51
|
Rosenberg SA, Sportès C, Ahmadzadeh M, Fry TJ, Ngo LT, Schwarz SL, Stetler-Stevenson M, Morton KE, Mavroukakis SA, Morre M, Buffet R, Mackall CL, Gress RE. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 2006; 29:313-9. [PMID: 16699374 PMCID: PMC1473976 DOI: 10.1097/01.cji.0000210386.55951.c2] [Citation(s) in RCA: 330] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lymphopenia is a serious consequence of HIV infection and the administration of cancer chemotherapeutic agents. Although growth factors can be administered to patients to increase circulating neutrophils, there is no effective method to stimulate CD8+ lymphocyte production in humans, in vivo. This report is the first to describe the administration of recombinant interleukin-7 to humans and demonstrates the ability of this cytokine to mediate selective increases in CD4+ and CD8+ lymphocytes along with a decrease in the percentage of CD4+ T-regulatory cells. These studies suggest an important role for interleukin-7 in the treatment of patients with lymphopenia.
Collapse
Affiliation(s)
- Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Swainson L, Verhoeyen E, Cosset FL, Taylor N. IL-7R alpha gene expression is inversely correlated with cell cycle progression in IL-7-stimulated T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:6702-8. [PMID: 16709829 DOI: 10.4049/jimmunol.176.11.6702] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-7 plays a major role in T lymphocyte homeostasis and has been proposed as an immune adjuvant for lymphopenic patients. This prospect is based, at least in part, on the short-term expansion of peripheral T cells in rIL7-treated mice and primates. Nevertheless, in vivo, following initial increases in T cell proliferation and numbers, lymphocytes return to a quiescent state. As the bases for this cell cycle exit have not yet been elucidated, it is important to assess the long-term biological effects of IL-7 on quiescent human T lymphocyte subsets. In this study, we find that IL-7-stimulated CD4+ naive lymphocytes enter into cell cycle with significantly delayed kinetics as compared with the memory population. Importantly though, these lymphocytes exit from the cell cycle despite the continuous replenishment of rIL-7. This response is distinct in memory and naive CD4+ lymphocytes with memory cells starting to exit from cycle by day 10 vs day 18 for naive cells. Return to quiescence is associated with a cessation in IL-7R signaling as demonstrated by an abrogation of STAT-5 phosphorylation, despite an up-regulation of surface IL-7Ralpha. Indeed, an initial 10-fold decrease in IL-7Ralpha mRNA levels is followed by increased IL-7Ralpha expression in naive as well as memory T cells, with kinetics paralleling cell cycle exit. Altogether, our data demonstrate that IL-7 promotes the extended survival of both naive and memory CD4+ T cells, whereas cycling of these two subsets is distinct and transient. Thus, IL-7 therapy should be designed to allow optimal responsiveness of naive and memory T cell subsets.
Collapse
Affiliation(s)
- Louise Swainson
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Montpellier, France
| | | | | | | |
Collapse
|
53
|
Aspinall R. T cell development, ageing and Interleukin-7. Mech Ageing Dev 2006; 127:572-8. [PMID: 16529797 DOI: 10.1016/j.mad.2006.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/05/2005] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Interleukin-7 (IL-7) is a cytokine with a central role in the development and maintenance of the peripheral T cell pool. In the mouse, expression of the IL-7 gene in the thymus has been carefully followed from gestation onwards throughout the lifespan. One of the features of its expression in the thymus is that it changes with time, declining measurably as the animal ages. This reduction is associated with a decrease in thymic size, cellularity and output. Analysis of transgenic animals carrying either IL-7 or IL-7 receptor transgenes reveals that the intrathymic level of IL-7 has a critical effect on the production of T cells, and that this may not be a linear relationship. This is an important consideration for therapy involving treatment of old animals with IL-7 of which there are reports indicating some rejuvenation of the thymus following IL-7 treatment, which is never complete. The thymus does not appear to return to the size and cellularity seen in youth. Several possible scenarios could account for this, including the inability to maintain IL-7 within defined limits in the thymus during the therapy.
