51
|
Liu YJ, Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023; 21:77. [PMID: 37055761 PMCID: PMC10100201 DOI: 10.1186/s12964-023-01103-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound structures that are released from cells into the surrounding environment. These structures can be categorized as exosomes, microvesicles, or apoptotic vesicles, and they play an essential role in intercellular communication. These vesicles are attracting significant clinical interest as they offer the potential for drug delivery, disease diagnosis, and therapeutic intervention. To fully understand the regulation of intercellular communication through EVs, it is essential to investigate the underlying mechanisms. This review aims to provide a summary of the current knowledge on the intercellular communications involved in EV targeting, binding, and uptake, as well as the factors that influence these interactions. These factors include the properties of the EVs, the cellular environment, and the recipient cell. As the field of EV-related intercellular communication continues to expand and techniques improve, we can expect to uncover more information about this complex area, despite the current limitations in our knowledge.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, D02 VF25, Ireland.
| |
Collapse
|
52
|
Shimada Y, Yoshioka Y, Kudo Y, Mimae T, Miyata Y, Adachi H, Ito H, Okada M, Ohira T, Matsubayashi J, Ochiya T, Ikeda N. Extracellular vesicle-associated microRNA signatures related to lymphovascular invasion in early-stage lung adenocarcinoma. Sci Rep 2023; 13:4823. [PMID: 36964242 PMCID: PMC10038982 DOI: 10.1038/s41598-023-32041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
Lymphovascular invasion (LVI) is a fundamental step toward the spread of cancer. Extracellular vesicles (EVs) promote cellular communication by shuttling cargo, such as microRNAs (miRNAs). However, whether EV-associated miRNAs serve as biomarkers for LVI remains unclear. This study aimed to identify EV-associated miRNAs related to LVI and validate the miRNA levels from patients with early-stage lung adenocarcinoma (LADC). Blood samples were collected from patients undergoing pulmonary resection for stage I LADC before surgery. The patients were classified into three groups according to the presence of LVI and postoperative recurrence. Serum-derived EVs in the derivation cohort were used for small RNA sequencing, while the selected LVI miRNA candidates were validated via real-time quantitative polymerase chain reaction using 44 patient and 16 healthy donor samples as the validation cohorts. Five miRNAs (miR-99b-3p, miR-26a-5p, miR-93-5p, miR-30d-5p, and miR-365b-3p) were assessed, and miR-30d-5p (p = 0.036) levels were significantly downregulated in the LVI-positive group. miR-30d-5p levels in healthy donors were lower than those in LADC patients. Patients with high miR-30d-5p levels had favorable survival compared to those with low miR-30d-5p levels. miR-30d-5p level in EVs may serve as a promising biomarker for detecting LVI in patients with early-stage LADC.
Collapse
Affiliation(s)
- Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yusuke Yoshioka
- Department of molecular and cellular medicine, Tokyo Medical University, Tokyo, Japan
| | - Yujin Kudo
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takahiro Mimae
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Adachi
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroyuki Ito
- Department of Thoracic Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ohira
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Jun Matsubayashi
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Department of molecular and cellular medicine, Tokyo Medical University, Tokyo, Japan
| | - Norihiko Ikeda
- Department of Thoracic Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
53
|
Vom Stein AF, Rebollido-Rios R, Lukas A, Koch M, von Lom A, Reinartz S, Bachurski D, Rose F, Bozek K, Abdallah AT, Kohlhas V, Saggau J, Zölzer R, Zhao Y, Bruns C, Bröckelmann PJ, Lohneis P, Büttner R, Häupl B, Oellerich T, Nguyen PH, Hallek M. LYN kinase programs stromal fibroblasts to facilitate leukemic survival via regulation of c-JUN and THBS1. Nat Commun 2023; 14:1330. [PMID: 36899005 PMCID: PMC10006233 DOI: 10.1038/s41467-023-36824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rocio Rebollido-Rios
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Anna Lukas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Maximilian Koch
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Anton von Lom
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sebastian Reinartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Daniel Bachurski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - France Rose
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- University of Cologne, Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- University of Cologne, Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ali T Abdallah
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Julia Saggau
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rebekka Zölzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Faculty of Medicine and University Hospital Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Christiane Bruns
- Faculty of Medicine and University Hospital Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Paul J Bröckelmann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max-Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Philipp Lohneis
- Reference Centre for Lymph Node Pathology and Hematopathology, Hämatopathologie Lübeck, Lübeck, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Pathology, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Faculty of Medicine and University Hospital Cologne, Department of Pathology, University of Cologne, Cologne, Germany
| | - Björn Häupl
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
54
|
Gargiulo E, Giordano M, Niemann CU, Moussay E, Paggetti J, Morande PE. The protective role of the microenvironment in hairy cell leukemia treatment: Facts and perspectives. Front Oncol 2023; 13:1122699. [PMID: 36968995 PMCID: PMC10031020 DOI: 10.3389/fonc.2023.1122699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Hairy cell leukemia (HCL) is an incurable, rare lymphoproliferative hematological malignancy of mature B cAlthough first line therapy with purine analogues leads to positive results, almost half of HCL patients relapse after 5-10 years, and standard treatment may not be an option due to intolerance or refractoriness. Proliferation and survival of HCL cells is regulated by surrounding accessory cells and soluble signals present in the tumor microenvironment, which actively contributes to disease progression. In vitro studies show that different therapeutic approaches tested in HCL impact the tumor microenvironment, and that this milieu offers a protection affecting treatment efficacy. Herein we explore the effects of the tumor microenvironment to different approved and experimental therapeutic options for HCL. Dissecting the complex interactions between leukemia cells and their milieu will be essential to develop new targeted therapies for HCL patients.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
- Chronic Lymphocytic Leukemia Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Mirta Giordano
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carsten U. Niemann
- Chronic Lymphocytic Leukemia Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Etienne Moussay
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
| | - Pablo Elías Morande
- Tumor Stroma Interactions – Department of Cancer Research, Luxembourg Institute of HealthLuxembourg, Luxembourg
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
55
|
Rassaei N, Abbaszade Dibavar M, Soleimani M, Atashi A, Mohammadi MH, Allahbakhshian Farsani M, Shahsavan S. The effect of microvesicles derived from K562 cells on proliferation and apoptosis of human bone marrow mesenchymal stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:295-300. [PMID: 36865039 PMCID: PMC9922373 DOI: 10.22038/ijbms.2023.66903.14675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/30/2022] [Indexed: 03/04/2023]
Abstract
Objectives Microvesicles (MVs) are small membrane-bound particles that act as a vehicle to transfer their contents, such as proteins, RNAs, and miRNAs, to the target cells, making them undergo several changes. Depending on the origin and the target cell, MVs may cause cell survival or apoptosis. This study investigated the effects of MVs released from the leukemic K562 cell line on the human bone marrow mesenchymal stem cells (hBM-MSCs) to evaluate changes in the survival or apoptosis of the cells in an in vitro system. Materials and Methods In this experimental study, we added the isolated MVs from the K562 cell line to hBM-MSCs, and after three and then seven days, subsequently cell count, cell viability, transmission electron microscopy, tracing MVs by carboxyfluorescein diacetate, succinimidyl ester (CFSE) solution, flow cytometry analysis for Annexin-V/PI staining and qPCR for the evaluation of BCL-2, KI67, and BAX expression were carried out. On the 10th day of the culture, hBM-MSCs were examined by Oil red O and Alizarin Red staining to evaluate their differentiation into adipocytes and osteoblasts. Results There was a significant decrease in cell viability and KI67 and BCL-2 expression; however, BAX was significantly upregulated in the hBM-MSCs compared to control groups. Annexin-V/PI staining results also showed the apoptotic effects of K562-MVs on hBM-MSCs. Moreover, the differentiation of hBM-MSCs into adipocytes and osteoblasts was not observed. Conclusion MVs from the leukemic cell line could affect the viability of normal hBM-MSCs and induce cell apoptosis.
