51
|
Luo W, Wang Y, Zhang T. Win or loss? Combination therapy does improve the oncolytic virus therapy to pancreatic cancer. Cancer Cell Int 2022; 22:160. [PMID: 35443724 PMCID: PMC9022249 DOI: 10.1186/s12935-022-02583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Pancreatic cancer (PC) is a growing global burden, remaining one of the most lethal cancers of the gastrointestinal tract. Moreover, PC is resistant to various treatments such as chemotherapy, radiotherapy, and immunotherapy. New therapies are urgently needed to improve the prognosis of PC. Oncolytic virus (OV) therapy is a promising new treatment option. OV is a genetically modified virus that selectively replicates in tumor cells. It can kill tumor cells without harming normal cells. The activation of tumor-specific T-cells is a unique feature of OV-mediated therapy. However, OV-mediated mono-therapeutic efficacy remains controversial, especially for metastatic or advanced patients who require systemically deliverable therapies. Hence, combination therapies will be critical to improve the therapeutic efficacy of OV-mediated therapy and prevent tumor recurrence. This review aims to investigate novel combinatorial treatments with OV therapy and explore the inner mechanism of those combined therapies, hopefully providing a new direction for a better prognosis of PC.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yawen Wang
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
52
|
Novel Bi-Specific Immuno-Modulatory Tribodies Potentiate T Cell Activation and Increase Anti-Tumor Efficacy. Int J Mol Sci 2022; 23:ijms23073466. [PMID: 35408827 PMCID: PMC8998846 DOI: 10.3390/ijms23073466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer immunotherapy has already shown significant improvements by combining different antibodies specific for distinct immune checkpoints, such as Ipilimumab and Nivolumab. Here, we tested combinatorial treatments of immunomodulatory antibodies, previously generated in our laboratory, for their effects on hPBMC activation, either upon stimulation with SEB or in co-cultures with tumor cells by cytokine secretion assays. We found that some of them showed additive or synergistic effects, and on the basis of these observations, we constructed, for the first time, four novel bispecific tribodies (TR), made up of a Fab derived from one anti-IC mAb and two scFvs derived from another mAb targeting a different IC. All four TRs cotargeting either programmed cell death protein 1 (PD-1) and Lymphocyte Activating 3 (LAG-3) or programmed death-ligand 1 (PD-L1) and LAG-3 retained binding affinity for their targets and the antagonistic effects of their parental mAbs, but some of them also showed an increased ability to induce lymphocyte activation and increased in vitro cytotoxicity against tumor cells compared to parental antibodies used either alone or in combinatorial treatments. Furthermore, none of the tribodies showed significant increased cytotoxicity on human cardiomyocytes. Considering that the tribody format reduces production costs (as only one construct provides the inhibitory effects of two antibodies), has an intermediate molecular size (100 kDa) which is well suited for both tumor penetration and an acceptable half-life, we think that these novel immunomodulatory TRBs have the potential to become precious tools for therapeutic applications, particularly in monotherapy-resistant cancer patients.
Collapse
|
53
|
Minson A, Tam C, Dickinson M, Seymour JF. Targeted Agents in the Treatment of Indolent B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:1276. [PMID: 35267584 PMCID: PMC8908980 DOI: 10.3390/cancers14051276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Targeted therapies continue to change the landscape of lymphoma treatment, resulting in improved therapy options and patient outcomes. Numerous agents are now approved for use in the indolent lymphomas and many others under development demonstrate significant promise. In this article, we review the landscape of targeted agents that apply to the indolent lymphomas, predominantly follicular lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinaemia and marginal zone lymphoma. The review covers small molecule inhibitors, immunomodulators and targeted immunotherapies, as well as presenting emerging and promising combination therapies.
Collapse
Affiliation(s)
- Adrian Minson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Constantine Tam
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Dickinson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F. Seymour
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
54
|
Gu CL, Zhu HX, Deng L, Meng XQ, Li K, Xu W, Zhao L, Liu YQ, Zhu ZP, Huang HM. Bispecific antibody simultaneously targeting PD1 and HER2 inhibits tumor growth via direct tumor cell killing in combination with PD1/PDL1 blockade and HER2 inhibition. Acta Pharmacol Sin 2022; 43:672-680. [PMID: 33990766 PMCID: PMC8888617 DOI: 10.1038/s41401-021-00683-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade has shown significant clinical benefit in multiple cancer indications, but many patients are either refractory or become resistant to the treatment over time. HER2/neu oncogene overexpressed in invasive breast cancer patients associates with more aggressive diseases and poor prognosis. Anti-HER2 mAbs, such as trastuzumab, are currently the standard of care for HER2-overexpressing cancers, but the response rates are below 30% and patients generally suffer relapse within a year. In this study we developed a bispecific antibody (BsAb) simultaneously targeting both PD1 and HER2 in an attempt to combine HER2-targeted therapy with immune checkpoint blockade for treating HER2-positive solid tumors. The BsAb was constructed by fusing scFvs (anti-PD1) with the effector-functional Fc of an IgG (trastuzumab) via a flexible peptide linker. We showed that the BsAb bound to human HER2 and PD1 with high affinities (EC50 values were 0.2 and 0.14 nM, respectively), and exhibited potent antitumor activities in vitro and in vivo. Furthermore, we demonstrated that the BsAb exhibited both HER2 and PD1 blockade activities and was effective in killing HER2-positive tumor cells via antibody-dependent cellular cytotoxicity. In addition, the BsAb could crosslink HER2-positive tumor cells with T cells to form PD1 immunological synapses that directed tumor cell killing without the need of antigen presentation. Thus, the BsAb is a new promising approach for treating late-stage metastatic HER2-positive cancers.
Collapse
Affiliation(s)
- Chang-ling Gu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Hai-xia Zhu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Lan Deng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Xiao-qing Meng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Kai Li
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Wei Xu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Le Zhao
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Yue-qin Liu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Zhen-ping Zhu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Hao-min Huang
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| |
Collapse
|
55
|
Abu Khalaf S, Dandachi D, Granwehr BP, Rodriguez-Barradas MC. Cancer immunotherapy in adult patients with HIV. J Investig Med 2022; 70:883-891. [PMID: 35086858 DOI: 10.1136/jim-2021-002205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
The availability of antiretroviral therapy (ART) has increased the life expectancy of people with HIV (PWH) and reduced the incidence of AIDS-associated malignancies, yet PWH have a significantly increased incidence of malignancy and less favorable outcomes of cancer treatment compared with the general population.Immunotherapy has revolutionized cancer therapy, becoming the standard of care for various malignancy treatments. However, PWH are an underserved population with limited access to clinical trials and cancer treatment.This review of the available evidence on different classes of cancer immunotherapy in PWH is mostly based on case reports, case series, but few prospective studies and clinical trials due to the exclusion of PWH from most oncologic clinical trials. The results of the available evidence support the safety of immunotherapy in PWH. Immunotherapy has similar effectiveness in PWH, an acceptable toxicity profile, and has no clinically significant impact on HIV viral load and CD4-T cell count. In addition, there is no reported change in the incidence of opportunistic infections and other complications for PWH with well-controlled viremia.This review aims to briefly summarize the current state of immunotherapy in cancer, guide clinicians in the management of immunotherapy in cancer PWH, and encourage the inclusion of PWH in clinical trials of cancer immunotherapy.
Collapse
Affiliation(s)
- Suha Abu Khalaf
- Department of Medicine, Division of Infectious Diseases, University of Missouri System, Columbia, Missouri, USA
| | - Dima Dandachi
- Department of Medicine, Division of Infectious Diseases, University of Missouri System, Columbia, Missouri, USA
| | - Bruno P Granwehr
- Department of Medicine, Division of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Michael E DeBakey VAMC, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
56
|
Liu AW, Wei AZ, Maniar AB, Carvajal RD. Tebentafusp in Advanced Uveal Melanoma: Proof of Principal for the Efficacy of T-Cell Receptor Therapeutics and Bispecifics in Solid Tumors. Expert Opin Biol Ther 2022; 22:997-1004. [DOI: 10.1080/14712598.2022.2031970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
57
|
Ma B, Kamle S, Akosman B, Khan H, Lee CM, Lee CG, Elias JA. CHI3L1 enhances melanoma lung metastasis via regulation of T cell co-stimulators and CTLA-4/B7 axis. Front Immunol 2022; 13:1056397. [PMID: 36618349 PMCID: PMC9812560 DOI: 10.3389/fimmu.2022.1056397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
ICOS/ICOSL and CD28/B7-1/B7-2 are T cell co-stimulators and CTLA-4 is an immune checkpoint inhibitor that play critical roles in the pathogenesis of neoplasia. Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it portends a poor prognosis and contributes to tumor metastasis. Here we demonstrate that CHI3L1 inhibits the expression of ICOS, ICOSL and CD28 while stimulating CTLA-4 and the B7 moieties in melanoma lung metastasis. We also demonstrate that RIG-like helicase innate immune activation augments T cell co-stimulation, inhibits CTLA-4 and suppresses pulmonary metastasis. At least additive antitumor responses were seen in melanoma lung metastasis treated with anti-CTLA-4 and anti-CHI3L1 antibodies in combination. Synergistic cytotoxic T cell-induced tumor cell death and the heightened induction of the tumor suppressor PTEN were seen in co-cultures of T and tumor cells treated with bispecific antibodies that target both CHI3L1 and CTLA-4. Thus, CHI3L1 contributes to pulmonary metastasis by inhibiting T cell co-stimulation and stimulating CTLA-4. The simultaneous targeting of CHI3L1 and the CTLA-4 axis with individual and, more powerfully with bispecific antibodies, represent promising therapeutic strategies for pulmonary metastasis.
