51
|
Characterization of Philadelphia-like Pre-B Acute Lymphoblastic Leukemia: Experiences in Mexican Pediatric Patients. Int J Mol Sci 2022; 23:ijms23179587. [PMID: 36076986 PMCID: PMC9455471 DOI: 10.3390/ijms23179587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Ph-like subtypes with CRLF2 abnormalities are frequent among Hispano–Latino children with pre-B ALL. Therefore, there is solid ground to suggest that this subtype is frequent in Mexican patients. The genomic complexity of Ph-like subtype constitutes a challenge for diagnosis, as it requires diverse genomic methodologies that are not widely available in diagnostic centers in Mexico. Here, we propose a diagnostic strategy for Ph-like ALL in accordance with our local capacity. Pre-B ALL patients without recurrent gene fusions (104) were classified using a gene-expression profile based on Ph-like signature genes analyzed by qRT-PCR. The expressions of the CRLF2 transcript and protein were determined by qRT-PCR and flow cytometry. The P2RY8::CRLF2, IGH::CRLF2, ABL1/2 rearrangements, and Ik6 isoform were screened using RT-PCR and FISH. Surrogate markers of Jak2-Stat5/Abl/Ras pathways were analyzed by phosphoflow. Mutations in relevant kinases/transcription factors genes in Ph-like were assessed by target-specific NGS. A total of 40 patients (38.5%) were classified as Ph-like; of these, 36 had abnormalities associated with Jak2-Stat5 and 4 had Abl. The rearrangements IGH::CRLF2,P2RY8::CRLF2, and iAMP21 were particularly frequent. We propose a strategy for the detection of Ph-like patients, by analyzing the overexpression/genetic lesions of CRLF2, the Abl phosphorylation of surrogate markers confirmed by gene rearrangements, and Sanger sequencing.
Collapse
|
52
|
Kołodrubiec J, Kozłowska M, Irga-Jaworska N, Sędek Ł, Pastorczak A, Trelińska J, Młynarski W. Efficacy of ruxolitinib in acute lymphoblastic leukemia: A systematic review. Leuk Res 2022; 121:106925. [PMID: 35939887 DOI: 10.1016/j.leukres.2022.106925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk molecular subtype with a gene expression profile similar to Philadelphia-positive ALL, but not harboring the BCR-ABL1 gene fusion. We aimed to investigate the efficacy of target therapy with the Janus kinase inhibitor, ruxolitinib, in patients with Ph-like ALL and molecular signature of JAK-STAT signaling pathway. A systematic search of the literature was performed to identify reports concerning administration of ruxolitinib in Ph-like ALL patients. Additionally, Polish Pediatric ALL registries were searched for patients with Ph-like ALL treated with ruxolitinib. Extracted information included epidemiological background, somatic aberrations, treatment response, and patient outcome. After PubMed database search, twelve patients were identified, and one was identified in the Polish Pediatric ALL registry. In nine patients gene fusions affecting JAK2 (n = 7) and EPOR (n = 2) were detected. Surface overexpression of CRLF2 and IKZF1 deletions were observed in two and three patients, respectively. Induction failure occurred in all the patients. Therapy with ruxolitinib led to complete (n = 7) and partial (n = 2) remission, in three individuals no information was found. Based on the limited number of studies describing the efficacy of ruxolitinib as an additional compound administrated with standard ALL therapy, we conclude that this approach can be considered in patients with aberrations activating JAK-STAT pathway.
Collapse
Affiliation(s)
- Julia Kołodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Marta Kozłowska
- Department of Pediatric Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ninela Irga-Jaworska
- Department of Pediatric Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Trelińska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
53
|
Peyam S, Bhatia P, Singh M, Sharma P, Sreedharanunni S, Sachdeva MS, Naseem S, Bansal D, Varma N, Thakur R, Trehan A. Clinico-hematological and Outcome Profile of Pediatric B-other-ALL and BCR::ABL1-like pre-B-ALL: An Integrated Genomic Study From North India. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e667-e679. [PMID: 35484080 DOI: 10.1016/j.clml.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE BCR::ABL1-like pre-B-ALL comprises a myriad of genetic lesions making molecular diagnosis challenging and expensive. Its frequency and outcome are less studied in resource-constraint settings. METHODS 154 pre-B-ALL cases (0-12 years) were enrolled as group 1 (37 cases of B-other-ALL) and group 2 (117 patients with recurrent translocations/ hyperdiploidy). Group 1 was evaluated for BCR::ABL1-like genetic lesions and copy-number abnormalities (CNAs) as per our published PACE approach supplemented with targeted RNA sequencing. RESULTS BCR::ABL1-like frequency was 5.2% (8 of 154) and 22% (8 of 37) with the PACE approach alone in the whole and B-other-ALL cohort, respectively. The addition of targeted RNA-sequencing had led to the frequency increasing to 9% (14 of 154) and 38% (14 of 37) in the whole and B-other-ALL cohort, respectively. P2RY8::CRLF2, IGH::CRLF2, and RCSD1::ABL1 were noted in 8 (57.1%), 4 (28.6%), and 2 (14.3%) patients, respectively. CNAs were noted in 56.7% (21 of 37) of patients. The BCR::ABL1-like group had a significantly higher initial WBC count of ≥ 50,000/mm3 (71.4%; P < .001) than group 2. The 4-year OS, EFS, RFS of group 1 was not statistically different from group 2, though RFS was borderline poor (84.2%, 51.7%, 56.9% Vs. 82.6%, 62.9%, 78% [P - .42, P - .53, P - .059]). The 4-year EFS and RFS for BCR::ABL1-like cases was 70.7% and 76.6%, respectively. CONCLUSIONS The sensitivity of detecting BCR::ABL1-like lesions had increased significantly from 22% using the PACE approach alone to 38% in B-other-ALLs with the integrated approach. Although outcomes were not statistically different, a higher percentage of relapses were noted in the B-other-ALL group.