Collapse
Affiliation(s)
- Neda Rassaei
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Mahnoosh Abbaszade Dibavar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Hossein Mohammadi
- HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Hossein Mohammadi. HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-22718531;
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Shahsavan
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Chen L, Xie T, Wei B, Di DL. Tumour‑derived exosomes and their emerging roles in leukaemia (Review). Exp Ther Med 2023; 25:126. [PMID: 36845960 PMCID: PMC9947586 DOI: 10.3892/etm.2023.11825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Exosomes are small vesicles with a diameter of ~40-100 nm that are secreted by the majority of endogenous cells under normal and pathological conditions. They contain abundant proteins, lipids, microRNAs, and biomolecules such as signal transduction molecules, adhesion factors and cytoskeletal proteins, and play an important role in exchanging materials and transmitting information between cells. Recent studies have shown that exosomes are involved in the pathophysiology of leukaemia by affecting the bone marrow microenvironment, apoptosis, tumour angiogenesis, immune escape and chemotherapy resistance. Furthermore, exosomes are potential biomarkers and drug carriers for leukaemia, impacting the diagnosis and treatment of leukaemia. The present study describes the biogenesis and general characteristics of exosomes, and then highlight the emerging roles of exosomes in different types of leukaemia. Finally, the value of clinical application of exosomes as biomarkers and drug carriers is discussed with the aim to provide novel strategies for the treatment of leukaemia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ting Xie
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bing Wei
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Da-Lin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Dr Da-Lin Di, Department of Immunology, Weifang Medical University, 7166 Baotongxi Street, Weifang, Shandong 261053, P.R. China . com
| |
Collapse
|
57
|
de Oliveira TD, vom Stein A, Rebollido-Rios R, Lobastova L, Lettau M, Janssen O, Wagle P, Nguyen PH, Hallek M, Hansen HP. Stromal cells support the survival of human primary chronic lymphocytic leukemia (CLL) cells through Lyn-driven extracellular vesicles. Front Med (Lausanne) 2023; 9:1059028. [PMID: 36714146 PMCID: PMC9880074 DOI: 10.3389/fmed.2022.1059028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction In chronic lymphocytic leukemia (CLL), the tumor cells receive survival support from stromal cells through direct cell contact, soluble factors and extracellular vesicles (EVs). The protein tyrosine kinase Lyn is aberrantly expressed in the malignant and stromal cells in CLL tissue. We studied the role of Lyn in the EV-based communication and tumor support. Methods We compared the Lyn-dependent EV release, uptake and functionality using Lyn-proficient (wild-type) and -deficient stromal cells and primary CLL cells. Results Lyn-proficient cells caused a significantly higher EV release and EV uptake as compared to Lyn-deficient cells and also conferred stronger support of primary CLL cells. Proteomic comparison of the EVs from Lyn-proficient and -deficient stromal cells revealed 70 significantly differentially expressed proteins. Gene ontology studies categorized many of which to organization of the extracellular matrix, such as collagen, fibronectin, fibrillin, Lysyl oxidase like 2, integrins and endosialin (CD248). In terms of function, a knockdown of CD248 in Lyn+ HS-5 cells resulted in a diminished B-CLL cell feeding capacity compared to wildtype or scrambled control cells. CD248 is a marker of certain tumors and cancer-associated fibroblast (CAF) and crosslinks fibronectin and collagen in a membrane-associated context. Conclusion Our data provide preclinical evidence that the tyrosine kinase Lyn crucially influences the EV-based communication between stromal and primary B-CLL cells by raising EV release and altering the concentration of functional molecules of the extracellular matrix.
Collapse
Affiliation(s)
- Thaís Dolzany de Oliveira
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Alexander vom Stein
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rocio Rebollido-Rios
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Liudmila Lobastova
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrecht University of Kiel, Kiel, Germany,Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Prerana Wagle
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Proteomics Facility, University of Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Hinrich P. Hansen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany,*Correspondence: Hinrich P. Hansen,
| |
Collapse
|
58
|
Gargiulo E, Viry E, Morande PE, Largeot A, Gonder S, Xian F, Ioannou N, Benzarti M, Kleine Borgmann FB, Mittelbronn M, Dittmar G, Nazarov PV, Meiser J, Stamatopoulos B, Ramsay AG, Moussay E, Paggetti J. Extracellular Vesicle Secretion by Leukemia Cells In Vivo Promotes CLL Progression by Hampering Antitumor T-cell Responses. Blood Cancer Discov 2023; 4:54-77. [PMID: 36108149 PMCID: PMC9816815 DOI: 10.1158/2643-3230.bcd-22-0029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Elodie Viry
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Pablo Elías Morande
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Susanne Gonder
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Feng Xian
- Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Felix Bruno Kleine Borgmann
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michel Mittelbronn
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Center of Pathology, Laboratoire national de santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Petr V. Nazarov
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Etienne Moussay
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| | - Jérôme Paggetti
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| |
Collapse
|
59
|
Villegas-Pineda JC, Ramírez-de-Arellano A, Bueno-Urquiza LJ, Lizarazo-Taborda MDR, Pereira-Suárez AL. Cancer-associated fibroblasts in gynecological malignancies: are they really allies of the enemy? Front Oncol 2023; 13:1106757. [PMID: 37168385 PMCID: PMC10164963 DOI: 10.3389/fonc.2023.1106757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular and cellular components of the tumor microenvironment are essential for cancer progression. The cellular element comprises cancer cells and heterogeneous populations of non-cancer cells that satisfy tumor needs. Immune, vascular, and mesenchymal cells provide the necessary factors to feed the tumor mass, promote its development, and favor the spread of cancer cells from the primary site to adjacent and distant anatomical sites. Cancer-associated fibroblasts (CAFs) are mesenchymal cells that promote carcinogenesis and progression of various malignant neoplasms. CAFs act through the secretion of metalloproteinases, growth factors, cytokines, mitochondrial DNA, and non-coding RNAs, among other molecules. Over the last few years, the evidence on the leading role of CAFs in gynecological cancers has notably increased, placing them as the cornerstone of neoplastic processes. In this review, the recently reported findings regarding the promoting role that CAFs play in gynecological cancers, their potential use as therapeutic targets, and the new evidence suggesting that they could act as tumor suppressors are analyzed and discussed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lesly Jazmín Bueno-Urquiza
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
60
|
Yilmaz G, Tavsan Z, Cagatay E, Kursunluoglu G, Kayali HA. Exosomes released from cisplatin-resistant ovarian cancer cells modulate the reprogramming of cells in tumor microenvironments toward the cancerous cells. Biomed Pharmacother 2023; 157:113973. [PMID: 36413836 DOI: 10.1016/j.biopha.2022.113973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Exosomes released from cancer cells are involved in the reorganization of the tumor microenvironment which is the essential aspect of cancer pathogenesis. The intercommunications between cancer cells and diverse cell types in the microenvironment are accomplished by exosomes in ovarian cancer. Internalization pathway, intracellular fate, and biological functions in recipient cells mediated by exosomes released from cisplatin-resistant A2780cis have been studied. Also, histopathological evaluation of tumor, ovary, liver tissues and lymph nodes in vivo studies have been performed. The recipient cells internalized the exosomes via active uptake mechanisms, as shown by confocal microscopy. However, inhibitor studies and flow cytometry analysis showed that each recipient cell line used different uptake pathways. Also, confocal microscopy imaging indicated that the internalized exosomes trapped in the endosomes or phagosomes were distributed to the different cellular compartments including ER, Golgi, and lysosome. The transfer of exosomal oncogenic cargo into the cells modified the intracellular signaling of recipient cells including invasion and metastasis by Boyden-Chamber assay, proliferation by ATP analysis, epithelial-mesenchymal transition (EMT) markers at protein and mRNA levels by western blotting and real-time PCR, and protein kinases in the phospho-kinase array. This remodeling contributed to the initiation of carcinogenesis in ovarian epithelial and peritoneal mesothelial cells, and the progression of carcinogenesis in ovarian cancer cells. In addition, intraperitoneal tumor model studies show that exosomes released from cisplatin-resistant A2780cis cells may play role in the enlargement of lymph nodes, and tumor formations integrated with the liver, attached to the stomach and in the ovarian tissues.
Collapse
Affiliation(s)
- Gizem Yilmaz
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 İzmir, Turkey
| | - Zehra Tavsan
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey
| | - Elcin Cagatay
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 İzmir, Turkey
| | - Gizem Kursunluoglu
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280 Turkey
| | - Hulya Ayar Kayali
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 İzmir, Turkey; Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, 35390 İzmir, Turkey.
| |
Collapse
|
61
|
Tan M, Ge Y, Wang X, Wang Y, Liu Y, He F, Teng H. Extracellular Vesicles (EVs) in Tumor Diagnosis and Therapy. Technol Cancer Res Treat 2023; 22:15330338231171463. [PMID: 37122245 PMCID: PMC10134167 DOI: 10.1177/15330338231171463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have gained significant attention due to their tremendous potential for clinical applications. EVs play a crucial role in various aspects, including tumorigenesis, drug resistance, immune escape, and reconstruction of the tumor microenvironment. Despite the growing interest in EVs, many questions still need to be addressed before they can be practically applied in clinical settings. This paper aims to review EVs' isolation methods, structure research, the roles of EVs in tumorigenesis and their mechanisms in multiple types of tumors, their potential application in drug delivery, and the expectations for their future in clinical research.
