51
|
Correia B, Fernandes J, Botica MJ, Ferreira C, Quintas A. Novel Psychoactive Substances: The Razor's Edge between Therapeutical Potential and Psychoactive Recreational Misuse. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9030019. [PMID: 35323718 PMCID: PMC8950629 DOI: 10.3390/medicines9030019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Novel psychoactive substances (NPS) are compounds of natural and synthetic origin, similar to traditional drugs of abuse. NPS are involved in a contemporary trend whose origin lies in a thinner balance between legitimate therapeutic drug research and legislative control. The contemporary NPS trend resulted from the replacement of MDMA by synthetic cathinones in 'ecstasy' during the 2000s. The most common NPS are synthetic cannabinoids and synthetic cathinones. Interestingly, during the last 50 years, these two classes of NPS have been the object of scientific research for a set of health conditions. METHODS Searches were conducted in the online database PubMed using boolean equations. RESULTS Synthetic cannabinoids displayed protective and therapeutic effects for inflammatory, neurodegenerative and oncologic pathologies, activating the immune system and reducing inflammation. Synthetic cathinones act similarly to amphetamine-type stimulants and can be used for depression and chronic fatigue. CONCLUSIONS Despite the scientific advances in this field of research, pharmacological application of NPS is being jeopardized by fatalities associated with their recreational use. This review addresses the scientific achievements of these two classes of NPS and the toxicological data, ending with a reflection on Illicit and NPS control frames.
Collapse
Affiliation(s)
- Beatriz Correia
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Joana Fernandes
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
| | - Maria João Botica
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Carla Ferreira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Faculty of Medicine of Porto University, Rua Professor Lima Basto, 1099-023 Lisboa, Portugal
| | - Alexandre Quintas
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Campus Universitário—Quinta da Granja, Monte de Caparica, 2825-084 Caparica, Portugal; (B.C.); (J.F.); (C.F.)
- Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, 2825-084 Caparica, Portugal
- Correspondence:
| |
Collapse
|
52
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
53
|
Single-cell profiling of tumour evolution in multiple myeloma - opportunities for precision medicine. Nat Rev Clin Oncol 2022; 19:223-236. [PMID: 35017721 DOI: 10.1038/s41571-021-00593-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Multiple myeloma (MM) is a haematological malignancy of plasma cells characterized by substantial intraclonal genetic heterogeneity. Although therapeutic advances made in the past few years have led to improved outcomes and longer survival, MM remains largely incurable. Over the past decade, genomic analyses of patient samples have demonstrated that MM is not a single disease but rather a spectrum of haematological entities that all share similar clinical symptoms. Moreover, analyses of samples from monoclonal gammopathy of undetermined significance and smouldering MM have also shown the existence of genetic heterogeneity in precursor stages, in some cases remarkably similar to that of MM. This heterogeneity highlights the need for a greater dissection of underlying disease biology, especially the clonal diversity and molecular events underpinning MM at each stage to enable the stratification of individuals with a high risk of progression. Emerging single-cell sequencing technologies present a superlative solution to delineate the complexity of monoclonal gammopathy of undetermined significance, smouldering MM and MM. In this Review, we discuss how genomics has revealed novel insights into clonal evolution patterns of MM and provide examples from single-cell studies that are beginning to unravel the mutational and phenotypic characteristics of individual cells within the bone marrow tumour, immune microenvironment and peripheral blood. We also address future perspectives on clinical application, proposing that multi-omics single-cell profiling can guide early patient diagnosis, risk stratification and treatment strategies.
Collapse
|
54
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
55
|
Łuczkowska K, Rutka M, Rogińska D, Paczkowska E, Baumert B, Milczarek S, Górska M, Kulig P, Osękowska B, Janowski M, Safranow K, Sommerfeld K, Borowiecka E, Zawodny P, Koclęga A, Helbig G, Machaliński B. The Potential Role of Proinflammatory Cytokines and Complement Components in the Development of Drug-Induced Neuropathy in Patients with Multiple Myeloma. J Clin Med 2021; 10:jcm10194584. [PMID: 34640602 PMCID: PMC8509696 DOI: 10.3390/jcm10194584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 01/15/2023] Open
Abstract
The launch of novel chemotherapeutic agents-in particular, proteasome inhibitors and immunomodulatory drugs-dramatically changed multiple myeloma (MM) therapy, improving the response rate and prolonging progression-free survival. However, none of the anti-MM drugs are deprived of side effects. Peripheral neuropathy (PN) seems to be one of the most pressing problems. Despite extensive research in this area, the pathogenesis of drug-induced peripheral neuropathy (DiPN) has not yet been fully elucidated. In the present study, we aimed to assess the potential relationship between proinflammatory factors and the development of PN in MM patients with particular emphasis on the application of VTD (bortezomib, thalidomide, dexamethasone) regimen. Our analysis identified increased concentrations of CCL2, IL-1β, and IFN-γ in plasma of MM patients during treatment, both with and without symptoms of PN, compared with untreated neuropathy-free MM patients. At the same time, the plasma concentration of IL-1β in patients with neuropathy was significantly increased compared with patients without PN before and during treatment. Moreover, the results were enhanced at the transcript level by performing global mRNA expression analysis using microarray technology. The most significant changes were observed in the expression of genes responsible for regulating immunological and apoptotic processes. An in-depth understanding of the mechanisms responsible for the development of DiPN might in the future reduce the incidence of PN and accelerate diagnosis, allowing the choice of neuropathy-free treatment strategies for MM.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Magdalena Rutka
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Bartłomiej Baumert
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Sławomir Milczarek
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Martyna Górska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Bogumiła Osękowska
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Michał Janowski
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Krzysztof Sommerfeld
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Ewa Borowiecka
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
| | - Piotr Zawodny
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
| | - Anna Koclęga
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-027 Katowice, Poland; (A.K.); (G.H.)
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 40-027 Katowice, Poland; (A.K.); (G.H.)
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.Ł.); (M.R.); (D.R.); (E.P.); (S.M.); (M.G.); (P.K.); (P.Z.)
- Department of Bone Marrow Transplantation, Pomeranian Medical University, 71-252 Szczecin, Poland; (B.B.); (B.O.); (M.J.); (K.S.); (E.B.)
- Correspondence:
| |
Collapse
|
56
|
FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology. Blood Adv 2021; 6:690-703. [PMID: 34587246 PMCID: PMC8791585 DOI: 10.1182/bloodadvances.2021005198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large datasets that includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T cell compartment in bone marrow (BM) vs peripheral blood (PB) of patients with smoldering multiple myeloma (MM); identify minimally-invasive immune biomarkers of progression from smoldering to active MM; define prognostic T cell subsets in the BM of patients with active MM after treatment intensification; and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation in 150 smoldering MM patients (hazard ratio [HR]: 1.7; P <.001), and of progression-free (HR: 4.09; P <.0001) and overall survival (HR: 3.12; P =.047) in 100 active MM patients, were identified. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM vs PB and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality-control, analyze high-dimensional data, unveil cellular diversity and objectively identify biomarkers in large immune monitoring studies.
Collapse
|
57
|
Abstract
Multiple myeloma is the second most common hematological malignancy in adults, accounting for 2% of all cancer-related deaths in the UK. Current chemotherapy-based regimes are insufficient, as most patients relapse and develop therapy resistance. This review focuses on current novel antibody- and aptamer-based therapies aiming to overcome current therapy limitations, as well as their respective limitations and areas of improvement. The use of computer modeling methods, as a tool to study and improve ligand-receptor alignments for the use of novel therapy development will also be discussed, as it has become a rapid, reliable and comparatively inexpensive method of investigation.
Collapse
|
58
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
59
|
Kaushal A, Nooka AK, Carr AR, Pendleton KE, Barwick BG, Manalo J, McCachren SS, Gupta VA, Joseph NS, Hofmeister CC, Kaufman JL, Heffner LT, Ansell SM, Boise LH, Lonial S, Dhodapkar KM, Dhodapkar MV. Aberrant Extrafollicular B Cells, Immune Dysfunction, Myeloid Inflammation, and MyD88-Mutant Progenitors Precede Waldenstrom Macroglobulinemia. Blood Cancer Discov 2021; 2:600-615. [PMID: 34778800 PMCID: PMC8580616 DOI: 10.1158/2643-3230.bcd-21-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Waldenstrom macroglobulinemia (WM) and its precursor IgM gammopathy are distinct disorders characterized by clonal mature IgM-expressing B-cell outgrowth in the bone marrow. Here, we show by high-dimensional single-cell immunogenomic profiling of patient samples that these disorders originate in the setting of global B-cell compartment alterations, characterized by expansion of genomically aberrant extrafollicular B cells of the nonmalignant clonotype. Alterations in the immune microenvironment preceding malignant clonal expansion include myeloid inflammation and naïve B- and T-cell depletion. Host response to these early lesions involves clone-specific T-cell immunity that may include MYD88 mutation-specific responses. Hematopoietic progenitors carry the oncogenic MYD88 mutations characteristic of the malignant WM clone. These data support a model for WM pathogenesis wherein oncogenic alterations and signaling in progenitors, myeloid inflammation, and global alterations in extrafollicular B cells create the milieu promoting extranodal pattern of growth in differentiated malignant cells. SIGNIFICANCE These data provide evidence that growth of the malignant clone in WM is preceded by expansion of extrafollicular B cells, myeloid inflammation, and immune dysfunction in the preneoplastic phase. These changes may be related in part to MYD88 oncogenic signaling in pre-B progenitor cells and suggest a novel model for WM pathogenesis. This article is highlighted in the In This Issue feature, p. 549.