Collapse
Affiliation(s)
- Bing Ma
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Bedia Akosman
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Hina Khan
- Division of Hematology-Oncology, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Jack A. Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
- Department of Medicine, Brown University, Providence, RI, United States
- *Correspondence: Jack A. Elias,
| |
Collapse
|
58
|
Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional proteins (BFPs) are a class of therapeutic agents produced through genetic engineering and protein engineering, and are increasingly used to treat various human diseases, including cancer. These proteins usually have two or more biological functions-specifically recognizing different molecular targets to regulate the related signaling pathways, or mediating effector molecules/cells to kill tumor cells. Unlike conventional small-molecule or single-target drugs, BFPs possess stronger biological activity but lower systemic toxicity. Hence, BFPs are considered to offer many benefits for the treatment of heterogeneous tumors. In this review, the authors briefly describe the unique structural feature of BFP molecules and innovatively divide them into bispecific antibodies, cytokine-based BFPs (immunocytokines), and protein toxin-based BFPs (immunotoxins) according to their mode of action. In addition, the latest advances in the development of BFPs are discussed and the potential limitations or problems in clinical applications are outlined. Taken together, future studies need to be centered on understanding the characteristics of BFPs for optimizing and designing more effective such drugs.
Collapse
Affiliation(s)
- Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
59
|
Ledys F, Kalfeist L, Galland L, Limagne E, Ladoire S. Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer: Clinical Challenges and Perspectives. Cancers (Basel) 2021; 13:5999. [PMID: 34885109 PMCID: PMC8656936 DOI: 10.3390/cancers13235999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Despite a few cases of long-responder patients, immunotherapy with anti-PD-(L)1 has so far proved rather disappointing in monotherapy in metastatic breast cancer, prompting the use of synergistic therapeutic combinations incorporating immunotherapy by immune-checkpoint inhibitors. In addition, a better understanding of both the mechanisms of sensitivity and resistance to immunotherapy, as well as the immunological effects of the usual treatments for breast cancer, make it possible to rationally consider this type of therapeutic combination. For several years, certain treatments, commonly used to treat patients with breast cancer, have shown that in addition to their direct cytotoxic effects, they may have an impact on the tumor immune microenvironment, by increasing the antigenicity and/or immunogenicity of a "cold" tumor, targeting the immunosuppressive microenvironment or counteracting the immune-exclusion profile. This review focuses on preclinical immunologic synergic mechanisms of various standard therapeutic approaches with anti-PD-(L)1, and discusses the potential clinical use of anti-PD-1/L1 combinations in metastatic or early breast cancer.
Collapse
Affiliation(s)
- Fanny Ledys
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Laura Kalfeist
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Loick Galland
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| | - Emeric Limagne
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Sylvain Ladoire
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
60
|
Ma B, Akosman B, Kamle S, Lee CM, He CH, Koo JS, Lee CG, Elias JA. CHI3L1 regulates PD-L1 and anti-CHI3L1-PD-1 antibody elicits synergistic antitumor responses. J Clin Invest 2021; 131:137750. [PMID: 34720089 DOI: 10.1172/jci137750] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Evasion of the immune response is a hallmark of cancer, and programmed cell death 1 (PD-1) and PD-1 ligand 1 (PD-L1) are major mediators of this immunosuppression. Chitinase 3-like 1 (CHI3L1) is induced in many cancers, where it portends a poor prognosis and contributes to tumor metastasis and spread. However, the mechanism(s) that CHI3L1 uses in metastasis have not been defined. Here we demonstrate that CHI3L1 regulates the expression of PD-L1, PD-L2, PD-1, LAG3, and TIM3 and plays a critical role in melanoma progression and lymphatic spread. CHI3L1 also contributed to IFN-γ-stimulated macrophage PD-L1 expression, and RIG-like helicase innate immunity suppressed CHI3L1, PD-L1, and melanoma progression. Individual antibodies against CHI3L1 or PD-1 had discrete antitumor effects and additive antitumor responses in metastasis models and T cell-tumor cell cocultures when administered simultaneously. Synergistic cytotoxic tumor cell death was seen in T cell-tumor cell cocultures, and significantly enhanced antitumor responses were seen in in vivo tumor models treated with bispecific antibodies that simultaneously target CHI3L1 and PD-1. CHI3L1 contributes to tumor progression by stimulating the PD-1/PD-L1 axis and other checkpoint molecules. The simultaneous targeting of CHI3L1 and the PD-1/PD-L1 axis with individual and, more powerfully, with bispecific antibodies represents a promising therapy for pulmonary metastasis and progression.
Collapse
Affiliation(s)
- Bing Ma
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Bedia Akosman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Suchitra Kamle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Chuan Hua He
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA.,Department of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
61
|
Mihályová J, Hradská K, Jelínek T, Motais B, Celichowski P, Hájek R. Promising Immunotherapeutic Modalities for B-Cell Lymphoproliferative Disorders. Int J Mol Sci 2021; 22:ijms222111470. [PMID: 34768899 PMCID: PMC8584080 DOI: 10.3390/ijms222111470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few years, treatment principles have been changed towards more targeted therapy for many B-cell lymphoma subtypes and in chronic lymphocytic leukemia (CLL). Immunotherapeutic modalities, namely monoclonal antibodies (mAbs), bispecific antibodies (bsAbs), antibody-drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cell therapy, commonly use B-cell-associated antigens (CD19, CD20, CD22, and CD79b) as one of their targets. T-cell engagers (TCEs), a subclass of bsAbs, work on a similar mechanism as CAR-T cell therapy without the need of previous T-cell manipulation. Currently, several anti-CD20xCD3 TCEs have demonstrated promising efficacy across different lymphoma subtypes with slightly better outcomes in the indolent subset. Anti-CD19xCD3 TCEs are being developed as well but only blinatumomab has been evaluated in clinical trials yet. The results are not so impressive as those with anti-CD19 CAR-T cell therapy. Antibody-drug conjugates targeting different B-cell antigens (CD30, CD79b, CD19) seem to be effective in combination with mAbs, standard chemoimmunotherapy, or immune checkpoint inhibitors. Further investigation will show whether immunotherapy alone or in combinatory regimens has potential to replace chemotherapeutic agents from the first line treatment.
Collapse
Affiliation(s)
- Jana Mihályová
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic; (K.H.); (T.J.); (R.H.)
- Faculty of Medicine, University of Ostrava, 708 52 Ostrava, Czech Republic; (B.M.); (P.C.)
- Correspondence:
| | - Katarína Hradská
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic; (K.H.); (T.J.); (R.H.)
| | - Tomáš Jelínek
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic; (K.H.); (T.J.); (R.H.)
- Faculty of Medicine, University of Ostrava, 708 52 Ostrava, Czech Republic; (B.M.); (P.C.)
| | - Benjamin Motais
- Faculty of Medicine, University of Ostrava, 708 52 Ostrava, Czech Republic; (B.M.); (P.C.)
| | - Piotr Celichowski
- Faculty of Medicine, University of Ostrava, 708 52 Ostrava, Czech Republic; (B.M.); (P.C.)
| | - Roman Hájek
- Department of Haematooncology, University Hospital Ostrava, 708 52 Ostrava, Czech Republic; (K.H.); (T.J.); (R.H.)
- Faculty of Medicine, University of Ostrava, 708 52 Ostrava, Czech Republic; (B.M.); (P.C.)
| |
Collapse
|
62
|
Simultaneous Inhibition of PD-1 and Stimulation of CD40 Signaling Pathways by Anti-PD-L1/CD40L Bispecific Fusion Protein Synergistically Activate Target and Effector Cells. Int J Mol Sci 2021; 22:ijms222111302. [PMID: 34768776 PMCID: PMC8583728 DOI: 10.3390/ijms222111302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies (BsAbs) or fusion proteins (BsAbFPs) present a promising strategy for cancer immunotherapy. Numerous BsAbs targeting coinhibitory and costimulatory pathways have been developed for retargeting T cells and antigen presenting cells (APCs). It is challenging to assess the potency of BsAb that engages two different signaling pathways simultaneously in a single assay format, especially when the two antigen targets are expressed on different cells. To explore the potency of anti-PD-L1/CD40L BsAbFP, a fusion protein that binds to human CD40 and PD-L1, we engineered CHO cells as surrogate APCs that express T cell receptor activator and PD-L1, Jurkat cells with PD-1 and NFAT-luciferase reporter as effector T cells, and Raji cell with NFkB-luciferase that endogenously expresses CD40 as accessory B cells. A novel reporter gene bioassay was developed using these cell lines that allows anti-PD-L1/CD40L BsAbFP to engages both PD-1/PD-L1 and CD40/CD40L signaling pathways in one assay. As both reporters use firefly luciferase, the effects of activating both signaling pathways is observed as an increase in luminescence, either as a higher upper asymptote, a lower EC50, or both. This dual target reporter gene bioassay system reflects potential mechanism of action and demonstrated the ability of anti-PD-L1/CD40L BsAbFP to synergistically induce biological response compared to the combination of anti-PD-L1 monovalent monoclonal antibody and agonist CD40L fusion protein, or either treatment alone. The results also showed a strong correlation between the drug dose and biological response within the tested potency range with good linearity, accuracy, precision, specificity and stability indicating properties, suggesting that this “three-cell-in-one” dual target reporter gene bioassay is suitable for assessing potency, structure-function and critical quality attributes of anti-PD-L1/CD40L BsAbFP. This approach could be used for developing dual target bioassays for other BsAbs and antibodies used for combination therapy.