Collapse
Affiliation(s)
- Mingdian Tan
- School of Medicine, Asian Liver Center, Stanford, CA, USA
| | - Yizhi Ge
- The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital) and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaogang Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Liu
- School of Medicine, Asian Liver Center, Stanford, CA, USA
| | - Feng He
- Stanford University School of Medicine, Stanford, CA, USA
| | - Hongqi Teng
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
62
|
Yan D, Cui D, Zhu Y, Chan CKW, Choi CHJ, Liu T, Lee NP, Law S, Tsao SW, Ma S, Cheung ALM. M6PR- and EphB4-Rich Exosomes Secreted by Serglycin-Overexpressing Esophageal Cancer Cells Promote Cancer Progression. Int J Biol Sci 2023; 19:625-640. [PMID: 36632458 PMCID: PMC9830512 DOI: 10.7150/ijbs.79875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Accumulating evidence shows that exosomes participate in cancer progression. However, the functions of cancer cell exosome-transmitted proteins are rarely studied. Previously, we reported that serglycin (SRGN) overexpression promotes invasion and metastasis of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the paracrine effects of exosomes from SRGN-overexpressing ESCC cells (SRGN Exo) on ESCC cell invasion and tumor angiogenesis, and used mass spectrometry to identify exosomal proteins involved. Cation-dependent mannose-6-phosphate receptor (M6PR) and ephrin type-B receptor 4 (EphB4) were pronouncedly upregulated in SRGN Exo. Upregulated exosomal M6PR mediated the pro-angiogenic effects of SRGN Exo both in vitro and in vivo, while augmented exosomal EphB4 mediated the pro-invasive effect of SRGN Exo on ESCC cells in vitro. In addition, in vitro studies showed that manipulation of M6PR expression affected the viability and migration of ESCC cells. Both M6PR and EphB4 expression levels were positively correlated with that of SRGN in the serum of patients with ESCC. High level of serum M6PR was associated with poor overall survival rates. Taken together, this study presents the first proof that exosomal M6PR and EphB4 play essential roles in tumor angiogenesis and malignancy, and that serum M6PR is a novel prognostic marker for ESCC patients.
Collapse
Affiliation(s)
- Dongdong Yan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yun Zhu
- Center for Clinical Big Data and Analytics, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cecilia Ka Wing Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Tengfei Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Nikki P.Y. Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Annie Lai Man Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,✉ Corresponding author: Annie L.M. Cheung, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, China. Phone: 852-3917-9293; Fax: 852-2817-0857; E-mail:
| |
Collapse
|
63
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
64
|
Ma YB, Qiao JW, Hu X. Transmembrane serine protease 2 cleaves nidogen 1 and inhibits extrahepatic liver cancer cell migration and invasion. Exp Biol Med (Maywood) 2023; 248:91-105. [PMID: 36408877 PMCID: PMC10041054 DOI: 10.1177/15353702221134111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to confirm whether transmembrane serine protease 2 (TMPRSS2) regulates nidogen 1 (NID1) expression in extracellular vesicles (EVs) and metastatic hepatocellular carcinoma (HCC) cells. HCC cells, HUVEC cells, MRC-5 cells, HLE cells, MHCCLM3 cells, MHCC97L cells, H2P cells, H2M cells, as well as LO2 cells were cultured according to providers' instruction and EV models were established by using BALB/cAnN-nu mice to facilitate the verifications. We found that TMPRSS2 expression was inversely correlated with the metastatic potential of HCC cell lines. The expression of TMPRSS2 decreased in a time-dependent manner in tumor-bearing model mice implanted with MHCCLM3 cells compared with uninoculated mice. TMPRSS2 overexpression in MHCCLM3 and MHCC97L cells led to the significant downregulation of NID1 expression in total cell lysates and isolated EVs. In contrast, TMPRSS2 silencing resulted in the elevation of NID1 expression in cells and EVs. Administration of EVs from MHCCLM3 and MHCC97L cells with overexpressed or silenced TMPRSS2 inhibited or strengthened, respectively, the invasion, proliferation, and migration of LO2 tumor cells. EVs derived from MHCCLM3 and MHCC97L cells with overexpressed or depleted TMPRSS2 also deactivated or activated fibroblasts, respectively. These EVs secrete inflammatory cytokines and phosphorylated p65, facilitate the colonization of fibroblasts, and augment fibroblast growth and motility. These findings provide evidence for a new candidate drug targeting tumorigenic EV-NID1 to treat HCC.
Collapse
Affiliation(s)
- Yong-Biao Ma
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang 261041, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Jian-Wen Qiao
- Department of Hepatobiliary Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
65
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
66
|
Imamura M. Hypothesis: can transfer of primary neoplasm-derived extracellular vesicles and mitochondria contribute to the development of donor cell-derived hematologic neoplasms after allogeneic hematopoietic cell transplantation? Cytotherapy 2022; 24:1169-1180. [PMID: 36058790 DOI: 10.1016/j.jcyt.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential treatment option for various neoplastic and non-neoplastic hematologic diseases. Although its efficacy is modest, a significant proportion of patients experience relapse, graft-versus-host disease, infection or impaired hematopoiesis. Among these, the most frequent cause of post-transplant mortality is relapse, whereas the development of de novo hematologic neoplasms from donor cells after allo-HCT occurs on some occasion as a rare complication. The mechanisms involved in the pathogenesis of the de novo hematologic neoplasms from donor cells are complex, and a multifactorial process contributes to the development of this complication. Recently, extracellular vesicles, particularly exosomes, and mitochondria have been shown to play crucial roles in intercellular communication through the transfer of specific constituents, such as deoxyribonucleic acids, ribonucleic acids, lipids, metabolites and cytosolic and cell-surface proteins. Here, I discuss the potential causative roles of these subcellular components in the development of de novo hematologic neoplasms from donor cells after allo-HCT, in addition to other etiologies.
Collapse
Affiliation(s)
- Masahiro Imamura
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan.
| |
Collapse
|
67
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
68
|
Sadovska L, Zayakin P, Bajo-Santos C, Endzeliņš E, Auders J, Keiša L, Jansons J, Lietuvietis V, Linē A. Effects of urinary extracellular vesicles from prostate cancer patients on the transcriptomes of cancer-associated and normal fibroblasts. BMC Cancer 2022; 22:1055. [PMID: 36224527 PMCID: PMC9555094 DOI: 10.1186/s12885-022-10107-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that cancer-derived extracellular vesicles (EVs) alter the phenotype and functions of fibroblasts and trigger the reprogramming of normal fibroblasts into cancer-associated fibroblasts (CAFs). Here, we for the first time studied the effects of urinary EVs from PC patients and healthy males on the transcriptional landscape of prostate CAFs and normal foreskin fibroblasts. METHODS Patient-derived prostate fibroblast primary cultures PCF-54 and PCF-55 were established from two specimens of PC tissues. EVs were isolated from urine samples of 3 patients with PC and 2 healthy males and used for the treatment of prostate fibroblast primary cultures and normal foreskin fibroblasts. The EV-treated fibroblasts were subjected to RNA sequencing analysis. RESULTS RNA sequencing analysis showed that the fibroblast cultures differed significantly in their response to urinary EVs. The transcriptional response of foreskin fibroblasts to the urinary EVs isolated from PC patients and healthy controls was very similar and mostly related to the normal functions of fibroblasts. On the contrary, PCF-54 cells responded very differently - EVs from PC patients elicited transcriptional changes related to the regulation of the cell division and chromosome segregation, whereas EVs from healthy males affected mitochondrial respiration. In PCF-55 cells, EVs from both, PC-patients and controls induced the expression of a number of chemokines such as CCL2, CCL13, CXCL1, CXCL8, whereas pathways related to regulation of apoptotic signaling and production of cell adhesion molecules were triggered specifically by EVs from PC patients. CONCLUSION This study demonstrates that urinary EVs from PC patients and healthy controls elicit distinct transcriptional responses in prostate CAFs and supports the idea that EVs contribute to the generation of functional heterogeneity of CAFs. Moreover, this study suggests that the changes in the gene expression pattern in EV recipient cells might serve as a novel type of functional cancer biomarkers.
Collapse
Affiliation(s)
- Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Cristina Bajo-Santos
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Edgars Endzeliņš
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Jānis Auders
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Faculty of Medicine, University of Latvia, Raina blvd. 19, 1586, LV, Riga, Latvia
| | - Laura Keiša
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.,Faculty of Medicine, University of Latvia, Raina blvd. 19, 1586, LV, Riga, Latvia
| | - Juris Jansons
- Riga Stradiņš University, Dzirciema Str 16, LV-1007, Riga, Latvia
| | | | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.
| |
Collapse
|
69
|
Lee SE, Jeong SE, Hong JS, Im H, Hwang SY, Oh JK, Kim SE. Gold-Nanoparticle-Coated Magnetic Beads for ALP-Enzyme-Based Electrochemical Immunosensing in Human Plasma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196875. [PMID: 36234217 PMCID: PMC9573121 DOI: 10.3390/ma15196875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 05/14/2023]
Abstract
A simple and sensitive AuNP-coated magnetic beads (AMB)-based electrochemical biosensor platform was fabricated for bioassay. In this study, AuNP-conjugated magnetic particles were successfully prepared using biotin-streptavidin conjugation. The morphology and structure of the nanocomplex were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX) and UV-visible spectroscopy. Moreover, cyclic voltammetry (CV) was used to investigate the effect of AuNP-MB on alkaline phosphatase (ALP) for electrochemical signal enhancement. An ALP-based electrochemical (EC) immunoassay was performed on the developed AuNP-MB complex with indium tin oxide (ITO) electrodes. Subsequently, the concentration of capture antibodies was well-optimized on the AMB complex via biotin-avidin conjugation. Lastly, the developed AuNP-MB immunoassay platform was verified with extracellular vesicle (EV) detection via immune response by showing the existence of EGFR proteins on glioblastoma multiforme (GBM)-derived EVs (108 particle/mL) spiked in human plasma. Therefore, the signal-enhanced ALP-based EC biosensor on AuNP-MB was favorably utilized as an immunoassay platform, revealing the potential application of biosensors in immunoassays in biological environments.
