51
|
Pelle A, Pezzoli L, Apuril E, Iascone M, Selicorni A. A novel HIST1HE pathogenic variant in a girl with macrocephaly and intellectual disability: a new case and review of literature. Clin Dysmorphol 2021; 30:39-43. [PMID: 33086257 DOI: 10.1097/mcd.0000000000000352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pathogenic variants of HIST1H1Egene have recently been associated with a condition known as Rahman syndrome, characterized by overgrowth, intellectual disability and nonspecific dysmorphic features (high hairline, full cheeks, wide nasal bridge). Wide clinical variability is reported, especially regarding the level of neurodevelopment delay and intellectual disability. We report a 10-year-old girl with macrocephaly and global developmental delay, in whom a novel heterozygous variant in the HIST1H1Egene [c.392_395dup (p.Gly133fs)] was discovered, but involving the same C-terminal domain-protein domain reported previously. Comparing the clinical data of our patient with those previously described, a 'core phenotype' with macrocephaly, psychomotor delay/intellectual disability and mild facial dysmorphisms seems evident.
Collapse
Affiliation(s)
- Alessandra Pelle
- Department of clinical and biological sciences, University of Torino, AOU San Luigi Gonzaga, Orbassano, Torino
- Pediatric Unit, A.S.S.T. Lariana Sant'Anna Hospital, San Fermo della Battaglia, Como
| | - Laura Pezzoli
- Laboratorio di genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Erika Apuril
- Pediatric Unit, A.S.S.T. Lariana Sant'Anna Hospital, San Fermo della Battaglia, Como
| | - Maria Iascone
- Laboratorio di genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Angelo Selicorni
- Pediatric Unit, A.S.S.T. Lariana Sant'Anna Hospital, San Fermo della Battaglia, Como
| |
Collapse
|
52
|
Yusufova N, Kloetgen A, Teater M, Osunsade A, Camarillo JM, Chin CR, Doane AS, Venters BJ, Portillo-Ledesma S, Conway J, Phillip JM, Elemento O, Scott DW, Béguelin W, Licht JD, Kelleher NL, Staudt LM, Skoultchi AI, Keogh MC, Apostolou E, Mason CE, Imielinski M, Schlick T, David Y, Tsirigos A, Allis CD, Soshnev AA, Cesarman E, Melnick AM. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 2021; 589:299-305. [PMID: 33299181 PMCID: PMC7855728 DOI: 10.1038/s41586-020-3017-y] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.
Collapse
Affiliation(s)
- Nevin Yusufova
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, NYU School of Medicine, New York, NY, USA
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matt Teater
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Adewola Osunsade
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
| | - Ashley S Doane
- Tri-Institutional PhD Program in Computational Biomedicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Joseph Conway
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jude M Phillip
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan D Licht
- University of Florida Health Cancer Center, The University of Florida Cancer and Genetics Research Complex, Gainesville, FL, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
- New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY, USA
- Institute for Computational Medicine, NYU School of Medicine, New York, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
53
|
Behrends M, Engmann O. Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa013. [PMID: 33214908 PMCID: PMC7660118 DOI: 10.1093/eep/dvaa013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Human histone H1.5, in mice called H1b, belongs to the family of linker histones (H1), which are key players in chromatin organization. These proteins sit on top of nucleosomes, in part to stabilize them, and recruit core histone modifying enzymes. Through subtype-specific deposition patterns and numerous post-translational modifications, they fine-tune gene expression and chromatin architecture, and help to control cell fate and homeostasis. However, even though it is increasingly implicated in mammalian development, H1.5 has not received as much research attention as its relatives. Recent studies have focused on its prognostic value in cancer patients and its contribution to tumorigenesis through specific molecular mechanisms. However, many functions of H1.5 are still poorly understood. In this review, we will summarize what is currently known about H1.5 and its function in cell differentiation and carcinogenesis. We will suggest key experiments that are required to understand the molecular network, in which H1.5 is embedded. These experiments will advance our understanding of the epigenetic reprogramming occurring in developmental and carcinogenic processes.
Collapse
Affiliation(s)
- Marthe Behrends
- Faculty of Medicine, Friedrich Schiller Universität, Jena, Thüringen 07747, Germany
| | - Olivia Engmann
- Institute for Human Genetics, Jena University Hospital, Am Klinikum 1, Thüringen 07747, Germany
| |
Collapse
|
54
|
Pérez-Carretero C, Hernández-Sánchez M, González T, Quijada-Álamo M, Martín-Izquierdo M, Hernández-Sánchez JM, Vidal MJ, de Coca AG, Aguilar C, Vargas-Pabón M, Alonso S, Sierra M, Rubio-Martínez A, Dávila J, Díaz-Valdés JR, Queizán JA, Hernández-Rivas JÁ, Benito R, Rodríguez-Vicente AE, Hernández-Rivas JM. Chronic lymphocytic leukemia patients with IGH translocations are characterized by a distinct genetic landscape with prognostic implications. Int J Cancer 2020; 147:2780-2792. [PMID: 32720348 DOI: 10.1002/ijc.33235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
Chromosome 14q32 rearrangements/translocations involving the immunoglobulin heavy chain (IGH) are rarely detected in chronic lymphocytic leukemia (CLL). The prognostic significance of the IGH translocation is controversial and its mutational profile remains unknown. Here, we present for the first time a comprehensive next-generation sequencing (NGS) analysis of 46 CLL patients with IGH rearrangement (IGHR-CLLs) and we demonstrate that IGHR-CLLs have a distinct mutational profile with recurrent mutations in NOTCH1, IGLL5, POT1, BCL2, FBXW7, ZMYM3, MGA, BRAF and HIST1H1E genes. Interestingly, BCL2 and FBXW7 mutations were significantly associated with this subgroup and almost half of BCL2, IGLL5 and HISTH1E mutations reported were previously identified in non-Hodgkin lymphomas. Notably, IGH/BCL2 rearrangements were associated with a lower mutation frequency and carried BCL2 and IGLL5 mutations, while the other IGHR-CLLs had mutations in genes related to poor prognosis (NOTCH1, SF3B1 and TP53) and shorter time to first treatment (TFT). Moreover, IGHR-CLLs patients showed a shorter TFT than CLL patients carrying 13q-, normal fluorescence in situ hybridization (FISH) and +12 CLL, being this prognosis particularly poor when NOTCH1, SF3B1, TP53, BIRC3 and BRAF were also mutated. The presence of these mutations not only was an independent risk factor within IGHR-CLLs, but also refined the prognosis of low-risk cytogenetic patients (13q-/normal FISH). Hence, our study demonstrates that IGHR-CLLs have a distinct mutational profile from the majority of CLLs and highlights the relevance of incorporating NGS and the status of IGH by FISH analysis to refine the risk-stratification CLL model.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María Hernández-Sánchez
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Teresa González
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Miguel Quijada-Álamo
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Marta Martín-Izquierdo
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesús-María Hernández-Sánchez
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | | | - Carlos Aguilar
- Servicio de Hematología, Complejo Hospitalario de Soria, Soria, Spain
| | | | - Sara Alonso
- Servicio de Hematología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Magdalena Sierra
- Servicio de Hematología, Hospital Virgen de la Concha, Zamora, Spain
| | | | - Julio Dávila
- Servicio de Hematología, Hospital Nuestra Señora de Sonsoles, Ávila, Spain
| | | | | | | | - Rocío Benito
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana E Rodríguez-Vicente
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesús-María Hernández-Rivas
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
55
|
Astori A, Tingvall-Gustafsson J, Kuruvilla J, Coyaud E, Laurent EMN, Sunnerhagen M, Åhsberg J, Ungerbäck J, Strid T, Sigvardsson M, Raught B, Somasundaram R. ARID1a Associates with Lymphoid-Restricted Transcription Factors and Has an Essential Role in T Cell Development. THE JOURNAL OF IMMUNOLOGY 2020; 205:1419-1432. [PMID: 32747500 DOI: 10.4049/jimmunol.1900959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
Maturation of lymphoid cells is controlled by the action of stage and lineage-restricted transcription factors working in concert with the general transcription and chromatin remodeling machinery to regulate gene expression. To better understand this functional interplay, we used Biotin Identification in human embryonic kidney cells to identify proximity interaction partners for GATA3, TCF7 (TCF1), SPI1, HLF, IKZF1, PAX5, ID1, and ID2. The proximity interaction partners shared among the lineage-restricted transcription factors included ARID1a, a BRG1-associated factor complex component. CUT&RUN analysis revealed that ARID1a shared binding with TCF7 and GATA3 at a substantial number of putative regulatory elements in mouse T cell progenitors. In support of an important function for ARID1a in lymphocyte development, deletion of Arid1a in early lymphoid progenitors in mice resulted in a pronounced developmental arrest in early T cell development with a reduction of CD4+CD8+ cells and a 20-fold reduction in thymic cellularity. Exploring gene expression patterns in DN3 cells from Wt and Arid1a-deficient mice suggested that the developmental block resided in the DN3a to DN3b transition, indicating a deficiency in β-selection. Our work highlights the critical importance of functional interactions between stage and lineage-restricted factors and the basic transcription machinery during lymphocyte differentiation.