Collapse
|
63
|
Pestana RC, Roszik J, Groisberg R, Sen S, Van Tine BA, Conley AP, Subbiah V. Discovery of targeted expression data for novel antibody-based and chimeric antigen receptor-based therapeutics in soft tissue sarcomas using RNA-sequencing: clinical implications. Curr Probl Cancer 2021; 45:100794. [PMID: 34656365 DOI: 10.1016/j.currproblcancer.2021.100794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
Recent failure of phase 3 trials and paucity of druggable oncogenic drivers hamper developmental therapeutics in sarcomas. Antibody-based therapeutics, like antibody-drug conjugates (ADCs) and chimeric antigen receptor (CAR)-based therapeutics, have emerged as promising strategies for anticancer drug delivery. The efficacy of these novel therapies is highly dependent on expression of the antibody target. We used RNA sequencing data from Cancer Genome Atlas (TCGA) to analyze expression of target antigens in sarcoma subtypes including dedifferentiated liposarcoma (DDLPS; n = 50), uterine leiomyosarcoma (ULMS; n = 27), leiomyosarcoma (STLMS; n = 53), undifferentiated pleomorphic sarcoma (UPS; n = 44), myxofibrosarcoma (MFS; n = 17), synovial sarcoma (SS; n = 10), and malignant peripheral nerve sheath tumor (MPNST; n = 5). We searched published literature and clinicaltrial.gov for ADC targets, bispecific antibodies, immunotoxins, radioimmunoconjugates, SPEAR T-cells, and CAR's that are in clinical trials. CD70 expression was significantly higher in DDLPS, UPS, and MFS than SS and STLMS. CDH3 expression was greater in LMS and ULMS than UPS (P < 0.001), MFS (P < 0.001), and DDLPS (P < 0.001). ERBB2 expression was low; however, it was overexpressed in MPNST when compared with UPS (P < 0.001), and MFS (P < 0.01). GPNMB was highly expressed in most sarcomas, with the exception of SS. LRRC15 also appeared to be a relevant target, especially in UPS. MSLN expression was relatively low except in SS and MPNST. PDGFRA was also highly expressed in most sarcomas with the exception of ULMS and STLMS. TNFRSF8 seems to be most appropriate in DDLPS, as well as MFS. AXL was expressed especially in MFS and STLMS. Sarcoma subtypes express multiple target genes relevant for ADCs, SPEAR T-cells and CAR's, warranting further clinical validation and evaluation.
Collapse
Affiliation(s)
- Roberto Carmagnani Pestana
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas; Centro de Oncologia e Hematologia Einstein Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jason Roszik
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roman Groisberg
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas; Rutgers Cancer Institute of New Jersey, New Jersey
| | - Shiraj Sen
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas; Sarah Cannon Research Institute at HealthONE, Denver, Colorado
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St Louis, Missouri; Division of Pediatric Hematology and Oncology, St. Louis Children's Hospital, St Louis, Missouri; Siteman Cancer Center, St Louis, Missouri
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
64
|
Ghalamfarsa F, Khatami SH, Vakili O, Taheri-Anganeh M, Tajbakhsh A, Savardashtaki A, Fazli Y, Uonaki LR, Shabaninejad Z, Movahedpour A, Ghalamfarsa G. Bispecific antibodies in colorectal cancer therapy: recent insights and emerging concepts. Immunotherapy 2021; 13:1355-1367. [PMID: 34641708 DOI: 10.2217/imt-2021-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is identified as a life-threatening malignancy. Despite several efforts and proceedings available for CRC therapy, it is still a health concern. Among a vast array of novel therapeutic procedures, employing bispecific antibodies (BsAbs) is currently considered to be a promising approach for cancer therapy. BsAbs, as a large family of molecules designed to realize two distinct epitopes or antigens, can be beneficial microgadgets to target the tumor-associated antigen pairs. On the other hand, applying the immune system's capabilities to attack malignant cells has been proven as a tremendous development in cancer therapeutic projects. The current study has attempted to overview some of the approved BsAbs in CRC therapy and those under clinical trials. For this purpose, reputable scientific search engines and databases, such as PubMed, ScienceDirect, Google Scholar, Scopus, etc., were explored using the keywords 'bispecific antibodies', 'colorectal cancer', 'immunotherapy' and 'tumor markers'.
Collapse
Affiliation(s)
- Farideh Ghalamfarsa
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Fazli
- Dena Clinical Diagnostic Laboratory, Yasuj, Iran
| | - Leila Rezaei Uonaki
- Department of Biotechnology, School of Science, Shahrekord University, Shahrekord, Iran
| | - Zahra Shabaninejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghasem Ghalamfarsa
- Department of Microbiology & Immunology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
65
|
Wang X, Sandberg ML, Martin AD, Negri KR, Gabrelow GB, Nampe DP, Wu ML, McElvain ME, Toledo Warshaviak D, Lee WH, Oh J, Daris ME, Chai F, Yao C, Furney J, Pigott C, Kamb A, Xu H. Potent, Selective CARs as Potential T-Cell Therapeutics for HPV-positive Cancers. J Immunother 2021; 44:292-306. [PMID: 34432728 PMCID: PMC8415731 DOI: 10.1097/cji.0000000000000386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 11/26/2022]
Abstract
Next-generation T-cell therapies will likely continue to utilize T-cell receptors (TCRs) and chimeric antigen receptors (CARs) because each receptor type has advantages. TCRs often possess exceptional properties even when tested unmodified from patients' T cells. CARs are generally less sensitive, possibly because their ligand-binding domains are grafted from antibodies selected for binding affinity or avidity and not broadly optimized for a functional response. Because of the disconnect between binding and function among these receptor types, the ultimate potential of CARs optimized for sensitivity and selectivity is not clear. Here, we focus on a thoroughly studied immuno-oncology target, the HLA-A*02/HPV-E629-38 complex, and show that CARs can be optimized by a combination of high-throughput binding screens and low-throughput functional assays to have comparable activity to clinical TCRs in acute assays in vitro. These results provide a case study for the challenges and opportunities of optimizing high-performing CARs, especially in the context of targets utilized naturally by TCRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julyun Oh
- A2 Biotherapeutics, Agoura Hills, CA
| | | | - Falene Chai
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - Christine Yao
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - James Furney
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | - Craig Pigott
- Innovative Targeting Solutions, Vancouver, BC, Canada
| | | | - Han Xu
- A2 Biotherapeutics, Agoura Hills, CA
| |
Collapse
|
66
|
Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4787. [PMID: 34638271 PMCID: PMC8507631 DOI: 10.3390/cancers13194787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable disease of malignant plasma cells and an ideal target for modern immune therapy. The unique plasma cell biology maintained in multiple myeloma, coupled with its hematological nature and unique bone marrow microenvironment, provide an opportunity to design specifically targeted immunotherapies that selectively kill transformed cells with limited on-target off-tumor effects. Broadly defined, immune therapy is the utilization of the immune system and immune agents to treat a disease. In the context of multiple myeloma, immune therapy can be subdivided into four main categories: immune modulatory imide drugs, targeted antibodies, adoptive cell transfer therapies, and vaccines. In recent years, advances in all four of these categories have led to improved therapies with enhanced antitumor activity and specificity. In IMiDs, modified chemical structures have been developed that improve drug potency while reducing dose limiting side effects. Targeted antibody therapies have resulted from the development of new selectively expressed targets as well as the development of antibody drug conjugates and bispecific antibodies. Adoptive cell therapies, particularly CAR-T therapies, have been enhanced through improvements in the manufacturing process, as well as through the development of CAR constructs that enhance CAR-T activation and provide protection from a suppressive immune microenvironment. This review will first cover in-class breakthrough therapies for each of these categories, as well as therapies currently utilized in the clinic. Additionally, this review will explore up and coming therapeutics in the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- James Ackley
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
| | - Miguel Armenta Ochoa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
67
|
The Agony of Choice-Where to Place the Wave of BCMA-Targeted Therapies in the Multiple Myeloma Treatment Puzzle in 2022 and Beyond. Cancers (Basel) 2021; 13:cancers13184701. [PMID: 34572927 PMCID: PMC8471156 DOI: 10.3390/cancers13184701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is no doubt that immunotherapeutic approaches will change the current treatment landscape of multiple myeloma in the near future; in particular, a wave of BCMA-targeted therapies is currently entering clinical routine. Although the increasing availability of different therapeutic approaches is highly welcome, it also increases the daily challenges in clinical decision making if they all use the same target. Here, we provide a comprehensive summary of BCMA-targeted approaches in myeloma and aim to share some basic concepts in clinical decision making. Abstract Since the introduction of first-generation proteasome inhibitors and immunomodulatory agents, the multiple myeloma (MM) treatment landscape has undergone a remarkable development. Most recently, immunotherapeutic strategies targeting the B cell maturation antigen (BCMA) entered the clinical stage providing access to highly anticipated novel treatment strategies. At present, numerous different approaches investigate BCMA as an effective multi-modal target. Currently, BCMA-directed antibody–drug conjugates, bispecific and trispecific antibodies, autologous and allogeneic CAR-T cell as well as CAR-NK cell constructs are either approved or in different stages of clinical and preclinical development for the treatment of MM. This armamentarium of treatment choices raises several challenges for clinical decision making, particularly in the absence of head-to-head comparisons. In this review, we provide a comprehensive overview of BCMA-targeting therapeutics, deliver latest updates on clinical trial data, and focus on potential patient selection criteria for different BCMA-targeting immunotherapeutic strategies.