Collapse
Affiliation(s)
- Srinivasan Peyam
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manupdesh S Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shano Naseem
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Bansal
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rozy Thakur
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Pediatric Hematology-Oncology Division, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
54
|
Wästerlid T, Cavelier L, Haferlach C, Konopleva M, Fröhling S, Östling P, Bullinger L, Fioretos T, Smedby KE. Application of precision medicine in clinical routine in haematology-Challenges and opportunities. J Intern Med 2022; 292:243-261. [PMID: 35599019 PMCID: PMC9546002 DOI: 10.1111/joim.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Precision medicine is revolutionising patient care in cancer. As more knowledge is gained about the impact of specific genetic lesions on diagnosis, prognosis and treatment response, diagnostic precision and the possibility for optimal individual treatment choice have improved. Identification of hallmark genetic aberrations such as the BCR::ABL1 gene fusion in chronic myeloid leukaemia (CML) led to the rapid development of efficient targeted therapy and molecular follow-up, vastly improving survival for patients with CML during recent decades. The assessment of translocations, copy number changes and point mutations are crucial for the diagnosis and risk stratification of acute myeloid leukaemia and myelodysplastic syndromes. Still, the often heterogeneous and complex genetic landscape of haematological malignancies presents several challenges for the implementation of precision medicine to guide diagnosis, prognosis and treatment choice. This review provides an introduction and overview of the important molecular characteristics and methods currently applied in clinical practice to guide clinical decision making in haematological malignancies of myeloid and lymphoid origin. Further, experimental ways to guide the choice of targeted therapy for refractory patients are reviewed, such as functional precision medicine using drug profiling. An example of the use of pipeline studies where the treatment is chosen according to the molecular characteristics in rare solid malignancies is also provided. Finally, the future opportunities and remaining challenges of precision medicine in the real world are discussed.
Collapse
Affiliation(s)
- Tove Wästerlid
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Marina Konopleva
- Department of Leukemia, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK) Berlin Site, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Science for Life Laboratory, Lund University and Clinical Genomics Lund, Lund, Sweden
| | - Karin E Smedby
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
55
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
56
|
Outcomes of Allogeneic Hematopoietic Cell Transplantation in Adults with Fusions Associated with Ph-like ALL. Blood Adv 2022; 6:4936-4948. [PMID: 35816633 PMCID: PMC9631622 DOI: 10.1182/bloodadvances.2022007597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
Posttransplant survival outcomes were comparable between adult patients with Ph-like ALL fusions and other high-risk B-cell ALL. In patients with Ph-like ALL, RFS was significantly influenced by disease status (P < .001) and conditioning regimen intensity (P = .014).
Allogenic hematopoietic cell transplantation (alloHCT) is a well-established curative modality for acute lymphoblastic leukemia (ALL), yet large amounts of data describing alloHCT outcomes in Philadelphia (Ph)-like ALL are lacking. We retrospectively analyzed archived DNA samples from consecutive adults with B-cell Ph-negative ALL who underwent alloHCT in complete remission (CR) (n = 127) at our center between 2006 and 2020. Identification of fusions associated with Ph-like ALL was performed using cumulative results from RNA-seq, conventional cytogenetics, fluorescence in situ hybridization, and whole genome array studies. Fusions associated with Ph-like ALL were detected in 56 (44%) patients, of whom 38 were carrying CRLF2r. Compared with other non–Ph-like ALL (n = 71), patients with fusions associated with Ph-like ALL were more frequently Hispanic (P = .008), were less likely to carry high-risk cytogenetics (P < .001), and were more likely to receive blinatumomab prior to HCT (P = .019). With the median followup of 3.5 years, patients with Ph-like ALL fusions had comparable posttransplant outcomes compared with other B-cell ALL: 3-year relapse-free survival (RFS) (41% vs 44%; P = .36), overall survival (OS) (51% vs 50%; P = .59), and relapse (37% vs 31%; P = .47). In multivariable analysis, age (P = .023), disease status at the time of transplant (P < .001), and donor type (P = .015) influenced OS. RFS (primary endpoint) was significantly influenced by disease status (P < .001) and conditioning regimen intensity (P = .014). In conclusion, our data suggest that alloHCT consolidation results in similarly favorable survival outcomes in adult patients with Ph-like fusions and other high-risk B-cell ALL.
Collapse
|
57
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36:1720-1748. [PMID: 35732829 PMCID: PMC9214472 DOI: 10.1038/s41375-022-01620-2] [Citation(s) in RCA: 1755] [Impact Index Per Article: 585.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
Collapse
|
58
|
Hassan NM, Abdellateif MS, Radwan EM, Hameed SA, Desouky EDE, Kamel MM, Gameel AM. Prognostic significance of CRLF2 overexpression and JAK2 mutation in Egyptian pediatric patients with B-precursor acute lymphoblastic leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e376-e385. [PMID: 34987014 DOI: 10.1016/j.clml.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The prognostic significance of cytokine receptor-like factor 2 (CRLF2) overexpression in pediatric B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) is still controversial. We aimed to investigate the role of CRLF2 overexpression and JAK2 mutation in the diagnosis and prognosis of newly diagnosed pediatric B-ALL patients. METHODS CRLF2 expression was assessed by real-time quantitative polymerase chain reaction (PCR) in 115 pediatric patients newly diagnosed with precursor B-ALL patients compared with 24 age- and sex-matched controls. JAK2 R683G mutation status was performed by the qBiomarker Somatic Mutation PCR Assay. RESULTS CRLF2 overexpression was identified in 21 patients (18.3%), while the JAK2 R683G mutant type was found in only in 7 patients (6.1%). There was a significant CRLF2 overexpression in patients with high initial TLC, high blast count in blood, and organomegaly (P .04, 0.005 & 0.05 respectively). No patients with CRLF2 overexpression expressed any recurrent cytogenetic translocations. 4 patients with CRLF2 overexpression showed JAK2 R683G mutation. CRLF2 levels and JAK2 R683G mutation status did not have a significant impact on either overall survival or disease-free survival. CONCLUSION CRLF2 expression was significantly higher in Egyptian precursor B-ALL pediatric patients. CRLF2 overexpression was associated with a number of unfavorable prognostic factors with high tumor load, but was not an adverse independent parameter in pediatric BCP-ALL patients. Some patients with CRLF2 overexpression display JAK2 mutation, which may benefit from targeted therapy by kinase inhibitors.