Collapse
Affiliation(s)
- Akhilesh Kaushal
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Ajay K. Nooka
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Allison R. Carr
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Katherine E. Pendleton
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | | | - Julia Manalo
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Samuel S. McCachren
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Vikas A. Gupta
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Nisha S. Joseph
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Craig C. Hofmeister
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jonathan L. Kaufman
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Leonard T. Heffner
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | - Lawrence H. Boise
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Kavita M. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, Georgia.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Corresponding Authors: Madhav V. Dhodapkar, Winship Cancer Institute, Emory University, 1364 Clifton Road NE, Atlanta, GA 30322. E-mail: ; and Kavita M. Dhodapkar,
| | - Madhav V. Dhodapkar
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.,Corresponding Authors: Madhav V. Dhodapkar, Winship Cancer Institute, Emory University, 1364 Clifton Road NE, Atlanta, GA 30322. E-mail: ; and Kavita M. Dhodapkar,
| |
Collapse
|
60
|
|
61
|
Visram A, Soof C, Rajkumar SV, Kumar SK, Bujarski S, Spektor TM, Kyle RA, Berenson JR, Dispenzieri A. Serum BCMA levels predict outcomes in MGUS and smoldering myeloma patients. Blood Cancer J 2021; 11:120. [PMID: 34168119 PMCID: PMC8225625 DOI: 10.1038/s41408-021-00505-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
Soluble BCMA (sBCMA) levels are elevated in monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the association between sBCMA levels and prognosis in MGUS and SMM has not been studied. We retrospectively analyzed sBCMA levels in stored samples from 99 MGUS and 184 SMM patients. Baseline sBCMA levels were significantly higher in MGUS and SMM patients progressing to MM during clinical follow up. When stratified according to the median baseline sBCMA level for each cohort, higher levels were associated with a shorter PFS for MGUS (HR 3.44 comparing sBCMA ≥77 vs <77 ng/mL [95% CI 2.07-5.73, p < 0.001] and SMM (HR 2.0 comparing sBCMA ≥128 vs <128 ng/mL, 95% 1.45-2.76, p < 0.001) patients. The effect of sBCMA on PFS was similar even after adjusting for the baseline MGUS or SMM risk stratification. We evaluated paired serum samples and found that sBCMA increased significantly in MGUS and SMM patients who eventually progressed to MM, whereas among MGUS non-progressors the sBCMA level remained stable. While our results require independent validation, they suggest that sBCMA may be a useful biomarker to identify MGUS and SMM patients at increased risk of progression to MM independent of the established risk models.
Collapse
Affiliation(s)
- A Visram
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - C Soof
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, California, USA
| | - S V Rajkumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S Bujarski
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, California, USA
| | - T M Spektor
- OncoTracker, West Hollywood, CA, California, USA
| | - R A Kyle
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - J R Berenson
- Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, California, USA.,OncoTracker, West Hollywood, CA, California, USA.,Oncotherapeutics, West Hollywood, CA, California, USA.,Berenson Cancer Center, West Hollywood, CA, California, USA
| | - A Dispenzieri
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
62
|
Andersen MN, Andersen NF, Lauridsen KL, Etzerodt A, Sorensen BS, Abildgaard N, Plesner T, Hokland M, Møller HJ. STAT3 is over-activated within CD163 pos bone marrow macrophages in both Multiple Myeloma and the benign pre-condition MGUS. Cancer Immunol Immunother 2021; 71:177-187. [PMID: 34061243 DOI: 10.1007/s00262-021-02952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Tumour-associated macrophages (TAMs) support cancer cell survival and suppress anti-tumour immunity. Tumour infiltration by CD163pos TAMs is associated with poor outcome in several human malignancies, including multiple myeloma (MM). Signal transducer and activator of transcription 3 (STAT3) is over-activated in human cancers, and specifically within TAMs activation of STAT3 may induce an immunosuppressive (M2-like) phenotype. Therefore, STAT3-inhibition in TAMs may be a future therapeutic strategy.We investigated TAM markers CD163, CD206, and activated STAT3 (pSTAT3) in patients with MGUS (n = 32) and MM (n = 45), as well as healthy controls (HCs, n = 13).Blood levels of the macrophage biomarkers sCD163 and sCD206, and circulating cytokines, as well as bone marrow mRNA expression of CD163 and CD206, were generally increased in MGUS and MM patients, compared to HCs, but to highly similar levels. By immunohistochemistry, bone marrow levels of pSTAT3 were increased specifically within CD163pos cells in both MGUS and MM patients.In conclusion, macrophage-related inflammatory changes, including activation of STAT3, were present already at the MGUS stage, at similar levels as in MM. Specific increase in pSTAT3 levels within CD163pos cells supports that the CD163 scavenger receptor may be a useful target for future delivery of STAT3-inhibitory drugs to TAMs in MM patients.
Collapse
Affiliation(s)
- Morten N Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| | - Niels F Andersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Trine Plesner
- Department of Histopathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
63
|
Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081969. [PMID: 33921898 PMCID: PMC8073772 DOI: 10.3390/cancers13081969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) remains an incurable blood cancer. One of the current challenges in patient management is the risk assessment and subsequent treatment management for each patient with MM. Patients with an identical diagnosis may present very different disease courses and outcomes. This challenge of MM is a current focus of the scientific and medical communities. In our research, we have used an imaging approach to determine the risk of MM patients to progressive/aggressive disease. Using three-dimensional (3D) imaging of telomeres, the ends of chromosomes, we report that specific telomeric profiles are associated with aggressive disease. Abstract The prognosis of multiple myeloma (MM), an incurable B-cell malignancy, has significantly improved through the introduction of novel therapeutic modalities. Myeloma prognosis is essentially determined by cytogenetics, both at diagnosis and at disease progression. However, for a large cohort of patients, cytogenetic analysis is not always available. In addition, myeloma patients with favorable cytogenetics can display an aggressive clinical course. Therefore, it is necessary to develop additional prognostic and predictive markers for this disease to allow for patient risk stratification and personalized clinical decision-making. Genomic instability is a prominent characteristic in MM, and we have previously shown that the three-dimensional (3D) nuclear organization of telomeres is a marker of both genomic instability and genetic heterogeneity in myeloma. In this study, we compared in a longitudinal prospective study blindly the 3D telomeric profiles from bone marrow samples of 214 initially treatment-naïve patients with either monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or MM, with a minimum follow-up of 5 years. Here, we report distinctive 3D telomeric profiles correlating with disease aggressiveness and patient response to treatment in MM patients, and also distinctive 3D telomeric profiles for disease progression in smoldering multiple myeloma patients. In particular, lower average intensity (telomere length, below 13,500 arbitrary units) and increased number of telomere aggregates are associated with shorter survival and could be used as a prognostic factor to identify high-risk SMM and MM patients.
Collapse
|
64
|
Cancer immunoediting and immune dysregulation in multiple myeloma. Blood 2021; 136:2731-2740. [PMID: 32645135 DOI: 10.1182/blood.2020006540] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Avoiding immune destruction is a hallmark of cancer. Over the past few years, significant advances have been made in understanding immune dysfunction and immunosuppression in multiple myeloma (MM), and various immunotherapeutic approaches have delivered improved clinical responses. However, it is still challenging to completely eliminate malignant plasma cells (PCs) and achieve complete cure. The interplay between the immune system and malignant PCs is implicated throughout all stages of PC dyscrasias, including asymptomatic states called monoclonal gammopathy of undetermined significance and smoldering myeloma. Although the immune system effectively eliminates malignant PCs, or at least induces functional dormancy at early stages, malignant PCs eventually evade immune elimination, leading to progression to active MM, in which dysfunctional effector lymphocytes, tumor-educated immunosuppressive cells, and soluble mediators coordinately act as a barrier for antimyeloma immunity. An in-depth understanding of this dynamic process, called cancer immunoediting, will provide important insights into the immunopathology of PC dyscrasias and MM immunotherapy. Moreover, a growing body of evidence suggests that, together with nonhematopoietic stromal cells, bone marrow (BM) immune cells with unique functions support the survival of normal and malignant PCs in the BM niche, highlighting the diverse roles of immune cells beyond antimyeloma immunity. Together, the immune system critically acts as a rheostat that fine-tunes the balance between dormancy and disease progression in PC dyscrasias.
Collapse
|
65
|
Joseph NS, Lonial S. Practical approach to the management of smoldering myeloma. Curr Opin Oncol 2021; 32:656-663. [PMID: 32890022 DOI: 10.1097/cco.0000000000000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to review the diagnosis and risk stratification of smoldering myeloma (SMM), describe recently published data regarding the early treatment of SMM, and to provide practical strategies on how to manage patients with SMM in the clinic. RECENT FINDINGS Recently published data from the ECOG E3A06 and GEM-CESAR studies supporting early intervention for certain subsets of high-risk SMM patients will be presented, and the relevance of these findings in relation to real-life application will be explored. SUMMARY Accurate risk-stratification and standard of care for SMM is evolving, and here we summarize the pertinent clinical data and provide recommendations for clinical management of SMM patients.
