53 signaling pathway in acute myeloid leukemia. METHODS The expression of protein phosphatase, Mg2+/Mn2+ dependent 1D was detected in acute myeloid leukemia cell lines including SKM-1, KG-1, AML-193, and THP-1 cells, and normal bone marrow mononuclear cells isolated from healthy donors. The knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D was conducted by transfecting small interfering RNA into AML-193 cells and KG-1 cells. RESULTS The relative messenger RNA/protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were higher in SKM-1, KG-1, AML-193, and THP-1 cells compared with control cells (normal bone marrow mononuclear cells). After transfecting protein phosphatase, Mg2+/Mn2+ dependent 1D small interfering RNA into AML-193 cells and KG-1 cells, both messenger RNA and protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were significantly reduced, indicating the successful transfection. Most importantly, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D suppressed cell proliferation and promoted cell apoptosis in AML-193 cells and KG-1 cells. In addition, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D enhanced the expressions of p-p38 and p53 in AML-193 cells and KG-1 cells. The above observation suggested that protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown suppressed cell proliferation, promoted cell apoptosis, and activated p38 MAPK/p53 signaling pathway in acute myeloid leukemia cells. CONCLUSION Protein phosphatase, Mg2+/Mn2+ dependent 1D is implicated in acute myeloid leukemia carcinogenesis, which illuminates its potential role as a treatment target for acute myeloid leukemia.
Collapse
Affiliation(s)
- Bin Li
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Jie Hu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Di He
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Qi Chen
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Suna Liu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Xiaoling Zhu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Meijia Yu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| |
Collapse
|
78
|
Imidazo[1,2- b]pyrazole-7-Carboxamide Derivative Induces Differentiation-Coupled Apoptosis of Immature Myeloid Cells Such as Acute Myeloid Leukemia and Myeloid-Derived Suppressor Cells. Int J Mol Sci 2020; 21:ijms21145135. [PMID: 32698503 PMCID: PMC7404197 DOI: 10.3390/ijms21145135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-b]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xlbright and pAktbright cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner. As a proof of granulocytic differentiation, the cells remained non-adherent, the expression of CD33 decreased; the granularity, CD11b expression, and MPO activity of HL-60 cells increased upon treatment. Finally, viability of HL-60 cells was hampered shown by the depolarization of mitochondria, activation of caspase-3, cleavage of Z-DEVD-aLUC, appearance of the sub-G1 population, and the leakage of the lactate-dehydrogenase into the supernatant. We confirmed the differentiating effect of our drug candidate on human patient-derived AML cells shown by the increase of CD11b and decrease of CD33+, CD7+, CD206+, and CD38bright cells followed apoptosis (IC50: 80 nM) after treatment ex vivo. Our compound reduced both CD11b+/Ly6C+ and CD11b+/Ly6G+ splenic MDSCs from the murine 4T1 breast cancer model ex vivo.