Collapse
Affiliation(s)
- Seo-Eun Lee
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Se-Eun Jeong
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sei-Young Hwang
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Seong-Eun Kim
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Correspondence: ; Tel.: +82-31-789-7555
| |
Collapse
|
70
|
Sun G, Gu Q, Zheng J, Cheng H, Cheng T. Emerging roles of extracellular vesicles in normal and malignant hematopoiesis. J Clin Invest 2022; 132:160840. [PMID: 36106632 PMCID: PMC9479752 DOI: 10.1172/jci160840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem cells, regulated by their microenvironment (or “niche”), sustain the production of mature blood and immune cells. Leukemia cells remodel the microenvironment to enhance their survival, which is accompanied by the loss of support for normal hematopoiesis in hematologic malignancies. Extracellular vesicles (EVs) mediate intercellular communication in physiological and pathological conditions, and deciphering their functions in cell-cell interactions in the ecosystem can highlight potential therapeutic targets. In this Review, we illustrate the utility of EVs derived from various cell types, focusing on the biological molecules they contain and the behavioral alterations they can induce in recipient cells. We also discuss the potential for clinical application in hematologic malignancies, including EV-based therapeutic regimens, drug delivery via EVs, and the use of EVs (or their cargoes) as biomarkers.
Collapse
Affiliation(s)
- Guohuan Sun
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
71
|
Key role of exportin 6 in exosome-mediated viral transmission from insect vectors to plants. Proc Natl Acad Sci U S A 2022; 119:e2207848119. [PMID: 36037368 PMCID: PMC9457540 DOI: 10.1073/pnas.2207848119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exosomes play a key role in virus exocytosis and transmission. The exportin family is usually responsible for cargo nucleocytoplasmic trafficking, and they are frequently found in exosomes. However, the function of exportins sorted in exosomes remains unknown. Here, we successfully isolated "cup holder"-like exosomes from the saliva of ∼30,000 small brown planthoppers, which are vectors of rice stripe virus (RSV). RSV virions were packed in comparatively large exosomes. Four viral genomic RNAs at a certain ratio were identified in the saliva exosomes. The virions contained in the saliva exosomes were capable of replicating and causing disease in rice plants. Interference with each phase of the insect exosome system affected the transmission of RSV from the insect vectors to rice plants. Fragmented exportin 6 was coimmunoprecipitated with viral nucleocapsid protein in saliva and sorted to exosomes via interactions with the cargo sorting protein VPS37a. When the expression of exportin 6 was knocked down, the amounts of RSV secreted in saliva and rice plants were reduced by 60% and 74%, respectively. These results showed that exportin 6 acted as a vehicle for transporting RSV into exosomes to overcome the barrier of insect salivary glands for horizontal transmission. Exportin 6 would represent an ideal target that could be manipulated to control the outbreak of insect-borne viruses in the future.
Collapse
|
72
|
Karami Fath M, Azami J, Jaafari N, Akbari Oryani M, Jafari N, Karim poor A, Azargoonjahromi A, Nabi-Afjadi M, Payandeh Z, Zalpoor H, Shanehbandi D. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett 2022; 27:74. [PMID: 36064322 PMCID: PMC9446857 DOI: 10.1186/s11658-022-00377-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Dariush Shanehbandi
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
73
|
Liu Z, Jin Q, Yan T, Wo Y, Liu H, Wang Y. Exosome-mediated transduction of mechanical force regulates prostate cancer migration via microRNA. Biochem Biophys Rep 2022; 31:101299. [PMID: 35812347 PMCID: PMC9257336 DOI: 10.1016/j.bbrep.2022.101299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022] Open
Abstract
Physical cues in the extracellular microenvironment regulate cancer cell metastasis. Functional microRNA (miRNA) carried by cancer derived exosomes play a critical role in extracellular communication between cells and the extracellular microenvironment. However, little is known about the role of exosomes loaded miRNAs in the mechanical force transmission between cancer cells and extracellular microenvironment. Herein, our results suggest that stiff extracellular matrix (ECM) induced exosomes promote cancer cell migration. The ECM mechanical force regulated the exosome miRNA cargo of prostate cancer cells. Exosome miRNAs regulated by the ECM mechanical force modulated cancer cell metastasis by regulating cell motility, ECM remodeling and the interaction between cancer cells and nerves. Focal adhesion kinase mediated-ECM mechanical force regulated the intracellular miRNA expression, and F-actin mediate-ECM mechanical force regulated miRNA packaging into exosomes. The above results demonstrated that the exosome miRNA cargo promoted cancer metastasis by transmitting the ECM mechanical force. The ECM mechanical force may play multiple roles in maintaining the microenvironment of cancer metastasis through the exosome miRNA cargo. ECM mechanical force-induced exosomes regulate cancer cell migration. ECM mechanical forces regulate the cancer cell exosomes miRNA cargo. ECM mechanical forces regulated exosomes miRNAs modulate cancer metastasis by remodeling extracellular microenvironment.
Collapse
|
74
|
CLL-Derived Extracellular Vesicles Impair T-Cell Activation and Foster T-Cell Exhaustion via Multiple Immunological Checkpoints. Cells 2022; 11:cells11142176. [PMID: 35883619 PMCID: PMC9320608 DOI: 10.3390/cells11142176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of malignant B-cells and multiple immune defects. This leads, among others, to severe infectious complications and inefficient immune surveillance. T-cell deficiencies in CLL include enhanced immune(-metabolic) exhaustion, impaired activation and cytokine production, and immunological synapse malformation. Several studies have meanwhile reported CLL-cell–T-cell interactions that culminate in T-cell dysfunction. However, the complex entirety of their interplay is incompletely understood. Here, we focused on the impact of CLL cell-derived vesicles (EVs), which are known to exert immunoregulatory effects, on T-cell function. Methods: We characterized EVs secreted by CLL-cells and determined their influence on T-cells in terms of survival, activation, (metabolic) fitness, and function. Results: We found that CLL-EVs hamper T-cell viability, proliferation, activation, and metabolism while fostering their exhaustion and formation of regulatory T-cell subsets. A detailed analysis of the CLL-EV cargo revealed an abundance of immunological checkpoints (ICs) that could explain the detected T-cell dysregulations. Conclusions: The identification of a variety of ICs loaded on CLL-EVs may account for T-cell defects in CLL patients and could represent a barrier for immunotherapies such as IC blockade or adoptive T-cell transfer. Our findings could pave way for improving antitumor immunity by simultaneously targeting EV formation or multiple ICs.
Collapse
|
75
|
Tan Z, Kan C, Wong M, Sun M, Liu Y, Yang F, Wang S, Zheng H. Regulation of Malignant Myeloid Leukemia by Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:857045. [PMID: 35756991 PMCID: PMC9213747 DOI: 10.3389/fcell.2022.857045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bone marrow microenvironment (BMM) has been proven to have benefits for both normal hematopoietic stem cell niche and pathological leukemic stem cell niche. In fact, the pathological leukemia microenvironment reprograms bone marrow niche cells, especially mesenchymal stem cells for leukemia progression, chemoresistance and relapse. The growth and differentiation of MSCs are modulated by leukemia stem cells. Moreover, chromatin abnormality of mesenchymal stem cells is sufficient for leukemia initiation. Here, we summarize the detailed relationship between MSC and leukemia. MSCs can actively and passively regulate the progression of myelogenous leukemia through cell-to-cell contact, cytokine-receptor interaction, and exosome communication. These behaviors benefit LSCs proliferation and survival and inhibit physiological hematopoiesis. Finally, we describe the recent advances in therapy targeting MSC hoping to provide new perspectives and therapeutic strategies for leukemia.