Collapse
Affiliation(s)
- Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | - Jacob Kuruvilla
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden; and
| | - Josefine Åhsberg
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| | - Tobias Strid
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden; .,Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 3K1, Canada
| | - Rajesh Somasundaram
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Emerging evidence has shown that epigenetic derangements might drive and promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. The purpose of this review is to explain how the epigenetic derangements result in a chromatin-remodeled state in lymphoma and contribute to the biology and clinical features of these tumors. RECENT FINDINGS Studies have explored on the functional role of epigenetic derangements in chromatin remodeling and lymphomagenesis. For example, the haploinsufficiency of CREBBP facilitates malignant transformation in mice and directly implicates the importance to re-establish the physiologic acetylation level. New findings identified 4 prominent DLBCL subtypes, including EZB-GC-DLBCL subtype that enriched in mutations of CREBBP, EP300, KMT2D, and SWI/SNF complex genes. EZB subtype has a worse prognosis than other GCB-tumors. Moreover, the action of the histone modifiers as well as chromatin-remodeling factors (e.g., SWI/SNF complex) cooperates to influence the chromatin state resulting in transcription repression. Drugs that alter the epigenetic landscape have been approved in T cell lymphoma. In line with this finding, epigenetic lesions in histone modifiers have recently been uncovered in this disease, further confirming the vulnerability to the therapies targeting epigenetic derangements. Modulating the chromatin state by epigenetic-modifying agents provides precision-medicine opportunities to patients with lymphomas that depend on this biology.
Collapse
Affiliation(s)
- Yuxuan Liu
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Yulissa Gonzalez
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA.
| |
Collapse
|
57
|
CREBBP and STAT6 co-mutation and 16p13 and 1p36 loss define the t(14;18)-negative diffuse variant of follicular lymphoma. Blood Cancer J 2020; 10:69. [PMID: 32555149 PMCID: PMC7299932 DOI: 10.1038/s41408-020-0335-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The diffuse variant of follicular lymphoma (dFL) is a rare variant of FL lacking t(14;18) that was first described in 2009. In this study, we use a comprehensive approach to define unifying pathologic and genetic features through gold-standard pathologic review, FISH, SNP-microarray, and next-generation sequencing of 16 cases of dFL. We found unique morphologic features, including interstitial sclerosis, microfollicle formation, and rounded nuclear cytology, confirmed absence of t(14;18) and recurrent deletion of 1p36, and showed a novel association with deletion/CN-LOH of 16p13 (inclusive of CREBBP, CIITA, and SOCS1). Mutational profiling demonstrated near-uniform mutations in CREBBP and STAT6, with clonal dominance of CREBBP, among other mutations typical of germinal-center B-cell lymphomas. Frequent CREBBP and CIITA codeletion/mutation suggested a mechanism for immune evasion, while subclonal STAT6 activating mutations with concurrent SOCS1 loss suggested a mechanism of BCL-xL/BCL2L1 upregulation in the absence of BCL2 rearrangements. A review of the literature showed significant enrichment for 16p13 and 1p36 loss/CN-LOH, STAT6 mutation, and CREBBP and STAT6 comutation in dFL, as compared with conventional FL. With this comprehensive approach, our study demonstrates confirmatory and novel genetic associations that can aid in the diagnosis and subclassification of this rare type of lymphoma.
Collapse
|
58
|
Abstract
Although outcomes for follicular lymphoma (FL) continue to improve, it remains incurable for the majority of patients. Through next generation sequencing (NGS) studies, we now recognize that the genomic landscape of FL is skewed toward highly recurrent mutations in genes that encode epigenetic regulators co-occurring with the pathognomonic t(14;18) translocation. Adopting these technologies to study longitudinal and spatially-derived lymphomas has provided unique insights into the tumoral heterogeneity, clonal evolution of the disease and supports the existence of a tumor-repopulating population, considered the Achilles' heel of this lymphoma. An in-depth understanding of the genomics and its contribution to the disease pathogenesis is identifying new biomarkers and therapeutic targets that can be translated into clinical practice and, in the not too distant future, enable us to start considering precision-based approaches to the management of FL.
Collapse
Affiliation(s)
- Lucy Pickard
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giuseppe Palladino
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
59
|
Saloura V, Vougiouklakis T, Bao R, Kim S, Baek S, Zewde M, Bernard B, Burkitt K, Nigam N, Izumchenko E, Dohmae N, Hamamoto R, Nakamura Y. WHSC1 monomethylates histone H1 and induces stem-cell like features in squamous cell carcinoma of the head and neck. Neoplasia 2020; 22:283-293. [PMID: 32497898 PMCID: PMC7265065 DOI: 10.1016/j.neo.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is a malignancy with poor outcomes, thus novel therapies are urgently needed. We recently showed that WHSC1 is necessary for the viability of SCCHN cells through H3K36 di-methylation. Here, we report the identification of its novel substrate, histone H1, and that WHSC1-mediated H1.4K85 mono-methylation may enhance stemness features in SCCHN cells. To identify proteins interacting with WHSC1 in SCCHN cells, WHSC1 immunoprecipitation and mass spectrometry identified H1 as a WHSC1-interacting candidate. In vitro methyltransferase assays showed that WHSC1 mono-methylates H1 at K85. We generated an H1K85 mono-methylation-specific antibody and confirmed that this methylation occurs in vivo. Sphere formation assays using SCC-35 cells stably expressing either wild-type (FLAG-H1.4-WT) or mutated (FLAG-H1.4K85A) vector with lysine 85 to alanine substitution which is not methylated, indicated a higher number of spheres in SCC-35 cells expressing the wild type than those with the mutant vector. SCC-35 cells expressing the wild type H1.4 proliferated faster than those expressing the mutated vector. RNA sequencing, RT-PCR and Western blotting of the FLAG-H1.4-WT or FLAG-H1.4K85A SCC-35 cells revealed that OCT4 levels were higher in wild type compared to mutant cells. These results were reproduced in SCC-35 cells genetically modified with CRISPR to express H1.4K85R. Chromatin immunoprecipitation showed that FLAG-H1.4K85A had decreased occupancy in the OCT4 gene compared to FLAG-H1.4-WT. This study supports that WHSC1 mono-methylates H1.4 at K85, it induces transcriptional activation of OCT4 and stemness features in SCCHN cells, providing rationale to target H1.4K85 mono-methylation through WHSC1 in SCCHN.
Collapse
Affiliation(s)
- Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA.
| | | | - Riyue Bao
- Center for Research Bioinformatics, University of Chicago, Chicago, USA; Department of Pediatrics, University of Chicago, Chicago, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, USA
| | - Makda Zewde
- Department of Medicine, University of Chicago, Chicago, USA
| | - Benjamin Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Kyunghee Burkitt
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | | | | | | | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, USA; Department of Surgery, University of Chicago, Chicago, USA
| |
Collapse
|
60
|
[Progress in the research of gene mutations in follicular lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:172-176. [PMID: 32135639 PMCID: PMC7357952 DOI: 10.3760/cma.j.issn.0253-2727.2020.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
62
|
Pasqualucci L. Molecular pathogenesis of germinal center-derived B cell lymphomas. Immunol Rev 2019; 288:240-261. [PMID: 30874347 DOI: 10.1111/imr.12745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
B cell lymphomas comprise a heterogeneous group of genetically, biologically, and clinically distinct neoplasms that, in most cases, originate from the clonal expansion of B cells in the germinal center (GC). In recent years, the advent of novel genomics technologies has revolutionized our understanding of the molecular pathogenesis of lymphoid malignancies as a multistep process that requires the progressive accumulation of multiple genetic and epigenetic alterations. A common theme that emerged from these studies is the ability of lymphoma cells to co-opt the same biological programs and signal transduction networks that operate during the normal GC reaction, and misuse them for their own survival advantage. This review summarizes recent progress in the understanding of the genetic and epigenetic mechanisms that drive the malignant transformation of GC B cells. These insights provide a conceptual framework for the identification of cellular pathways that may be explored for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York City, New York
| |
Collapse
|
63
|
Zhu Z, Li T, Zhang X, Zhang Z, Zhu D, Lin P, Tu S, Ren W. Molecular and clinical progress in follicular lymphoma lacking the t(14;18) translocation (Review). Int J Oncol 2019; 56:7-17. [PMID: 31789408 DOI: 10.3892/ijo.2019.4917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/25/2019] [Indexed: 11/05/2022] Open
Abstract
Although the majority of patients with follicular lymphoma (FL) harbor the t(14;18)(q32;q21) IGH/BCL2 gene rearrangement that leads to the overexpression of BCL2 protein, approximately 20% of FL cases lack t(14;18)(q32;q21). It is considered that BCL2 overexpression underscores the development of the majority of cases of FL and their transformation to more aggressive lymphoma [known as transformed FL (tFL)]. However, FL cases lacking the t(14;18)(q32;q21) translocation exhibit symptoms analogous to their t(14;18)‑positive counterparts. An important goal of recent research on FL has been to clarify the distinctions between the two different forms of FL. Numerous studies have shed light onto the genetic and molecular features of t(14;18)‑negative FL and the related clinical manifestations. In this review, we summarize the current knowledge of t(14;18)‑negative FL occurring in the lymph nodes with an emphasis on the underlying molecular and clinical features. In addition, novel treatment directions are discussed.