Collapse
Affiliation(s)
- Nisha S Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
66
|
Branagan AR, Duffy E, Gan G, Li F, Foster C, Verma R, Zhang L, Parker TL, Seropian S, Cooper DL, Brandt D, Kortmansky J, Witt D, Ferencz TM, Dhodapkar KM, Dhodapkar MV. Tandem high-dose influenza vaccination is associated with more durable serologic immunity in patients with plasma cell dyscrasias. Blood Adv 2021; 5:1535-1539. [PMID: 33683337 PMCID: PMC7948269 DOI: 10.1182/bloodadvances.2020003880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with plasma cell dyscrasias (PCDs) experience an increased burden of influenza, and current practice of single-dose annual influenza vaccination yields suboptimal protective immunity in these patients. Strategies to improve immunity to influenza in these patients are clearly needed. We performed a randomized, double-blind, placebo-controlled clinical trial comparing tandem Fluzone High-Dose influenza vaccination with standard-of-care influenza vaccination. Standard-of-care vaccination was single-dose age-based vaccination (standard dose, <65 years; high dose, ≥65 years), and patients in this arm received a saline placebo injection at 30 days. A total of 122 PCD patients were enrolled; 47 received single-dose standard-of-care vaccination, and 75 received 2 doses of Fluzone High-Dose vaccine. Rates of hemagglutinin inhibition (HAI) titer seroprotection against all 3 strains (H1N1, H3N2, and influenza B) were significantly higher for patients after tandem high-dose vaccination vs control (87.3% vs 63.2%; P = .003) and led to higher seroprotection at the end of flu season (60.0% vs 31.6%; P = .04). These data demonstrate that tandem high-dose influenza vaccination separated by 30 days leads to higher serologic HAI titer responses and more durable influenza-specific immunity in PCD patients. Similar vaccine strategies may also be essential to achieve protective immunity against other emerging pathogens such as novel coronavirus in these patients. This trial was registered at www.clinicaltrials.gov as #NCT02566265.
Collapse
Affiliation(s)
- Andrew R Branagan
- Yale Cancer Center, New Haven, CT
- Massachussets General Hospital Cancer Center, Boston, MA
| | | | - Geliang Gan
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT; and
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT; and
| | | | | | | | | | | | | | | | | | | | | | | | - Madhav V Dhodapkar
- Yale Cancer Center, New Haven, CT
- Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
67
|
Simkhada N, Adhikari P, Baral N, Dhakal B, Mahat K. Multiple Myeloma and Vasculitic Neuropathy: An Unusual Presentation. Cureus 2021; 13:e13776. [PMID: 33842152 PMCID: PMC8025791 DOI: 10.7759/cureus.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multiple myeloma (MM) is a clonal proliferation of plasma cells in the bone marrow resulting in the production of paraproteins. It is more common in elderly adults and presents with nonspecific symptoms like bone pain, pathological fracture, fatigue, and signs of hypercalcemia. Peripheral neuropathy is an atypical presentation. We present a rare case of vasculitic neuropathy (VN) who was also diagnosed with MM at the same time. Nerve conduction study and biopsy showed findings suggestive of demyelinating VN. His serum protein electrophoresis and bone marrow aspirate were consistent with MM. The association between these two conditions remains understudied. So far there is no strong evidence suggesting an association between MM and VN. If VN was just coincidental or a presenting symptom of MM remains a question and warrants further studies.
Collapse
Affiliation(s)
- Nabin Simkhada
- Internal Medicine, Nepalese Army Institute of Health Sciences, Kathmandu, NPL
| | - Prakash Adhikari
- Internal Medicine, Piedmont Athens Regional Medical Center, Athens, USA
| | - Nisha Baral
- Microbiology, Manipal College of Medical Sciences, Pokhara, NPL
| | - Bishal Dhakal
- Internal Medicine, Nepalese Army Institute of Health Sciences, Kathmandu, NPL
| | - Krish Mahat
- Internal Medicine, Nepalese Army Institute of Health Sciences, Kathmandu, NPL
| |
Collapse
|
68
|
McCachren SS, Dhodapkar KM, Dhodapkar MV. Co-evolution of Immune Response in Multiple Myeloma: Implications for Immune Prevention. Front Immunol 2021; 12:632564. [PMID: 33717170 PMCID: PMC7952530 DOI: 10.3389/fimmu.2021.632564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM), a malignant neoplasm of plasma cells that reside in the bone marrow (BM), is universally preceded by a precursor state termed monoclonal gammopathy of undetermined significance (MGUS). Many individuals with MGUS never progress to MM or progress over many years. Therefore, MGUS provides a unique opportunity to surveil changes in the BM tumor microenvironment throughout disease progression. It is increasingly appreciated that MGUS cells carry many of the genetic changes found in MM. Prior studies have also shown that MGUS cells can be recognized by the immune system, leading to early changes in the BM immune environment compared to that of healthy individuals, including alterations in both innate and adaptive immunity. Progression to clinical MM is associated with attrition of T cells with stem memory-like features and instead accumulation of T cells with more terminally differentiated features. Recent clinical studies have suggested that early application of immune-modulatory drugs, which are known to activate both innate and adaptive immunity, can delay the progression to clinical MM. Understanding the biology of how the immune response and tumors coevolve over time is needed to develop novel immune-based approaches to achieve durable and effective prevention of clinical malignancy.
Collapse
Affiliation(s)
- Samuel S. McCachren
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Atlanta, GA, United States
| | - Madhav V. Dhodapkar
- Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Atlanta, GA, United States
| |
Collapse
|
69
|
Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma. Blood 2021; 135:2375-2387. [PMID: 32299093 DOI: 10.1182/blood.2019003382] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Risk of developing myelodysplastic syndrome (MDS) is significantly increased in both multiple myeloma (MM) and monoclonal gammopathy of undetermined significance, suggesting that it is therapy independent. However, the incidence and sequelae of dysplastic hematopoiesis at diagnosis are unknown. Here, we used multidimensional flow cytometry (MFC) to prospectively screen for the presence of MDS-associated phenotypic alterations (MDS-PA) in the bone marrow of 285 patients with MM enrolled in the PETHEMA/GEM2012MENOS65 trial (#NCT01916252). We investigated the clinical significance of monocytic MDS-PA in a larger series of 1252 patients enrolled in 4 PETHEMA/GEM protocols. At diagnosis, 33 (11.6%) of 285 cases displayed MDS-PA. Bulk and single-cell-targeted sequencing of MDS recurrently mutated genes in CD34+ progenitors (and dysplastic lineages) from 67 patients revealed clonal hematopoiesis in 13 (50%) of 26 cases with MDS-PA vs 9 (22%) of 41 without MDS-PA; TET2 and NRAS were the most frequently mutated genes. Dynamics of MDS-PA at diagnosis and after autologous transplant were evaluated in 86 of 285 patients and showed that in most cases (69 of 86 [80%]), MDS-PA either persisted or remained absent in patients with or without MDS-PA at diagnosis, respectively. Noteworthy, MDS-associated mutations infrequently emerged after high-dose therapy. Based on MFC profiling, patients with MDS-PA have altered hematopoiesis and T regulatory cell distribution in the tumor microenvironment. Importantly, the presence of monocytic MDS-PA at diagnosis anticipated greater risk of hematologic toxicity and was independently associated with inferior progression-free survival (hazard ratio, 1.5; P = .02) and overall survival (hazard ratio, 1.7; P = .01). This study reveals the biological and clinical significance of dysplastic hematopoiesis in newly diagnosed MM, which can be screened with moderate sensitivity using cost-effective MFC.
Collapse
|
70
|
Comparison of Monoclonal Gammopathies Linked to Poliovirus or Coxsackievirus vs. Other Infectious Pathogens. Cells 2021; 10:cells10020438. [PMID: 33669483 PMCID: PMC7922508 DOI: 10.3390/cells10020438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic stimulation by infectious pathogens or self-antigen glucosylsphingosine (GlcSph) can lead to monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Novel assays such as the multiplex infectious antigen microarray (MIAA) and GlcSph assays, permit identification of targets for >60% purified monoclonal immunoglobulins (Igs). Searching for additional targets, we selected 28 purified monoclonal Igs whose antigen was not represented on the MIAA and GlcSph assays; their specificity of recognition was then analyzed using microarrays consisting of 3760 B-cell epitopes from 196 pathogens. The peptide sequences PALTAVETG and PALTAAETG of the VP1 coat proteins of human poliovirus 1/3 and coxsackievirus B1/B3, respectively, were specifically recognized by 6/28 monoclonal Igs. Re-analysis of patient cohorts showed that purified monoclonal Igs from 10/155 MGUS/SM (6.5%) and 3/147 MM (2.0%) bound to the PALTAVETG or PALTAAETG epitopes. Altogether, PALTAV/AETG-initiated MGUS are not rare and few seem to evolve toward myeloma.
Collapse
|
71
|
Moser-Katz T, Joseph NS, Dhodapkar MV, Lee KP, Boise LH. Game of Bones: How Myeloma Manipulates Its Microenvironment. Front Oncol 2021; 10:625199. [PMID: 33634031 PMCID: PMC7900622 DOI: 10.3389/fonc.2020.625199] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a clonal disease of long-lived plasma cells and is the second most common hematological cancer behind Non-Hodgkin's Lymphoma. Malignant transformation of plasma cells imparts the ability to proliferate, causing harmful lesions in patients. In advanced stages myeloma cells become independent of their bone marrow microenvironment and form extramedullary disease. Plasma cells depend on a rich array of signals from neighboring cells within the bone marrow for survival which myeloma cells exploit for growth and proliferation. Recent evidence suggests, however, that both the myeloma cells and the microenvironment have undergone alterations as early as during precursor stages of the disease. There are no current therapies routinely used for treating myeloma in early stages, and while recent therapeutic efforts have improved patients' median survival, most will eventually relapse. This is due to mutations in myeloma cells that not only allow them to utilize its bone marrow niche but also facilitate autocrine pro-survival signaling loops for further progression. This review will discuss the stages of myeloma cell progression and how myeloma cells progress within and outside of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Tyler Moser-Katz
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Nisha S. Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Madhav V. Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
72
|
Gottschlich A, Endres S, Kobold S. Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers (Basel) 2021; 13:477. [PMID: 33530653 PMCID: PMC7865618 DOI: 10.3390/cancers13030477] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Since its discovery, interleukin-1 has been extensively studied in a wide range of medical fields. Besides carrying out vital physiological functions, it has been implicated with a pivotal role in the progression and spreading of different cancer entities. During the last years, several clinical trials have been conducted, shedding light on the role of IL-1 blocking agents for the treatment of cancer. Additionally, recent developments in the field of immuno-oncology have implicated IL-1-induced signaling cascades as a major driver of severe chimeric antigen receptor T cell-associated toxicities such as cytokine release syndrome and immune effector cell-associated neurotoxicity. In this review, we summarize current clinical trials investigating the role of IL-1 blockade in cancer treatment and elaborate the proposed mechanism of these innovative treatment approaches. Additionally, we highlight cutting-edge developments utilizing IL-1 blocking agents to enhance the safety and efficacy of adoptive T cell therapy.