Collapse
Affiliation(s)
- Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Chen Kan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Mandy Wong
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| |
Collapse
|
76
|
Gastric Cancer-Derived Extracellular Vesicles (EVs) Promote Angiogenesis via Angiopoietin-2. Cancers (Basel) 2022; 14:cancers14122953. [PMID: 35740619 PMCID: PMC9221039 DOI: 10.3390/cancers14122953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Angiogenesis is the formation of new blood vessels, which is essential for gastric cancer growth and metastasis. Angiopoietin-2 is a key driver of tumor angiogenesis and has recently emerged as a promising target for antiangiogenic therapy. Extracellular vesicles play an important role in tumor progression including angiogenesis. We explored the crosstalk between gastric cancer and endothelial cells mediated by vesicles, with a specific focus on angiopoietin-2. We show that primary gastric cancer and omental metastasis tissues express angiopoietin-2. We isolated gastric cancer vesicles and demonstrated that they induce the proliferation, migration, invasion, and tube formation of endothelial cells. Characterization of the angiogenic profile of these vesicles revealed high levels of proangiogenic proteins including angiopoietin-2. Using angiopoietin-2 knockdown, we demonstrate that angiopoietin-2 mediates the proangiogenic effects of the gastric cancer vesicles. Our findings suggest a new mechanism via which gastric cancer cells induce angiogenesis. Such a mechanism may be used as a target for cancer therapy. Abstract Angiogenesis is an important control point of gastric cancer (GC) progression and metastasis. Angiopoietin-2 (ANG2) is a key driver of tumor angiogenesis and metastasis, and it has been identified in primary GC tissues. Extracellular vesicles (EVs) play an important role in mediating intercellular communication through the transfer of proteins between cells. However, the expression of ANG2 in GC-EVs has never been reported. Here, we characterized the EV-mediated crosstalk between GC and endothelial cells (ECs), with particular focus on the role of ANG2. We first demonstrate that ANG2 is expressed in GC primary and metastatic tissues. We then isolated EVs from two different GC cell lines and showed that these EVs enhance EC proliferation, migration, invasion, and tube formation in vitro and in vivo. Using an angiogenesis protein array, we showed that GC-EVs contain high levels of proangiogenic proteins, including ANG2. Lastly, using Lenti viral ANG2-shRNA, we demonstrated that the proangiogenic effects of the GC-EVs were mediated by ANG2 through the activation of the PI3K/Akt signal transduction pathway. Our data suggest a new mechanism via which GC cells induce angiogenesis. This knowledge may be utilized to develop new therapies in gastric cancer.
Collapse
|
77
|
Tang BJ, Sun B, Chen L, Xiao J, Huang ST, Xu P. The Landscape of Exosome-Derived Non-Coding RNA in Leukemia. Front Pharmacol 2022; 13:912303. [PMID: 35784717 PMCID: PMC9240230 DOI: 10.3389/fphar.2022.912303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Leukemia is a group of life-threatening hematological malignancies which is currently incurable and often accompanied by drug resistance or disease relapse. Understanding the pathogenesis of leukemia and finding specific therapeutic targets and biomarkers is of great importance to improve the clinical efficacy of leukemia. Exosome-derived ncRNAs have been demonstrated as critical components of intercellular communication and function as key facilitators in the leukemia biological process. This review outlines the current investigations of exosomal ncRNAs (including miRNA, circRNA, and lncRNA) as important mediators of leukemia and potential therapeutic targets and biomarkers for leukemia treatment. Moreover, we generally analyze the prospects and challenges for exosomal ncRNAs from the aspects of research and clinical application.
Collapse
Affiliation(s)
- Bing-Jie Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jie Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shu-Ting Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Ping Xu,
| |
Collapse
|
78
|
Chioureas D, Beck J, Baltatzis G, Vardaki I, Fonseca P, Tsesmetzis N, Vega F, Leventaki V, Eliopoulos AG, Drakos E, Rassidakis GZ, Panaretakis T. ALK+ Anaplastic Large Cell Lymphoma (ALCL)-Derived Exosomes Carry ALK Signaling Proteins and Interact with Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14122939. [PMID: 35740600 PMCID: PMC9221431 DOI: 10.3390/cancers14122939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary ALK+ anaplastic large cell lymphoma (ALK+ ALCL) is a distinct type of aggressive non-Hodgkin lymphoma of T-cell origin, which is characterized by overexpression and activation of ALK kinase due to chromosomal translocations of the gene. The most frequent chromosomal aberration is the t(2;5) resulting in the NPM-ALK chimeric protein, which exerts its oncogenic functions through activation of multiple oncogenic pathways. Exosomes, the best characterized type of extracellular vesicles, are secreted from the tumor cells, thus transferring signals to other cells that uptake exosomes. In this study, we demonstrate that ALK+ ALCL cells secrete exosomes that carry critical molecules of ALK signaling, which can be taken up by other cells with significant biologic effects including functional interactions with tumor microenvironment cells, which may contribute to tumor aggressiveness and possibly resistance to treatment. Abstract The oncogenic pathways activated by the NPM-ALK chimeric kinase of ALK+ anaplastic large cell lymphoma (ALCL) are well characterized; however, the potential interactions of ALK signaling with the microenvironment are not yet known. Here we report that ALK+ ALCL-derived exosomes contain critical components of ALK signaling as well as CD30, and that exosome uptake by lymphoid cells led to increased proliferation and expression of critical antiapoptotic proteins by the recipient cells. The bone marrow fibroblasts highly uptake ALK+ ALCL-derived exosomes and acquire a cancer-associated fibroblast (CAF) phenotype. Moreover, exosome-mediated activation of stromal cells altered the cytokine profile of the microenvironment. These interactions may contribute to tumor aggressiveness and possibly resistance to treatment.
Collapse
Affiliation(s)
- Dimitrios Chioureas
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
| | - Janina Beck
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
| | - George Baltatzis
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
| | - Ioulia Vardaki
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
| | - Pedro Fonseca
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
| | - Nikolaos Tsesmetzis
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Vasiliki Leventaki
- Department of Pathology, Children’s Hospital of Wisconsin & Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Aristides G. Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete Medical School, 715 00 Heraklion, Greece;
| | - George Z. Rassidakis
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Correspondence: ; Tel.: +46-851776162
| | - Theocharis Panaretakis
- Department of Oncology and Pathology, Karolinska Institutet, SE-17176 Stockholm, Sweden; (D.C.); (J.B.); (G.B.); (I.V.); (P.F.); (N.T.); (T.P.)
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
79
|
Li R, Zhou J, Wu X, Li H, Pu Y, Liu N, Han Z, Zhou L, Wang Y, Zhu H, Yang L, Li Q, Ji Q. Jianpi Jiedu Recipe inhibits colorectal cancer liver metastasis via regulating ITGBL1-rich extracellular vesicles mediated activation of cancer-associated fibroblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154082. [PMID: 35381565 DOI: 10.1016/j.phymed.2022.154082] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/05/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) contribute greatly to the formation of pre-metastatic niche and tumor metastasis. Our previous study has revealed that tumor-derived ITGBL1 (integrin beta- like 1)-rich EVs activate fibroblasts through the NF-κB signaling to promote colorectal cancer (CRC) metastasis. Targeting ITGBL1-loaded EVs may be a new and effective therapy for treating CRC metastasis. Simultaneously, our preliminary clinical trial has demonstrated that Jianpi Jiedu Recipe (JPJDR) was an ideal alternative traditional Chinese medicine for the prevention and treatment of CRC metastasis. However, the underlying mechanism of JPJDR in the prevention of CRC metastasis is not clear. In this study, we will investigate the regulatory effect of JPJDR on ITGBL1 levels in CRC-derived EVs, and to detect how JPJDR regulate ITGBL1-rich EVs mediated activation of fibroblasts to inhibit CRC metastasis. METHODS EVs derived from CRC cells with/without JPJDR treatment were obtained by ultracentrifugation, following by characterization with electron microscopy, LM10 nanoparticle characterization system and western blot. The migration and growth of CRC cells were tested by transwell assay, wound healing assay and colony formation assay. The effect of JPJDR on the fibroblasts-activation associated inflammatory factors including IL-6, IL-8 and α-SMA was detected by real-time PCR. The levels of IL-6, IL-8 and α-SMA in the cell culture supernatant were detected by ELISA. The protein expressions of TNFAIP3, ITGBL1, p-NF-κB, IκBα and β-actin were detected by western blot. Liver metastasis model in mice was established by injecting MC38 single cell suspension into the spleen of mice to observe the effect of JPJDR on CRC liver metastasis. Immunohistochemistry were applied to detect the expression of ITGBL1 and TNFAIP3 in the liver metastatic tissues. Tissue immunofluorescence detection was performed to observe the regulatory effect of JPJDR on the ITGBL1-NF-κB signaling pathway. Cancer-associated fibroblasts (CAFs) in the liver metastatic tissues were sorted and characterized by platelet-derived growth factor receptor β (PDGFRβ) with flow cytometry, following by the detection of inflammatory factors including IL-6, IL-8 and α-SMA using real-time PCR. RESULTS JPJDR reduced the ITGBL1 levels in CRC cells-derived EVs. JPJDR inhibited the migration and growth of CRC cells via regulating ITGBL1-rich EVs mediated fibroblasts activity. Mechanically, JPJDR decreased fibroblasts activation by regulating ITGBL1-rich EVs mediated TNFAIP3-NF-κB signaling. Further in vivo experiments demonstrated that JPJDR reduced CRC liver metastasis by regulating ITGBL1-rich EVs secretion from CRC and blocked the fibroblasts activation by regulating ITGBL1-TNFAIP3- NF-κB signaling. CONCLUSION Our research demonstrated that JPJDR preventd CRC liver metastasis via down-regulating CRC-derived ITGBL1-loaded EVs mediated activation of CAFs, providing the experimental evidence for the clinical application of JPJDR in the prevention and treatment of CRC metastasis. More importantly, our study confirmed the great benefits of therapeutic targeting the EVs-mediated metastasis and warranted future clinical validation.