Collapse
|
68
|
Orrù V, Steri M, Cucca F, Fiorillo E. Application of Genetic Studies to Flow Cytometry Data and Its Impact on Therapeutic Intervention for Autoimmune Disease. Front Immunol 2021; 12:714461. [PMID: 34531863 PMCID: PMC8438121 DOI: 10.3389/fimmu.2021.714461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, systematic genome-wide association studies of quantitative immune cell traits, represented by circulating levels of cell subtypes established by flow cytometry, have revealed numerous association signals, a large fraction of which overlap perfectly with genetic signals associated with autoimmune diseases. By identifying further overlaps with association signals influencing gene expression and cell surface protein levels, it has also been possible, in several cases, to identify causal genes and infer candidate proteins affecting immune cell traits linked to autoimmune disease risk. Overall, these results provide a more detailed picture of how genetic variation affects the human immune system and autoimmune disease risk. They also highlight druggable proteins in the pathogenesis of autoimmune diseases; predict the efficacy and side effects of existing therapies; provide new indications for use for some of them; and optimize the research and development of new, more effective and safer treatments for autoimmune diseases. Here we review the genetic-driven approach that couples systematic multi-parametric flow cytometry with high-resolution genetics and transcriptomics to identify endophenotypes of autoimmune diseases for the development of new therapies.
Collapse
Affiliation(s)
- Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| |
Collapse
|
69
|
García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021; 28:935-946. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Nowadays, the landscape of cancer treatments has broadened thanks to the clinical application of immunotherapeutics. After decades of failures, cancer immunotherapy represents an exciting alternative for those patients suffering from a wide variety of cancers, especially for those skin cancers, such as the early stages of melanoma. However, those cancers affecting internal organs still face a long way to success, because of the poor biodistribution of immunotherapies. Here, nanomedicine appears as a hopeful strategy to modulate the biodistribution aiming at target organ accumulation. In this way, efficacy will be improved, while reducing the side effects at the same time. In this review, we aim to highlight the most promising cancer immunotherapeutic strategies. From monoclonal antibodies and their traditional use as targeted therapies to their current use as immune checkpoint inhibitors; as well as adoptive cell transfer therapies; oncolytic viruses, and therapeutic cancer vaccination. Then, we aim to discuss the important role of nanomedicine to improve the performance of these immunotherapeutic tools to finally review the already marketed nanomedicine-based cancer immunotherapies.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Anna Saz
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
70
|
Swan D, Routledge D, Harrison S. The evolving status of immunotherapies in multiple myeloma: the future role of bispecific antibodies. Br J Haematol 2021; 196:488-506. [PMID: 34472091 DOI: 10.1111/bjh.17805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
Treatment outcomes in multiple myeloma (MM) have improved dramatically over the past 10 years. However, patients with high-risk disease such as those with Stage III disease by the Revised International Staging System, the presence of adverse cytogenetics, or who are refractory to proteosome inhibitors, immunomodulatory drugs and monoclonal antibodies may have dismal outcomes. These patients represent an urgent ongoing need in MM. One of the hallmarks of MM is immune dysfunction and a tumour-permissive immune microenvironment. Ameliorating the immune-paresis could lead to improved outcomes. The role of immunotherapies has been growing at an exponential pace with numerous agents under development in clinical trials. In the present review, we provide an overview of immunotherapies in MM, focussing on bispecific antibodies (BsAbs). We review efficacy outcomes from the published clinical trials and consider the important safety aspects of these therapies, in particular the risk of cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome, and how these compare with patients receiving chimeric antigen receptor T cells. We discuss the MM epitopes being targeted by BsAbs, either in clinical or preclinical stages, and we consider where these therapies might best fit within the future ever-changing paradigm of MM treatment.
Collapse
Affiliation(s)
- Dawn Swan
- Department of Haematology, St James' Hospital, Dublin, Ireland
| | - David Routledge
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Simon Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
71
|
Abstract
Bispecific T-cell recruiting antibodies are emerging as a potent immunotherapeutic class in the treatment of B-cell malignancies and act by simultaneously targeting antigens on T-cells and malignant cells to effect tumor cell death. Glofitamab is a novel full-length IgG-like CD20-CD3 bispecific with a unique 2:1 configuration that provides an extended half-life and superior CD20 binding. Phase 1 monotherapy and combination data demonstrate clear activity in heavily treated aggressive and indolent B-cell lymphoma, including >50% complete responses at the recommended phase 2 dose. In this review, we provide an overview of the structure, mechanism of action and pharmacokinetics of glofitamab. Available efficacy and safety data from ongoing clinical trials are also presented. Glofitamab appears to be a welcome addition to the treatment possibilities for patients with B-cell lymphomas who otherwise have limited therapeutic options. The current data are sufficient to evaluate its role in combination and in earlier lines of therapy.
Collapse
Affiliation(s)
- Adrian Minson
- Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
72
|
Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavaré R, Ullman E, Mao S, Canova L, Sineshchekova O, Finney J, Pawashe A, Patel S, McKay R, Rizvi S, Damko E, Chiu D, Vazzana K, Ram P, Mohrs K, D'Orvilliers A, Xiao J, Makonnen S, Hickey C, Arnold C, Giurleo J, Chen YP, Thwaites C, Dudgeon D, Bray K, Rafique A, Huang T, Delfino F, Hermann A, Kirshner JR, Retter MW, Babb R, MacDonald D, Chen G, Olson WC, Thurston G, Davis S, Lin JC, Smith E. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep 2021; 11:14397. [PMID: 34257348 PMCID: PMC8277787 DOI: 10.1038/s41598-021-93842-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
T-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.
Collapse
Affiliation(s)
- Lauric Haber
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA.
| | - Kara Olson
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Marcus P Kelly
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Richard Tavaré
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Shu Mao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Lauren Canova
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | - Arpita Pawashe
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ryan McKay
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Sahar Rizvi
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | | | | | - Priyanka Ram
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Jenny Xiao
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Carlos Hickey
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Cody Arnold
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Jason Giurleo
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Ya Ping Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Kevin Bray
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Tammy Huang
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Frank Delfino
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Marc W Retter
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gang Chen
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Samuel Davis
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY, 10591, USA
| |
Collapse
|
73
|
A single homogeneous assay for simultaneous measurement of bispecific antibody target binding. J Immunol Methods 2021; 496:113099. [PMID: 34224737 DOI: 10.1016/j.jim.2021.113099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Bispecific antibodies (BsAbs) are engineered to simultaneously bind two different antigens, and offer promising clinical outcomes for various diseases. The dual binding properties of BsAbs may enable superior efficacies and/or potencies compared to standard monoclonal antibodies (mAbs) or combination mAb therapies. Characterizing BsAb binding properties is critical during biotherapeutic development, where data is leveraged to predict efficacy and potency, assess critical quality attributes and improve antibody design. Traditional single-target, single-readout approaches (e.g., ELISA) have limited usefulness for interpreting complex bispecific binding, and double the benchwork. To address these deficiencies, we developed and implemented a new dual-target/readout binding assay that accurately dissects the affinities of both BsAb binding domains directly and simultaneously. This new assay uses AlphaPlex® technology, which eliminates traditional ELISA wash steps and can be miniaturized for automated workflows. The optimized BsAb AlphaPlex assay demonstrates 99-107% accuracy within a 50-150% linear range, and detected >50% binding degradation from photo- and thermal stress conditions. To the best of our knowledge, this is the first instance of a dual-target/readout BsAb AlphaPlex assay with GMP-suitable linear range, accuracy, specificity, and stability-indicating properties. As a highly customizable and efficient assay, BsAb AlphaPlex may be applicable to numerous bispecific formats and/or co-formulations against a variety of antigens beyond the clinical therapeutic space.