Collapse
Affiliation(s)
- Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Enas M Radwan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sayed Abed Hameed
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman D El Desouky
- Biostatistics and Cancer Epidemiology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud M Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Abdallah M Gameel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
59
|
Rack K, Bie J, Ameye G, Gielen O, Demeyer S, Cools J, Keersmaecker K, Vermeesch JR, Maertens J, Segers H, Michaux L, Dewaele B. Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping. Am J Hematol 2022; 97:548-561. [PMID: 35119131 PMCID: PMC9314940 DOI: 10.1002/ajh.26487] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.
Collapse
Affiliation(s)
- Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Jolien Bie
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
| | - Geneviève Ameye
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Olga Gielen
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Jan Cools
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
| | - Kim Keersmaecker
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Oncology KU Leuven Leuven Belgium
| | - Joris R. Vermeesch
- Department of Human Genetics KU Leuven Leuven Belgium
- Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Johan Maertens
- Department of Hematology University Hospitals Leuven Leuven Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Pediatric Oncology‐Hematology University Hospitals Leuven Leuven Belgium
| | - Lucienne Michaux
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| |
Collapse
|
60
|
Linares Ballesteros A, Yunis LK, García J, Aponte N, Flechas J, Martinez C, Uribe G, Quintero E, Díaz A, Pardo C, Sarmiento IC, Contreras A, Yunis JJ. Philadelphia-like acute lymphoblastic leukemia: Characterization in a pediatric cohort in a referral center in Colombia. Cancer Rep (Hoboken) 2022; 5:e1587. [PMID: 34787376 PMCID: PMC9124514 DOI: 10.1002/cnr2.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a subtype of pediatric leukemia with high risk factors and poor outcome. There are few reports of its prevalence in Latin America. AIM This study evaluated the frequency and clinical and biological characteristics of Ph-like ALL in a pediatric cancer center in Colombia. METHODS The Ph-like genetic profile was analyzed by a low-density array (LDA). Samples from patients with Ph-like ALL were analyzed by fluorescent in situ hybridization for cytokine receptor like factor 2 (CRLF2) and ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) rearrangements. Copy number variations were assessed by multiplex ligation probe amplification. RESULTS Data from 121 patients were analyzed. Fifteen patients (12.4%) had Ph-like ALL, and these patients had significantly higher leukocyte counts at diagnosis and higher levels of minimal residual disease on days 15 and 33 of induction than patients without the Ph-like subtype. There were no significant differences in sex, age, or response to prednisone at day 8 between the two groups. CRLF2 rearrangements were identified in eight patients, and ABL1 rearrangements were identified in two patients. Other genetic alterations alone or in combination were identified in 77% of patients, including deletions in cyclin dependent kinase inhibitor 2 A/B (46.2%), IKAROS family zinc finger 1 (38.3%), and paired box 5 (30.8%). CONCLUSIONS Ph-like ALL had a 12.4% prevalence in our cohort of patients with pediatric ALL. The identification of this group of patients has importance for risk stratification and future targeted therapy.
Collapse
Affiliation(s)
- Adriana Linares Ballesteros
- Pediatric Hematology/Oncology UnitHOMI Fundación Hospital Pediátrico la MisericordiaBogotáColombia
- Grupo Oncohematología PediátricaUniversidad Nacional de ColombiaBogotáColombia
| | - Luz Karime Yunis
- Servicios Médicos Yunis Turbay y Cía S.A.S. Instituto de GenéticaBogotáColombia
- Grupo de Patología MolecularUniversidad Nacional de ColombiaBogotáColombia
| | - Johnny García
- Pediatric Hematology/Oncology UnitHOMI Fundación Hospital Pediátrico la MisericordiaBogotáColombia
| | - Nelson Aponte
- Pediatric Hematology/Oncology UnitHOMI Fundación Hospital Pediátrico la MisericordiaBogotáColombia
| | - Jessica Flechas
- Pediatric Hematology/Oncology UnitHOMI Fundación Hospital Pediátrico la MisericordiaBogotáColombia
- Grupo Oncohematología PediátricaUniversidad Nacional de ColombiaBogotáColombia
| | - Cindy Martinez
- Grupo Oncohematología PediátricaUniversidad Nacional de ColombiaBogotáColombia
| | - Gloria Uribe
- Pediatric Pathology UnitHOMI Fundación Hospital Pediatrico la MisericordiaBogotáColombia
| | - Edna Quintero
- Pediatric Pathology UnitHOMI Fundación Hospital Pediatrico la MisericordiaBogotáColombia
| | - Angela Díaz
- Servicios Médicos Yunis Turbay y Cía S.A.S. Instituto de GenéticaBogotáColombia
| | - Carlos Pardo
- Pediatric Hematology/Oncology UnitHOMI Fundación Hospital Pediátrico la MisericordiaBogotáColombia
- Grupo Oncohematología PediátricaUniversidad Nacional de ColombiaBogotáColombia
| | | | - Agustin Contreras
- Pediatric Hematology/Oncology UnitHOMI Fundación Hospital Pediátrico la MisericordiaBogotáColombia
| | - Juan Jose Yunis
- Servicios Médicos Yunis Turbay y Cía S.A.S. Instituto de GenéticaBogotáColombia
- Grupo de Patología MolecularUniversidad Nacional de ColombiaBogotáColombia
- Departamento de Patología, Facultad de Medicina e Instituto de GenéticaUniversidad Nacional de ColombiaBogotáColombia
| |
Collapse
|
61
|
Curran E, Muffly L, Luskin MR. Innovative Approaches to the Management of Acute Lymphoblastic Leukemia Across the Age Spectrum. Am Soc Clin Oncol Educ Book 2022; 42:1-11. [PMID: 35503981 DOI: 10.1200/edbk_349647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adults compose nearly half of all patients diagnosed with acute lymphoblastic leukemia (ALL) and historically have had poor survival compared with pediatric patients. Recently approved therapies, such as monoclonal antibodies, CAR T-cell constructs, and next-generation tyrosine kinase inhibitors, have improved survival in relapsed and refractory ALL, and studies are now examining incorporating these treatments and others into the upfront setting. In adolescent and young adult patients, use of pediatric-based regimens has already improved survival compared with historical controls, and the addition of monoclonal antibodies, such as inotuzumab ozogamicin and blinatumomab, may further enhance this survival benefit. In older adults, approaches have centered on minimizing conventional chemotherapy to decrease toxicity by incorporating monoclonal antibodies and other novel therapies to increase efficacy. With the addition of tyrosine kinase inhibitors to chemotherapy for patients with Philadelphia chromosome-positive ALL, survival of this once poor-prognosis ALL subtype now approaches or exceeds outcomes of other subtypes of adult ALL. Further refinements in the backbone treatment regimen and optimal consolidation approaches will likely improve survival further. Although allogeneic hematopoietic stem cell transplant was previously routinely used as consolidation for adults with ALL, incorporation of measurable residual disease and other risk stratification strategies has enabled better identification of patients who will benefit from allogeneic hematopoietic stem cell transplant. Ongoing clinical trials investigating these approaches will continue the evolution of treatment approaches for adults with ALL, with further improvement in outcomes anticipated.