Collapse
Affiliation(s)
- Richard Aspinall
- Department of Immunology, Faculty of Medicine, Imperial College London, London SW10 9NH, UK.
| |
Collapse
|
54
|
Young CD, Angel JB. Optimization of culture and storage conditions for an in vitro system to evaluate thymocyte phenotype and function. J Immunol Methods 2006; 312:157-66. [PMID: 16647713 DOI: 10.1016/j.jim.2006.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/06/2006] [Accepted: 03/15/2006] [Indexed: 11/24/2022]
Abstract
Studies on thymopoiesis are critical to the understanding of T-cell homeostasis as well as the host response to T-cell depletion. Various in vitro culture systems have been used in the study of thymocyte development; however it is unclear if current co-culture methods have been fully optimized. In this study in vitro suspension cultures have been re-evaluated and the optimal storage conditions for thymocytes have been established by evaluating various methods of storing/isolating thymic tissue and isolated thymocytes as well as the source of thymic epithelial cells (TEC). It was determined that thymocytes must be freshly isolated from whole thymic tissue and ideally stored at 4 degrees C prior to co-culture. Co-culture with either autologous or allogeneic TEC results in similar thymocyte subset distribution as well as interleukin-7 receptor-alpha (CD127) expression on these subsets. To evaluate the influence of the source of TEC on one aspect of thymocyte function the effect of IL-7 stimulation on the expression of CD127 was evaluated. IL-7 stimulation resulted in a downregulation of the expression of CD127 on all thymic subsets similar to that observed in circulating CD8+ T-cells. The effect of this was the same whether TEC were autologous or allogeneic. Optimizing culture techniques and facilitating the study of individual thymocyte subsets will lead to a better understanding of thymic function and development. It could also lead to therapeutic approaches that enhance immune recovery after T-cell depletion in HIV infection, bone marrow transplantation or following chemotherapy.
Collapse
Affiliation(s)
- Charlene D Young
- Ottawa Health Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | | |
Collapse
|
55
|
Abstract
IL-2, IL-15, and IL-7 are cytokines that are critical for regulating lymphoid homeostasis. These cytokines stimulate similar responses from lymphocytes in vitro, but play markedly divergent roles in lymphoid biology in vivo. Their distinct physiological functions can be ascribed to distinct signaling pathways initiated by proprietary cytokine receptor chains, differential expression patterns of the cytokines or their receptor chains, and/or signals occurring in distinct physiological contexts. Recently, the discovery of a novel mechanism of cytokine signaling, trans-presentation, has provided further insights into the different ways these cytokines function. Trans-presentation also raises several novel cell biological and cellular implications concerning how cytokines support lymphoid homeostasis.
Collapse
Affiliation(s)
- Averil Ma
- Department of Medicine, Biomedical Sciences Program, University of California, San Francisco, California 94143-0451, USA.
| | | | | |
Collapse
|
56
|
Henson SM, Snelgrove R, Hussell T, Wells DJ, Aspinall R. An IL-7 fusion protein that shows increased thymopoietic ability. THE JOURNAL OF IMMUNOLOGY 2005; 175:4112-8. [PMID: 16148161 DOI: 10.4049/jimmunol.175.6.4112] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of IL-7 during thymopoiesis has led to it being the focus of a number of therapeutic interventions. However, its small size and pleiotropic nature present problems for thymus-directed therapies. We have created a fusion molecule between the extracellular N-terminal domain of CCR9 and IL-7, which has the potential to overcome these difficulties. This novel fusion protein retains the thymopoietic activity of IL-7 and the ligand-binding ability of CCR9. As a thymopoietic agent, compared with IL-7, it shows an enhanced retention in the thymus, increased de novo T cell production, and increased thymic output. Old mice receiving the fusion protein show improved CD8 T cell responses and reduced viral load after infection with influenza virus compared with those receiving IL-7. This chimeric molecule offers a novel therapeutic strategy that may result in the production of an effective immunorestorative agent.