Collapse
|
74
|
Ahn S, Leblay N, Neri P. Understanding the Mechanisms of Resistance to T Cell-based Immunotherapies to Develop More Favorable Strategies in Multiple Myeloma. Hemasphere 2021; 5:e575. [PMID: 34095759 PMCID: PMC8171358 DOI: 10.1097/hs9.0000000000000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sungwoo Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, AB, Canada
| | - Noémie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, AB, Canada
| |
Collapse
|
75
|
van Faassen H, Jo DH, Ryan S, Lowden MJ, Raphael S, MacKenzie CR, Lee SH, Hussack G, Henry KA. Incorporation of a Novel CD16-Specific Single-Domain Antibody into Multispecific Natural Killer Cell Engagers With Potent ADCC. Mol Pharm 2021; 18:2375-2384. [PMID: 33999642 DOI: 10.1021/acs.molpharmaceut.1c00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multispecific antibodies that bridge immune effector and tumor cells have shown promising preclinical and clinical efficacies. Here, we isolated and characterized novel llama single-domain antibodies (sdAbs) against CD16. One sdAb, NRC-sdAb048, bound recombinant human and cynomolgus monkey CD16 ectodomains with equivalent affinity (KD: 1 nM) but did not recognize murine CD16. Binding was similar for human CD16a expressed on NK cells and CD16b (NA2) expressed on neutrophils but dramatically weaker (KD: ∼6 μM) for the CD16b (NA1) allotype. The sdAb stained primary human peripheral blood NK cells. Irrespective of fusion orientation and linker length, bispecific sdAb-sdAb and sdAb-scFv dimers (anti-CD16/EGFR, anti-CD16/HER2, and anti-CD16/CD19) retained full binding affinity for each target, coengaged both antigens simultaneously, elicited ADCC against target antigen-expressing tumor cells in a reporter bioassay, and triggered target-specific activation and degranulation of primary NK cells as measured via interferon-γ and CD107a expression. These molecules may have applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Henk van Faassen
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Dong-Hyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Michael J Lowden
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
76
|
Antibody therapy in pancreatic cancer: mAb-ye we're onto something? Biochim Biophys Acta Rev Cancer 2021; 1876:188557. [PMID: 33945846 DOI: 10.1016/j.bbcan.2021.188557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer remains an extremely deadly disease, with little improvement seen in treatment or outcomes over the last 40 years. Targeted monoclonal antibody therapy is one area that has been explored in attempts to tackle this disease. This review examines antibodies that have undergone clinical evaluation in pancreatic cancer. These antibodies target a wide variety of molecules, including tumour cell surface, stromal, immune and embryonic pathway targets. We discuss the therapeutic utility of these therapies both as monotherapeutics and in combination with other treatments such as chemotherapy. While antibody therapy for pancreatic cancer has yet to yield significant success, lessons learned from research thus far highlights future directions that may help overcome observed hurdles to yield clinically efficacious results.
Collapse
|
77
|
Targeted Therapies for Multiple Myeloma. J Pers Med 2021; 11:jpm11050334. [PMID: 33922567 PMCID: PMC8145732 DOI: 10.3390/jpm11050334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple myeloma continues to be a challenging disorder to treat despite improved therapies and the widespread use of proteasome inhibitors and immunomodulatory drugs. Although patient outcomes have improved, the disease continues to invariably relapse, and in the majority of cases, a cure remains elusive. In the last decade, there has been an explosion of novel drugs targeting cellular proteins essential for malignant plasma cell proliferation and survival. In this review, we focus on novel druggable targets leading to the development of monoclonal antibodies and cellular therapies against surface antigens (CD38, CD47, CD138, BCMA, SLAMF7, GPRC5D, FcRH5), inhibitors of epigenetic regulators such as histone deacetylase (HDAC), and agents targeting anti-apoptotic (BCL-2), ribosomal (eEF1A2) and nuclear export (XPO1) proteins.
Collapse
|
78
|
George AS, Fernandez CJ, Eapen D, Pappachan JM. Organ-specific Adverse Events of Immune Checkpoint Inhibitor Therapy, with Special Reference to Endocrinopathies. TOUCHREVIEWS IN ENDOCRINOLOGY 2021; 17:21-32. [PMID: 35118443 PMCID: PMC8320015 DOI: 10.17925/ee.2021.17.1.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 02/05/2023]
Abstract
Immune checkpoint inhibitors are potent and promising immunotherapeutic agents that are increasingly used for the management of various types of advanced cancers. The widespread approval of this group of drugs simultaneously revealed immune-related adverse events as unique side-effects. Endocrinopathies are one of the most common immune-related adverse events. The precise pathogenic mechanisms for these endocrinopathies are still unclear. Though few of the endocrinopathies are reversible, calling for only symptom control, most are irreversible, requiring multiple long-term hormone replacement therapies. However, in contrast to other organ-specific immune-related adverse events, patients with endocrinopathies can continue their immune checkpoint therapy, provided the hormone replacement therapy is adequate and the symptoms are controlled. Though patients who have developed immune-related adverse events demonstrate superior antitumor activity and overall survival, due to the high morbidity associated with the immune-related adverse events, researchers are trying to uncouple the antitumour activity associated with immune checkpoint inhibitor therapy from the immune-related adverse events, to preserve antitumour activity without adverse events.
Collapse
Affiliation(s)
- Annu Susan George
- Department of Medical Oncology, Lakeshore Hospital, Cochin, Kerala, India
| | - Cornelius J Fernandez
- Department of Endocrinology, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston, UK
| | - Dilip Eapen
- Department of Endocrinology, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston, UK
| | - Joseph M Pappachan
- Department of Endocrinology & Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston, UK
- Manchester Metropolitan University, Manchester, UK
- The University of Manchester, Manchester, UK
| |
Collapse
|
79
|
Kong X, Lu P, Liu C, Guo Y, Yang Y, Peng Y, Wang F, Bo Z, Dou X, Shi H, Meng J. A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Mol Med Rep 2021; 23:362. [PMID: 33760188 PMCID: PMC7985997 DOI: 10.3892/mmr.2021.12001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed death protein ligand-1 (PD-L1) inhibitors for treatment of a various types of cancers have revolutionized cancer immunotherapy. However, PD-1/PD-L1 inhibitors are associated with a low response rate and are only effective on a small number of patients with cancer. Development of an anti-PD-1/PD-L1 sensitizer for improving response rate and effectiveness of immunotherapy is a challenge. The present study reviews the synergistic effects of PD-1/PD-L1 inhibitor with oncolytic virus, tumor vaccine, molecular targeted drugs, immunotherapy, chemotherapy, radiotherapy, intestinal flora and traditional Chinese medicine, to provide information for development of effective combination therapies.
Collapse
Affiliation(s)
- Xianbin Kong
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Chuanxin Liu
- Department of Pharmaceutical Analysis, School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Yuzhu Guo
- Department of Radiotherapy, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yuying Yang
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yingying Peng
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Fangyuan Wang
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Zhichao Bo
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xiaoxin Dou
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Haoyang Shi
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jingyan Meng
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
80
|
Jang S, Song J, Kim N, Bak J, Jung K, Park YW, Park BC, Kim HM. Development of an antibody-like T-cell engager based on VH-VL heterodimer formation and its application in cancer therapy. Biomaterials 2021; 271:120760. [PMID: 33774526 DOI: 10.1016/j.biomaterials.2021.120760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Following the clinical success of immunotherapeutic antibodies, bispecific antibodies for cytotoxic effector cell redirection, tumor-targeted immunomodulation and dual immunomodulation, have received particular attentions. Here, we developed a novel bispecific antibody platform, termed Antibody-Like Cell Engager (ALiCE), wherein the Fc domain of each heavy chain of immunoglobulin G (IgG) is replaced by the VH and VL domains of an IgG specific to a second antigen while retaining the N-terminal Fab of the parent antibody. Because of specific interactions between the substituted VH and VL domains, the C-terminal stem Fv enables ALiCE to assemble autonomously into hetero-tetramers, thus simultaneously binding to two distinct antigens but with different avidities. This design strategy was used to generate ACE-05 (two anti-PD-L1 Fab × anti-CD3 Fv) and ACE-31 (two anti-CD3 Fab × anti-PD-L1 Fv), both of which bound PD-L1 and CD3. However, ACE-05 was more effective than ACE-31 in reducing off-target toxicity caused by the indiscriminate activation of T cells. Moreover, in cell-based assays and PBMC-reconstituted humanized mice harboring human non-small-cell lung cancer tumors, ACE-05 showed marked antitumor efficacy, causing complete tumor regression at a dose of 0.05 mg/kg body weight. The dual roles of ACE-05 in immune checkpoint inhibition and T-cell redirection, coupled with reduced off-target toxicity, suggest that ACE-05 may be a promising anti-cancer therapeutic agent. Moreover, the bispecific ALiCE platform can be further used for tumor-targeted or multiple immunomodulation applications.