Collapse
Affiliation(s)
- Emily Curran
- University of Cincinnati, Division of Hematology and Oncology, Department of Internal Medicine and Department of Pediatrics, Cincinnati, OH
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Internal Medicine, Stanford University, Stanford, CA
| | - Marlise R Luskin
- Dana-Farber Cancer Institute, Division of Leukemia, Department of Medical Oncology, Boston, MA
| |
Collapse
|
62
|
Gupta DG, Varma N, Kumar A, Naseem S, Sachdeva MUS, Bose P, Binota J, Gupta M, Sonam P, Rana P, Malhotra P, Varma S. Identification and validation of suitable housekeeping genes for gene expression studies in BCR-ABL1 positive B-lineage acute lymphoblastic leukemia. Mol Biol Rep 2022; 49:4841-4848. [PMID: 35344115 DOI: 10.1007/s11033-022-07337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The stability of the housekeeping gene (HKG) expression is an absolute prerequisite for accurate normalization of target gene expression in a quantitative real-time polymerase chain reaction (RQ-PCR). In RQ-PCR, the widely used normalization approach involves the standardization of target genes to the most stable HKG control genes. According to the recent literature, in different experimental conditions the HKGs exhibit either up or down-regulation and thus affecting the gene expression profiles of target genes which leads to erroneous results. This implies that it is very important to select the appropriate HKG and verify the expression stability of the HKG before quantification of the target gene. METHODS AND RESULTS The present study aims to analyze six different HKGs for their expression profiles and stability in BCR-ABL1 negative cases and validate them in BCR-ABL1 positive cases, detected by multiplex reverse transcribed polymerase chain reaction (RT-PCR). Six commonly used reference genes (GAPDH, ABL1, RNA18S, ACTB, GUSB, and EEF2) were selected in this study. RQ-PCR was performed on 24 BCR-ABL1 negative cases and the outcomes were validated on 24 BCR-ABL1 positive cases. RefFinder™, a web-based composite software was used to check the stability of HKG genes by different algorithms and comprehensive ranking of each HKG gene in BCR-ABL1 negative cases and finally validated in BCR-ABL1 positive cases. CONCLUSIONS It was found that RNA18S, ABL1 and GUSB are good stable HKG genes, which showed minimum variability in gene expression compared to GAPDH, EEF2, and ACTB, the most commonly used HKG.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India.
| | - Ashish Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Parveen Bose
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Jogeshwar Binota
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Minakshi Gupta
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Priti Sonam
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Palak Rana
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, 160012, India
| | - Pankaj Malhotra
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
63
|
Resistance Mechanisms in Pediatric B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms23063067. [PMID: 35328487 PMCID: PMC8950780 DOI: 10.3390/ijms23063067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the rapid development of medicine, even nowadays, acute lymphoblastic leukemia (ALL) is still a problem for pediatric clinicians. Modern medicine has reached a limit of curability even though the recovery rate exceeds 90%. Relapse occurs in around 20% of treated patients and, regrettably, 10% of diagnosed ALL patients are still incurable. In this article, we would like to focus on the treatment resistance and disease relapse of patients with B-cell leukemia in the context of prognostic factors of ALL. We demonstrate the mechanisms of the resistance to steroid therapy and Tyrosine Kinase Inhibitors and assess the impact of genetic factors on the treatment resistance, especially TCF3::HLF translocation. We compare therapeutic protocols and decipher how cancer cells become resistant to innovative treatments—including CAR-T-cell therapies and monoclonal antibodies. The comparisons made in our article help to bring closer the main factors of resistance in hematologic malignancies in the context of ALL.
Collapse
|
64
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
65
|
Qian J, Li Z, Pei K, Li Z, Li C, Yan M, Qian M, Song Y, Zhang H, He Y. Effects of NRAS Mutations on Leukemogenesis and Targeting of Children With Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2022; 10:712484. [PMID: 35211470 PMCID: PMC8861515 DOI: 10.3389/fcell.2022.712484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Through the advancements in recent decades, childhood acute lymphoblastic leukemia (ALL) is gradually becoming a highly curable disease. However, the truth is there remaining relapse in ∼15% of ALL cases with dismal outcomes. RAS mutations, in particular NRAS mutations, were predominant mutations affecting relapse susceptibility. KRAS mutations targeting has been successfully exploited, while NRAS mutation targeting remains to be explored due to its complicated and compensatory mechanisms. Using targeted sequencing, we profiled RAS mutations in 333 primary and 18 relapsed ALL patients and examined their impact on ALL leukemogenesis, therapeutic potential, and treatment outcome. Cumulative analysis showed that RAS mutations were associated with a higher relapse incidence in children with ALL. In vitro cellular assays revealed that about one-third of the NRAS mutations significantly transformed Ba/F3 cells as measured by IL3-independent growth. Meanwhile, we applied a high-throughput drug screening method to characterize variable mutation-related candidate targeted agents and uncovered that leukemogenic-NRAS mutations might respond to MEK, autophagy, Akt, EGFR signaling, Polo−like Kinase, Src signaling, and TGF−β receptor inhibition depending on the mutation profile.