Collapse
Affiliation(s)
- Zunmin Zhu
- Institute of Hematology, Henan Renmin Hospital, Zhengzhou, Henan 475000, P.R. China
| | - Tao Li
- Laboratory of Hematology, The First Affiliated Hospital of Zhenzhou University, Zhengzhou, Henan 475000, P.R. China
| | - Xuran Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Zhengqiang Zhang
- Immunology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, P.R. China
| | - Dandan Zhu
- Zhengzhou Shenyou Biotechnology, Zhengzhou, Henan 450000, P.R. China
| | - Pei Lin
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shichun Tu
- Scintillon Institute for Biomedical and Bioenergy Research, San Diego, CA 92121, USA
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
64
|
Yang H, Green MR. Epigenetic Programing of B-Cell Lymphoma by BCL6 and Its Genetic Deregulation. Front Cell Dev Biol 2019; 7:272. [PMID: 31788471 PMCID: PMC6853842 DOI: 10.3389/fcell.2019.00272] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
B cell lymphoma is a clinically heterogeneous and pathologically diverse group of diseases with a strong epigenetic component. The B cell lymphoma 6 (BCL6) gene encodes a transcription factor that is critical for normal germinal center reaction B cell development by maintaining an epigenetic and transcriptional state that is permissive for cellular proliferation and DNA damage. The activity of BCL6 can be deregulated by a variety of mechanisms and contributes to the development of B-cell lymphoma. Here we review the direct and indirect mechanisms BCL6 dysregulation in B cell lymphoma, including transcriptional and post-translational regulation of BCL6 expression and activity, and the perturbation of BCL6-regulated epigenetic programs by cooperating chromatin modifying gene mutations. We underscore the critical importance of BCL6 and its associated epigenetic programs in the development of B-cell lymphoma, and discuss avenues for the therapeutic targeting of BCL6 in this context.
Collapse
Affiliation(s)
- Haopeng Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael R Green
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
65
|
Garciaz S, N'guyen Dasi L, Finetti P, Chevalier C, Vernerey J, Poplineau M, Platet N, Audebert S, Pophillat M, Camoin L, Bertucci F, Calmels B, Récher C, Birnbaum D, Chabannon C, Vey N, Duprez E. Epigenetic down-regulation of the HIST1 locus predicts better prognosis in acute myeloid leukemia with NPM1 mutation. Clin Epigenetics 2019; 11:141. [PMID: 31606046 PMCID: PMC6790061 DOI: 10.1186/s13148-019-0738-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The epigenetic machinery is frequently altered in acute myeloid leukemia. Focusing on cytogenetically normal (CN) AML, we previously described an abnormal H3K27me3 enrichment covering 70 kb on the HIST1 cluster (6.p22) in CN-AML patient blasts. Here, we further investigate the molecular, functional, and prognosis significance of this epigenetic alteration named H3K27me3 HIST1 in NPM1-mutated (NPM1mut) CN-AML. RESULTS We found that three quarter of the NPM1mut CN-AML patients were H3K27me3 HIST1high. H3K27me3 HIST1high group of patients was associated with a favorable outcome independently of known molecular risk factors. In gene expression profiling, the H3K27me3 HIST1high mark was associated with lower expression of the histone genes HIST1H1D, HIST1H2BG, HIST1H2AE, and HIST1H3F and an upregulation of genes involved in myelomonocytic differentiation. Mass spectrometry analyses confirmed that the linker histone protein H1d, but not the other histone H1 subtypes, was downregulated in the H3K27me3 HIST1high group of patients. H1d knockdown primed ATRA-mediated differentiation of OCI-AML3 and U937 AML cell lines, as assessed on CD11b/CD11c markers, morphological and gene expression analyses. CONCLUSIONS Our data suggest that NPM1mut AML prognosis depends on the epigenetic silencing of the HIST1 cluster and that, among the H3K27me3 silenced histone genes, HIST1H1D plays a role in AML blast differentiation.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Lia N'guyen Dasi
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Christine Chevalier
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Institut Pasteur, G5 Chromatin and Infection, Paris, France
| | - Julien Vernerey
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Nadine Platet
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Stéphane Audebert
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Matthieu Pophillat
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Boris Calmels
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, Toulouse, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Christian Chabannon
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - Norbert Vey
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.
| |
Collapse
|
66
|
Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia 2019; 34:151-166. [DOI: 10.1038/s41375-019-0541-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/20/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
|
67
|
Knock-down of oncohistone H3F3A-G34W counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells. Cancer Lett 2019; 448:61-69. [DOI: 10.1016/j.canlet.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022]
|
68
|
Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Nordin HBM, Cao Z, Sundaresan J, Lei I, Wang Z, Koeffler HP. Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia 2019; 33:2291-2305. [PMID: 30858552 PMCID: PMC6756219 DOI: 10.1038/s41375-019-0438-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Precise regulation of chromatin architecture is vital to physiological processes including hematopoiesis. ARID1A is a core component of the mammalian SWI/SNF complex, which is one of the ATP-dependent chromatin remodeling complexes. To uncover the role of ARID1A in hematopoietic development, we utilized hematopoietic cell-specific deletion of Arid1a in mice. We demonstrate that ARID1A is essential for maintaining the frequency and function of hematopoietic stem cells and its loss impairs the differentiation of both myeloid and lymphoid lineages. ARID1A deficiency led to a global reduction in open chromatin and ensuing transcriptional changes affected key genes involved in hematopoietic development. We also observed that silencing of ARID1A affected ATRA-induced differentiation of NB4 cells, suggesting its role in granulocytic differentiation of human leukemic cells. Overall, our study provides a comprehensive elucidation of the function of ARID1A in hematopoiesis and highlights the central role of ARID1A-containing SWI/SNF complex in maintaining chromatin dynamics in hematopoietic cells.
Collapse
Affiliation(s)
- Lin Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Teoh Weoi Woon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Zeya Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Janani Sundaresan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital, Singapore, Singapore
| |
Collapse
|
69
|
Abstract
PURPOSE OF REVIEW The treatment of the germinal center lymphomas, diffuse large B cell (DLBCL) and follicular lymphoma, has changed little beyond the introduction of immunochemotherapies. However, there exists a substantial group of patients within both diseases for which improvements in care will involve appropriate tailoring of treatment. RECENT FINDINGS DLBCL consists of two major subtypes with striking differences in their clinical outcomes paralleling their underlying genetic heterogeneity. Recent studies have seen advances in the stratification of germinal center lymphomas, through comprehensive profiling of 1001 DLBCLs alongside refinements in the identification of high-risk follicular lymphoma patients using m7-FLIPI and 23G models. A new wave of novel therapeutic agents is now undergoing clinical trials for germinal center lymphomas, with BCR and EZH2 inhibitors demonstrating preferential benefit in subgroups of patients. The emergence of cell-free DNA has raised the possibility of dynamic disease monitoring to potentially mitigate the complexity of spatial and temporal heterogeneity, whilst predicting tumor evolution in real time. SUMMARY Altogether knowledge of the genomic landscape of germinal center lymphomas is offering welcome opportunities in patient risk stratification and therapeutics. The challenge ahead is to establish how best to combine upfront or dynamic prognostication with precision therapies, while retaining practicality in clinical trials and the real-world setting.
Collapse
|
70
|
Wang F, Gatica D, Ying ZX, Peterson LF, Kim P, Bernard D, Saiya-Cork K, Wang S, Kaminski MS, Chang AE, Phillips T, Klionsky DJ, Malek SN. Follicular lymphoma-associated mutations in vacuolar ATPase ATP6V1B2 activate autophagic flux and mTOR. J Clin Invest 2019; 129:1626-1640. [PMID: 30720463 PMCID: PMC6436860 DOI: 10.1172/jci98288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
The discovery of recurrent mutations in subunits of the vacuolar-type H+-translocating ATPase (v-ATPase) in follicular lymphoma (FL) highlights a role for the amino acid- and energy-sensing pathway to mTOR in the pathogenesis of this disease. Here, through the use of complementary experimental approaches involving mammalian cells and Saccharomyces cerevisiae, we have demonstrated that mutations in the human v-ATPase subunit ATP6V1B2 (also known as Vma2 in yeast) activate autophagic flux and maintain mTOR/TOR in an active state. Engineered lymphoma cell lines and primary FL B cells carrying mutated ATP6V1B2 demonstrated a remarkable ability to survive low leucine concentrations. The treatment of primary FL B cells with inhibitors of autophagy uncovered an addiction for survival for FL B cells harboring ATP6V1B2 mutations. These data support the idea of mutational activation of autophagic flux by recurrent hotspot mutations in ATP6V1B2 as an adaptive mechanism in FL pathogenesis and as a possible new therapeutically targetable pathway.