Collapse
Affiliation(s)
- Adrian Gottschlich
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
| | - Stefan Endres
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany; (A.G.); (S.E.)
- German Center for Translational Cancer Research (DKTK), Partner Site Munich, 80337 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
73
|
Garcia-Gomez A, Li T, de la Calle-Fabregat C, Rodríguez-Ubreva J, Ciudad L, Català-Moll F, Godoy-Tena G, Martín-Sánchez M, San-Segundo L, Muntión S, Morales X, Ortiz-de-Solórzano C, Oyarzabal J, San José-Enériz E, Esteller M, Agirre X, Prosper F, Garayoa M, Ballestar E. Targeting aberrant DNA methylation in mesenchymal stromal cells as a treatment for myeloma bone disease. Nat Commun 2021; 12:421. [PMID: 33462210 PMCID: PMC7813865 DOI: 10.1038/s41467-020-20715-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD. Mesenchymal stromal cells (MSCs) have been shown to support multiple myeloma (MM) development. Here, MSCs isolated from the bone marrow of MM patients are shown to have altered DNA methylation patterns and a methyltransferase inhibitor reverts MM-associated bone loss and reduces tumour burden in MM murine models.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Català-Moll
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain
| | - Montserrat Martín-Sánchez
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Laura San-Segundo
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Sandra Muntión
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Xabier Morales
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Carlos Ortiz-de-Solórzano
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Edurne San José-Enériz
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
74
|
Dhodapkar MV, Dhodapkar KM, Ahmed R. Viral Immunity and Vaccines in Hematologic Malignancies: Implications for COVID-19. Blood Cancer Discov 2021; 2:9-12. [PMID: 34604788 PMCID: PMC8486288 DOI: 10.1158/2643-3230.bcd-20-0177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Patients with hematologic malignancies have increased susceptibility to viral infections and suboptimal immunologic responses to current vaccines due to both disease-associated and therapy-related immune dysfunction. These considerations may impact the efficacy of emerging COVID-19 vaccines in this patient population as well and warrant the need to systematically study natural and vaccine-induced virus-specific immunity in these patients.
Collapse
Affiliation(s)
- Madhav V. Dhodapkar
- Department of Hematology/Medical Oncology, Emory University, Atlanta, Georgia
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Kavita M. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Rafi Ahmed
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Emory Vaccine Center, Emory University, Atlanta, Georgia
| |
Collapse
|
75
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
76
|
Santockyte R, Puig O, Zheng N, Ouyang Z, Titsch C, Zhang YJ, Pillutla R, Zeng J. High-Throughput Therapeutic Antibody Interference-Free High-Resolution Mass Spectrometry Assay for Monitoring M-Proteins in Multiple Myeloma. Anal Chem 2020; 93:834-842. [DOI: 10.1021/acs.analchem.0c03357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rasa Santockyte
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Oscar Puig
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Naiyu Zheng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Zheng Ouyang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Craig Titsch
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Yang J. Zhang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Renuka Pillutla
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jianing Zeng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
77
|
Schmidt T, Callander N. Diagnosis and Management of Monoclonal Gammopathy and Smoldering Multiple Myeloma. J Natl Compr Canc Netw 2020; 18:1720-1729. [PMID: 33347744 DOI: 10.6004/jnccn.2020.7660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of monoclonal proteins is common, with a prevalence in the United States around 5% that increases with age. Although most patients are asymptomatic, most cases are caused by a clonal plasma cell disorder. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic precursor conditions with variable risk of progression to multiple myeloma. In recent years, significant progress has been made to better understand the factors that lead to the development of symptoms and progression to myeloma. This review summarizes the current diagnosis treatment guidelines for MGUS and SMM and highlights recent advances that underscore a shifting paradigm in the evaluation and management of plasma cell precursor conditions.
Collapse
Affiliation(s)
- Timothy Schmidt
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | |
Collapse
|
78
|
Gao SS, Wang YJ, Zhang GX, Zhang WT. Potential diagnostic value of circulating miRNA for multiple myeloma: A meta-analysis. J Bone Oncol 2020; 25:100327. [PMID: 33145153 PMCID: PMC7596263 DOI: 10.1016/j.jbo.2020.100327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is the second incurable hematological malignancy. In recent years, due to the rise of microRNA (miRNA), many scholars have participated in the study of its value in the diagnosis of MM, and have obtained good but inconsistent results. Therefore, in order to determine the role of miRNA in the early diagnosis of MM, we performed this meta-analysis. METHODS We searched for related studies including PubMed, Web of Science, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI) and Wanfang Database as of July 20, 2020 to conduct this meta-analysis. To improve the accuracy, the quality assessment of Diagnostic Accuracy Study 2 (QUADAS-2) was used. We also applied random effects models to summarize sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) to measure diagnostic values, and subgroup analysis used to discover potential sources of heterogeneity. RESULTS We finally collected 32 studies from 15 articles that included a total of 2053 MM patients and 1118 healthy controls in this meta-analysis. The overall sensitivity, specificity, PLR, NLR, DOR and AUC were 0.81, 0.85, 5.5, 0.22, 25 and 0.90, respectively. Subgroup analysis shows that the down-regulation of microRNA clusters with larger samples size of plasma type could carry out a better diagnostic accuracy of MM patients. In addition, publication bias was not found. CONCLUSIONS Circulating miRNA could be a potential non-invasive biomarker for early diagnosis of MM. However, multi-center, more rigorous, and larger-scale studies are needed to verify our conclusions.
Collapse
Key Words
- AUC, Area under the curve
- CI, confidence interval
- DOR, Diagnostic odds ratio
- Diagnosis
- MGUS, Monoclonal gammopathy of undetermined significance
- MM, Multiple myeloma
- Meta-analysis
- MicroRNAs
- Multiple myeloma
- NLR, Negative likelihood ratio
- PCL, Plasma cell leukemia
- PLR, Positive likelihood ratio
- QUADAS-2, Quality Assessment of Diagnostic Accuracy Study 2
- SE, Sensitivity
- SP, Specificity
- microRNA, miRNA
Collapse
Affiliation(s)
- Shuai-Shuai Gao
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
- International Doctoral School, University of Seville, Spain
| | - Yan-Jun Wang
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Spain
| | - Wen-Ting Zhang
- International Doctoral School, University of Seville, Spain
| |
Collapse
|
79
|
Abstract
Pulmonary hypertension (PH) has been described in myeloproliferative disorders; monoclonal plasma cell disorder such as polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes syndrome; and plasma cell dyscrasias such as multiple myeloma and amyloidosis. We describe 4 cases of PH likely due to pulmonary vascular involvement and myocardial deposition from light chain deposition disease, amyloidosis, and multiple myeloma. On the basis of our clinical experience and literature review, we propose screening for plasma cell dyscrasia in patients with heart failure with preserved ejection fraction, unexplained PH, and hematological abnormalities. We also recommend inclusion of cardiopulmonary screening in patients with monoclonal gammopathy of undetermined significance.
Collapse
Key Words
- AL, amyloid light chain
- ASCT, autologous stem cell transplant
- BMB, bone marrow biopsy
- CKD, chronic kidney disease
- CT, computed tomography
- FLC, free light chain
- HIV, human immunodeficiency virus
- ILD, interstitial lung disease
- LC-MGUS, light chain monoclonal gammopathy of undetermined significance
- LCDD, light chain deposition disease
- LV, left ventricular
- MGUS, monoclonal gammopathy of undetermined significance
- MM, multiple myeloma
- MRI, magnetic resonance imaging
- PAP, pulmonary artery pressure
- PH, pulmonary hypertension
- RA, right atrial
- RHC, right heart catheterization
- RV, right ventricle/ventricular
- TTE, transthoracic echocardiography
- WHO, World Health Organization
Collapse
|
80
|
Leone P, Solimando AG, Malerba E, Fasano R, Buonavoglia A, Pappagallo F, De Re V, Argentiero A, Silvestris N, Vacca A, Racanelli V. Actors on the Scene: Immune Cells in the Myeloma Niche. Front Oncol 2020; 10:599098. [PMID: 33194767 PMCID: PMC7658648 DOI: 10.3389/fonc.2020.599098] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Argentiero
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Department of Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
81
|
International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J 2020; 10:102. [PMID: 33067414 PMCID: PMC7567803 DOI: 10.1038/s41408-020-00366-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Smoldering multiple myeloma (SMM) is an asymptomatic precursor state of multiple myeloma (MM). Recently, MM was redefined to include biomarkers predicting a high risk of progression from SMM, thus necessitating a redefinition of SMM and its risk stratification. We assembled a large cohort of SMM patients meeting the revised IMWG criteria to develop a new risk stratification system. We included 1996 patients, and using stepwise selection and multivariable analysis, we identified three independent factors predicting progression risk at 2 years: serum M-protein >2 g/dL (HR: 2.1), involved to uninvolved free light-chain ratio >20 (HR: 2.7), and marrow plasma cell infiltration >20% (HR: 2.4). This translates into 3 categories with increasing 2-year progression risk: 6% for low risk (38%; no risk factors, HR: 1); 18% for intermediate risk (33%; 1 factor; HR: 3.0), and 44% for high risk (29%; 2–3 factors). Addition of cytogenetic abnormalities (t(4;14), t(14;16), +1q, and/or del13q) allowed separation into 4 groups (low risk with 0, low intermediate risk with 1, intermediate risk with 2, and high risk with ≥3 risk factors) with 6, 23, 46, and 63% risk of progression in 2 years, respectively. The 2/20/20 risk stratification model can be easily implemented to identify high-risk SMM for clinical research and routine practice and will be widely applicable.