Collapse
Affiliation(s)
- Ruixiao Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Wu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifen Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
80
|
Li Q. Role of exosomes in cellular communication between tumor cells and the tumor microenvironment (Review). Oncol Lett 2022; 24:240. [PMID: 35720493 PMCID: PMC9185148 DOI: 10.3892/ol.2022.13360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
81
|
Wang H, You Y, Zhu X. The Role of Exosomes in the Progression and Therapeutic Resistance of Hematological Malignancies. Front Oncol 2022; 12:887518. [PMID: 35692747 PMCID: PMC9178091 DOI: 10.3389/fonc.2022.887518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are membrane limited structures which derive from cell membranes and cytoplasm. When released into extracellular space, they circulate through the extracellular fluid, including the peripheral blood and tissue fluid. Exosomes surface molecules mediate their targeting to specific recipient cells and deliver their contents to recipient cells by receptor-ligand interaction and/or phagocytosis and/or endocytosis or direct fusion with cell membrane. Exosomes contain many functional molecules, including nucleic acids (DNAs, mRNAs, non-coding RNAs), proteins (transcription factors, enzymes), and lipids which have biological activity. By passing these cargos, exosomes can transfer information between cells. In this way, exosomes are extensively involved in physiological and pathological processes, such as angiogenesis, matrix reprogramming, coagulation, tumor progression. In recent years, researcher have found that exosomes from malignant tumors can mediate information exchange between tumor cells or between tumor cells and non-tumor cells, thereby promoting tumor survival, progression, and resistance to therapy. In this review, we discuss the pro-tumor and anti-therapeutic effects of exosomes in hematological malignancies, hoping to contribute to the early conquest of hematological malignancy.
Collapse
Affiliation(s)
- Haobing Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaojian Zhu,
| |
Collapse
|
82
|
Xing F, Hu Q, Qin Y, Xu J, Zhang B, Yu X, Wang W. The Relationship of Redox With Hallmarks of Cancer: The Importance of Homeostasis and Context. Front Oncol 2022; 12:862743. [PMID: 35530337 PMCID: PMC9072740 DOI: 10.3389/fonc.2022.862743] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022] Open
Abstract
Redox homeostasis is a lifelong pursuit of cancer cells. Depending on the context, reactive oxygen species (ROS) exert paradoxical effects on cancers; an appropriate concentration stimulates tumorigenesis and supports the progression of cancer cells, while an excessive concentration leads to cell death. The upregulated antioxidant system in cancer cells limits ROS to a tumor-promoting level. In cancers, redox regulation interacts with tumor initiation, proliferation, metastasis, programmed cell death, autophagy, metabolic reprogramming, the tumor microenvironment, therapies, and therapeutic resistance to facilitate cancer development. This review discusses redox control and the major hallmarks of cancer.
Collapse
Affiliation(s)
- Faliang Xing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Wei Wang, ; Xianjun Yu, ; Bo Zhang,
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Wei Wang, ; Xianjun Yu, ; Bo Zhang,
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Wei Wang, ; Xianjun Yu, ; Bo Zhang,
| |
Collapse
|
83
|
Bazzoni R, Tanasi I, Turazzi N, Krampera M. Update on the role and utility of extracellular vesicles in hematological malignancies. Stem Cells 2022; 40:619-629. [PMID: 35442447 DOI: 10.1093/stmcls/sxac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded cellular particles released by virtually any cell type, containing numerous bioactive molecules, including lipids, proteins, and nucleic acids. EVs act as a very efficient intercellular communication system by releasing their content into target cells, thus affecting their fate and influencing several biological processes. EVs are released both in physiological and pathological conditions, including several types of cancers. In hematological malignancies (HM), EVs have emerged as new critical players, contributing to tumor-to-stroma, stroma-to-tumor, and tumor-to-tumor cell communication. Therefore, EVs have been shown to play a crucial role in the pathogenesis and clinical course of several HM, contributing to tumor development, progression, and drug resistance. Furthermore, tumor EVs can reprogram the bone marrow (BM) microenvironment and turn it into a sanctuary, in which cancer cells suppress both the normal hematopoiesis and the immunological anti-tumor activity, conferring a therapy-resistant phenotype. Due to their physicochemical characteristics and pro-tumor properties, EVs have been suggested as new diagnostic biomarkers, therapeutic targets, and pharmacological nanocarriers. This review aims to provide an update on the pathogenetic contribution and the putative therapeutic utility of EVs in hematological diseases.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Nice Turazzi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
84
|
Georgievski A, Michel A, Thomas C, Mlamla Z, Pais de Barros JP, Lemaire-Ewing S, Garrido C, Quéré R. Acute lymphoblastic leukemia-derived extracellular vesicles affect quiescence of hematopoietic stem and progenitor cells. Cell Death Dis 2022; 13:337. [PMID: 35414137 PMCID: PMC9005650 DOI: 10.1038/s41419-022-04761-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023]
Abstract
Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.
Collapse
Affiliation(s)
- Aleksandra Georgievski
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Anaïs Michel
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France
| | - Charles Thomas
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Plateforme de Lipidomique Analytique, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Lemaire-Ewing
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Biochimie Spécialisée, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France.,LipSTIC Labex, Dijon, France.,Centre Georges François Leclerc-Unicancer, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm/Université Bourgogne Franche-Comté, Dijon, France. .,LipSTIC Labex, Dijon, France.
| |
Collapse
|
85
|
Syeda S, Rawat K, Shrivastava A. Pharmacological Inhibition of Exosome Machinery: An Emerging Prospect in Cancer Therapeutics. Curr Cancer Drug Targets 2022; 22:560-576. [DOI: 10.2174/1568009622666220401093316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Exosomes are nanocarriers that mediate intercellular communication, crucial for normal physiological functions. However, exponentially emerging reports have correlated their dysregulated release with various pathologies, including cancer. In cancer, from stromal remodeling to metastasis, where tumor cells bypass the immune surveillance and show drug resistivity, it has been established to be mediated via tumor-derived exosomes. Owing to their role in cancer pathogenicity, exosome-based strategies offer enormous potential in treatment regimens. These strategies include the use of exosomes as a drug carrier or as an immunotherapeutic agent, which requires advanced nanotechnologies for exosome isolation and characterization. In contrast, pharmacological inhibition of exosome machinery surpasses the requisites of nanotechnology and thus emerges as an essential prospect in cancer therapeutics. In this line, researchers are currently trying to dissect the molecular pathways to reveal the involvement of key regulatory proteins that facilitate the release of tumor-derived exosomes. Subsequently, screening of various molecules in targeting these proteins, with eventual abatement of exosome-induced cancer pathogenicity, is being done. However, their clinical translation requires more extensive studies. Here we comprehensively review the molecular mechanisms regulating exosome release in cancer. Moreover, we give insight into the key findings that highlight the effect of various drugs as exosome blockers, which will add to the route of drug development in cancer management.
Collapse
Affiliation(s)
- Saima Syeda
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Kavita Rawat
- Department of Zoology, University of Delhi, Delhi-110007, India
| | | |
Collapse
|
86
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Exosome-Mediated Therapeutic Strategies for Management of Solid and Hematological Malignancies. Cells 2022; 11:cells11071128. [PMID: 35406692 PMCID: PMC8997895 DOI: 10.3390/cells11071128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin containing cytokines, RNAs, growth factors, proteins, lipids, and metabolites. They have been identified as fundamental intercellular communication controllers in several diseases and an enormous volume of data confirmed that exosomes could either sustain or inhibit tumor onset and diffusion in diverse solid and hematological malignancies by paracrine signaling. Thus, exosomes might constitute a promising cell-free tumor treatment alternative. This review focuses on the effects of exosomes in the treatment of tumors, by discussing the most recent and promising data from in vitro and experimental in vivo studies and the few existing clinical trials. Exosomes are extremely promising as transporters of drugs, antagomir, genes, and other therapeutic substances that can be integrated into their core via different procedures. Moreover, exosomes can augment or inhibit non-coding RNAs, change the metabolism of cancer cells, and modify the function of immunologic effectors thus modifying the tumor microenvironment transforming it from pro-tumor to antitumor milieu. Here, we report the development of currently realized exosome modifiers that offer indications for the forthcoming elaboration of other more effective methods capable of enhancing the activity of the exosomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Aging Sciences, G. D’Annunzio University, 66100 Chieti, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
87
|
Adib A, Sahu R, Mohta S, Pollock RE, Casadei L. Cancer-Derived Extracellular Vesicles: Their Role in Sarcoma. Life (Basel) 2022; 12:life12040481. [PMID: 35454972 PMCID: PMC9029613 DOI: 10.3390/life12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Soft tissue sarcomas (STS) are rare malignancies with limited responses to anticancer therapy. Extracellular vesicles (EVs) are a heterogeneous group of bi-lipid layer sacs secreted by cells into extracellular space. Investigations of tumor-derived EVs have revealed their functional capabilities, including cell-to-cell communication and their impact on tumorigenesis, progression, and metastasis; however information on the roles of EVs in sarcoma is currently limited. In this review we investigate the role of various EV cargos in sarcoma and the mechanisms by which those cargos can affect the recipient cell phenotype and the aggressivity of the tumor itself. The study of EVs in sarcoma may help establish novel therapeutic approaches that target specific sarcoma subtypes or biologies, thereby improving sarcoma therapeutics in the future.