Collapse
Affiliation(s)
- Sian M Henson
- Department of Immunology, Imperial College, Chelsea and Westminster Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
57
|
Goronzy JJ, Weyand CM. T cell development and receptor diversity during aging. Curr Opin Immunol 2005; 17:468-75. [PMID: 16098723 DOI: 10.1016/j.coi.2005.07.020] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 07/18/2005] [Indexed: 12/11/2022]
Abstract
The T cell system is a complex and highly dynamic system that is amazingly robust over many decades of human life. Its functional competence is determined not only by its size but also by its diversity. Homeostatic control mechanisms have to secure sufficient T cell replenishment while preventing loss of clonal diversity. Major homeostatic challenges include profound expansion and shrinkage of T cell clonotypes upon antigenic triggering and, more importantly, age-related changes in T cell regeneration. The ability of the thymus to rebuild a diverse repertoire ceases in the fifth decade of life. Emerging data suggest that the end of the 7th decade of life defines a critical time period when T cell homeostasis is no longer guaranteed and diversity of the naïve T-cell repertoire collapses. Thus, failure of T cell homeostasis appears to result from cumulative defects of T cell generation. Elucidation of the underlying mechanisms will allow for extending this turning point to later in life; ultimately, interventions have to aim at restoring thymic function and complementary modes of T cell reconstitution.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Kathleen B and Mason I Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
58
|
Fry TJ, Mackall CL. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. THE JOURNAL OF IMMUNOLOGY 2005; 174:6571-6. [PMID: 15905493 DOI: 10.4049/jimmunol.174.11.6571] [Citation(s) in RCA: 461] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-7 is well known as a lymphopoietic cytokine, but recent studies have also identified a critical role for IL-7 in peripheral T cell homeostasis. IL-7 is well poised to serve as a homeostatic cytokine because it is produced by resting stromal cells, the IL-7R is present on most T cells, and IL-7 down-regulates its own receptor. These features allow IL-7 to signal large numbers of resting T cells and to be efficiently used when supplies are limiting. Consistent with this, in normal hosts, IL-7 is required for survival of naive T cell populations, and IL-7 contributes to homeostatic cycling of naive and memory cells. In addition, lymphopenic hosts accumulate increased levels of IL-7, and the supranormal levels are largely responsible for inducing homeostatic peripheral expansion in response to lymphopenia. Thus, IL-7 plays critical and nonredundant roles in both T cell lymphopoiesis and in maintaining and restoring peripheral T cell homeostasis.
Collapse
Affiliation(s)
- Terry J Fry
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
59
|
Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:6477-89. [PMID: 15879151 DOI: 10.4049/jimmunol.174.10.6477] [Citation(s) in RCA: 1329] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ethical considerations constrain the in vivo study of human hemopoietic stem cells (HSC). To overcome this limitation, small animal models of human HSC engraftment have been used. We report the development and characterization of a new genetic stock of IL-2R common gamma-chain deficient NOD/LtSz-scid (NOD-scid IL2Rgamma(null)) mice and document their ability to support human mobilized blood HSC engraftment and multilineage differentiation. NOD-scid IL2Rgamma(null) mice are deficient in mature lymphocytes and NK cells, survive beyond 16 mo of age, and even after sublethal irradiation resist lymphoma development. Engraftment of NOD-scid IL2Rgamma(null) mice with human HSC generate 6-fold higher percentages of human CD45(+) cells in host bone marrow than with similarly treated NOD-scid mice. These human cells include B cells, NK cells, myeloid cells, plasmacytoid dendritic cells, and HSC. Spleens from engrafted NOD-scid IL2Rgamma(null) mice contain human Ig(+) B cells and lower numbers of human CD3(+) T cells. Coadministration of human Fc-IL7 fusion protein results in high percentages of human CD4(+)CD8(+) thymocytes as well human CD4(+)CD8(-) and CD4(-)CD8(+) peripheral blood and splenic T cells. De novo human T cell development in NOD-scid IL2Rgamma(null) mice was validated by 1) high levels of TCR excision circles, 2) complex TCRbeta repertoire diversity, and 3) proliferative responses to PHA and streptococcal superantigen, streptococcal pyrogenic exotoxin. Thus, NOD-scid IL2Rgamma(null) mice engrafted with human mobilized blood stem cells provide a new in vivo long-lived model of robust multilineage human HSC engraftment.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Blood Cell Count
- Cytotoxicity, Immunologic/genetics
- Dendritic Cells/cytology
- Female
- Flow Cytometry
- Hematopoietic Stem Cell Mobilization/methods
- Humans
- Immunoglobulins/blood
- Immunophenotyping
- Interleukin Receptor Common gamma Subunit
- Killer Cells, Natural/immunology
- Longevity/genetics
- Longevity/immunology
- Lymphocyte Activation/genetics
- Lymphoma/genetics
- Lymphoma/immunology
- Lymphoma/prevention & control
- Lymphopoiesis/genetics
- Lymphopoiesis/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Myelopoiesis/genetics