Collapse
|
79
|
Yi M, Li A, Zhou L, Chu Q, Song Y, Wu K. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017. J Hematol Oncol 2020; 13:72. [PMID: 32513227 PMCID: PMC7282046 DOI: 10.1186/s13045-020-00908-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common leukemia subtype and has a poor prognosis. The risk of AML is highly related to age. In the context of population aging, a comprehensive report presenting epidemiological trends of AML is evaluable for policy-marker to allocate healthy resources. METHODS This study was based on the Global Burden of Disease 2017 database. We analyzed the change trends of incidence rate, death rate, and disability-adjusted life year (DALY) rate by calculating the corresponding estimated annual percentage change (EAPC) values. Besides, we investigated the influence of social development degree on AML's epidemiological trends and potential risk factors for AML-related mortality. RESULTS From 1990 to 2017, the incidence of AML gradually increased in the globe. Males and elder people had a higher possibility to develop AML. Developed countries tended to have higher age-standardized incidence rate and death rate than developing regions. Smoking, high body mass index, occupational exposure to benzene, and formaldehyde were the main risk factors for AML-related mortality. Notably, the contribution ratio of exposure to carcinogens was significantly increased in the low social-demographic index (SDI) region than in the high SDI region. CONCLUSION Generally, the burden of AML became heavier during the past 28 years which might need more health resources to resolve this population aging-associated problem. In the present stage, developed countries with high SDI had the most AML incidences and deaths. At the same time, developing countries with middle- or low-middle SDI also need to take actions to relieve rapidly increased AML burden.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
80
|
Zhang H, Gan WT, Hao WG, Wang PF, Li ZY, Chang LJ. Successful Anti-CLL1 CAR T-Cell Therapy in Secondary Acute Myeloid Leukemia. Front Oncol 2020; 10:685. [PMID: 32528876 PMCID: PMC7266936 DOI: 10.3389/fonc.2020.00685] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/14/2020] [Indexed: 01/23/2023] Open
Abstract
Secondary acute myeloid leukemia (sAML) is a high-risk AML evolving from heterogenous prior hematological disorders. Compared to de novo AML, sAML has even worse responses to current therapy and thus is associated with lower remission rates, inferior overall survival (OS) and higher relapse rates. Many efforts have been devoted to improving the overall but with limited success, and novel strategy is thus highly needed. Recent research has identified that CLL1 is highly expressed on AML leukemia stem cells and blasts cells but not on normal hematopoietic stem cells. In this case report, we treated a secondary AML patient with anti -CLL1 CAR-T therapy and achieved morphological, immunophenotypic and molecular complete remission for over 10 months. Although only one successful case is presented here, the anti-CLL1 CAR T-cells should be considered as another treatment option for secondary AML in the future.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen-Ting Gan
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wen-Ge Hao
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Peng-Fei Wang
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhuo-Yan Li
- Department of Pediatric Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Lung-Ji Chang
- Shenzhen Geno-Immune Medical Institute, Shenzhen, China.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
81
|
Reduce proliferation of human bone marrow cells from acute myeloblastic leukemia with minimally differentiation by blocking lncRNA PVT1. Clin Transl Oncol 2020; 22:2103-2110. [PMID: 32406010 DOI: 10.1007/s12094-020-02360-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Acute myeloblastic leukemia with minimally differentiation (AML-M0) is a subtype of acute leukemia with poor prognosis. The recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in different cellular processes, such as cell cycle control and proliferation. Plasmacytoma variant translocation 1 (PVT1) is one of those lncRNAs that is significantly upregulated in AML. LncRNAs could be downregulated or blocked by locked nucleic acids (LNA) which are oligonucleotide strands. METHODS In this study, lncRNA PVT1 was blocked by antisense LNA GapmeRs in human bone marrow cancerous blast cells. Cells were transfected with PVT1 antisense LNA GapmeRs at 24, 48, and 72 h post-transfection. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was accomplished to evaluate the PVT1 and c-Myc expression. Cell viability was evaluated by MTT assay, and apoptosis and necrosis were assessed by Annexin V/propidium iodide staining assay. RESULTS The results of this study indicated that the downregulation of PVT1 in blast cells could induce apoptosis, and necrosis and reduce cell viability. The expression of c-Myc was downregulated by blockage of PVT1 and it shows that the expression of these two genes are correlated. CONCLUSION The findings declare that inhibition of PVT1 could be a new target in the treatment of AML-M0 and help to approach more to treatments with fewer side effects.