Collapse
Affiliation(s)
- Seil Jang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; Y-BIOLOGICS, Inc., 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, South Korea; CTCELLS, Inc., R7, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, South Korea
| | - Jaeho Song
- Y-BIOLOGICS, Inc., 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, South Korea
| | - NaYoung Kim
- Y-BIOLOGICS, Inc., 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, South Korea
| | - Jeonghyeon Bak
- Y-BIOLOGICS, Inc., 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, South Korea
| | - Keehoon Jung
- Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Young Woo Park
- Y-BIOLOGICS, Inc., 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, South Korea
| | - Bum-Chan Park
- Y-BIOLOGICS, Inc., 17 Techno 4-ro, Yuseong-gu, Daejeon, 34013, South Korea.
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea; Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, South Korea.
| |
Collapse
|
81
|
Lopes R, Ferreira BV, Caetano J, Barahona F, Carneiro EA, João C. Boosting Immunity against Multiple Myeloma. Cancers (Basel) 2021; 13:1221. [PMID: 33799565 PMCID: PMC8001641 DOI: 10.3390/cancers13061221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Despite the improvement of patient's outcome obtained by the current use of immunomodulatory drugs, proteasome inhibitors or anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. More recently, the testing in clinical trials of novel drugs such as anti-BCMA CAR-T cells, antibody-drug conjugates or bispecific antibodies broadened the possibility of improving patients' survival. However, thus far, these treatment strategies have not been able to steadily eliminate all malignant cells, and the aim has been to induce a long-term complete response with minimal residual disease (MRD)-negative status. In this sense, approaches that target not only myeloma cells but also the surrounding microenvironment are promising strategies to achieve a sustained MRD negativity with prolonged survival. This review provides an overview of current and future strategies used for immunomodulation of MM focusing on the impact on bone marrow (BM) immunome.
Collapse
Affiliation(s)
- Raquel Lopes
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Bruna Velosa Ferreira
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
| | - Joana Caetano
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Filipa Barahona
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
| | - Cristina João
- Lymphoma and Myeloma Research Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal; (R.L.); (B.V.F.); (J.C.); (F.B.); (E.A.C.)
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
- Hemato-Oncology Department, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
82
|
Li L, Huang H, Zhu M, Wu J. Identification of Hub Genes and Pathways of Triple Negative Breast Cancer by Expression Profiles Analysis. Cancer Manag Res 2021; 13:2095-2104. [PMID: 33688252 PMCID: PMC7935333 DOI: 10.2147/cmar.s295951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Triple negative breast cancer (TNBC) is an intrinsic subtype of breast cancer with a poor prognosis, characterized by a lack of ER and PR expression and the absence of HER2 amplification. The aim of this study is to characterize hub genes (key genes in the molecular interaction network) expression in TNBC, which may serve as prognostic predictors for TNBC treatment. Methods Four transcriptome microarray datasets GSE27447, GSE39004, GSE43358 and GSE45827 were obtained from the Gene Expression Omnibus (GEO) database, and R package limma and RobustRankAggreg were employed to identify common differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted by DAVID and KOBAS database. Thereafter, protein–protein interaction (PPI) network was constructed according to STRING online database. Functional modules and hub genes were screened by MCODE and cytohubba plug-ins, and the Cancer Genome Atlas (TCGA) survival analysis and qRT-PCR were utilized to validate the expression of these hub genes on TNBC. Results A total of 134 DEGs were identified by differential expression analysis, consisting of 88 up- and 46 down-regulated genes. GO and KEGG analyses showed that the terms and pathways enriched were mainly associated with cell adhesion, tumorigenesis and cellular immunity. From the PPI network, we identified six hub genes, including CD3D, CD3E, CD3G, FYN, GRAP2 and ITK. Survival analysis and the qRT-PCR results confirmed the robustness of the identified hub genes. Conclusion This study provides a new insight into the understanding of the molecular mechanisms associated with TNBC and suggested that the hub genes may serve as prognostic predictors.
Collapse
Affiliation(s)
- Liqi Li
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Hu Huang
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Mingjie Zhu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Junqiang Wu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
83
|
Luke JJ, Barlesi F, Chung K, Tolcher AW, Kelly K, Hollebecque A, Le Tourneau C, Subbiah V, Tsai F, Kao S, Cassier PA, Khasraw M, Kindler HL, Fang H, Fan F, Allaire K, Patel M, Ye S, Chao DT, Henner WR, Hayflick JS, McDevitt MA, Fong L. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J Immunother Cancer 2021; 9:jitc-2020-002015. [PMID: 33608377 PMCID: PMC7898862 DOI: 10.1136/jitc-2020-002015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND CD40 agonist immunotherapy can potentially license antigen-presenting cells to promote antitumor T-cell activation and re-educate macrophages to destroy tumor stroma. Systemic administration of CD40 agonists has historically been associated with considerable toxicity, providing the rationale for development of tumor-targeted immunomodulators to improve clinical safety and efficacy. This phase I study assessed the safety, tolerability, preliminary antitumor activity, and preliminary biomarkers of ABBV-428, a first-in-class, mesothelin-targeted, bispecific antibody designed for tumor microenvironment-dependent CD40 activation with limited systemic toxicity. METHODS ABBV-428 was administered intravenously every 2 weeks to patients with advanced solid tumors. An accelerated titration (starting at a 0.01 mg/kg dose) and a 3+3 dose escalation scheme were used, followed by recommended phase II dose cohort expansions in ovarian cancer and mesothelioma, tumor types associated with high mesothelin expression. RESULTS Fifty-nine patients were treated at doses between 0.01 and 3.6 mg/kg. The maximum tolerated dose was not reached, and 3.6 mg/kg was selected as the recommended phase II dose. Seven patients (12%) reported infusion-related reactions. Treatment-related grade ≥3 treatment-emergent adverse events were pericardial effusion, colitis, infusion-related reaction, and pleural effusion (n=1 each, 2%), with no cytokine release syndrome reported. The pharmacokinetic profile demonstrated roughly dose-proportional increases in exposure from 0.4 to 3.6 mg/kg. Best response was stable disease in 9/25 patients (36%) treated at the recommended phase II dose. CD40 receptor occupancy >90% was observed on peripheral B-cells starting from 0.8 mg/kg; however, no consistent changes from baseline in intratumoral CD8+ T-cells, programmed death ligand-1 (PD-L1+) cells, or immune-related gene expression were detected post-ABBV-428 treatment (cycle 2, day 1). Mesothelin membrane staining showed greater correlation with progression-free survival in ovarian cancer and mesothelioma than in the broader dose escalation population. CONCLUSIONS ABBV-428 monotherapy exhibited dose-proportional pharmacokinetics and an acceptable safety profile, particularly for toxicities characteristic of CD40 agonism, illustrating that utilization of a tumor-targeted, bispecific antibody can improve the safety of CD40 agonism as a therapeutic approach. ABBV-428 monotherapy had minimal clinical activity in dose escalation and in a small expansion cohort of patients with advanced mesothelioma or ovarian cancer. TRIAL REGISTRATION NUMBER NCT02955251.
Collapse
Affiliation(s)
- Jason J Luke
- Cancer Immunotherapeutics Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Fabrice Barlesi
- Multidisciplinary Oncology & Therapeutic Innovations Department, Aix-Marseille University, Assistance Publique Hôpitaux de Marseille, CNRS, INSERM, CRCM, CEPCM CLIP2, Marseille, France
| | - Ki Chung
- Hematology and Oncology, PRISMA Health System, Greenville, South Carolina, USA
| | | | - Karen Kelly
- UC Davis Comprehensive Cancer Center, University of California, Sacramento, California, USA
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Curie Institute, Paris and Saint-Cloud, France.,INSERM U900 Research Unit, Saint-Cloud, France.,Paris-Saclay University, Paris, France
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frank Tsai
- Hematology/Oncology, HonorHealth Research Institute, Scottsdale, Arizona, USA
| | - Steven Kao
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | | | - Mustafa Khasraw
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Hedy L Kindler
- Section of Hematology/Oncology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Hua Fang
- Precision Medicine, AbbVie Inc, Redwood City, California, USA
| | - Frances Fan
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kathryn Allaire
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Maulik Patel
- Clinical Pharmacology, AbbVie Inc, Redwood City, California, USA
| | - Shiming Ye
- Oncology Discovery, AbbVie Inc, Redwood City, California, USA
| | - Debra T Chao
- Search & Evaluation, Oncology, AbbVie Inc, Redwood City, California, USA
| | | | - Joel S Hayflick
- Oncology Early Development, AbbVie Inc, Redwood City, California, USA
| | | | - Lawrence Fong
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
84
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
85
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
86
|
Barilà G, Rizzi R, Zambello R, Musto P. Drug Conjugated and Bispecific Antibodies for Multiple Myeloma: Improving Immunotherapies off the Shelf. Pharmaceuticals (Basel) 2021; 14:40. [PMID: 33430210 PMCID: PMC7825702 DOI: 10.3390/ph14010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
The impressive improvement of overall survival in multiple myeloma (MM) patients in the last years has been mostly related to the availability of new classes of drugs with different mechanisms of action, including proteasome inhibitors (PI), immunomodulating agents (IMiDs), and monoclonal antibodies. However, even with this increased potence of fire, MM still remains an incurable condition, due to clonal selection and evolution of neoplastic clone. This concept underlines the importance of immunotherapy as one of the most relevant tools to try to eradicate the disease. In line with this concept, active and passive immunotherapies represent the most attractive approach to this aim. Antibody-drug conjugate(s) (ADCs) and bispecific antibodies (BsAbs) include two innovative tools in order to limit neoplastic plasma cell growth or even, if used at the time of the best response, to potentially eradicate the tumoral clone. Following their promising results as single agent for advanced disease, at the recent 62nd ASH meeting, encouraging data of several combinations, particularly of ADC(s) with PI or IMiDs, have been reported, suggesting even better results for patients treated earlier. In this paper, we reviewed the characteristics, mechanism of action, and clinical data available for most relevant ADC(s) and BsAbs.