Collapse
Affiliation(s)
- Fangyang Wang
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Damián Gatica
- Life Sciences Institute, and
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhang Xiao Ying
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Luke F. Peterson
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Peter Kim
- Department of Internal Medicine, Division of Hematology and Oncology
| | | | - Kamlai Saiya-Cork
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Mark S. Kaminski
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Alfred E. Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Tycel Phillips
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Daniel J. Klionsky
- Life Sciences Institute, and
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sami N. Malek
- Department of Internal Medicine, Division of Hematology and Oncology
| |
Collapse
|
71
|
Pyfrom SC, Luo H, Payton JE. PLAIDOH: a novel method for functional prediction of long non-coding RNAs identifies cancer-specific LncRNA activities. BMC Genomics 2019; 20:137. [PMID: 30767760 PMCID: PMC6377765 DOI: 10.1186/s12864-019-5497-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) exhibit remarkable cell-type specificity and disease association. LncRNA's functional versatility includes epigenetic modification, nuclear domain organization, transcriptional control, regulation of RNA splicing and translation, and modulation of protein activity. However, most lncRNAs remain uncharacterized due to a shortage of predictive tools available to guide functional experiments. RESULTS To address this gap for lymphoma-associated lncRNAs identified in our studies, we developed a new computational method, Predicting LncRNA Activity through Integrative Data-driven 'Omics and Heuristics (PLAIDOH), which has several unique features not found in other methods. PLAIDOH integrates transcriptome, subcellular localization, enhancer landscape, genome architecture, chromatin interaction, and RNA-binding (eCLIP) data and generates statistically defined output scores. PLAIDOH's approach identifies and ranks functional connections between individual lncRNA, coding gene, and protein pairs using enhancer, transcript cis-regulatory, and RNA-binding protein interactome scores that predict the relative likelihood of these different lncRNA functions. When applied to 'omics datasets that we collected from lymphoma patients, or to publicly available cancer (TCGA) or ENCODE datasets, PLAIDOH identified and prioritized well-known lncRNA-target gene regulatory pairs (e.g., HOTAIR and HOX genes, PVT1 and MYC), validated hits in multiple lncRNA-targeted CRISPR screens, and lncRNA-protein binding partners (e.g., NEAT1 and NONO). Importantly, PLAIDOH also identified novel putative functional interactions, including one lymphoma-associated lncRNA based on analysis of data from our human lymphoma study. We validated PLAIDOH's predictions for this lncRNA using knock-down and knock-out experiments in lymphoma cell models. CONCLUSIONS Our study demonstrates that we have developed a new method for the prediction and ranking of functional connections between individual lncRNA, coding gene, and protein pairs, which were validated by genetic experiments and comparison to published CRISPR screens. PLAIDOH expedites validation and follow-on mechanistic studies of lncRNAs in any biological system. It is available at https://github.com/sarahpyfrom/PLAIDOH .
Collapse
Affiliation(s)
- Sarah C. Pyfrom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Hong Luo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
72
|
Osunsade A, Prescott NA, Hebert JM, Ray DM, Jmeian Y, Lorenz IC, David Y. A Robust Method for the Purification and Characterization of Recombinant Human Histone H1 Variants. Biochemistry 2019; 58:171-176. [PMID: 30585724 PMCID: PMC6541009 DOI: 10.1021/acs.biochem.8b01060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Higher order compaction of the eukaryotic genome is key to the regulation of all DNA-templated processes, including transcription. This tightly controlled process involves the formation of mononucleosomes, the fundamental unit of chromatin, packaged into higher order architectures in an H1 linker histone-dependent process. While much work has been done to delineate the precise mechanism of this event in vitro and in vivo, major gaps still exist, primarily due to a lack of molecular tools. Specifically, there has never been a successful purification and biochemical characterization of all human H1 variants. Here we present a robust method to purify H1 and illustrate its utility in the purification of all somatic variants and one germline variant. In addition, we performed a first ever side-by-side biochemical comparison, which revealed a gradient of nucleosome binding affinities and compaction capabilities. These data provide new insight into H1 redundancy and lay the groundwork for the mechanistic investigation of disease-driving mutations.
Collapse
Affiliation(s)
- Adewola Osunsade
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Nicholas A. Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Jakob M. Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
| | - Devin M. Ray
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
- Tri-Institutional MD-PhD Program, New York, NY
| | - Yazen Jmeian
- Tri-Institutional Therapeutics Discovery Institute, New York, NY
| | - Ivo C. Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-Institutional PhD Program in Chemical Biology, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
73
|
Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol 2019; 21:152-161. [PMID: 30602726 DOI: 10.1038/s41556-018-0258-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Research over the past several decades has unmasked a major contribution of disrupted chromatin regulatory processes to human disease, particularly cancer. Advances in genome-wide technologies have highlighted frequent mutations in genes encoding chromatin-associated proteins, identified unexpected synthetic lethal opportunities and enabled increasingly comprehensive structural and functional dissection. Here, we review recent progress in our understanding of oncogenic mechanisms at each level of chromatin organization and regulation, and discuss new strategies towards therapeutic intervention.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
74
|
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Many B cell lymphomas require B cell antigen receptor expression, and in several instances, chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Many B cell malignancies derive from germinal center B cells, most likely because of the high proliferation rate of these cells and the high activity of mutagenic processes.
Collapse
|
75
|
Devan J, Janikova A, Mraz M. New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs. Semin Oncol 2018; 45:291-302. [PMID: 30360879 DOI: 10.1053/j.seminoncol.2018.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The molecular pathogenesis of follicular lymphoma (FL) was partially revealed 3 decades ago, with the discovery of the translocation that brings BCL2 under the influence of immunoglobulin heavy chain enhancers in a vast majority of cases. Despite the importance of this seminal observation, it has become increasingly clear that additional genetic alterations need to occur to trigger neoplastic transformation and disease progression. The evolution of FL involves developmental arrest and disruption of the normal function of one or more of epigenetic regulators including KMT2D/MLL2, EZH2, CBP/CREBBP, p300/EP300, and HIST1H1 in >95% of cases. B-cells "arrested" in germinal centers acquire dozens of additional genetic aberrations that influence key pathways controlling their physiological development including B Cell Receptor (BCR) signaling, PI3K/AKT, TLR, mTOR, NF-κB, JAK/STAT, MAPK, CD40/CD40L, chemokine, and interleukin signaling. Additionally, most cases of FL do not result from linear accumulation of genomic aberrations, but rather evolve from a common progenitor cell population by diverse evolution, creating multiple FL subclones in one patient. Moreover, one of the subclones might acquire a combination of aberrations involving genes controlling cell survival and proliferation including MDM2, CDKN2A/B, BCL6, MYC, TP53, β2M, FOXO1, MYD88, STAT3, or miR-17-92, and this can lead to the transformation of an initially indolent FL to an aggressive lymphoma (2%-3% risk per year). The complexity of the disease is also underscored by the importance of its interactions with the microenvironment that can substantially influence disease development and prognosis. Interpreting individual aberrations in relation to their impact on normal processes, their frequency, position in the disease evolution, and the consequences of their (co)occurrence, are the basis for understanding FL pathogenesis. This is necessary for the identification of patients with risk of early progression or transformation, for the development of novel targeted therapies, and for personalized treatment approaches. In this review, we summarize recent knowledge of molecular pathways and microenvironmental components involved in FL biology, and discuss them in the context of physiological B-cell development, FL evolution, and targeted therapies.
Collapse
Affiliation(s)
- Jan Devan
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
76
|
Webster P, Dawes JC, Dewchand H, Takacs K, Iadarola B, Bolt BJ, Caceres JJ, Kaczor J, Dharmalingam G, Dore M, Game L, Adejumo T, Elliott J, Naresh K, Karimi M, Rekopoulou K, Tan G, Paccanaro A, Uren AG. Subclonal mutation selection in mouse lymphomagenesis identifies known cancer loci and suggests novel candidates. Nat Commun 2018; 9:2649. [PMID: 29985390 PMCID: PMC6037733 DOI: 10.1038/s41467-018-05069-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Determining whether recurrent but rare cancer mutations are bona fide driver mutations remains a bottleneck in cancer research. Here we present the most comprehensive analysis of murine leukemia virus-driven lymphomagenesis produced to date, sequencing 700,000 mutations from >500 malignancies collected at time points throughout tumor development. This scale of data allows novel statistical approaches for identifying selected mutations and yields a high-resolution, genome-wide map of the selective forces surrounding cancer gene loci. We also demonstrate negative selection of mutations that may be deleterious to tumor development indicating novel avenues for therapy. Screening of two BCL2 transgenic models confirmed known drivers of human non-Hodgkin lymphoma, and implicates novel candidates including modifiers of immunosurveillance and MHC loci. Correlating mutations with genotypic and phenotypic features independently of local variance in mutation density also provides support for weakly evidenced cancer genes. An online resource http://mulvdb.org allows customized queries of the entire dataset. Evidence implicating cancer drivers can be sparse when limited to clonal events. Here, the authors present a retrovirus driven in vivo lymphomagenesis time course including hundreds of thousands of subclonal mutations and demonstrate the utility of these in mapping the selective forces affecting cancer gene loci, including negatively selected mutations.