Collapse
Affiliation(s)
- Jiabi Qian
- Guangzhou Women and Children's Medical Center, Institute of Pediatrics, Guangzhou, China.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Department of Hematology and Oncology, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institute of Pediatrics, Institutes of Biomedical Sciences, Children's Hospital of Fudan University, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Zifeng Li
- Department of Hematology and Oncology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Kunlin Pei
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ziping Li
- Guangzhou Women and Children's Medical Center, Institute of Pediatrics, Guangzhou, China
| | - Chunjie Li
- Guangzhou Women and Children's Medical Center, Institute of Pediatrics, Guangzhou, China
| | - Muxia Yan
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Maoxiang Qian
- Department of Hematology and Oncology, The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institute of Pediatrics, Institutes of Biomedical Sciences, Children's Hospital of Fudan University, Ministry of Science and Technology, Fudan University, Shanghai, China
| | - Yuanbin Song
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
66
|
Geron I, Savino AM, Fishman H, Tal N, Brown J, Turati VA, James C, Sarno J, Hameiri-Grossman M, Lee YN, Rein A, Maniriho H, Birger Y, Zemlyansky A, Muler I, Davis KL, Marcu-Malina V, Mattson N, Parnas O, Wagener R, Fischer U, Barata JT, Jamieson CHM, Müschen M, Chen CW, Borkhardt A, Kirsch IR, Nagler A, Enver T, Izraeli S. An instructive role for Interleukin-7 receptor α in the development of human B-cell precursor leukemia. Nat Commun 2022; 13:659. [PMID: 35115489 PMCID: PMC8814001 DOI: 10.1038/s41467-022-28218-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Kinase signaling fuels growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Yet its role in leukemia initiation is unclear and has not been shown in primary human hematopoietic cells. We previously described activating mutations in interleukin-7 receptor alpha (IL7RA) in poor-prognosis "ph-like" BCP-ALL. Here we show that expression of activated mutant IL7RA in human CD34+ hematopoietic stem and progenitor cells induces a preleukemic state in transplanted immunodeficient NOD/LtSz-scid IL2Rγnull mice, characterized by persistence of self-renewing Pro-B cells with non-productive V(D)J gene rearrangements. Preleukemic CD34+CD10highCD19+ cells evolve into BCP-ALL with spontaneously acquired Cyclin Dependent Kinase Inhibitor 2 A (CDKN2A) deletions, as commonly observed in primary human BCP-ALL. CRISPR mediated gene silencing of CDKN2A in primary human CD34+ cells transduced with activated IL7RA results in robust development of BCP-ALLs in-vivo. Thus, we demonstrate that constitutive activation of IL7RA can initiate preleukemia in primary human hematopoietic progenitors and cooperates with CDKN2A silencing in progression into BCP-ALL.
Collapse
MESH Headings
- Animals
- Antigens, CD34/genetics
- Antigens, CD34/immunology
- Antigens, CD34/metabolism
- Base Sequence
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/immunology
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Gene Expression/immunology
- Humans
- Interleukin-7 Receptor alpha Subunit/genetics
- Interleukin-7 Receptor alpha Subunit/immunology
- Interleukin-7 Receptor alpha Subunit/metabolism
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- RNA-Seq/methods
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, Cytokine/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Single-Cell Analysis/methods
- Transplantation, Heterologous
- Mice
Collapse
Affiliation(s)
- Ifat Geron
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Angela Maria Savino
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Noa Tal
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | | | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Jolanda Sarno
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Stanford University, Stanford, CA, USA
| | - Michal Hameiri-Grossman
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Yu Nee Lee
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Pediatric Department and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital Sheba Medical Center, Tel-Hashomer, Israel
| | - Avigail Rein
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hillary Maniriho
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Yehudit Birger
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Anna Zemlyansky
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Inna Muler
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Kara L Davis
- Department of Pediatrics, Bass Center for Childhood Cancer and Blood Disorders, Stanford University, Stanford, CA, USA
| | - Victoria Marcu-Malina
- Cytogenetic Unit laboratory of Hematology, Chaim Sheba Medical Center Tel Hashomer, Tel Hashomer, Israel
| | - Nicole Mattson
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Oren Parnas
- The Concern Foundation Laboratories at the Lautenberg Center for immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catriona H M Jamieson
- UC San Diego, Moores Cancer Center, Division of Regenerative Medicine, Department of Medicine and Sanford Stem Cell Clinical Center, Ja Jolla, CA, USA
| | - Markus Müschen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Arnon Nagler
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Hematology Division BMT and Cord Blood Bank Chaim Sheba Medical Center Tel-Hashomer, Tel-Hashomer, Israel
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Shai Izraeli
- Felsenstein Medical Research Center and The Molecular Genetics and Biochemistry Department, Sackler Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel.
- Institute of Pediatric Research, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel.
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA.
| |
Collapse
|
67
|
SFPQ-ABL1 and BCR-ABL1 utilize different signalling networks to drive B-cell acute lymphoblastic leukaemia. Blood Adv 2022; 6:2373-2387. [PMID: 35061886 PMCID: PMC9006296 DOI: 10.1182/bloodadvances.2021006076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
SFPQ-ABL1 is localized to the nuclear compartment and is a relatively weaker driver of cellular proliferation compared with BCR-ABL1. SFPQ-ABL1 and BCR-ABL1 activate distinct signaling networks, both of which converge on inhibiting apoptosis and driving proliferation.
Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome–positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase–activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1–expressing cells compared with BCR-ABL1–expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.
Collapse
|
68
|
Whole-transcriptome analysis in acute lymphoblastic leukemia: a report from the DFCI ALL Consortium Protocol 16-001. Blood Adv 2021; 6:1329-1341. [PMID: 34933343 PMCID: PMC8864659 DOI: 10.1182/bloodadvances.2021005634] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
RNA-seq is feasible in the context of a prospective clinical trial for de novo ALL within a clinically sensitive turnaround time. RNA-seq identified several genetic alterations not detected by conventional methods that confer potential prognostic and therapeutic impact.