Collapse
|
82
|
Holstein SA, Howard A, Avigan D, Bhutani M, Cohen AD, Costa LJ, Dhodapkar MV, Gay F, Gormley N, Green DJ, Hillengass J, Korde N, Li Z, Mailankody S, Neri P, Parekh S, Pasquini MC, Puig N, Roodman GD, Samur MK, Shah N, Shah UA, Shi Q, Spencer A, Suman VJ, Usmani SZ, McCarthy PL. Summary of the 2019 Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Minimal Residual Disease and Immune Profiling. Biol Blood Marrow Transplant 2020; 26:e247-e255. [PMID: 32589921 PMCID: PMC7529908 DOI: 10.1016/j.bbmt.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Myeloma Intergroup has organized an annual workshop focused on minimal residual disease (MRD) testing and immune profiling (IP) in multiple myeloma since 2016. In 2019, the workshop took place as an American Society of Hematology (ASH) Friday Scientific Workshop titled "Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma." This workshop focused on 4 main topics: the molecular and immunologic evolution of plasma cell disorders, development of new laboratory- and imaging-based MRD assessment approaches, chimeric antigen receptor T cell therapy research, and statistical and regulatory issues associated with novel clinical endpoints. In this report, we provide a summary of the workshop and discuss future directions.
Collapse
Affiliation(s)
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - David Avigan
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Adam D Cohen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Nicole Gormley
- US Food and Drug Administration, Silver Spring, Maryland
| | - Damian J Green
- Fred Hutchinson Cancer Research Center & Seattle Cancer Care Alliance, Seattle, Washington
| | | | - Neha Korde
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zihai Li
- The Ohio State University, Columbus, Ohio
| | | | | | - Samir Parekh
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Noemi Puig
- Institute for Biomedical Research of Salamanca, University Hospital of Salamanca, Salamanca, Spain
| | - G David Roodman
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Nina Shah
- University of California San Francisco, San Francisco, California
| | - Urvi A Shah
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qian Shi
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | |
Collapse
|
83
|
Yamamoto J, Suwa T, Murase Y, Tateno S, Mizutome H, Asatsuma-Okumura T, Shimizu N, Kishi T, Momose S, Kizaki M, Ito T, Yamaguchi Y, Handa H. ARID2 is a pomalidomide-dependent CRL4 CRBN substrate in multiple myeloma cells. Nat Chem Biol 2020; 16:1208-1217. [PMID: 32958952 DOI: 10.1038/s41589-020-0645-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
The immunomodulatory drug (IMiD) thalidomide and its derivatives lenalidomide and pomalidomide are therapeutic agents used in the treatment of multiple myeloma. Although pomalidomide offers considerable clinical benefits to patients with lenalidomide-resistant multiple myeloma, the molecular mechanisms underlying its superior efficacy remain unclear. Here we show that ARID2, a component of the polybromo-associated BAF (PBAF) chromatin-remodeling complex, is a pomalidomide-induced neosubstrate of CRL4CRBN. BRD7, another subunit of PBAF, is critical for pomalidomide-induced ARID2 degradation. ARID2 is involved in transcriptional regulation of pomalidomide target genes including MYC. Pomalidomide is more effective than lenalidomide in degrading ARID2 and is capable of inhibiting MYC expression and proliferation in lenalidomide-resistant cell lines. Notably, ARID2 expression is associated with a poor prognosis and is higher in chemoresistant minimal residual disease (MRD) populations, and in patients with relapsed/refractory multiple myeloma. These findings suggest that ARID2 is a promising target for overcoming lenalidomide resistance in patients with multiple myeloma.
Collapse
Affiliation(s)
- Junichi Yamamoto
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsufumi Suwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Murase
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shumpei Tateno
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hirotaka Mizutome
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Nobuyuki Shimizu
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan
| | - Tsutomu Kishi
- Department of Chemical Biology and Applied Chemistry, Nihon University, Koriyama, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Takumi Ito
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.,PRESTO, JST, Kawaguchi, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.
| |
Collapse
|
84
|
Calip GS, Patel PR, Sweiss K, Wu Z, Zhou J, Asfaw AA, Adimadhyam S, Lee TA, Chiu BCH. Targets of biologic disease-modifying antirheumatic drugs and risk of multiple myeloma. Int J Cancer 2020; 147:1300-1305. [PMID: 31997371 DOI: 10.1002/ijc.32891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Several commonly used immune-suppressing biologic drugs target proteins and cytokines involved in myeloma pathogenesis. Our objective was to determine whether targeted biologic disease-modifying antirheumatic drugs (DMARDs) are associated with risk of multiple myeloma (MM). We conducted a nested case-control study within a retrospective cohort of 56,886 commercially insured adults undergoing treatment for rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis between 2009 and 2015 using the Truven Health MarketScan Databases. MM cases (n = 287) were matched to up to 10 controls (n = 2,760) on age, sex and rheumatologic indication using incidence density sampling without replacement. Our exposures of interest were biologic DMARDs targeting tumor necrosis factor-alpha, interleukin 6, cytotoxic t-lymphocyte-associated protein-4 and depletion of B cells. Relative risks were estimated as adjusted odds ratios (OR) and 95% confidence intervals (CI) using conditional logistic regression models. Cases and controls were similar with respect to use of prescription NSAIDs and concurrent conventional-synthetic DMARDs. Cases had slightly fewer etanercept users (4% vs. 7%) and slightly more tocilizumab users (1.4% vs. 0.4%). Compared to patients treated with only conventional-synthetic DMARDs, those receiving concomitant conventional-synthetic plus biologic DMARDs had lower risk of developing MM (OR = 0.48; 95% CI 0.30-0.88; p = 0.02). Risks differed by drug target with an inverse association observed with use of etanercept inhibiting tumor necrosis factor-alpha (OR = 0.55; 95% CI 0.30-1.02; p = 0.06) and a positive association with tocilizumab inhibiting interleukin-6 (OR = 4.33; 95% CI 1.33-14.19; p = 0.02) compared to biologic DMARD-naïve patients. Further investigation is warranted to understand the roles of drugs suppressing tumor necrosis factor-alpha and interleukin-6 in myeloma pathogenesis.
Collapse
Affiliation(s)
- Gregory S Calip
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL.,Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago, Chicago, IL.,Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Pritesh R Patel
- Division of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL
| | - Karen Sweiss
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL
| | - Zhaoju Wu
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Jifang Zhou
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Alemseged A Asfaw
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Sruthi Adimadhyam
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL
| | - Todd A Lee
- Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, IL.,Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois at Chicago, Chicago, IL
| | - Brian C-H Chiu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL
| |
Collapse
|
85
|
Dhodapkar MV, Sexton R, Hoering A, Van Rhee F, Barlogie B, Orlowski R. Race-Dependent Differences in Risk, Genomics, and Epstein-Barr Virus Exposure in Monoclonal Gammopathies: Results of SWOG S0120. Clin Cancer Res 2020; 26:5814-5819. [PMID: 32816893 DOI: 10.1158/1078-0432.ccr-20-2119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Risk of multiple myeloma is increased in African American (AA) populations compared with European American (EA) cohorts. Current estimates of risk of progression of monoclonal gammopathy of undetermined significance (MGUS) are based largely on studies in EA cohorts. Prospective analyses of this risk in AA cohorts are lacking. PATIENTS AND METHODS Between 2003 and 2011, 331 eligible patients with IgG/A monoclonal gammopathy were enrolled in a prospective observational trial (SWOG S0120). RESULTS Of 331 eligible patients, 57 (17%) were of AA descent. The risk of transformation to clinical malignancy in AA patients was significantly lower than in non-AA cohort (2-year risk 5% vs. 15%; 5-year risk 13% vs. 24%; log-rank P = 0.047). Differences in risk were evident for both MGUS and asymptomatic multiple myeloma. Gene expression profile (GEP) of CD138-purified plasma cells revealed that all molecular multiple myeloma subsets can be identified in both cohorts. However, the proportion of patients with high-risk GEP risk score (GEP-70 gene risk > -0.26) was lower in the AA cohort (0% vs. 33%, P = 0.01). AA cohorts also have higher levels of antibodies against Epstein-Barr nuclear antigen-1 (EBNA-1; P < 0.001). CONCLUSIONS These data provide the first prospective evidence that multiple myeloma precursor states in AA patients may have lower risk of disease compared with non-AA counterparts with lower incidence of high-risk GEP and increased EBV seropositivity. Race-dependent differences in biology and clinical risk of gammopathy may impact optimal management of these patients.
Collapse
Affiliation(s)
| | | | - Antje Hoering
- Cancer Research and Biostatistics, Seattle, Washington
| | - Frits Van Rhee
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | |
Collapse
|
86
|
Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory. Cancers (Basel) 2020; 12:cancers12082158. [PMID: 32759688 PMCID: PMC7463431 DOI: 10.3390/cancers12082158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022] Open
Abstract
The standard model of multiple myeloma (MM) relies on genetic instability in the normal counterparts of MM cells. MM-induced lytic bone lesions are considered as end organ damages. However, bone is a tissue of significance in MM and bone changes could be at the origin/facilitate the emergence of MM. We propose the tissue disruption-induced cell stochasticity (TiDiS) theory for MM oncogenesis that integrates disruption of the microenvironment, differentiation, and genetic alterations. It starts with the observation that the bone marrow endosteal niche controls differentiation. As decrease in cellular stochasticity occurs thanks to cellular interactions in differentiating cells, the initiating role of bone disruption would be in the increase of cellular stochasticity. Thus, in the context of polyclonal activation of B cells, memory B cells and plasmablasts would compete for localizing in endosteal niches with the risk that some cells cannot fully differentiate if they cannot reside in the niche because of a disrupted microenvironment. Therefore, they would remain in an unstable state with residual proliferation, with the risk that subclones may transform into malignant cells. Finally, diagnostic and therapeutic perspectives are provided.