Collapse
Affiliation(s)
- Philip Webster
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.,Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Joanna C Dawes
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Hamlata Dewchand
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Katalin Takacs
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Barbara Iadarola
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Bruce J Bolt
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Juan J Caceres
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, Egham, TW20 0EX, UK
| | - Jakub Kaczor
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Laurence Game
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Thomas Adejumo
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - James Elliott
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Kikkeri Naresh
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Mohammad Karimi
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Katerina Rekopoulou
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Ge Tan
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Alberto Paccanaro
- Centre for Systems and Synthetic Biology, Department of Computer Science, Royal Holloway, University of London, Egham, TW20 0EX, UK
| | - Anthony G Uren
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
77
|
Parris TZ, Rönnerman EW, Engqvist H, Biermann J, Truvé K, Nemes S, Forssell-Aronsson E, Solinas G, Kovács A, Karlsson P, Helou K. Genome-wide multi-omics profiling of the 8p11-p12 amplicon in breast carcinoma. Oncotarget 2018; 9:24140-24154. [PMID: 29844878 PMCID: PMC5963621 DOI: 10.18632/oncotarget.25329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Genomic instability contributes to the neoplastic phenotype by deregulating key cancer-related genes, which in turn can have a detrimental effect on patient outcome. DNA amplification of the 8p11-p12 genomic region has clinical and biological implications in multiple malignancies, including breast carcinoma where the amplicon has been associated with tumor progression and poor prognosis. However, oncogenes driving increased cancer-related death and recurrent genetic features associated with the 8p11-p12 amplicon remain to be identified. In this study, DNA copy number and transcriptome profiling data for 229 primary invasive breast carcinomas (corresponding to 185 patients) were evaluated in conjunction with clinicopathological features to identify putative oncogenes in 8p11-p12 amplified samples. Illumina paired-end whole transcriptome sequencing and whole-genome SNP genotyping were subsequently performed on 23 samples showing high-level regional 8p11-p12 amplification to characterize recurrent genetic variants (SNPs and indels), expressed gene fusions, gene expression profiles and allelic imbalances. We now show previously undescribed chromothripsis-like patterns spanning the 8p11-p12 genomic region and allele-specific DNA amplification events. In addition, recurrent amplification-specific genetic features were identified, including genetic variants in the HIST1H1E and UQCRHL genes and fusion transcripts containing MALAT1 non-coding RNA, which is known to be a prognostic indicator for breast cancer and stimulated by estrogen. In summary, these findings highlight novel candidate targets for improved treatment of 8p11-p12 amplified breast carcinomas.
Collapse
Affiliation(s)
- Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Truvé
- Bioinformatics Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
78
|
Araf S, Wang J, Korfi K, Pangault C, Kotsiou E, Rio-Machin A, Rahim T, Heward J, Clear A, Iqbal S, Davies JK, Johnson P, Calaminici M, Montoto S, Auer R, Chelala C, Gribben JG, Graham TA, Fest T, Fitzgibbon J, Okosun J. Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma. Leukemia 2018; 32:1261-1265. [PMID: 29568095 PMCID: PMC5940637 DOI: 10.1038/s41375-018-0043-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Shamzah Araf
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK.
- Centre for Genomic Health, Queen Mary University of London, London, UK.
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, London, UK
| | - Koorosh Korfi
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Celine Pangault
- UMR INSERM 1236, Université de Rennes, 1, EFS de Bretagne, CHU de Rennes, Rennes, France
| | - Eleni Kotsiou
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Tahrima Rahim
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - James Heward
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Sameena Iqbal
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Jeff K Davies
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Peter Johnson
- Cancer Sciences Unit, Cancer Research UK Centre, Southampton, UK
| | | | - Silvia Montoto
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Rebecca Auer
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, London, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Barts Cancer Institute, London, UK
| | - Thierry Fest
- UMR INSERM 1236, Université de Rennes, 1, EFS de Bretagne, CHU de Rennes, Rennes, France
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK.
| |
Collapse
|
79
|
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018; 24:679-690. [PMID: 29713087 DOI: 10.1038/s41591-018-0016-8] [Citation(s) in RCA: 1291] [Impact Index Per Article: 184.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.
Collapse
|
80
|
Qiu L, Hu X, Jing Q, Zeng X, Chan KM, Han J. Mechanism of cancer: Oncohistones in action. J Genet Genomics 2018; 45:227-236. [PMID: 29804713 DOI: 10.1016/j.jgg.2018.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Oncohistones are histones with high-frequency point mutations that are associated with tumorigenesis. Although each histone variant is encoded by multiple genes, a single mutation in one allele of one gene seems to have a dominant effect over global histone H3 methylation level at the relevant amino acid residue. These oncohistones are highly tumor type specific. For example, H3K27M and H3G34V/R mutations occur only in pediatric brain cancers, whereas H3K36M and H3G34W/L have only been found in pediatric bone tumors. H1 mutations also seem to be exclusively linked to lymphomas. In this review, we discuss the occurrence, frequency and potential functional mechanisms of each oncohistone in tumorigenesis of its relevant cancer. We believe that further investigation into the mechanism regarding their tumor type specificity and cancer-related functions will shed new light on their application in cancer diagnosis and targeted therapy development.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiaoyan Hu
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qian Jing
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xinyi Zeng
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Kui-Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Junhong Han
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China.
| |
Collapse
|
81
|
Critical influences on the pathogenesis of follicular lymphoma. Blood 2018; 131:2297-2306. [PMID: 29666116 DOI: 10.1182/blood-2017-11-764365] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022] Open
Abstract
The development of follicular lymphoma (FL) from a founder B cell with an upregulation of B-cell lymphoma 2 (BCL2), via the t(14;18) translocation, to a proliferating clone, poised to undergo further transformation to an aggressive lymphoma, illustrates the opportunistic Darwinian process of tumorigenesis. Protection against apoptosis allows an innocent cell to persist and divide, with dangerous accumulation of further mutational changes, commonly involving inactivation of chromatin-modifying genes. But this is not all. FL cells reflect normal B cells in relying on expression of surface immunoglobulin. In doing so, they add another supportive mechanism by exploiting the natural process of somatic hypermutation of the IGV genes. Positive selection of motifs for addition of glycan into the antigen-binding sites of virtually all cases, and the placement of unusual mannoses in those sites, reveals a posttranslational strategy to engage the microenvironment. A bridge between mannosylated surface immunoglobulin of FL cells and macrophage-expressed dendritic cell-specific ICAM-3-grabbing nonintegrin produces a persistent low-level signal that appears essential for life in the hostile germinal center. Early-stage FL therefore requires a triad of changes: protection from apoptosis, mutations in chromatin modifiers, and an ability to interact with lectin-expressing macrophages. These changes are common and persistent. Genetic/epigenetic analysis is providing important data but investigation of the posttranslational landscape is the next challenge. We have one glimpse of its operation via the influence of added glycan on the B-cell receptor of FL. The consequential interaction with environmental lectins illustrates how posttranslational modifications can be exploited by tumor cells, and could lead to new approaches to therapy.
Collapse
|
82
|
Huet S, Sujobert P, Salles G. From genetics to the clinic: a translational perspective on follicular lymphoma. Nat Rev Cancer 2018; 18:224-239. [PMID: 29422597 DOI: 10.1038/nrc.2017.127] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Follicular lymphoma (FL) is the most frequent indolent B cell lymphoma and is still considered to be incurable. In recent years, whole-exome sequencing studies of large cohorts of patients have greatly improved our knowledge of the FL mutational landscape. Moreover, the prolonged evolution of this disease has enabled some insights regarding the early pre-lymphoma lesions as well as the clonal evolution after treatment, allowing an evolutionary perspective on lymphomagenesis. Deciphering the earliest initiating lesions and identifying the molecular alterations leading to disease progression currently represent important goals; accomplishing these could help identify the most relevant targets for precision therapy.
Collapse
Affiliation(s)
- Sarah Huet
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, ISPB-Faculté de Pharmacie de Lyon, Lyon, France
| | - Pierre Sujobert
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oullins, France
| | - Gilles Salles
- Cancer Research Center of Lyon, INSERM 1052 CNRS5286, 'Clinical and experimental models of lymphomagenesis' Team, Equipe labellisée Ligue Contre le Cancer Oullins, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 chemin du Grand Revoyet, Pierre Bénite 69495, France
- Université Lyon-1, Faculté de Médecine et de Maïeutique Lyon-Sud Charles Mérieux, Oullins, France
| |
Collapse
|
83
|
Corso S, Cargnelutti M, Durando S, Menegon S, Apicella M, Migliore C, Capeloa T, Ughetto S, Isella C, Medico E, Bertotti A, Sassi F, Sarotto I, Casorzo L, Pisacane A, Mangioni M, Sottile A, Degiuli M, Fumagalli U, Sgroi G, Molfino S, De Manzoni G, Rosati R, De Simone M, Marrelli D, Saragoni L, Rausei S, Pallabazzer G, Roviello F, Cassoni P, Sapino A, Bass A, Giordano S. Rituximab Treatment Prevents Lymphoma Onset in Gastric Cancer Patient-Derived Xenografts. Neoplasia 2018; 20:443-455. [PMID: 29574251 PMCID: PMC5915970 DOI: 10.1016/j.neo.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
Patient-Derived Xenografts (PDXs), entailing implantation of cancer specimens in immunocompromised mice, are emerging as a valuable translational model that could help validate biologically relevant targets and assist the clinical development of novel therapeutic strategies for gastric cancer. More than 30% of PDXs generated from gastric carcinoma samples developed human B-cell lymphomas instead of gastric cancer. These lymphomas were monoclonal, Epstein Barr Virus (EBV) positive, originated tumorigenic cell cultures and displayed a mutational burden and an expression profile distinct from gastric adenocarcinomas. The ability of grafted samples to develop lymphomas did not correlate with patient outcome, nor with the histotype, the lymphocyte infiltration level, or the EBV status of the original gastric tumor, impeding from foreseeing lymphoma onset. Interestingly, lymphoma development was significantly more frequent when primary rather than metastatic samples were grafted. Notably, the development of such lympho-proliferative disease could be prevented by a short rituximab treatment upon mice implant, without negatively affecting gastric carcinoma engraftment. Due to the high frequency of human lymphoma onset, our data show that a careful histologic analysis is mandatory when generating gastric cancer PDXs. Such care would avoid misleading results that could occur if testing of putative gastric cancer therapies is performed in lymphoma PDXs. We propose rituximab treatment of mice to prevent lymphoma development in PDX models, averting the loss of human-derived samples.