Collapse
Affiliation(s)
- Gregorio Barilà
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padova University School of Medicine, 35121 Padova, Italy;
| | - Rita Rizzi
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70121 Bari, Italy;
| | - Renato Zambello
- Department of Medicine (DIMED), Hematology and Clinical Immunology Section, Padova University School of Medicine, 35121 Padova, Italy;
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70121 Bari, Italy;
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy
| |
Collapse
|
87
|
George AS, Fernandez CJ, Eapen D, Pappachan JM. Organ-specific Adverse Events of Immune Checkpoint Inhibitor Therapy, with Special Reference to Endocrinopathies. EUROPEAN ENDOCRINOLOGY 2021; 1:21. [DOI: 10.17925/ee.2021.1.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
88
|
Kreileder M, Barrett I, Bendtsen C, Brennan D, Kolch W. Signaling Dynamics Regulating Crosstalks between T-Cell Activation and Immune Checkpoints. Trends Cell Biol 2020; 31:224-235. [PMID: 33388215 DOI: 10.1016/j.tcb.2020.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors (ICIs) targeting cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) have been hailed as major advances in cancer therapeutics; however, in many cancers response rates remain low. Extensive research efforts are underway to improve the efficacy of ICIs. The signaling pathways regulated by immune checkpoints (ICs) may be an important lever as they interfere with T-cell activation when activated by ICIs. Here, we review the current understanding of T-cell receptor signaling and their intersection with IC signaling pathways. As these signaling processes are highly dynamic and controlled by intricate spatiotemporal mechanisms, we focus on aspects of kinetic regulation that are modulated by ICs. Recent advances in computational modeling and experimental methods that can resolve spatiotemporal dynamics provide insights that reveal molecular mechanisms and new potential approaches for improving the design and application of ICIs.
Collapse
Affiliation(s)
- Martina Kreileder
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Barrett
- Discovery Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Claus Bendtsen
- Discovery Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | - Donal Brennan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Ireland East Gynaecological Oncology Group, Mater Misericordiae University Hospital, Dublin 7, Ireland; St Vincent's University Hospital, Dublin 4, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
89
|
Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol 2020; 51:280-291. [PMID: 33302322 DOI: 10.1002/eji.202048992] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
The adaptive immune system is modulated by an important subset of CD4+ T lymphocytes called Treg cells that function in maintaining immune homeostasis by preventing excessive immune activation. Both deficiency and overactivation of Treg cell function can result in disease pathology. While loss of Treg function can lead to autoimmunity, an overabundance of Treg activity can promote tumorigenesis. Blocking and/or depleting Tregs has emerged as a viable strategy to enhance antitumor immunity. A major limitation underlying the limited efficacy observed with Treg therapies in the clinic is lack of selective targeting, often attributed to concurrent depletion of antitumor effector T-cell populations. Novel approaches to improve the specificity of Treg targeting in the context of cancer include the use of T-cell receptor mimic antibodies, bispecific antibodies, and near-infrared photoimmunotherapy. Next-generation technology platforms and transcriptomic/computational-based screening methods have been recently developed to identify preferential Treg targets. Herein, we highlight key advancements and challenges pertaining to the development of novel Treg targeting cancer therapeutics and discuss ongoing clinical trials evaluating next-generation Treg therapies for solid tumors.
Collapse
Affiliation(s)
- Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Rajkumar Ganesan
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
90
|
Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Expeditious Generation of Biparatopic Common Light Chain Antibodies via Chicken Immunization and Yeast Display Screening. Front Immunol 2020; 11:606878. [PMID: 33424853 PMCID: PMC7786285 DOI: 10.3389/fimmu.2020.606878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Bispecific (BsAb) and biparatopic (BpAb) antibodies emerged as promising formats for therapeutic biologics exhibiting tailor-made functional properties. Over recent years, chicken-derived antibodies have gained traction for diagnostic and therapeutic applications due to their broad epitope coverage and convenience of library generation. Here we report the first generation of a biparatopic common light chain (cLC) chicken-derived antibody by an epitope binning-based screening approach using yeast surface display. The resulting monospecific antibodies target conformational epitopes on domain II or III of the epidermal growth factor receptor (EGFR) with lower double- or single-digit nanomolar affinities, respectively. Furthermore, the domain III targeting variant was shown to interfere with epidermal growth factor (EGF) binding. Utilizing the Knob-into-Hole technology (KiH), a biparatopic antibody with subnanomolar affinity was generated that facilitates clustering of soluble and cell-bound EGFR and displayed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared to the parental antibodies. This strategy for generating cLC-based biparatopic antibodies from immunized chickens may pave the way for their further development in therapeutic settings.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
91
|
Mock J, Stringhini M, Villa A, Weller M, Weiss T, Neri D. An engineered 4-1BBL fusion protein with "activity on demand". Proc Natl Acad Sci U S A 2020; 117:31780-31788. [PMID: 33239441 PMCID: PMC7749310 DOI: 10.1073/pnas.2013615117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineered cytokines are gaining importance in cancer therapy, but these products are often limited by toxicity, especially at early time points after intravenous administration. 4-1BB is a member of the tumor necrosis factor receptor superfamily, which has been considered as a target for therapeutic strategies with agonistic antibodies or using its cognate cytokine ligand, 4-1BBL. Here we describe the engineering of an antibody fusion protein, termed F8-4-1BBL, that does not exhibit cytokine activity in solution but regains biological activity on antigen binding. F8-4-1BBL bound specifically to its cognate antigen, the alternatively spliced EDA domain of fibronectin, and selectively localized to tumors in vivo, as evidenced by quantitative biodistribution experiments. The product promoted a potent antitumor activity in various mouse models of cancer without apparent toxicity at the doses used. F8-4-1BBL represents a prototype for antibody-cytokine fusion proteins, which conditionally display "activity on demand" properties at the site of disease on antigen binding and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | - Alessandra Villa
- Antibody Research, Philochem AG, CH-8112 Otelfingen, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich, University of Zurich, CH-8091 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland;
| |
Collapse
|
92
|
Huang L, Shah K, Barat B, Lam CYK, Gorlatov S, Ciccarone V, Tamura J, Moore PA, Diedrich G. Multispecific, Multivalent Antibody-Based Molecules Engineered on the DART® and TRIDENT TM Platforms. ACTA ACUST UNITED AC 2020; 129:e95. [PMID: 32294319 DOI: 10.1002/cpim.95] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multispecific antibodies bind two or more different antigens and enable new therapeutic applications that cannot be replicated with conventional monoclonal antibodies, such as bridging different cells or bringing soluble proteins in close proximity. The DART and TRIDENT platforms enable the engineering of such antibodies. A DART molecule combines two independent antigen-binding sites in a stabilized, diabody-like structure. A DART molecule can be expressed with or without an Fc domain and thus can be tailored to have a long or short half-life in vivo and to induce or ablate effector function. Linking two DART units or a DART unit and a Fab domain (the latter structure is called TRIDENT format) via an Fc domain creates a monospecific, bispecific, trispecific, or tetraspecific molecule with up to tetravalent targeting of antigens. This article focuses on the design of DART and TRIDENT molecules that target two or three different antigens. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Design and generation of expression plasmids encoding DART and TRIDENT molecules Basic Protocol 2: Expression of DART and TRIDENT molecules by transient transfection of CHO cells Basic Protocol 3: Purification of DART and TRIDENT molecules from CHO cell supernatants.
Collapse
|
93
|
Graham JC, Hillegass J, Schulze G. Considerations for setting occupational exposure limits for novel pharmaceutical modalities. Regul Toxicol Pharmacol 2020; 118:104813. [PMID: 33144077 PMCID: PMC7605856 DOI: 10.1016/j.yrtph.2020.104813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
In order to develop new and effective medicines, pharmaceutical companies must be modality agnostic. As science reveals an enhanced understanding of biological processes, new therapeutic modalities are becoming important in developing breakthrough therapies to treat both rare and common diseases. As these new modalities progress, concern and uncertainty arise regarding their safe handling by the researchers developing them, employees manufacturing them and nurses administering them. This manuscript reviews the available literature for emerging modalities (including oligonucleotides, monoclonal antibodies, fusion proteins and bispecific antibodies, antibody-drug conjugates, peptides, vaccines, genetically modified organisms, and several others) and provides considerations for occupational health and safety-oriented hazard identification and risk assessments to enable timely, consistent and well-informed hazard identification, hazard communication and risk-management decisions. This manuscript also points out instances where historical exposure control banding systems may not be applicable (e.g. oncolytic viruses, biologics) and where other occupational exposure limit systems are more applicable (e.g. Biosafety Levels, Biologic Control Categories). Review of toxicology and pharmacology information for novel therapeutic modalities. Identification of occupational hazards associated with novel therapeutic modalities. Occupational hazards and exposure risks differ across pharmaceutical modalities. Occupational exposure control banding systems are not one size fits all. Banding system variations offer benefits while enabling proper exposure controls.