Collapse
|
82
|
Uras IZ, Sexl V, Kollmann K. CDK6 Inhibition: A Novel Approach in AML Management. Int J Mol Sci 2020; 21:ijms21072528. [PMID: 32260549 PMCID: PMC7178035 DOI: 10.3390/ijms21072528] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: + 43-1-25077-2917
| |
Collapse
|
83
|
Validation and refinement of the revised 2017 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia 2020; 34:3161-3172. [PMID: 32231256 PMCID: PMC7685975 DOI: 10.1038/s41375-020-0806-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
The revised 2017 European LeukemiaNet (ELN) recommendations for genetic risk stratification of acute myeloid leukemia have been widely adopted, but have not yet been validated in large cohorts of AML patients. We studied 1116 newly diagnosed AML patients (age range, 18–86 years) who had received induction chemotherapy. Among 771 patients not selected by genetics, the ELN-2017 classification re-assigned 26.5% of patients into a more favorable or, more commonly, a more adverse-risk group compared with the ELN-2010 recommendations. Forty percent of the cohort, and 51% of patients ≥60 years, were classified as adverse-risk by ELN-2017. In 599 patients <60 years, estimated 5-year overall survival (OS) was 64% for ELN-2017 favorable, 42% for intermediate-risk and 20% for adverse-risk patients. Among 517 patients aged ≥60 years, corresponding 5-year OS rates were 37, 16, and 6%. Patients with biallelic CEBPA mutations or inv(16) had particularly favorable outcomes, while patients with mutated TP53 and a complex karyotype had especially poor prognosis. DNMT3A mutations associated with inferior OS within each ELN-2017 risk group. Our results validate the prognostic significance of the revised ELN-2017 risk classification in AML patients receiving induction chemotherapy across a broad age range. Further refinement of the ELN-2017 risk classification is possible.
Collapse
|
84
|
Richardson DR, Crossnohere NL, Seo J, Estey E, O'Donoghue B, Smith BD, Bridges JFP. Age at Diagnosis and Patient Preferences for Treatment Outcomes in AML: A Discrete Choice Experiment to Explore Meaningful Benefits. Cancer Epidemiol Biomarkers Prev 2020; 29:942-948. [PMID: 32132149 DOI: 10.1158/1055-9965.epi-19-1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recent expansion of treatment options in acute myeloid leukemia (AML) has necessitated a greater understanding of patient preferences for treatment benefits, about which little is known. METHODS We sought to quantify and assess heterogeneity of the preferences of AML patients for treatment outcomes. An AML-specific discrete choice experiment (DCE) was developed involving multiple stakeholders. Attributes included in the DCE were event-free survival (EFS), complete remission (CR), time in the hospital, short-term side effects, and long-term side effects. Continuously coded conditional, stratified, and latent-class logistic regressions were used to model preferences of 294 patients with AML. RESULTS Most patients were white (89.4%) and in remission (95.0%). A 10% improvement in the chance of CR was the most meaningful offered benefit (P < 0.001). Patients were willing to trade up to 22 months of EFS or endure 8.7 months in the hospital or a two-step increase in long-term side effects to gain a 10% increase in chance of CR. Patients diagnosed at 60 years or older (21.6%) more strongly preferred to avoid short-term side effects (P = 0.03). Latent class analysis showed significant differences of preferences across gender and insurance status. CONCLUSIONS In this national sample of mostly AML survivors, patients preferred treatments that maximized chance at remission; however, significant preference heterogeneity for outcomes was identified. Age and gender may affect patients' preferences. IMPACT Survivor preferences for outcomes can inform patient-focused drug development and shared decision-making. Further studies are necessary to investigate the use of DCEs to guide treatment for individual patients.