Collapse
Affiliation(s)
- Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | | | | | | | | | - Cristina Migliore
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Tania Capeloa
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Stefano Ughetto
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | - Ivana Sarotto
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Laura Casorzo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | | | | | | | | | | | - Giovanni Sgroi
- Surgical Oncology Unit, Surgical Science Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Sarah Molfino
- Department of Clinical and Experimental Sciences, Surgical Clinic, University of Brescia, Brescia, Italy
| | - Giovanni De Manzoni
- First Department of General Surgery, Borgo Trento Hospital, University of Verona, Italy
| | - Riccardo Rosati
- Gastroenterological Surgery Unit, IRCCS San Raffaele Hospital, Vita-Salute University, Milan, Italy
| | | | - Daniele Marrelli
- Department of Medicine, Surgery and Neurosciences, Unit of General Surgery and Surgical Oncology, University of Siena, Italy
| | - Luca Saragoni
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Stefano Rausei
- Department of Surgery, University of Insubria, Varese, Italy
| | | | - Franco Roviello
- Department of Medicine, Surgery and Neurosciences, Unit of General Surgery and Surgical Oncology, University of Siena, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Italy
| | - Anna Sapino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy; Department of Medical Sciences, University of Torino, Italy
| | - Adam Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
84
|
Affiliation(s)
- Kosuke Funato
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
| | - Viviane Tabar
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
| |
Collapse
|
85
|
Fratta E, Montico B, Rizzo A, Colizzi F, Sigalotti L, Dolcetti R. Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 2018; 7:57327-57350. [PMID: 27329599 PMCID: PMC5302993 DOI: 10.18632/oncotarget.10033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/28/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, recurrent somatic mutations in epigenetic regulators have been identified in patients with hematological malignancies. Furthermore, chromosomal translocations in which the fusion protein partners are themselves epigenetic regulators or where epigenetic regulators are recruited/targeted by oncogenic fusion proteins have also been described. Evidence has accumulated showing that "epigenetic drugs" are likely to provide clinical benefits in several hematological malignancies, granting their approval for the treatment of myelodysplastic syndromes and cutaneous T-cell lymphomas. A large number of pre-clinical and clinical trials evaluating epigenetic drugs alone or in combination therapies are ongoing. The aim of this review is to provide a comprehensive summary of known epigenetic alterations and of the current use of epigenetic drugs for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Barbara Montico
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Aurora Rizzo
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Francesca Colizzi
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Luca Sigalotti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
86
|
Cramer SL, Miller AL, Pressey JG, Gamblin TL, Beierle EA, Kulbersh BD, Garcia PL, Council LN, Radhakrishnan R, Hendrix SV, Kelly DR, Watts RG, Yoon KJ. Pediatric Anaplastic Embryonal Rhabdomyosarcoma: Targeted Therapy Guided by Genetic Analysis and a Patient-Derived Xenograft Study. Front Oncol 2018; 7:327. [PMID: 29376028 PMCID: PMC5768639 DOI: 10.3389/fonc.2017.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Therapy for rhabdomyosarcoma (RMS) has generally been limited to combinations of conventional cytotoxic agents similar to regimens originally developed in the late 1960s. Recently, identification of molecular alterations through next-generation sequencing of individual tumor specimens has facilitated the use of more targeted therapeutic approaches for various malignancies. Such targeted therapies have revolutionized treatment for some cancer types. However, malignancies common in children, thus far, have been less amenable to such targeted therapies. This report describes the clinical course of an 8-year-old female with embryonal RMS having anaplastic features. This patient experienced multiple relapses after receiving various established and experimental therapies. Genomic testing of this RMS subtype revealed mutations in BCOR, ARID1A, and SETD2 genes, each of which contributes to epigenetic regulation and interacts with or modifies the activity of histone deacetylases (HDAC). Based on these findings, the patient was treated with the HDAC inhibitor vorinostat as a single agent. The tumor responded transiently followed by subsequent disease progression. We also examined the efficacy of vorinostat in a patient-derived xenograft (PDX) model developed using tumor tissue obtained from the patient’s most recent tumor resection. The antitumor activity of vorinostat observed with the PDX model reflected clinical observations in that obvious areas of tumor necrosis were evident following exposure to vorinostat. Histologic sections of tumors harvested from PDX tumor-bearing mice treated with vorinostat demonstrated induction of necrosis by this agent. We propose that the evaluation of clinical efficacy in this type of preclinical model merits further evaluation to determine if PDX models predict tumor sensitivity to specific agents and/or combination therapies.
Collapse
Affiliation(s)
- Stuart L Cramer
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joseph G Pressey
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tracy L Gamblin
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian D Kulbersh
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Leona N Council
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,The Birmingham Veterans Administration Medical Center, Birmingham, AL, United States
| | - Rupa Radhakrishnan
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Skyler V Hendrix
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States.,Biomedical Science Program, UAB Honors College, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David R Kelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Pathology and Laboratory Medicine, Children's of Alabama, Birmingham, AL, United States
| | - Raymond G Watts
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
87
|
Gascoyne RD, Nadel B, Pasqualucci L, Fitzgibbon J, Payton JE, Melnick A, Weigert O, Tarte K, Gribben JG, Friedberg JW, Seymour JF, Cavalli F, Zucca E. Follicular lymphoma: State-of-the-art ICML workshop in Lugano 2015. Hematol Oncol 2017; 35:397-407. [PMID: 28378425 DOI: 10.1002/hon.2411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/25/2022]
Abstract
The 13th International Conference on Malignant Lymphoma held in Lugano in June 2015 was preceded by a closed workshop (organized in collaboration with the American Association for Cancer Research and the European School of Oncology) with the aim of developing an up-to-date understanding of the biology of follicular lymphoma and the clinical implications of new findings in the field. Discussed topics included the mutational spectrum at diagnosis, the clinical correlates of genetic and epigenetic alterations, the mechanisms of clonal evolution and histological transformation, the cross talk between tumor cells and microenvironment, and the development of novel treatments. This report represents a summary of the workshop.
Collapse
Affiliation(s)
- Randy D Gascoyne
- Department of Pathology and the Centre for Lymphoid Cancer, British Columbia Cancer Agency and University of BC, Vancouver, BC, Canada
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Marseille, France
| | - Laura Pasqualucci
- Institute of Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jacqueline E Payton
- Department of Pathology and Immunology and Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ari Melnick
- Weill Cornell Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Oliver Weigert
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians-University, Munich, Germany
| | - Karin Tarte
- UMR INSERM U917, Equipe Labellisée Ligue Contre le Cancer, Université Rennes 1, Rennes, France
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - John F Seymour
- Department of Haematology, Peter MacCallum Cancer Centre, and University of Melbourne, Parkville, Victoria, Australia
| | - Franco Cavalli
- Oncology Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| |
Collapse
|
88
|
Chromatin modifying gene mutations in follicular lymphoma. Blood 2017; 131:595-604. [PMID: 29158360 DOI: 10.1182/blood-2017-08-737361] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
Follicular lymphoma (FL) is an indolent malignancy of germinal center B cells. Although the overall survival of FL patients has recently improved with the introduction of novel therapies, there is significant heterogeneity in patient outcome and a need for rationally designed therapeutic strategies that target disease biology. Next-generation sequencing studies have identified chromatin modifying gene (CMG) mutations as a hallmark of FL, highlighting epigenetic modifiers as an attractive therapeutic target in this disease. Understanding the complex roles of these mutations will be central to identifying and adaptively targeting associated vulnerabilities. Recent studies have provided insight into the functional consequences of the most frequently mutated CMGs (KMT2D, CREBBP, and EZH2) and point to a role for these events in modifying normal B-cell differentiation programs and impeding germinal center exit. However, the majority of FL tumors serially acquire multiple CMG mutations, suggesting that there is a level of cross talk or cooperation between these events that has not yet been defined. Here, I review the current state of knowledge on CMG mutations in FL, discuss their potential as therapeutic targets, and offer my perspective on unexplored areas that should be considered in the future.