The molecular hallmark of childhood acute lymphoblastic leukemia (ALL) is characterized by recurrent, prognostic genetic alterations, many of which are cryptic by conventional cytogenetics. RNA sequencing (RNA-seq) is a powerful next-generation sequencing technology that can simultaneously identify cryptic gene rearrangements, sequence mutations and gene expression profiles in a single assay. We examined the feasibility and utility of incorporating RNA-seq into a prospective multicenter phase 3 clinical trial for children with newly diagnosed ALL. The Dana-Farber Cancer Institute ALL Consortium Protocol 16-001 enrolled 173 patients with ALL who consented to optional studies and had samples available for RNA-seq. RNA-seq identified at least 1 alteration in 157 patients (91%). Fusion detection was 100% concordant with results obtained from conventional cytogenetic analyses. An additional 56 gene fusions were identified by RNA-seq, many of which confer prognostic or therapeutic significance. Gene expression profiling enabled further molecular classification into the following B-cell ALL (B-ALL) subgroups: high hyperdiploid (n = 36), ETV6-RUNX1/-like (n = 31), TCF3-PBX1 (n = 7), KMT2A-rearranged (KMT2A-R; n = 5), intrachromosomal amplification of chromosome 21 (iAMP21) (n = 1), hypodiploid (n = 1), Philadelphia chromosome (Ph)-positive/Ph-like (n = 16), DUX4-R (n = 11), PAX5 alterations (PAX5 alt; n = 11), PAX5 P80R (n = 1), ZNF384-R (n = 4), NUTM1-R (n = 1), MEF2D-R (n = 1), and others (n = 10). RNA-seq identified 141 nonsynonymous mutations in 93 patients (54%); the most frequent were RAS-MAPK pathway mutations. Among 79 patients with both low-density array and RNA-seq data for the Philadelphia chromosome-like gene signature prediction, results were concordant in 74 patients (94%). In conclusion, RNA-seq identified several clinically relevant genetic alterations not detected by conventional methods, which supports the integration of this technology into front-line pediatric ALL trials. This trial was registered at www.clinicaltrials.gov as #NCT03020030.
Collapse
|
69
|
Almeida ARM, Neto JL, Cachucho A, Euzébio M, Meng X, Kim R, Fernandes MB, Raposo B, Oliveira ML, Ribeiro D, Fragoso R, Zenatti PP, Soares T, de Matos MR, Corrêa JR, Duque M, Roberts KG, Gu Z, Qu C, Pereira C, Pyne S, Pyne NJ, Barreto VM, Bernard-Pierrot I, Clappier E, Mullighan CG, Grosso AR, Yunes JA, Barata JT. Interleukin-7 receptor α mutational activation can initiate precursor B-cell acute lymphoblastic leukemia. Nat Commun 2021; 12:7268. [PMID: 34907175 PMCID: PMC8671594 DOI: 10.1038/s41467-021-27197-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-7 receptor α (encoded by IL7R) is essential for lymphoid development. Whether acute lymphoblastic leukemia (ALL)-related IL7R gain-of-function mutations can trigger leukemogenesis remains unclear. Here, we demonstrate that lymphoid-restricted mutant IL7R, expressed at physiological levels in conditional knock-in mice, establishes a pre-leukemic stage in which B-cell precursors display self-renewal ability, initiating leukemia resembling PAX5 P80R or Ph-like human B-ALL. Full transformation associates with transcriptional upregulation of oncogenes such as Myc or Bcl2, downregulation of tumor suppressors such as Ikzf1 or Arid2, and major IL-7R signaling upregulation (involving JAK/STAT5 and PI3K/mTOR), required for leukemia cell viability. Accordingly, maximal signaling drives full penetrance and early leukemia onset in homozygous IL7R mutant animals. Notably, we identify 2 transcriptional subgroups in mouse and human Ph-like ALL, and show that dactolisib and sphingosine-kinase inhibitors are potential treatment avenues for IL-7R-related cases. Our model, a resource to explore the pathophysiology and therapeutic vulnerabilities of B-ALL, demonstrates that IL7R can initiate this malignancy.
Collapse
Affiliation(s)
- Afonso R. M. Almeida
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João L. Neto
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Cachucho
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mayara Euzébio
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal ,grid.456556.1Centro Infantil Boldrini, Campinas, SP Brazil
| | - Xiangyu Meng
- grid.4444.00000 0001 2112 9282Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Rathana Kim
- grid.413328.f0000 0001 2300 6614Hematology Laboratory, Saint-Louis Hospital, AP-HP, Paris, France, and Saint-Louis Research Institute, Université de Paris, INSERM U944/Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7212, Paris, France
| | - Marta B. Fernandes
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Raposo
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana L. Oliveira
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Ribeiro
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Fragoso
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Tiago Soares
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mafalda R. de Matos
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Mafalda Duque
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Kathryn G. Roberts
- grid.240871.80000 0001 0224 711XDepartment of Pathology and Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN US
| | - Zhaohui Gu
- grid.240871.80000 0001 0224 711XDepartment of Pathology and Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN US
| | - Chunxu Qu
- grid.240871.80000 0001 0224 711XDepartment of Pathology and Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN US
| | - Clara Pereira
- grid.8217.c0000 0004 1936 9705Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Susan Pyne
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, Scotland UK
| | - Nigel J. Pyne
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, Scotland UK
| | - Vasco M. Barreto
- grid.10772.330000000121511713DNA Breaks Laboratory, CEDOC - Chronic Diseases Research Center, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Isabelle Bernard-Pierrot
- grid.4444.00000 0001 2112 9282Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Emannuelle Clappier
- grid.413328.f0000 0001 2300 6614Hematology Laboratory, Saint-Louis Hospital, AP-HP, Paris, France, and Saint-Louis Research Institute, Université de Paris, INSERM U944/Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7212, Paris, France
| | - Charles G. Mullighan
- grid.240871.80000 0001 0224 711XDepartment of Pathology and Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, TN US
| | - Ana R. Grosso
- grid.10772.330000000121511713UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | - João T. Barata
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
70
|
Tran TH, Tasian SK. Has Ph-like ALL Superseded Ph+ ALL as the Least Favorable Subtype? Best Pract Res Clin Haematol 2021; 34:101331. [PMID: 34865703 DOI: 10.1016/j.beha.2021.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subset of high-risk B-ALL associated with high relapse risk and inferior clinical outcomes across the pediatric-to-adult age spectrum. Ph-like ALL is characterized by frequent IKZF1 alterations and a kinase-activated gene expression profile similar to that of Philadelphia chromosome-positive (Ph+) ALL, yet lacks the canonical BCR-ABL1 rearrangement. Advances in high-throughput sequencing technologies during the past decade have unraveled the genomic landscape of Ph-like ALL, revealing a diverse array of kinase-activating translocations and mutations that may be amenable to targeted therapies that have set a remarkable precision medicine paradigm for patients with Ph + ALL. Collaborative scientific efforts to identify and characterise Ph-like ALL during the past decade has directly informed current precision medicine trials investigating the therapeutic potential of tyrosine kinase inhibitor-based therapies for children, adolescents, and adults with Ph-like ALL, although the most optimal treatment paradigm for this high-risk group of patients has yet to be established. Herein, we describe the epidemiology, clinical features, and biology of Ph-like ALL, highlight challenges in implementing pragmatic and cost-effective diagnostic algorithms in the clinic, and describe the milieu of treatment strategies under active investigation that strive to decrease relapse risk and improve long-term survival for patients with Ph-like ALL as has been successfully achieved for those with Ph + ALL.