Collapse
Affiliation(s)
- Anita Adib
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Ruhi Sahu
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Shivangi Mohta
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| | - Raphael Etomar Pollock
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA;
| | - Lucia Casadei
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| |
Collapse
|
88
|
Nafar S, Nouri N, Alipour M, Fallahi J, Zare F, Tabei SMB. Exosome as a target for cancer treatment. J Investig Med 2022; 70:1212-1218. [PMID: 35210328 DOI: 10.1136/jim-2021-002194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
Exosomes are small vesicles covered by a lipid bilayer, ranging in size from 50 nm to 90 nm, secreted by different cell types in the body under normal and pathological conditions. They are surrounded by cell-segregated membrane complexes and play a role in the pathological and physiological environments of target cells by transfer of different molecules such as microRNA (miRNA). Exosomes have been detected in many body fluids, such as in the amniotic fluid, urine, breast milk, blood, saliva, ascites, semen, and bile. They include proteins, lipids, and nucleic acids such as DNA, RNA, and miRNA, which have many functions in target cells under pathological and physiological conditions. They participate in pathological processes such as tumor growth and survival, autoimmunity, neurodegenerative disorders, infectious diseases, inflammation conditions, and others. Biomarkers in exosomes isolated from body fluids have allowed for a more precise and consistent diagnostic method than previous approaches. Exosomes can be used in a variety of intracellular functions, and with advances in molecular techniques they can be used in the treatment and diagnosis of many diseases, including cancer. These vesicles play a significant role in various stages of cancer. Tumor-derived exosomes have an important role in tumor growth, survival, and metastasis. In contrast, the use of stem cells in cancer treatment is a relatively new scientific area. We hope to address targeted use of miRNA-carrying exosomes in cancer therapy in this review paper.
Collapse
Affiliation(s)
- Samira Nafar
- Department of Genetics, Shiraz University of Medical Science, Shiraz, Iran
| | - Negar Nouri
- Student Research Committee, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Maedeh Alipour
- MSc of Hematology and Blood Bank, Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
89
|
Giusti I, Di Francesco M, Poppa G, Esposito L, D’Ascenzo S, Dolo V. Tumor-Derived Extracellular Vesicles Activate Normal Human Fibroblasts to a Cancer-Associated Fibroblast-Like Phenotype, Sustaining a Pro-Tumorigenic Microenvironment. Front Oncol 2022; 12:839880. [PMID: 35280782 PMCID: PMC8905682 DOI: 10.3389/fonc.2022.839880] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts in the tumor microenvironment have been proven to actively participate in tumor progression; they can be "educated" by cancer cells acquiring an activated state and, as such, are identified as cancer-associated fibroblasts (CAFs); CAFs, in turn, remodel tumor stroma to be more advantageous for cancer progression by modulating several processes, including angiogenesis, immunosuppression, and drug access, presumably driving the chemoresistance. That is why they are believed to hamper the response to clinical therapeutic options. The communication between cancer cells and fibroblasts can be mediated by extracellular vesicles (EVs), composed of both exosomes (EXOs) and microvesicles (MVs). To verify the role of different subpopulations of EVs in this cross-talk, a nearly pure subpopulation of EXO-like EVs and the second one of mixed EXO- and MV-like EVs were isolated from ovarian cancer cells and administered to fibroblasts. It turned out that EVs can activate fibroblasts to a CAF-like state, supporting their proliferation, motility, invasiveness, and enzyme expression; EXO-like EV subpopulation seems to be more efficient in some of those processes, suggesting different roles for different EV subpopulations. Moreover, the secretome of these "activated" fibroblasts, composed of both soluble and EV-associated molecules, was, in turn, able to modulate the response of bystander cells (fibroblasts, tumor, and endothelial cells), supporting the idea that EVs sustain the mutual cross-talk between tumor cells and CAFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
90
|
Bao Q, Huang Q, Chen Y, Wang Q, Sang R, Wang L, Xie Y, Chen W. Tumor-Derived Extracellular Vesicles Regulate Cancer Progression in the Tumor Microenvironment. Front Mol Biosci 2022; 8:796385. [PMID: 35059436 PMCID: PMC8764126 DOI: 10.3389/fmolb.2021.796385] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles released by numerous kinds of cells, which are now increasingly considered as essential vehicles of cell-to-cell communication and biomarkers in disease diagnosis and treatment. They contain a variety of biomolecular components, including lipids, proteins and nucleic acids. These functional molecules can be transmitted between tumor cells and other stromal cells such as endothelial cells, fibroblasts and immune cells utilizing EVs. As a result, tumor-derived EVs can deliver molecules to remodel the tumor microenvironment, thereby influencing cancer progression. On the one hand, tumor-derived EVs reprogram functions of endothelial cells, promote cancer-associated fibroblasts transformation, induce resistance to therapy and inhibit the immune response to form a pro-tumorigenic environment. On the other hand, tumor-derived EVs stimulate the immune response to create an anti-tumoral environment. This article focuses on presenting a comprehensive and critical overview of the potential role of tumor-derived EVs-mediated communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Qianqian Bao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qianqian Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yunna Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qiang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ran Sang
- Bengbu Medical College, Bengbu, China.,The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
91
|
Pecankova K, Pecherkova P, Gasova Z, Sovova Z, Riedel T, Jäger E, Cermak J, Majek P. Proteome changes of plasma-derived extracellular vesicles in patients with myelodysplastic syndrome. PLoS One 2022; 17:e0262484. [PMID: 35007303 PMCID: PMC8746746 DOI: 10.1371/journal.pone.0262484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g., proteins) varies according to pathology, extracellular vesicles may prove a rich source of biomarkers. However, their biological and pathophysiological functions are poorly understood in hematological malignancies. Objective Here, we investigated proteome changes in the exosome-rich fraction of the plasma of myelodysplastic syndrome patients and healthy donors. Methods Exosome-rich fraction of the plasma was isolated using ExoQuick™: proteomes were compared and statistically processed; proteins were identified by nanoLC-MS/MS and verified using the ExoCarta and QuickGO databases. Mann-Whitney and Spearman analyses were used to statistically analyze the data. 2D western blot was used to monitor clusterin proteoforms. Results Statistical analyses of the data highlighted clusterin alterations as the most significant. 2D western blot showed that the clusterin changes were caused by posttranslational modifications. Moreover, there was a notable increase in the clusterin proteoform in the exosome-rich fraction of plasma of patients with more severe myelodysplastic syndrome; this corresponded with a simultaneous decrease in their plasma. Conclusions This specific clusterin proteoform seems to be a promising biomarker for myelodysplastic syndrome progression.
Collapse
Affiliation(s)
- Klara Pecankova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| | - Pavla Pecherkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenka Gasova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zofie Sovova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Tomas Riedel
- Institute of Macromolecular Chemistry CAS, Prague, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry CAS, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavel Majek
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
92
|
Dumontet E, Mancini SJC, Tarte K. Bone Marrow Lymphoid Niche Adaptation to Mature B Cell Neoplasms. Front Immunol 2021; 12:784691. [PMID: 34956214 PMCID: PMC8694563 DOI: 10.3389/fimmu.2021.784691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
B-cell non-Hodgkin lymphoma (B-NHL) evolution and treatment are complicated by a high prevalence of relapses primarily due to the ability of malignant B cells to interact with tumor-supportive lymph node (LN) and bone marrow (BM) microenvironments. In particular, progressive alterations of BM stromal cells sustain the survival, proliferation, and drug resistance of tumor B cells during diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and chronic lymphocytic leukemia (CLL). The current review describes how the crosstalk between BM stromal cells and lymphoma tumor cells triggers the establishment of the tumor supportive niche. DLBCL, FL, and CLL display distinct patterns of BM involvement, but in each case tumor-infiltrating stromal cells, corresponding to cancer-associated fibroblasts, exhibit specific phenotypic and functional features promoting the recruitment, adhesion, and survival of tumor cells. Tumor cell-derived extracellular vesicles have been recently proposed as playing a central role in triggering initial induction of tumor-supportive niches, notably within the BM. Finally, the disruption of the BM stroma reprogramming emerges as a promising therapeutic option in B-cell lymphomas. Targeting the crosstalk between BM stromal cells and malignant B cells, either through the inhibition of stroma-derived B-cell growth factors or through the mobilization of clonal B cells outside their supportive BM niche, should in particular be further evaluated as a way to avoid relapses by abrogating resistance niches.