Collapse
|
89
|
Rosenquist R, Beà S, Du MQ, Nadel B, Pan-Hammarström Q. Genetic landscape and deregulated pathways in B-cell lymphoid malignancies. J Intern Med 2017. [PMID: 28631441 DOI: 10.1111/joim.12633] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the introduction of next-generation sequencing, the genetic landscape of the complex group of B-cell lymphoid malignancies has rapidly been unravelled in recent years. This has provided important information about recurrent genetic events and identified key pathways deregulated in each lymphoma subtype. In parallel, there has been intense search and development of novel types of targeted therapy that 'hit' central mechanisms in lymphoma pathobiology, such as BTK, PI3K or BCL2 inhibitors. In this review, we will outline the current view of the genetic landscape of selected entities: follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and marginal zone lymphoma. We will detail recurrent alterations affecting important signalling pathways, that is the B-cell receptor/NF-κB pathway, NOTCH signalling, JAK-STAT signalling, p53/DNA damage response, apoptosis and cell cycle regulation, as well as other perhaps unexpected cellular processes, such as immune regulation, cell migration, epigenetic regulation and RNA processing. Whilst many of these pathways/processes are commonly altered in different lymphoid tumors, albeit at varying frequencies, others are preferentially targeted in selected B-cell malignancies. Some of these genetic lesions are either involved in disease ontogeny or linked to the evolution of each disease and/or specific clinicobiological features, and some of them have been demonstrated to have prognostic and even predictive impact. Future work is especially needed to understand the therapy-resistant disease, particularly in patients treated with targeted therapy, and to identify novel targets and therapeutic strategies in order to realize true precision medicine in this clinically heterogeneous patient group.
Collapse
Affiliation(s)
- R Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - S Beà
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), CIBER de Cáncer, Barcelona, Spain
| | - M-Q Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - B Nadel
- CNRS, INSERM, CIML, Aix Marseille University, Marseille, France
| | - Q Pan-Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
90
|
Tsukamoto T, Nakano M, Sato R, Adachi H, Kiyota M, Kawata E, Uoshima N, Yasukawa S, Chinen Y, Mizutani S, Shimura Y, Kobayashi T, Horiike S, Yanagisawa A, Taniwaki M, Tashiro K, Kuroda J. High-risk follicular lymphomas harbour more somatic mutations including those in the AID-motif. Sci Rep 2017; 7:14039. [PMID: 29070849 PMCID: PMC5656578 DOI: 10.1038/s41598-017-14150-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023] Open
Abstract
We investigated clinical and genetic characteristics of high-risk follicular lymphoma (FL), that lacked evidence of large cell transformation at diagnosis, in the rituximab era. First, we retrospectively analysed the clinical features of 100 patients with non-transformed FL that were consecutively treated with rituximab-containing therapies in a discovery cohort. The presence of either peripheral blood and/or bone involvement was associated with short progression-free survival. This was confirmed in a validation cohort of 66 FL patients. Then, whole exome sequencing was performed on randomly selected 5 high- and 9 standard-risk FL tumours. The most common mutational signature was a CG > TG substitution-enriched signature associated with spontaneous deamination of 5-methylcytosine at CpG, but mutations in WA and WRC(Y) motifs (so-called activation-induced cytidine deaminase (AID) motifs) were also enriched throughout the whole exome. We found clustered mutations in target sequences of AID in the IG and BCL2 loci. Importantly, high-risk FLs harboured more somatic mutations (mean 190 vs. 138, P = 0.04), including mutations in WA (33 vs. 22, P = 0.038), WRC (34 vs. 22, P = 0.016) and WRCY motifs (17 vs. 11, P = 0.004). These results suggest that genomic instability that allows for emergence of distinct mutations through AID activity underlies development of the high-risk FL phenotype.
Collapse
Affiliation(s)
- Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuichi Sato
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Adachi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Miki Kiyota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Hematology, Matsushita Memorial Hospital, Osaka, Japan
| | - Eri Kawata
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Nobuhiko Uoshima
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Satoru Yasukawa
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akio Yanagisawa
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Next generation sequencing and large-scale analysis of patient specimens has created a more complete picture of multiple myeloma (MM) revealing that epigenetic deregulation is a prominent factor in MM pathogenesis. RECENT FINDINGS Over half of MM patients have mutations in genes encoding epigenetic modifier enzymes. The DNA methylation profile of MM is related to the stage of the disease and certain classes of mutations in epigenetic modifiers are more prevalent upon disease relapse, suggesting a role in disease progression. Many small molecules targeting regulators of epigenetic machinery have been developed and clinical trials are underway for some of these in MM. SUMMARY Recent findings suggest that epigenetic targeting drugs could be an important strategy to cure MM. Combining these agents along with other strategies to affect the MM cell such as immunomodulatory drugs and proteasome inhibitors may enhance efficacy of combination regimens in MM.
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW Perturbation of the epigenome is emerging as a central driving force in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and follicular lymphoma. The purpose of this review is to explain how alteration of different layers of the epigenome contributes to the biology and clinical features of these tumors. RECENT FINDINGS Key new findings implicate DNA methylation heterogeneity as a core feature of DLBCL. Epigenetic diversity is linked to unfavorable clinical outcomes, clonal selection at relapse, and is driven at least in part because of the actions of activation-induced cytosine deaminase, which is a unique feature of B-cell lymphomas. Somatic mutations in histone modifier genes drive lymphomagenesis through the establishment of aberrant gene-specific histone modification signatures. For example, EZH2 somatic mutations drive silencing of bivalent gene promoters through histone 3 lysine 27 trimethylation, whereas KMT2D (MLL2) mutations disrupt specific sets of enhancers through depletion of histone 3 lysine 4 mono and dimethylation (H3K4me1/me2). SUMMARY Appreciation of the epigenome in determining lymphoma clonal heterogeneity and in driving lymphoma phenotypes through altered promoter and enhancer histone modification profiles is leading to a paradigm shift in how we understand and design therapies for DLBCL and follicular lymphoma.
Collapse
|
93
|
Sorigue M, Sancho JM. Current prognostic and predictive factors in follicular lymphoma. Ann Hematol 2017; 97:209-227. [PMID: 29032510 DOI: 10.1007/s00277-017-3154-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/09/2017] [Indexed: 12/27/2022]
Abstract
Follicular lymphoma (FL) is generally considered an indolent disorder. With modern day treatments, long remissions are often achieved both in the front-line and relapsed setting. However, a subset of patients has a more aggressive course and a worse outcome. Their identification is the main purpose of modern day prognostic tools. In this review, we attempt to summarize the evidence concerning prognostic and predictive factors in FL, including (1) pre-treatment factors, from baseline clinical characteristics and imaging tests to histological grade, the microenvironment and genomic abnormalities; (2) post-treatment factors, i.e., depth of response, measured both by imaging tests and minimal residual disease; (3) factors at relapse and duration of response; and (4) prognostic factors in histological transformation. We conclude that, despite the existence of numerous tools, the availability of some of them is still limited; they generally suffer from notable downsides, and most have unproven predictive value, thus having scarce bearing on the choice of regimen at present. However, with the technological and scientific developments of the last few years, the potential for these prognostic factors is promising, particularly in combination, which will probably, in time, help guide therapeutic decisions.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Chromosomes, Human, Pair 14/chemistry
- Chromosomes, Human, Pair 18/chemistry
- Clinical Trials as Topic
- Disease-Free Survival
- Humans
- Lymphoma, Follicular/diagnostic imaging
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/mortality
- Mutation
- Neoplasm Grading
- Neoplasm, Residual/diagnostic imaging
- Neoplasm, Residual/drug therapy
- Neoplasm, Residual/genetics
- Neoplasm, Residual/mortality
- Positron-Emission Tomography
- Prognosis
- Recurrence
- Risk Factors
- Translocation, Genetic
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Marc Sorigue
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Ctra. Canyet, 08916, Badalona, Spain.
| | - Juan-Manuel Sancho
- Department of Hematology, ICO-Hospital Germans Trias i Pujol, Institut de Recerca Josep Carreras, Universitat Autònoma de Barcelona, Ctra. Canyet, 08916, Badalona, Spain
| |
Collapse
|
94
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
95
|
The promises and challenges of using gene mutations for patient stratification in follicular lymphoma. Blood 2017; 130:1491-1498. [DOI: 10.1182/blood-2017-07-737353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Abstract
Follicular lymphoma (FL) is a clinically and molecularly highly heterogeneous disease. Most patients achieve long-lasting remissions and have excellent overall survival (OS) with current treatment. However, ∼20% of patients have early progression of disease and short OS. At present, therapies are not guided by individual risk or disease biology. Reliable tools for patient stratification are urgently needed to avoid overtreatment of low-risk patients and to prioritize alternative approaches in high-risk patients. A rapidly expanding repertoire of promising therapeutic options is available for clinical evaluation; however, the numbers of patients with FL and the resources to conduct adequately powered trials are limited. Recent studies have shown that gene mutations can serve as prognostic and/or predictive biomarkers, in particular when integrated into composite risk models. Before translating these findings into routine clinical practice, however, several challenges loom. We review aspects of “clinicogenetic” risk model development and validation that apply to FL and more generally to other cancers. Finally, we propose a crowdsourcing effort that could expedite the development, validation, refinement, and selection of risk models. A new era of collaboration and harmonization is required if we hope to transition from empiric selection of therapeutics to risk-based, biology-guided treatment of patients with FL.