Collapse
Affiliation(s)
- Jessica C Graham
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.
| | - Jedd Hillegass
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Gene Schulze
- Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| |
Collapse
|
94
|
Hu W, Wang G, Wang Y, Riese MJ, You M. Uncoupling Therapeutic Efficacy from Immune-Related Adverse Events in Immune Checkpoint Blockade. iScience 2020; 23:101580. [PMID: 33083746 PMCID: PMC7554032 DOI: 10.1016/j.isci.2020.101580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy with monoclonal antibodies targeting immune checkpoint molecules, including programmed death-1 (PD-1), PD ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, has become prominent in the treatment of many types of cancer. However, a significant number of patients treated with immune checkpoint inhibitors (ICIs) develop immune-related adverse events (irAEs). irAEs can affect any organ system, and although most are clinically manageable, irAEs can result in mortality or long-term morbidity. Factors that can predict irAEs remain elusive. Understanding the etiology of ICI-induced irAEs and ways to limit these adverse events are needed. In this review, we provide basic science and clinical insights on the mechanisms responsible for ICI efficacy and ICI-induced irAEs. We further provide insights into approaches that may uncouple irAEs from the ability of ICIs to kill tumor cells.
Collapse
Affiliation(s)
- Weilei Hu
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Guosheng Wang
- Department of Biomedical Engineering, Binghamton University—SUNY, 4400 Vestal Pkwy E, Binghamton, NY 13902, USA
| | - Yian Wang
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Matthew J. Riese
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti Inc, Milwaukee, WI 53226, USA
| | - Ming You
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
95
|
Groeneveldt C, Kinderman P, van den Wollenberg DJM, van den Oever RL, Middelburg J, Mustafa DAM, Hoeben RC, van der Burg SH, van Hall T, van Montfoort N. Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-001191. [PMID: 33082167 PMCID: PMC7577070 DOI: 10.1136/jitc-2020-001191] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background T-cell-engaging CD3-bispecific antibodies (CD3-bsAbs) are promising modalities for cancer immunotherapy. Although this therapy has reached clinical practice for hematological malignancies, the absence of sufficient infiltrating T cells is a major barrier for efficacy in solid tumors. In this study, we exploited oncolytic reovirus as a strategy to enhance the efficacy of CD3-bsAbs in immune-silent solid tumors. Methods The mutant p53 and K-ras induced murine pancreatic cancer model KPC3 resembles human pancreatic ductal adenocarcinomas with a desmoplastic tumor microenvironment, low T-cell density and resistance to immunotherapy. Immune-competent KPC3 tumor-bearing mice were intratumorally injected with reovirus type 3 Dearing strain and the reovirus-induced changes in the tumor microenvironment and spleen were analyzed over time by NanoString analysis, quantitative RT-PCR and multicolor flow cytometry. The efficacy of reovirus in combination with systemically injected CD3-bsAbs was evaluated in immune-competent mice with established KPC3 or B16.F10 tumors, and in the close-to-patient human epidermal growth factor receptor 2 (HER2)+ breast cancer model BT474 engrafted in immunocompromised mice with human T cells as effector cells. Results Replication-competent reovirus induced an early interferon signature, followed by a strong influx of natural killer cells and CD8+ T cells, at the cost of FoxP3+ Tregs. Viral replication declined after 7 days and was associated with a systemic activation of lymphocytes and the emergence of intratumoral reovirus-specific CD8+ T cells. Although tumor-infiltrating T cells were mostly reovirus-specific and not tumor-specific, they served as non-exhausted effector cells for the subsequently systemically administered CD3-bsAbs. Combination treatment of reovirus and CD3-bsAbs led to the regression of large, established KPC3, B16.F10 and BT474 tumors. Reovirus as a preconditioning regimen performed significantly better than simultaneous or early administration of CD3-bsAbs. This combination treatment induced regressions of distant lesions that were not injected with reovirus, and systemic administration of both reovirus and CD3-bsAbs also led to tumor control. This suggests that this therapy might also be effective for metastatic disease. Conclusions Oncolytic reovirus administration represents an effective strategy to induce a local interferon response and strong T-cell influx, thereby sensitizing the tumor microenvironment for subsequent CD3-bsAb therapy. This combination therapy warrants further investigation in patients with non-inflamed solid tumors.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Priscilla Kinderman
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ruben L van den Oever
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
96
|
Wang F, Wang S, Zhou Q. The Resistance Mechanisms of Lung Cancer Immunotherapy. Front Oncol 2020; 10:568059. [PMID: 33194652 PMCID: PMC7606919 DOI: 10.3389/fonc.2020.568059] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has revolutionized lung cancer treatment in the past decade. By reactivating the host’s immune system, immunotherapy significantly prolongs survival in some advanced lung cancer patients. However, resistance to immunotherapy is frequent, which manifests as a lack of initial response or clinical benefit to therapy (primary resistance) or tumor progression after the initial period of response (acquired resistance). Overcoming immunotherapy resistance is challenging owing to the complex and dynamic interplay among malignant cells and the defense system. This review aims to discuss the mechanisms that drive immunotherapy resistance and the innovative strategies implemented to overcome it in lung cancer.
Collapse
Affiliation(s)
- Fen Wang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shubin Wang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing Zhou
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China
| |
Collapse
|
97
|
Understanding genetic determinants of resistance to immune checkpoint blockers. Semin Cancer Biol 2020; 65:123-139. [DOI: 10.1016/j.semcancer.2019.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
98
|
Abstract
PD-1 and CTLA-4 are checkpoint inhibitors of the immune response in cancer, making them the target molecules for the development of therapeutic antibodies. US2019161548 patent describes a bispecific antibody capable of specifically binding to PD-1 and CTLA-4 that induced the proliferation and activation of CD8+ cells, as well as the expression of induclble co-stimulator in CD4+ T cells. Clinical trials to evaluate safety, dose-limiting toxicities and maximum tolerated/administered dose are still in the patient recruitment phase, but it will be of great interest to the scientific and medical community to know if the first bispecific anti-PD-1/CLTA-4 antibody, exceeds expectations and exceeds action of the combination of nivolumab and epilimumab in the treatment of cancer.
Collapse
|
99
|
Chen Y, Nagarajan C, Tan MS, Martinelli G, Cerchione C. BCMA-targeting approaches for treatment of multiple myeloma. Panminerva Med 2020; 63:28-36. [PMID: 32955181 DOI: 10.23736/s0031-0808.20.04121-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in treatment modalities have led to improved survival in patients with multiple myeloma (MM). However, despite these, MM remains an incurable disease. Many MM patients relapse through and become refractory to current treatment strategies or are intolerant due to toxicities arising from therapy. As such, novel strategies addressing new targets are crucial in improving care for MM patients. BCMA has emerged as a rationale therapeutic target for treatment of MM as it is preferentially expressed in mature B-lymphocytes and plasma cells with the overexpression and activation of BCMA via its ligands associated with the disease progression in multiple myeloma. Given the high expression of BCMA in malignant Plasma cells compared to those from normal healthy volunteers, targeting BCMA should reduce risks of on-target off-tumor toxicities. The main BCMA-targeting approaches currently used for treatment of MM include: 1) chimeric antigen receptor (CAR) T-cell therapy; 2) bi- and multi- specific antibodies; and 3) monoclonal antibodies and their drug conjugates. This review will outline these therapeutic agents and present their emerging clinical data.
Collapse
Affiliation(s)
- Yunxin Chen
- Department of Hematology, Singapore General Hospital, Singapore, Singapore - .,SingHealth Duke NUS Blood Cancer Center, Singapore, Singapore -
| | - Chandramouli Nagarajan
- Department of Hematology, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke NUS Blood Cancer Center, Singapore, Singapore
| | - Melinda S Tan
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
100
|
Nguyen TT, Nguyen TTD, Ta QTH, Vo VG. Advances in non and minimal-invasive transcutaneous delivery of immunotherapy for cancer treatment. Biomed Pharmacother 2020; 131:110753. [PMID: 33152919 DOI: 10.1016/j.biopha.2020.110753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer research has focused on figuring out what was the difference between cancer cells and the tissues within which cancer arose and developing targeted treatments for those differences. With FDA-approved treatments for more ten different cancers and more than thousand new clinical trials, immunotherapy has recently emerged as the most promising area of cancer research by improving efficacy and controlling the adverse effects. Transcutaneous delivery drug delivery offers a number of advantages for the patient because of not only its noninvasive and convenient nature but also factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. The purpose of this review was to highlight technological recent approaches to non and minimal-invasive delivery of immunotherapy for cancer treatment. Finally, some practical considerations and discussions for future studies in the field of transdermal immunomodulation are also included.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Viet Nam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Qui Thanh Hoai Ta
- Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam
| | - Van Giau Vo
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|