Collapse
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
71
|
Gupta DG, Varma N, Kumar A, Naseem S, Sachdeva MUS, Binota J, Bose P, Gupta M, Sonam P, Rana P, Malhotra P, Khadwal A, Trehan A, Varma S. PHi-RACE: PGIMER in-house rapid & cost effective classifier for the detection of BCR-ABL1-like acute lymphoblastic leukaemia in Indian patients. Leuk Lymphoma 2021; 63:633-643. [PMID: 34783280 DOI: 10.1080/10428194.2021.1999439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
For the detection of BCR-ABL1-like ALL cases, two methodologies, specifically Gene expression profiling (GEP) or Next-generation targeted sequencing (NGS) and TaqMan based low-density (TLDA) card, are being used. NGS is very costly and TLDA is not widely commercially available. In this study, we quantified the expression of 8 selected overexpressed genes in 536 B-ALL cases. We identified 26.67% (143/536) BCR-ABL1-like ALLs using hierarchical clustering and principal component analysis. BCR-ABL1-like ALL cases were significantly older at presentation (p = 0.036) and had male preponderance (p = 0.047) compared to BCR-ABL1-negative ALL cases. MRD-positivity and induction failure were more commonest in BCR-ABL1-like ALL cases (30.55 vs.19.35% in BCR-ABL1-negative ALL cases). Lastly, we built a PHi-RACE classifier (sensitivity = 95.2%, specificity= 83.7%, AUC= 0.927) using logistic regression to detect BCR-ABL1-like ALL cases promptly at diagnosis. This classifier is beneficial for hematologists in quick decision making at baseline to start tailored treatment regimes.
Collapse
Affiliation(s)
- Dikshat Gopal Gupta
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shano Naseem
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jogeshwar Binota
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parveen Bose
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Minakshi Gupta
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Sonam
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Palak Rana
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
72
|
Vo TT, Herzog LO, Buono R, Lee JHS, Mallya S, Duong MR, Thao J, Gotesman M, Fruman DA. Targeting eIF4F translation complex sensitizes B-ALL cells to tyrosine kinase inhibition. Sci Rep 2021; 11:21689. [PMID: 34737376 PMCID: PMC8569117 DOI: 10.1038/s41598-021-00950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase whose activation is associated with poor prognosis in pre-B cell acute lymphoblastic leukemia (B-ALL). These and other findings have prompted diverse strategies for targeting mTOR signaling in B-ALL and other B-cell malignancies. In cellular models of Philadelphia Chromosome-positive (Ph+) B-ALL, mTOR kinase inhibitors (TOR-KIs) that inhibit both mTOR-complex-1 (mTORC1) and mTOR-complex-2 (mTORC2) enhance the cytotoxicity of tyrosine kinase inhibitors (TKIs) such as dasatinib. However, TOR-KIs have not shown substantial efficacy at tolerated doses in blood cancer clinical trials. Selective inhibition of mTORC1 or downstream effectors provides alternative strategies that may improve selectivity towards leukemia cells. Of particular interest is the eukaryotic initiation factor 4F (eIF4F) complex that mediates cap-dependent translation. Here we use novel chemical and genetic approaches to show that selective targeting of either mTORC1 kinase activity or components of the eIF4F complex sensitizes murine BCR-ABL-dependent pre-B leukemia cells to dasatinib. SBI-756, a small molecule inhibitor of eIF4F assembly, sensitizes human Ph+ and Ph-like B-ALL cells to dasatinib cytotoxicity without affecting survival of T lymphocytes or natural killer cells. These findings support the further evaluation of eIF4F-targeted molecules in combination therapies with TKIs in B-ALL and other blood cancers.
Collapse
Affiliation(s)
- Thanh-Trang Vo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Lee-Or Herzog
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Jong-Hoon Scott Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Madeleine R Duong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Joshua Thao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Moran Gotesman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
73
|
Burke MJ, Devidas M, Chen Z, Salzer WL, Raetz EA, Rabin KR, Heerema NA, Carroll AJ, Gastier-Foster JM, Borowitz MJ, Wood BL, Winick NJ, Carroll WL, Hunger SP, Loh ML, Larsen EC. Outcomes in adolescent and young adult patients (16 to 30 years) compared to younger patients treated for high-risk B-lymphoblastic leukemia: report from Children's Oncology Group Study AALL0232. Leukemia 2021; 36:648-655. [PMID: 34725453 DOI: 10.1038/s41375-021-01460-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
Abstract
Adolescent and young adult (AYA) patients 16-30 years old with high-risk acute lymphoblastic leukemia (HR-ALL) have inferior outcomes compared to younger HR-ALL patients. AALL0232 was a Phase 3 randomized Children's Oncology Group trial for newly diagnosed HR B-ALL (1-30 years). Between 2004 and 2011, 3154 patients enrolled with 3040 eligible and evaluable for induction. AYA patients comprised 20% of patients (16-21 years, n = 551; 22-30 years, n = 46). 5-year event-free survival and overall survival was 65.4 ± 2.2% and 77.4 ± 2.0% for AYA patients compared to 78.1 ± 0.9% and 87.3 ± 0.7% for younger patients (p < 0.0001). Five-year cumulative incidence of relapse was 18.5 ± 1.7% for AYA patients and 13.5 ± 0.7% for younger patients (p = 0.006), largely due to increased marrow relapses (14.0 ± 1.5% versus 9.1 ± 0.6%; p < 0.0001). Additionally, induction failure rate was higher in AYA (7.2 ± 1.1% versus 3.5 ± 0.4%; p < 0.001) and post-induction remission deaths were significantly higher in AYA (5.7 ± 1.0% versus 2.4 ± 0.3%; p < 0.0001). AALL0232 enrolled the largest number of AYA B-ALL patients to date, demonstrating significantly inferior survival and greater rates of treatment-related toxicities compared to younger patients. Although treatment intensification has improved outcomes in younger patients, they have not been associated with the same degree of improvement for older patients.