Collapse
|
87
|
Kane E, Painter D, Smith A, Lamb M, Oliver SE, Patmore R, Roman E. Risk of mature B-cell neoplasms and precursor conditions after joint replacement: A report from the Haematological Malignancy Research Network. Int J Cancer 2020; 147:702-708. [PMID: 31675431 PMCID: PMC7317514 DOI: 10.1002/ijc.32765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Associations between previous joint replacement and B-cell lymphoid malignancies have been reported, but despite numerous reports, associations with the disease subtypes have received little attention. Using a UK-based register of haematological malignancies and a matched general population-based cohort, joint replacements from linked hospital inpatient records were examined. Cases diagnosed 2009-2015 who were aged 50 years or more were included; 8,013 mature B-cell neoplasms comprising myeloma (n = 1,763), diffuse large B-cell lymphoma (DLBCL, n = 1,676), chronic lymphocytic leukaemia (CLL, n = 1,594), marginal zone lymphoma (MZL, n = 957), follicular lymphoma (FL, n = 725) and classical Hodgkin lymphoma (CHL, n = 255), together with monoclonal gammopathy of uncertain significance (MGUS, n = 2,138) and monoclonal B-cell lymphocytosis (MBL, n = 632). Odds ratios (OR) and 95% confidence intervals (95%CI) were calculated relative to 10 age- and sex-matched controls using conditional logistic regression. Having had a joint replacement before diagnosis was associated with myeloma (OR = 1.3, 95% CI 1.1-1.5, p = 0.008) and MGUS (OR = 1.3, 95% CI 1.1-1.5, p < 0.001). Excluding replacements in the year before diagnosis, the MGUS risk remained, elevated where two or more joints were replaced (OR = 1.5, 95% CI 1.2-2.0, p = 0.001), with hip (OR = 1.2, 95% CI 1.0-1.5, p = 0.06) or knee replacements (OR = 1.5, 95% CI 1.2-1.8, p < 0.001). Associations with CHL and two or more replacements (OR = 2.7, 95% CI 1.3-5.6, p = 0.005) or hip replacements (OR = 1.9, 95% CI 1.0-3.4, p = 0.04); and between DLBCL and knee replacements (OR = 1.3, 95% CI 1.0-1.6, p = 0.04) were also observed. Our study reports for the first time a relationship between joint replacements and MGUS; while absolute risks of disease are low and not of major public health concern, these findings warrant further investigation.
Collapse
Affiliation(s)
- Eleanor Kane
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUnited Kingdom
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUnited Kingdom
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUnited Kingdom
| | - Maxine Lamb
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUnited Kingdom
| | - Steven E. Oliver
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUnited Kingdom
- Hull York Medical SchoolYorkUnited Kingdom
| | - Russell Patmore
- Queens Centre for Oncology, Castle Hill HospitalHullUnited Kingdom
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUnited Kingdom
| |
Collapse
|
88
|
Clay-Gilmour AI, Hildebrandt MAT, Brown EE, Hofmann JN, Spinelli JJ, Giles GG, Cozen W, Bhatti P, Wu X, Waller RG, Belachew AA, Robinson DP, Norman AD, Sinnwell JP, Berndt SI, Rajkumar SV, Kumar SK, Chanock SJ, Machiela MJ, Milne RL, Slager SL, Camp NJ, Ziv E, Vachon CM. Coinherited genetics of multiple myeloma and its precursor, monoclonal gammopathy of undetermined significance. Blood Adv 2020; 4:2789-2797. [PMID: 32569378 PMCID: PMC7322948 DOI: 10.1182/bloodadvances.2020001435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
So far, 23 germline susceptibility loci have been associated with multiple myeloma (MM) risk. It is unclear whether the genetic variation associated with MM susceptibility also predisposes to its precursor, monoclonal gammopathy of undetermined significance (MGUS). Leveraging 2434 MM cases, 754 MGUS cases, and 2 independent sets of controls (2567/879), we investigated potential shared genetic susceptibility of MM and MGUS by (1) performing MM and MGUS genome-wide association studies (GWAS); (2) validating the association of a polygenic risk score (PRS) based on 23 established MM loci (MM-PRS) with risk of MM, and for the first time with MGUS; and (3) examining genetic correlation of MM and MGUS. Heritability and genetic estimates yielded 17% (standard error [SE] ±0.04) and 15% (SE ±0.11) for MM and MGUS risk, respectively, and a 55% (SE ±0.30) genetic correlation. The MM-PRS was associated with risk of MM when assessed continuously (odds ratio [OR], 1.17 per SD; 95% confidence interval [CI], 1.13-1.21) or categorically (OR, 1.70; 95% CI, 1.38-2.09 for highest; OR, 0.71; 95% CI, 0.55-0.90 for lowest compared with middle quintile). The MM-PRS was similarly associated with MGUS (OR, 1.19 per SD; 95% CI, 1.14-1.26 as a continuous measure, OR, 1.77, 95%CI: 1.29-2.43 for highest and OR, 0.70, 95%CI: 0.50-0.98 for lowest compared with middle quintile). MM and MGUS associations did not differ by age, sex, or MM immunoglobulin isotype. We validated a 23-SNP MM-PRS in an independent series of MM cases and provide evidence for its association with MGUS. Our results suggest shared common genetic susceptibility to MM and MGUS.
Collapse
Affiliation(s)
- Alyssa I Clay-Gilmour
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
- Department of Biostatistics and Epidemiology, Arnold School of Public Health, University of South Carolina, Greenville, SC
| | - Michelle A T Hildebrandt
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth E Brown
- Department of Pathology, School of Medicine at the; University of Alabama, Birmingham, AL
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institues of Health, Bethesda, MD
| | - John J Spinelli
- Division of Population Oncology, BC Cancer, BC, Canada
- School of Population and Public Health, University of British Columbia, BC, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Wendy Cozen
- Department of Preventive Medicine, Keck School of Medicine at University of Southern California, Los Angeles, CA
| | - Parveen Bhatti
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rosalie G Waller
- Division of Hematology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Alem A Belachew
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dennis P Robinson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and
| | - Aaron D Norman
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and
| | - Jason P Sinnwell
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institues of Health, Bethesda, MD
| | - S Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN; and
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN; and
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institues of Health, Bethesda, MD
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institues of Health, Bethesda, MD
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Susan L Slager
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and
| | - Nicola J Camp
- Division of Hematology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Celine M Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| |
Collapse
|
89
|
Bar N, Costa F, Das R, Duffy A, Samur M, McCachren S, Gettinger SN, Neparidze N, Parker TL, Bailur JK, Pendleton K, Bajpai R, Zhang L, Xu ML, Anderson T, Giuliani N, Nooka A, Cho HJ, Raval A, Shanmugam M, Dhodapkar KM, Dhodapkar MV. Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer. JCI Insight 2020; 5:129353. [PMID: 32427579 PMCID: PMC7406262 DOI: 10.1172/jci.insight.129353] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDPD-1 and PD-L1 have been studied interchangeably in the clinic as checkpoints to reinvigorate T cells in diverse tumor types. Data for biologic effects of checkpoint blockade in human premalignancy are limited.METHODSWe analyzed the immunologic effects of PD-L1 blockade in a clinical trial of atezolizumab in patients with asymptomatic multiple myeloma (AMM), a precursor to clinical malignancy. Genomic signatures of PD-L1 blockade in purified monocytes and T cells in vivo were also compared with those following PD-1 blockade in lung cancer patients. Effects of PD-L1 blockade on monocyte-derived DCs were analyzed to better understand its effects on myeloid antigen-presenting cells.RESULTSIn contrast to anti-PD-1 therapy, anti-PD-L1 therapy led to a distinct inflammatory signature in CD14+ monocytes and increase in myeloid-derived cytokines (e.g., IL-18) in vivo. Treatment of AMM patients with atezolizumab led to rapid activation and expansion of circulating myeloid cells, which persisted in the BM. Blockade of PD-L1 on purified monocyte-derived DCs led to rapid inflammasome activation and synergized with CD40L-driven DC maturation, leading to greater antigen-specific T cell expansion.CONCLUSIONThese data show that PD-L1 blockade leads to distinct systemic immunologic effects compared with PD-1 blockade in vivo in humans, particularly manifest as rapid myeloid activation. These findings also suggest an additional role for PD-L1 as a checkpoint for regulating inflammatory phenotype of myeloid cells and antigen presentation in DCs, which may be harnessed to improve PD-L1-based combination therapies.TRIAL REGISTRATIONNCT02784483.FUNDINGThis work is supported, in part, by funds from NIH/NCI (NCI CA197603, CA238471, and CA208328).