Collapse
Affiliation(s)
- Erwan Dumontet
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France.,CHU Rennes, Pôle de Biologie, Rennes, France
| | - Stéphane J C Mancini
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France
| | - Karin Tarte
- Univ Rennes, Institut National de la Santé et de la Recherche Médicale (INSERM), Établissement Français du Sang (EFS) Bretagne, Unité Mixte de Recherche (UMR) U1236, Rennes, France.,CHU Rennes, Pôle de Biologie, Rennes, France
| |
Collapse
|
93
|
Moore CA, Ferrer AI, Alonso S, Pamarthi SH, Sandiford OA, Rameshwar P. Exosomes in the Healthy and Malignant Bone Marrow Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:67-89. [PMID: 34888844 DOI: 10.1007/978-3-030-83282-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bone marrow (BM) is a complex organ that sustains hematopoiesis via mechanisms involving the microenvironment. The microenvironment includes several cell types, neurotransmitters from innervated fibers, growth factors, extracellular matrix proteins, and extracellular vesicles. The main function of the BM is to regulate hematopoietic function to sustain the production of blood and immune cells. However, the BM microenvironment can also accommodate the survival of malignant cells. A major mechanism by which the cancer cells communicate with cells of the BM microenvironment is through the exchange of exosomes, a subset of extracellular vesicles that deliver molecular signals bidirectionally between malignant and healthy cells. The field of exosomes is an active area of investigation since an understanding of how the exosomal packaging, cargo, and production can be leveraged therapeutically to deter cancer progression and sensitize malignant cells to other therapies. Altogether, this chapter discusses the crucial role of exosomes in the development and progression of BM-associated cancers, such as hematologic malignancies and marrow-metastatic breast cancer. Exosome-based therapeutic strategies and their limitations are also considered.
Collapse
Affiliation(s)
- Caitlyn A Moore
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Alejandra I Ferrer
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sara Alonso
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Sri Harika Pamarthi
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Oleta A Sandiford
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.
- Rutgers School of Graduate Studies at New Jersey Medical School, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
94
|
Hyperleukocytic Acute Leukemia Circulating Exosomes Regulate HSCs and BM-MSCs. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9457070. [PMID: 34840706 PMCID: PMC8626181 DOI: 10.1155/2021/9457070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
Hyperleukocytic acute leukemia (HLAL) circulating exosomes are delivered to hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BM-MSCs), thereby inhibiting the normal hematopoietic process. In this paper, we have evaluated and explored the effects of miR-125b, which is carried by HLAL-derived exosomes, on the hematopoietic function of HSCs and BM-MSCs. For this purpose, we have isolated exosomes from the peripheral blood of HLAL patients and healthy volunteers. Then, we measured the level of miR-125b in exosomes cocultured exosomes with HSCs and BM-MSCs. Moreover, we have used miR-125b inhibitors/mimic for intervention and then measured miR-125b expression and colony forming unit (CFU). Apart from it, HSC and BM-MSC hematopoietic-related factors α-globulin, γ-globulin, CSF2, CRTX4 and CXCL12, SCF, IGF1, and DKK1 expression were measured. Evaluation of the miR-125b and BAK1 targeting relationship, level of miR-125b, and expression of hematopoietic-related genes was performed after patients are treated with miR-125b mimic and si-BAK1. We have observed that miR-125b was upregulated in HLAL-derived exosomes. After HLAL-exosome acts on HSCs, the level of miR-125b is upregulated, reducing CFU and affecting the expression of α-globulin, γ-globulin, CSF2, and CRCX4. For BM-MSCs, after the action of HLAL-exo, the level of miR-125b is upregulated and affected the expression of CXCL12, SCF, IGF1, and DKK1. Exosomes derived from HLAL carry miR-125b to target and regulate BAK1. Further study confirmed that miR-125b and BAK1mimic reduced the expression of miR-125b and reversed the effect of miR-125b mimic on hematopoietic-related genes. These results demonstrated that HLAL-derived exosomes carrying miR-125b inhibit the hematopoietic differentiation of HSC and hematopoietic support function of BM-MSC through BAK1.
Collapse
|
95
|
Shi L, Esfandiari L. Emerging on-chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy: A review. Electrophoresis 2021; 43:288-308. [PMID: 34791687 DOI: 10.1002/elps.202100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Early detection of cancer can significantly reduce mortality and save lives. However, the current cancer diagnosis is highly dependent on costly, complex, and invasive procedures. Thus, a great deal of effort has been devoted to exploring new technologies based on liquid biopsy. Since liquid biopsy relies on detection of circulating biomarkers from biofluids, it is critical to isolate highly purified cancer-related biomarkers, including circulating tumor cells (CTCs), cell-free nucleic acids (cell-free DNA and cell-free RNA), small extracellular vesicles (exosomes), and proteins. The current clinical purification techniques are facing a number of drawbacks including low purity, long processing time, high cost, and difficulties in standardization. Here, we review a promising solution, on-chip electrokinetic-based methods, that have the advantage of small sample volume requirement, minimal damage to the biomarkers, rapid, and label-free criteria. We have also discussed the existing challenges of current on-chip electrokinetic technologies and suggested potential solutions that may be worthy of future studies.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
96
|
Gu WJ, Shen YW, Zhang LJ, Zhang H, Nagle DG, Luan X, Liu SH. The multifaceted involvement of exosomes in tumor progression: Induction and inhibition. MedComm (Beijing) 2021; 2:297-314. [PMID: 34766148 PMCID: PMC8554660 DOI: 10.1002/mco2.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As key performers in intercellular communication, exosomes released by tumor cells play an important role in cancer development, including angiogenesis, cancer‐associated fibroblasts activation, epithelial‐mesenchymal transformation (EMT), immune escape, and pre‐metastatic niche formation. Meanwhile, other cells in tumor microenvironment (TME) can secrete exosomes and facilitate tumor progression. Elucidating mechanisms regarding these processes may offer perspectives for exosome‐based antitumor strategies. In this review, we mainly introduce the versatile roles of tumor or stromal cell derived exosomes in cancer development, with a particular focus on the biological capabilities and functionalities of their diverse contents, such as miRNAs, lncRNAs, and circRNAs. The potential clinical application of exosomes as biomarkers in cancer diagnosis and prognosis is also discussed. Finally, the current antitumor strategies based on exosomes in immunotherapy and targeted delivery for chemotherapeutic or biological agents are summarized.
Collapse
Affiliation(s)
- Wen-Jie Gu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Yi-Wen Shen
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences School of Pharmacy University of Mississippi University Mississippi USA
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - San-Hong Liu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| |
Collapse
|
97
|
Abu N, Rus Bakarurraini NAA, Nasir SN. Extracellular Vesicles and DAMPs in Cancer: A Mini-Review. Front Immunol 2021; 12:740548. [PMID: 34721407 PMCID: PMC8554306 DOI: 10.3389/fimmu.2021.740548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
98
|
Li ZB, Li HZ, Guo CH, Cui HL. Role of exosomes in diagnosis and treatment of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1186-1190. [DOI: 10.11569/wcjd.v29.i20.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system, which is insidious in origin and rapid in progression, and has a very poor prognosis. The incidence of pancreatic cancer is on the rise in recent years. Exosomes, an important vesicle in the human body, can reflect the physiological and pathological state of the source cells and play an important role in intercellular signal transduction. In recent years, the application of exosomes in tumor treatment has gained increasing attention from scholars. This article reviews the application of exosomes in the diagnosis and treatment of pancreatic cancer, to provide some reference for clinicians in the early diagnosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Zong-Bei Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hua-Zhi Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Chun-Hai Guo
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hong-Li Cui
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| |
Collapse
|
99
|
Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers (Basel) 2021; 13:cancers13215319. [PMID: 34771483 PMCID: PMC8582363 DOI: 10.3390/cancers13215319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Despite high rates of remission obtained with conventional chemotherapy, the persistence of leukemic cells after treatments, eventually exiting in disease relapse, remains the main challenge in acute myeloid leukemia (AML). Increasing evidence indicates that, besides AML cell mutations, stromal and immune cells, as leukemic microenvironment components, may protect AML cells from therapies. Here, we will recapitulate emerging bone marrow (BM) microenvironment-dependent mechanisms of therapy resistance. The understanding of these processes will help find new drug combinations and conceive novel and more effective treatments. Abstract Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.
Collapse
|
100
|
He C, Wang L, Li L, Zhu G. Extracellular vesicle-orchestrated crosstalk between cancer-associated fibroblasts and tumors. Transl Oncol 2021; 14:101231. [PMID: 34601397 PMCID: PMC8493591 DOI: 10.1016/j.tranon.2021.101231] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/04/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023] Open
Abstract
EVs mediate the interaction between tumor and stromal cells in the TME. Tumors mediate CAF-like activation of stromal cells through EVs. CAF-derived EVs promote tumor proliferation, metastasis and therapeutic resistance.
Communication networks in the tumor microenvironment (TME) play a crucial role in tumor progression. Cancer-associated fibroblasts (CAFs) are among the most abundant stromal cells in the TME. Bidirectional signal transduction between cancer cells and CAFs within the TME is important for cancer development and treatment responsiveness. Extracellular vesicles (EVs) carrying proteins, miRNAs, and other biomolecules are secreted into the extracellular matrix (ECM), which has been demonstrated to be an important communication medium between tumors and CAFs. Tumors regulate the activation of CAFs by secreting EVs. Conversely, CAFs can also affect tumor proliferation, metastasis, and therapeutic resistance through EVs. Here, we will classify EV cargoes and discuss the role of EV-mediated interactions between CAFs and tumors, reviewing current knowledge in combination with our confirmed results.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|