- Myelopoiesis/immunology
- Peripheral Blood Stem Cell Transplantation/methods
- Radiation Tolerance/genetics
- Radiation Tolerance/immunology
- Receptors, Interleukin-2/deficiency
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/physiology
- Receptors, Interleukin-7/deficiency
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/physiology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
|
60
|
Dumont FJ. Interleukin-2 family cytokines: potential for therapeutic immmunoregulation. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.5.521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
61
|
Zamisch M, Moore-Scott B, Su DM, Lucas PJ, Manley N, Richie ER. Ontogeny and regulation of IL-7-expressing thymic epithelial cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:60-7. [PMID: 15611228 DOI: 10.4049/jimmunol.174.1.60] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epithelial cells in the thymus produce IL-7, an essential cytokine that promotes the survival, differentiation, and proliferation of thymocytes. We identified IL-7-expressing thymic epithelial cells (TECs) throughout ontogeny and in the adult mouse thymus by in situ hybridization analysis. IL-7 expression is initiated in the thymic fated domain of the early primordium by embryonic day 11.5 and is expressed in a Foxn1-independent pathway. Marked changes occur in the localization and regulation of IL-7-expressing TECs during development. IL-7-expressing TECs are present throughout the early thymic rudiment. In contrast, a major population of IL-7-expressing TECs is localized to the medulla in the adult thymus. Using mouse strains in which thymocyte development is arrested at various stages, we show that fetal and postnatal thymi differ in the frequency and localization of IL-7-expressing TECs. Whereas IL-7 expression is initiated independently of hemopoietic-derived signals during thymic organogenesis, thymocyte-derived signals play an essential role in regulating IL-7 expression in the adult TEC compartment. Moreover, different thymocyte subsets regulate the expression of IL-7 and keratin 5 in adult cortical epithelium, suggesting that despite phenotypic similarities, the cortical TEC compartments of wild-type and RAG-1(-/-) mice are developmentally and functionally distinct.
Collapse
Affiliation(s)
- Monica Zamisch
- Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
62
|
Munitic I, Williams JA, Yang Y, Dong B, Lucas PJ, El Kassar N, Gress RE, Ashwell JD. Dynamic regulation of IL-7 receptor expression is required for normal thymopoiesis. Blood 2004; 104:4165-72. [PMID: 15328149 DOI: 10.1182/blood-2004-06-2484] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Interleukin-7 receptor (IL-7R) levels are tightly controlled during ontogeny: high on double-negative (DN) cells, absent on double-positive (DP) cells, and high once again on thymocytes undergoing positive selection. To determine if loss of IL-7–mediated survival signals in DP cells is necessary for normal antigen-specific selection, we created T-lineage–specific IL-7R α chain (IL-7Rα) transgenic (Tg) mice in which IL-7R is expressed throughout ontogeny. There was no effect of the IL-7Rα Tg on negative selection. Surprisingly, however, although the thymi of IL-7Rα Tg mice were comparable at birth, there was a decrease in thymocyte number as the mice aged. This was found to be due to competition between DN and IL-7R–expressing DP cells for endogenous IL-7, which resulted in decreased levels of Bcl-2 in DN cells, increased DN apoptosis, and decreased DN cell number. Therefore, the down-regulation of IL-7R on DP cells is an “altruistic” act required for maintaining an adequate supply of local IL-7 for DN cells.
Collapse
Affiliation(s)
- Ivana Munitic
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Yu Q, Erman B, Park JH, Feigenbaum L, Singer A. IL-7 receptor signals inhibit expression of transcription factors TCF-1, LEF-1, and RORgammat: impact on thymocyte development. ACTA ACUST UNITED AC 2004; 200:797-803. [PMID: 15365098 PMCID: PMC2211960 DOI: 10.1084/jem.20032183] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intrathymic T cell development depends on signals transduced by both T cell receptor and cytokine receptors. Early CD4−CD8− (double negative) thymocytes require interleukin (IL)-7 receptor (IL-7R) signals for survival and proliferation, but IL-7R signals are normally extinguished by the immature single positive (ISP) stage of thymocyte development. We now demonstrate that IL-7R signals inhibit expression of transcription factors TCF-1, LEF-1, and RORγt that are required for the ISP to double positive (DP) transition in the thymus. In addition, we demonstrate that IL-7R signals also inhibit TCF-1 and LEF-1 expression in mature peripheral T cells. Thus, the present work has identified several important downstream target genes of IL-7R signaling in T cells and thymocytes that provide a molecular mechanism for the inhibitory influence of IL-7R signaling on DP thymocyte development. We conclude that IL-7R signals down-regulate transcription factors required for the ISP to DP transition and so must be terminated by the ISP stage of thymocyte development.
Collapse
Affiliation(s)
- Qing Yu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm. 4B36, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|