Collapse
Affiliation(s)
- Noffar Bar
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Federica Costa
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rituparna Das
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Alyssa Duffy
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Mehmet Samur
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Samuel McCachren
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Scott N. Gettinger
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Natalia Neparidze
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Terri L. Parker
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Katherine Pendleton
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Richa Bajpai
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Lin Zhang
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mina L. Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tara Anderson
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ajay Nooka
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
| | - Hearn J. Cho
- Mount Sinai Medical Center, New York, New York, USA
| | - Aparna Raval
- Oncology Biomarker Development, Genentech, South San Francisco, California, USA
| | - Mala Shanmugam
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Kavita M. Dhodapkar
- Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Madhav V. Dhodapkar
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
90
|
Bosseboeuf A, Seillier C, Mennesson N, Allain-Maillet S, Fourny M, Tallet A, Piver E, Lehours P, Mégraud F, Berthelot L, Harb J, Bigot-Corbel E, Hermouet S. Analysis of the Targets and Glycosylation of Monoclonal IgAs From MGUS and Myeloma Patients. Front Immunol 2020; 11:854. [PMID: 32536913 PMCID: PMC7266999 DOI: 10.3389/fimmu.2020.00854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies showed that monoclonal immunoglobulins G (IgGs) of “monoclonal gammopathy of undetermined significance” (MGUS) and myeloma were hyposialylated, thus presumably pro-inflammatory, and for about half of patients, the target of the monoclonal IgG was either a virus—Epstein–Barr virus (EBV), other herpes viruses, hepatitis C virus (HCV)—or a glucolipid, lysoglucosylceramide (LGL1), suggesting antigen-driven disease in these patients. In the present study, we show that monoclonal IgAs share these characteristics. We collected 35 sera of patients with a monoclonal IgA (6 MGUS, 29 myeloma), and we were able to purify 25 of the 35 monoclonal IgAs (6 MGUS, 19 myeloma). Monoclonal IgAs from MGUS and myeloma patients were significantly less sialylated than IgAs from healthy volunteers. When purified monoclonal IgAs were tested against infectious pathogens and LGL1, five myeloma patients had a monoclonal IgA that specifically recognized viral proteins: the core protein of HCV in one case, EBV nuclear antigen 1 (EBNA-1) in four cases (21.1% of IgA myeloma). Monoclonal IgAs from three myeloma patients reacted against LGL1. In summary, monoclonal IgAs are hyposialylated and as described for IgG myeloma, significant subsets (8/19, or 42%) of patients with IgA myeloma may have viral or self (LGL1) antigen-driven disease.
Collapse
Affiliation(s)
- Adrien Bosseboeuf
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Célia Seillier
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Mennesson
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | | | - Maeva Fourny
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France
| | - Anne Tallet
- Laboratoire de Biochimie, CHU de Tours, Tours, France
| | - Eric Piver
- Laboratoire de Biochimie, CHU de Tours, Tours, France.,Inserm UMR966, Tours, France
| | - Philippe Lehours
- Inserm U1053, Université de Bordeaux, Bordeaux, France.,Laboratoire de Bactériologie, Centre National de Reference des Campylobacters et des Hélicobacters, CHU de Bordeaux, Bordeaux, France
| | - Francis Mégraud
- Inserm U1053, Université de Bordeaux, Bordeaux, France.,Laboratoire de Bactériologie, Centre National de Reference des Campylobacters et des Hélicobacters, CHU de Bordeaux, Bordeaux, France
| | - Laureline Berthelot
- Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France
| | - Jean Harb
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Centre de Recherche en Transplantation et Immunologie UMR1064, Inserm, Université de Nantes, Nantes, France.,Laboratoire de Biochimie, CHU de Nantes, Nantes, France
| | - Edith Bigot-Corbel
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Laboratoire de Biochimie, CHU de Nantes, Nantes, France
| | - Sylvie Hermouet
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Nantes, France.,Laboratoire d'Hématologie, CHU de Nantes, Nantes, France
| |
Collapse
|
91
|
Bosseboeuf A, Mennesson N, Allain-Maillet S, Tallet A, Piver E, Decaux O, Moreau C, Moreau P, Lehours P, Mégraud F, Salle V, Bigot-Corbel E, Harb J, Hermouet S. Characteristics of MGUS and Multiple Myeloma According to the Target of Monoclonal Immunoglobulins, Glucosylsphingosine, or Epstein-Barr Virus EBNA-1. Cancers (Basel) 2020; 12:cancers12051254. [PMID: 32429322 PMCID: PMC7281552 DOI: 10.3390/cancers12051254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic stimulation by infectious or self-antigens initiates subsets of monoclonal gammopathies of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or multiple myeloma (MM). Recently, glucosylsphingosine (GlcSph) was reported to be the target of one third of monoclonal immunoglobulins (Igs). In this study of 233 patients (137 MGUS, 6 SMM, 90 MM), we analyzed the GlcSph-reactivity of monoclonal Igs and non-clonal Igs. The presence of GlcSph-reactive Igs in serum was unexpectedly frequent, detected for 103/233 (44.2%) patients. However, GlcSph was targeted by the patient’s monoclonal Ig for only 37 patients (15.9%); for other patients (44 MGUS, 22 MM), the GlcSph-reactive Igs were non-clonal. Then, the characteristics of patients were examined: compared to MM with an Epstein-Barr virus EBNA-1-reactive monoclonal Ig, MM patients with a GlcSph-reactive monoclonal Ig had a mild presentation. The inflammation profiles of patients were similar except for moderately elevated levels of 4 cytokines for patients with GlcSph-reactive Igs. In summary, our study highlights the importance of analyzing clonal Igs separately from non-clonal Igs and shows that, if autoimmune responses to GlcSph are frequent in MGUS/SMM and MM, GlcSph presumably represents the initial pathogenic event for ~16% cases. Importantly, GlcSph-initiated MM appears to be a mild form of MM disease.
Collapse
Affiliation(s)
- Adrien Bosseboeuf
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Inserm, Université de Nantes, Université d’Angers, 44000 Nantes, France; (A.B.); (N.M.); (S.A.-M.); (E.B.-C.); (J.H.)
| | - Nicolas Mennesson
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Inserm, Université de Nantes, Université d’Angers, 44000 Nantes, France; (A.B.); (N.M.); (S.A.-M.); (E.B.-C.); (J.H.)
| | - Sophie Allain-Maillet
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Inserm, Université de Nantes, Université d’Angers, 44000 Nantes, France; (A.B.); (N.M.); (S.A.-M.); (E.B.-C.); (J.H.)
| | - Anne Tallet
- Laboratoire de Biochimie, Centre Hospitalier Universitaire (CHU) Tours, 37000 Tours, France; (A.T.); (E.P.)
| | - Eric Piver
- Laboratoire de Biochimie, Centre Hospitalier Universitaire (CHU) Tours, 37000 Tours, France; (A.T.); (E.P.)
- Inserm UMR966, 37000 Tours, France
| | | | | | | | - Philippe Lehours
- Laboratoire de Bactériologie, CHU Bordeaux, 33000 Bordeaux, France; (P.L.); (F.M.)
- Inserm U1053, Université de Bordeaux, 33000 Bordeaux, France
| | - Francis Mégraud
- Laboratoire de Bactériologie, CHU Bordeaux, 33000 Bordeaux, France; (P.L.); (F.M.)
- Inserm U1053, Université de Bordeaux, 33000 Bordeaux, France
| | - Valéry Salle
- Médecine Interne et Maladies Systémiques, CHU Amiens, 80000 Amiens, France;
| | - Edith Bigot-Corbel
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Inserm, Université de Nantes, Université d’Angers, 44000 Nantes, France; (A.B.); (N.M.); (S.A.-M.); (E.B.-C.); (J.H.)
- Laboratoire de Biochimie, CHU Nantes, 44000 Nantes, France
| | - Jean Harb
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Inserm, Université de Nantes, Université d’Angers, 44000 Nantes, France; (A.B.); (N.M.); (S.A.-M.); (E.B.-C.); (J.H.)
- Laboratoire de Biochimie, CHU Nantes, 44000 Nantes, France
- Centre de Recherche en Transplantation et Immunologie (CRTI), UMR1064, Inserm, Université de Nantes, 44000 Nantes, France
| | - Sylvie Hermouet
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Inserm, Université de Nantes, Université d’Angers, 44000 Nantes, France; (A.B.); (N.M.); (S.A.-M.); (E.B.-C.); (J.H.)
- Laboratoire d’Hématologie, CHU Nantes, 44000 Nantes, France
- Correspondence: ; Tel.: +33-2-28-08-03-55
| |
Collapse
|
92
|
Zhang Q, Zhang Z. Stepwise immune alterations in multiple myeloma progression. NATURE CANCER 2020; 1:477-479. [PMID: 35121982 DOI: 10.1038/s43018-020-0063-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Qiming Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
93
|
Navigating the Role of CD1d/Invariant Natural Killer T-cell/Glycolipid Immune Axis in Multiple Myeloma Evolution: Therapeutic Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:358-365. [PMID: 32234294 DOI: 10.1016/j.clml.2020.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. The immunotherapeutic approach for MM therapy is evolving. The Cd1d/invariant natural killer T-cell/glycolipid immune axis belongs to the innate immunity, and we have highlighted role in myeloma pathogenesis in the present study. The recent development of the chimeric antigen receptor (CAR19)-invariant natural killer T-cells resulted in our renewed interest in this immune system and offer new perspectives for future anti-MM immunotherapies.
Collapse
|
94
|
Nair S, Bar N, Xu ML, Dhodapkar M, Mistry PK. Glucosylsphingosine but not Saposin C, is the target antigen in Gaucher disease-associated gammopathy. Mol Genet Metab 2020; 129:286-291. [PMID: 32044242 PMCID: PMC8223251 DOI: 10.1016/j.ymgme.2020.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/08/2023]
Abstract
In Gaucher disease type 1 (GD1), genetic deficiency of lysosomal glucocerebrosidase results in the accumulation of glucosylceramide and glucosylsphingosine (GlcSph), that underlie chronic lipid-mediated metabolic inflammation. An important age-related phenotype is high risk of monoclonal gammopathy (MG), including multiple myeloma. We identified GlcSph, a pathological lyso-sphingolipid exclusively elevated in GD, as a mediator of B cell activation and as an antigenic target for GD1-associated MG. Saposin C (SapC), is a lipid-binding protein and activator of lysosomal glucocerebrosidase, which when mutated, cause a rare variant of GD. Sera of GD1 patients with MG of diverse immunoglobulin types were compared to GD patients without gammopathy for reactivity against GlcSph and SapC. We show reactivity of clonal immunoglobulin in GD1 to GlcSph but not to SapC. In two patients with GD1 and gammopathy, GlcSph-reduction therapy with eliglustat resulted in reduction in clonal Ig. Together, our data show that GlcSph but not SapC is the antigenic target in GD1-associated MG and that therapy aimed at reducing the levels of immunogenic lipid resulted in reduction of clonal immunoglobulin in vivo.