Collapse
|
96
|
Epigenetics in multiple myeloma: From mechanisms to therapy. Semin Cancer Biol 2017; 51:101-115. [PMID: 28962927 DOI: 10.1016/j.semcancer.2017.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a tumor of antibody producing plasmablasts/plasma cells that resides within the bone marrow (BM). In addition to the well-established role of genetic lesions and tumor-microenvironment interactions in the development of MM, deregulated epigenetic mechanisms are emerging as important in MM pathogenesis. Recently, MM sequencing and expression projects have revealed that mutations and copy number variations as well as deregulation in the expression of epigenetic modifiers are characteristic features of MM. In the past decade, several studies have suggested epigenetic mechanisms via DNA methylation, histone modifications and non-coding RNAs as important contributing factors in MM with impacts on disease initiation, progression, clonal heterogeneity and response to treatment. Herein we review the present view and knowledge that has accumulated over the past decades on the role of epigenetics in MM, with focus on the interplay between epigenetic mechanisms and the potential use of epigenetic inhibitors as future treatment modalities for MM.
Collapse
|
97
|
Horton SJ, Giotopoulos G, Yun H, Vohra S, Sheppard O, Bashford-Rogers R, Rashid M, Clipson A, Chan WI, Sasca D, Yiangou L, Osaki H, Basheer F, Gallipoli P, Burrows N, Erdem A, Sybirna A, Foerster S, Zhao W, Sustic T, Petrunkina Harrison A, Laurenti E, Okosun J, Hodson D, Wright P, Smith KG, Maxwell P, Fitzgibbon J, Du MQ, Adams DJ, Huntly BJP. Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nat Cell Biol 2017; 19:1093-1104. [PMID: 28825697 PMCID: PMC5633079 DOI: 10.1038/ncb3597] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022]
Abstract
Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.
Collapse
Affiliation(s)
- Sarah J Horton
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - George Giotopoulos
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Haiyang Yun
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Shabana Vohra
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Olivia Sheppard
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Rachael Bashford-Rogers
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Mamunur Rashid
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Alexandra Clipson
- Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Wai-In Chan
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Daniel Sasca
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Loukia Yiangou
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Hikari Osaki
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Faisal Basheer
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Paolo Gallipoli
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Natalie Burrows
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ayşegül Erdem
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sarah Foerster
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Wanfeng Zhao
- Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge CB2 0QQ, UK
| | - Tonci Sustic
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Elisa Laurenti
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jessica Okosun
- Barts Cancer Institute, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel Hodson
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Penny Wright
- Department of Pathology, Cambridge University Hospitals, Hills Road, Cambridge CB2 0QQ, UK
| | - Ken G Smith
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Patrick Maxwell
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Jude Fitzgibbon
- Barts Cancer Institute, Charterhouse Square, London EC1M 6BQ, UK
| | - Ming Q Du
- Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Department of Haematology, Cambridge University Hospitals, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
98
|
Zamò A, Pischimarov J, Schlesner M, Rosenstiel P, Bomben R, Horn H, Grieb T, Nedeva T, López C, Haake A, Richter J, Trümper L, Lawerenz C, Klapper W, Möller P, Hummel M, Lenze D, Szczepanowski M, Flossbach L, Schreder M, Gattei V, Ott G, Siebert R, Rosenwald A, Leich E. Differences between BCL2-break positive and negative follicular lymphoma unraveled by whole-exome sequencing. Leukemia 2017; 32:685-693. [PMID: 28824170 DOI: 10.1038/leu.2017.270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 12/25/2022]
Abstract
Depending on disease stage follicular lymphoma (FL) lack the t(14;18) in ~15-~50% of cases. Nevertheless, most of these cases express BCL2. To elucidate mechanisms triggering BCL2 expression and promoting pathogenesis in t(14;18)-negative FL, exonic single-nucleotide variant (SNV) profiles of 28 t(14;18)-positive and 13 t(14;18)-negative FL were analyzed, followed by the integration of copy-number changes, copy-neutral LOH and published gene-expression data as well as the assessment of immunoglobulin N-glycosylation sites. Typical FL mutations also affected t(14;18)-negative FL. Curated gene set/pathway annotation of genes mutated in either t(14;18)-positive or t(14;18)-negative FL revealed a strong enrichment of same or similar gene sets but also a more prominent or exclusive enrichment of immune response and N-glycosylation signatures in t(14;18)-negative FL. Mutated genes showed high BCL2 association in both subgroups. Among the genes mutated in t(14;18)-negative FL 555 were affected by copy-number alterations and/or copy-neutral LOH and 96 were differently expressed between t(14;18)-positive and t(14;18)-negative FL (P<0.01). N-glycosylation sites were detected considerably less frequently in t(14;18)-negative FL. These results suggest a diverse portfolio of genetic alterations that may induce or regulate BCL2 expression or promote pathogenesis of t(14;18)-negative FL as well as a less specific but increased crosstalk with the microenvironment that may compensate for the lack of N-glycosylation.
Collapse
Affiliation(s)
- A Zamò
- Institute of Pathology, University of Würzburg, Würzburg, Würzburg, Germany.,Department of Diagnostic and Public Health, University of Verona, Verona, Italy.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - J Pischimarov
- Institute of Pathology, University of Würzburg, Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - M Schlesner
- Theoretical Bioinformatics (B080), Computational Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - R Bomben
- Department of Translational Research, CRO, Aviano, Italy
| | - H Horn
- Dr Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Stuttgart, Germany
| | - T Grieb
- Institute of Pathology, University of Würzburg, Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - T Nedeva
- Institute of Pathology, University of Würzburg, Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - C López
- Institute for Human Genetics, University Hospital Ulm, Ulm, Germany.,Institute for Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Haake
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - J Richter
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany.,Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - L Trümper
- Department of Hematology and Medical Oncology, University Hospital, Göttingen, Germany
| | - C Lawerenz
- Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - W Klapper
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - P Möller
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - M Hummel
- Institute of Pathology, Charité-University Hospital Berlin, Germany
| | - D Lenze
- Institute of Pathology, Charité-University Hospital Berlin, Germany
| | - M Szczepanowski
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - L Flossbach
- Institute of Pathology, University of Würzburg, Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - M Schreder
- Medizinische Klinik und Poliklinik II, University Hospital Würzburg, Würzburg, Germany
| | - V Gattei
- Department of Translational Research, CRO, Aviano, Italy
| | - G Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - R Siebert
- Institute for Human Genetics, University Hospital Ulm, Ulm, Germany.,Institute for Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - E Leich
- Institute of Pathology, University of Würzburg, Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| |
Collapse
|
99
|
The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget 2017; 8:17038-17049. [PMID: 28152507 PMCID: PMC5370020 DOI: 10.18632/oncotarget.14928] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
Ocular marginal zone lymphoma is a common type of low-grade B-cell lymphoma. To investigate the genomic changes that occur in ocular marginal zone lymphoma, we analyzed 10 cases of ocular marginal zone lymphoma using whole-genome and RNA sequencing and an additional 38 cases using targeted sequencing. Major genetic alterations affecting genes involved in nuclear factor (NF)-κB pathway activation (60%), chromatin modification and transcriptional regulation (44%), and B-cell differentiation (23%) were identified. In whole-genome sequencing, the 6q23.3 region containing TNFAIP3 was deleted in 5 samples (50%). In addition, 5 structural variation breakpoints in the first intron of IL20RA located in the 6q23.3 region was found in 3 samples (30%). In targeted sequencing, a disruptive mutation of TNFAIP3 was the most common alteration (54%), followed by mutations of TBL1XR1 (18%), cAMP response element binding proteins (CREBBP) (17%) and KMT2D (6%). All TBL1XR1 mutations were located within the WD40 domain, and TBL1XR1 mutants transfected into 293T cells increased TBL1XR1 binding with nuclear receptor corepressor (NCoR), leading to increased degradation of NCoR and the activation of NF-κB and JUN target genes. This study confirms genes involving in the activation of the NF-kB signaling pathway is the major driver in the oncogenesis of ocular MZL.
Collapse
|
100
|
Integrative whole-genome sequence analysis reveals roles of regulatory mutations in BCL6 and BCL2 in follicular lymphoma. Sci Rep 2017; 7:7040. [PMID: 28765546 PMCID: PMC5539289 DOI: 10.1038/s41598-017-07226-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/27/2017] [Indexed: 02/02/2023] Open
Abstract
The contribution of mutations in regulatory regions to tumorigenesis has been the subject of many recent studies. We propose a new framework for integrative analysis of genome-wide sequencing data by considering diverse genetic information. This approach is applied to study follicular lymphoma (FL), a disease for which little is known about the contribution of regulatory gene mutations. Results from a test FL cohort revealed three novel highly recurrent regulatory mutation blocks near important genes implicated in FL, BCL6 and BCL2. Similar findings were detected in a validation FL cohort. We also found transcription factors (TF) whose binding may be disturbed by these mutations in FL: disruption of FOX TF family near the BCL6 promoter may result in reduced BCL6 expression, which then increases BCL2 expression over that caused by BCL2 gene translocation. Knockdown experiments of two TF hits (FOXD2 or FOXD3) were performed in human B lymphocytes verifying that they modulate BCL6/BCL2 according to the computationally predicted effects of the SNVs on TF binding. Overall, our proposed integrative analysis facilitates non-coding driver identification and the new findings may enhance the understanding of FL.
Collapse
|