Collapse
Affiliation(s)
- Daniel R Richardson
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,The Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Norah L Crossnohere
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio.,Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jaein Seo
- Patient-Centered Research, Evidera, Rockville, Maryland
| | - Elihu Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington
| | | | - B Douglas Smith
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, Maryland
| | - John F P Bridges
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio.,Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
85
|
Nanocarriers as Magic Bullets in the Treatment of Leukemia. NANOMATERIALS 2020; 10:nano10020276. [PMID: 32041219 PMCID: PMC7075174 DOI: 10.3390/nano10020276] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
Leukemia is a type of hematopoietic stem/progenitor cell malignancy characterized by the accumulation of immature cells in the blood and bone marrow. Treatment strategies mainly rely on the administration of chemotherapeutic agents, which, unfortunately, are known for their high toxicity and side effects. The concept of targeted therapy as magic bullet was introduced by Paul Erlich about 100 years ago, to inspire new therapies able to tackle the disadvantages of chemotherapeutic agents. Currently, nanoparticles are considered viable options in the treatment of different types of cancer, including leukemia. The main advantages associated with the use of these nanocarriers summarized as follows: i) they may be designed to target leukemic cells selectively; ii) they invariably enhance bioavailability and blood circulation half-life; iii) their mode of action is expected to reduce side effects. FDA approval of many nanocarriers for treatment of relapsed or refractory leukemia and the desired results extend their application in clinics. In the present review, different types of nanocarriers, their capability in targeting leukemic cells, and the latest preclinical and clinical data are discussed.
Collapse
|
86
|
Winer ES. Secondary Acute Myeloid Leukemia: A Primary Challenge of Diagnosis and Treatment. Hematol Oncol Clin North Am 2020; 34:449-463. [PMID: 32089222 DOI: 10.1016/j.hoc.2019.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secondary acute myeloid leukemia (sAML) is a complex diagnosis that includes AML caused by either an antecedent hematologic disease (AML-AHD) or from previous treatment with chemotherapy or radiation. This disease carries a poor prognosis and is historically chemorefractory; additionally, often patients are ineligible for standard chemotherapy because of advanced age and other comorbidities. The advances of molecular diagnostics and reclassification of World Health Organization criteria have aided in the categorization of this disease. This article describes the etiology and pathophysiology of sAML, and delves into past successful treatments as well as promising new treatments.
Collapse
Affiliation(s)
- Eric S Winer
- Adult Leukemia Program, Department of Medical Oncology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
87
|
Uckun FM, Cogle CR, Lin TL, Qazi S, Trieu VN, Schiller G, Watts JM. A Phase 1B Clinical Study of Combretastatin A1 Diphosphate (OXi4503) and Cytarabine (ARA-C) in Combination (OXA) for Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers (Basel) 2019; 12:cancers12010074. [PMID: 31888052 PMCID: PMC7016810 DOI: 10.3390/cancers12010074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Combretastatin A1 (OXi4503) is a dual-function drug with vascular disrupting and cytotoxic properties that has exhibited single-agent anti-leukemia activity in murine xenograft models of acute myeloid leukemia (AML) and in a prior Phase 1A clinical study for relapsed/refractory (R/R) AML. The purpose of the present multicenter Phase 1B study was to define the maximum tolerated dose (MTD) and safety profile of OXi4503 and cytarabine (ARA-C) administered in combination (OXA). At four centers, 29 patients with R/R AML or myelodysplastic syndrome (MDS) were treated with OXA. The most common grade 3/4 treatment-emergent adverse events (AEs) were febrile neutropenia (28%), hypertension (17%), thrombocytopenia (17%), and anemia (14%). There were no treatment-emergent grade 5 AEs. Drug-related serious adverse events (SAEs) developed in 4/29 patients (14%) and included febrile neutropenia (N = 2), pneumonia/acute respiratory failure (N = 1), and hypotension (N = 1). 9.76 mg/m2 was defined as the MTD of OXi4503 when administered in combination with 1 g/m2 ARA-C. In 26 evaluable AML patients, there were 2 complete remissions (CR), 2 complete remissions with incomplete count recovery (CRi) and one partial response (PR), for an overall response rate (ORR) of 19%. The median overall survival (OS) time for the four patients who achieved a CR/CRi was 528 days (95% CI: 434-NA), which was significantly longer than the median OS time of 113 days (95% CI: 77-172) for the remaining 22 patients who did not achieve a CR/CRi (Log Rank Chi Square = 11.8, p-value = 0.0006). The safety and early evidence of efficacy of the OXA regimen in R/R AML patients warrant further investigation in a Phase 2 clinical study.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Immuno-Oncology Program, Mateon Therapeutics, Agoura Hills, CA 91301, USA
- Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Correspondence:
| | - Christopher R. Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine & University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Tara L. Lin
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, University of Kansas Medical Center, University of Kansas Cancer Center and Medical Pavillon, Westwood, KS 66205, USA
| | - Sanjive Qazi
- Bioinformatics Program and Department of Biology, Gustavus Adolphus College, St Peter, MN 56082, USA
| | - Vuong N. Trieu
- Immuno-Oncology Program, Mateon Therapeutics, Agoura Hills, CA 91301, USA
| | - Gary Schiller
- Bone Marrow/Stem Cell Transplantation, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Justin M. Watts
- Department of Medicine, Division of Hematology/Oncology Miller School of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
88
|
Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol 2019; 188:147-158. [DOI: 10.1111/bjh.16310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. John Barrett
- GW Cancer Center George Washington University Hospital Washington DC USA
| |
Collapse
|
89
|
Liu D. CAR-T "the living drugs", immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. J Hematol Oncol 2019; 12:113. [PMID: 31703740 PMCID: PMC6842223 DOI: 10.1186/s13045-019-0819-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
New advances in the design and manufacture of monoclonal antibodies, bispecific T cell engagers, and antibody-drug conjugates make the antibody-directed agents more powerful with less toxicities. Small molecule inhibitors are routinely used now as oral targeted agents for multiple cancers. The discoveries of PD1 and PD-L1 as negative immune checkpoints for T cells have led to the revolution of modern cancer immunotherapy. Multiple agents targeting PD1, PD-L1, or CTLA-4 are widely applied as immune checkpoint inhibitors (ICIs) which alleviate the suppression of immune regulatory machineries and lead to immunoablation of once highly refractory cancers such as stage IV lung cancer. Tisagenlecleucel and axicabtagene ciloleucel are the two approved CD19-targeted chimeric antigen receptor (CAR) T cell products. Several CAR-T cell platforms targeting B cell maturation antigen (BCMA) are under active clinical trials for refractory and/or relapsed multiple myeloma. Still more targets such as CLL-1, EGFR, NKG2D and mesothelin are being directed in CAR-T cell trials for leukemia and solid tumors. Increasing numbers of novel agents are being studied to target cancer-intrinsic oncogenic pathways as well as immune checkpoints. One such an example is targeting CD47 on macrophages which represents a "do-not-eat-me" immune checkpoint. Fueling the current excitement of cancer medicine includes also TCR- T cells, TCR-like antibodies, cancer vaccines and oncolytic viruses.
Collapse
Affiliation(s)
- Delong Liu
- New York Medical College, Valhalla, NY, 10595, USA.
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
90
|
Wnt Signalling in Acute Myeloid Leukaemia. Cells 2019; 8:cells8111403. [PMID: 31703382 PMCID: PMC6912424 DOI: 10.3390/cells8111403] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a group of malignant diseases of the haematopoietic system. AML occurs as the result of mutations in haematopoietic stem/progenitor cells, which upregulate Wnt signalling through a variety of mechanisms. Other mechanisms of Wnt activation in AML have been described such as Wnt antagonist inactivation through promoter methylation. Wnt signalling is necessary for the maintenance of leukaemic stem cells. Several molecules involved in or modulating Wnt signalling have a prognostic value in AML. These include: β-catenin, LEF-1, phosphorylated-GSK3β, PSMD2, PPARD, XPNPEP, sFRP2, RUNX1, AXIN2, PCDH17, CXXC5, LLGL1 and PTK7. Targeting Wnt signalling for tumour eradication is an approach that is being explored in haematological and solid tumours. A number of preclinical studies confirms its feasibility, albeit, so far no reliable clinical trial data are available to prove its utility and efficacy.
Collapse
|