Collapse
Affiliation(s)
- Shiny Nair
- Department of Medicine, Yale University, New Haven, CT, USA
| | - Noffar Bar
- Department of Medicine, Yale University, New Haven, CT, USA
| | - Mina L Xu
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Madhav Dhodapkar
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Pramod K Mistry
- Department of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
95
|
Cohen AD, Raje N, Fowler JA, Mezzi K, Scott EC, Dhodapkar MV. How to Train Your T Cells: Overcoming Immune Dysfunction in Multiple Myeloma. Clin Cancer Res 2020; 26:1541-1554. [PMID: 31672768 PMCID: PMC8176627 DOI: 10.1158/1078-0432.ccr-19-2111] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
The progression of multiple myeloma, a hematologic malignancy characterized by unregulated plasma cell growth, is associated with increasing innate and adaptive immune system dysfunction, notably in the T-cell repertoire. Although treatment advances in multiple myeloma have led to deeper and more durable clinical responses, the disease remains incurable for most patients. Therapeutic strategies aimed at overcoming the immunosuppressive tumor microenvironment and activating the host immune system have recently shown promise in multiple myeloma, particularly in the relapsed and/or refractory disease setting. As the efficacy of T-cell-dependent immuno-oncology therapy is likely affected by the health of the endogenous T-cell repertoire, these therapies may also provide benefit in alternate treatment settings (e.g., precursor disease; after stem cell transplantation). This review describes T-cell-associated changes during the evolution of multiple myeloma and provides an overview of T-cell-dependent immuno-oncology approaches under investigation. Vaccine and checkpoint inhibitor interventions are being explored across the multiple myeloma disease continuum; treatment modalities that redirect patient T cells to elicit an anti-multiple myeloma response, namely, chimeric antigen receptor (CAR) T cells and bispecific antibodies [including BiTE (bispecific T-cell engager) molecules], have been primarily evaluated to date in the relapsed and/or refractory disease setting. CAR T cells and bispecific antibodies/antibody constructs directed against B-cell maturation antigen have generated excitement, with clinical data demonstrating deep responses. An increased understanding of the complex interplay between the immune system and multiple myeloma throughout the disease course will aid in maximizing the potential for T-cell-dependent immuno-oncology strategies in multiple myeloma.
Collapse
Affiliation(s)
- Adam D Cohen
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Noopur Raje
- Departments of Hematology/Oncology and Medicine, Center for Multiple Myeloma, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
96
|
Monoclonal Gammopathy of Undetermined Significance: Current Concepts and Future Prospects. Curr Hematol Malig Rep 2020; 15:45-55. [DOI: 10.1007/s11899-020-00569-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
97
|
Zhao J, Wang M, He P, Chen Y, Wang X, Zhang M. Identification of glutathione S-transferase π 1 as a prognostic proteomic biomarker for multiple myeloma using proteomic profiling. Oncol Lett 2020; 19:2153-2162. [PMID: 32194713 PMCID: PMC7038923 DOI: 10.3892/ol.2020.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/12/2019] [Indexed: 11/05/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell hematological malignancy with monoclonal plasma cell proliferation in the bone marrow. Early diagnosis of MM remains difficult due to the lack of specific symptoms and biomarkers. In the present study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the ClinProt system was used to detect potential biomarkers for MM from the bone marrow samples of 30 patients and 30 healthy controls. A total of 10 of the most significantly differentiated peaks between the patients and controls were identified. When patients with MM were compared with controls, 6 peaks with m/z values of 1,779.24, 1,866.32, 2,022.36, 2,878.9, 4,417.76 and 7,155.38 were upregulated, and 4 peaks with m/z values of 1,466.54, 1,520.02, 1,546.53 and 2,991.05 were downregulated. Of these 10 peaks, 4 peaks (pk 8, 1,866.32 Da; pk 15, 2,878.90 Da; pk 17, 2,991.05 Da; and pk 3, 1,520.02 Da) were further sequenced and identified using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Furthermore, the expression of fibronectin 1 and glutathione S-transferase π 1 (GSTP1) were validated in patients with MM via ELISAs. Clinical data and statistical analysis indicated that GSTP1 expression was closely associated with the clinical stage of patients with MM. High GSTP1 levels were an independent risk factor for worse prognosis in patients with MM. These results demonstrate that GSTP1 may be a novel biomarker for early diagnosis, prognosis and monitoring of minimal residual disease in MM.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meihua Wang
- Department of Hematology, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, P.R. China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mei Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
98
|
Joseph NS, Dhodapkar MV, Lonial S. The Role of Early Intervention in High-Risk Smoldering Myeloma. Am Soc Clin Oncol Educ Book 2020; 40:1-9. [PMID: 32182141 DOI: 10.1200/edbk_278915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Smoldering multiple myeloma (SMM) is a precursor disease state that precedes the development of symptomatic myeloma. As we have learned more about the disease biology of SMM and risk factors for progression, updated risk stratification models, such as the Mayo 2018 model, or 20/2/20, have been developed. More accurate risk stratification and the development of effective and well-tolerated therapeutic agents have led to the investigation of early treatment of select patients with high-risk SMM with the aim of delaying time to progression to multiple myeloma. Ongoing debate surrounds which subset of patients with SMM to target, as well as the best treatment approach: preventative versus curative. Phase III data from the Spanish Myeloma Group/PETHEMA as well as the Eastern Cooperative Oncology Group (ECOG) E3A06 trial have shown the efficacy of lenalidomide with and without dexamethasone in high-risk SMM in delaying progression to symptomatic disease. Conversely, there exists an alternate strategy attempting to cure the disease prior to progression utilizing more intensive regimens similar to what is used for patients with newly diagnosed myeloma. However, our understanding of the disease biology of SMM and the role of immune regulation in preventing malignant transformation provides a strong rationale for an interventional strategy. Here, we review the definition of SMM, the current models for risk stratification, and the current data available supporting the early treatment of patients with high-risk SMM.
Collapse
Affiliation(s)
- Nisha S Joseph
- Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - Sagar Lonial
- Winship Cancer Institute of Emory University, Atlanta, GA
| |
Collapse
|
99
|
ROS-induced oxidative damage in lymphocytes ex vivo/in vitro from healthy individuals and MGUS patients: protection by myricetin bulk and nanoforms. Arch Toxicol 2020; 94:1229-1239. [PMID: 32107588 PMCID: PMC7225194 DOI: 10.1007/s00204-020-02688-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
We investigated the protective role of myricetin bulk and nanoforms, against reactive oxygen species (ROS)-induced oxidative stress caused by hydrogen peroxide and tertiary-butyl hydro peroxide in lymphocytes in vitro from healthy individuals and those from pre-cancerous patients suffering with monoclonal gammopathy of undetermined significance (MGUS). The change in intracellular reactive oxygen species was measured once cells were treated with myricetin bulk forms and nanoforms with and without either hydrogen peroxide or tertiary-butyl hydro peroxide co-supplementation. The direct and indirect antioxidant activity of myricetin was spectrofluometrically measured using the fluorescent dye 2',7'-dichlorofluorescin diacetate and using the Comet assay, respectively. Hydrogen peroxide (50 µM) and tertiary-butyl hydro peroxide (300 µM) induced a higher level of reactive oxygen species-related DNA damage and strand breaks. Addition of myricetin nanoform (20 µM) and bulk (10 µM) form could, however, significantly prevent hydrogen peroxide- and tertiary-butyl hydro peroxide-induced oxidative imbalances and the nanoform was more effective. Glutathione levels were also quantified using a non-fluorescent dye. Results suggest that myricetin treatment had no significant effect on the cellular antioxidant enzyme, glutathione. The current study also investigates the effect of myricetin on the induction of double-strand breaks by staining the gamma-H2AX foci immunocytochemically. It was observed that myricetin does not induce double-strand breaks at basal levels rather demonstrated a protective effect.
Collapse
|
100
|
Walters DK, Jelinek DF. Multiplex Immunofluorescence of Bone Marrow Core Biopsies: Visualizing the Bone Marrow Immune Contexture. J Histochem Cytochem 2019; 68:99-112. [PMID: 31855110 DOI: 10.1369/0022155419896802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability to visualize and quantify the spatial arrangement and geographic proximity of immune cells with tumor cells provides valuable insight into the complex mechanisms underlying cancer biology and progression. Multiplexing, which involves immunofluorescence labeling and the visualization of multiple epitopes within formalin-fixed paraffin embedded tissue sections, is a methodology that is being increasingly employed. Despite the power of immunofluorescence multiplex analysis, application of this technology to bone marrow core biopsies has not yet been realized. Given our specific long term goal to identify immune cells in proximity to bone marrow malignant plasma cells in multiple myeloma patients, we describe in this study adaptation of multiplex immunofluorescence analysis to this tissue. We first identified a blocking strategy that quenched autofluorescence. We next employed a multiplex strategy that uses a simple stripping solution to remove primary and secondary antibodies prior to subsequent rounds of staining. This method was found to be highly efficient and did not significantly alter antigenicity or tissue integrity. Our studies illustrate for the first time that immunofluorescence multiplexing is achievable in bone marrow core biopsies and will provide a novel opportunity to analyze the role of the immune contexture in disease progression of the monoclonal gammopathies.
Collapse
Affiliation(s)
- Denise K Walters
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| | - Diane F Jelinek
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota and Scottsdale, Arizona
| |
Collapse
|