Collapse
Affiliation(s)
- Michael J Burke
- Department of Pediatrics, Children's Hospital of Wisconsin, Milwaukee, WI, USA.
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhiguo Chen
- Biostatistics, Colleges of Medicine and Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Wanda L Salzer
- U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Elizabeth A Raetz
- Department of Pediatrics, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Michael J Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Naomi J Winick
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William L Carroll
- Department of Pediatrics, Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Eric C Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| |
Collapse
|
74
|
Schwab CJ, Murdy D, Butler E, Enshaei A, Winterman E, Cranston RE, Ryan S, Barretta E, Hawking Z, Murray J, Antony G, Vora A, Moorman AV, Harrison CJ. Genetic characterisation of childhood B-other-acute lymphoblastic leukaemia in UK patients by fluorescence in situ hybridisation and Multiplex Ligation-dependent Probe Amplification. Br J Haematol 2021; 196:753-763. [PMID: 34676543 DOI: 10.1111/bjh.17869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
While next-generation sequencing technologies provide excellent strategies to screen for newly defined genetic abnormalities of prognostic or therapeutic significance in patients with B-other-acute lymphoblastic leukaemia (ALL), they are not widely available. We used a dual screening approach, incorporating fluorescence in situ hybridisation (FISH) and Multiplex Ligation-dependent Probe Amplification (MLPA), to establish the frequency and long-term outcome of a representative cohort of specific subgroups of B-other-ALL recruited to the childhood ALL trial, UKALL2003. We focussed on abnormalities of known prognostic significance, including ABL-class fusions and ERG deletions, as a surrogate marker for DUX4-rearranged ALL. ABL-class fusions accounted for ~4% of B-other-ALL and were associated with high levels of minimal residual disease (MRD; 14/23 with MRD >5%) and a high relapse rate (55·7%) following treatment without tyrosine kinase inhibitor (TKI), confirming the importance of prospective screening with a view to incorporating TKI into therapy. Patients with deletions of ERG (~10% of B-other-ALL) had a 10-year event-free-survival of 97·2%, validating previous reports of their excellent outcome. Rearrangements of ZNF384, MEF2D and NUTM1 were observed at low frequencies. Here, we estimate that approximately one third of B-other-ALL patients can be reliably classified into one of the known genetic subgroups using our dual screening method. This approach is rapid, accurate and readily incorporated into routine testing.
Collapse
Affiliation(s)
- Claire J Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Murdy
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ellie Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Emily Winterman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra Ryan
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoe Hawking
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - James Murray
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Grace Antony
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
75
|
Afkhami M, Ally F, Pullarkat V, Pillai RK. Genetics and Diagnostic Approach to Lymphoblastic Leukemia/Lymphoma. Cancer Treat Res 2021; 181:17-43. [PMID: 34626353 DOI: 10.1007/978-3-030-78311-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our understanding of the genetics and biology of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia, ALL) has advanced rapidly in the past decade with advances in sequencing and other molecular techniques. Besides recurrent chromosomal abnormalities detected by karyotyping or fluorescence in situ hybridization, these leukemias/lymphomas are characterized by a variety of mutations, gene rearrangements as well as copy number alterations. This is particularly true in the case of Philadelphia-like (Ph-like) ALL, a major subset which has the same gene expression signature as Philadelphia chromosome-positive ALL but lacks BCR-ABL1 translocation. Ph-like ALL is associated with a worse prognosis and hence its detection is critical. However, techniques to detect this entity are complex and are not widely available. This chapter discusses various subsets of ALL and describes our approach to the accurate classification and prognostication of these cases.
Collapse
Affiliation(s)
- Michelle Afkhami
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| | - Feras Ally
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Vinod Pullarkat
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Raju K Pillai
- City of Hope Medical Center, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
76
|
Lilljebjörn H, Orsmark-Pietras C, Mitelman F, Hagström-Andersson A, Fioretos T. Transcriptomics paving the way for improved diagnostics and precision medicine of acute leukemia. Semin Cancer Biol 2021; 84:40-49. [PMID: 34606984 DOI: 10.1016/j.semcancer.2021.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
Transcriptional profiling of acute leukemia, specifically by RNA-sequencing or whole transcriptome sequencing (WTS), has provided fundamental insights into its underlying disease biology and allows unbiased detection of oncogenic gene fusions, as well as of gene expression signatures that can be used for improved disease classification. While used as a research tool for many years, RNA-sequencing is becoming increasingly used in clinical diagnostics. Here, we highlight key transcriptomic studies of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) that have improved our biological understanding of these heterogeneous malignant disorders and have paved the way for translation into clinical diagnostics. Recent single-cell transcriptomic studies of ALL and AML, which provide new insights into the cellular ecosystem of acute leukemia and point to future clinical utility, are also reviewed. Finally, we discuss current challenges that need to be overcome for a more wide-spread adoption of RNA-sequencing in clinical diagnostics and how this technology significantly can aid the identification of genetic alterations in current guidelines and of newly emerging disease entities, some of which are critical to identify because of the availability of targeted therapies, thereby paving the way for improved precision medicine of acute leukemia.
Collapse
Affiliation(s)
- Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Christina Orsmark-Pietras
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden; Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden
| | - Felix Mitelman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Hagström-Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Center for Translational Genomics, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Center for Translational Genomics, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden; Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, Lund, Sweden.
| |
Collapse
|
77
|
Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N, Kirby S, Liedtke M, Litzow M, Logan A, Luger S, Maness LJ, Massaro S, Mattison RJ, May W, Oluwole O, Park J, Przespolewski A, Rangaraju S, Rubnitz JE, Uy GL, Vusirikala M, Wieduwilt M, Lynn B, Berardi RA, Freedman-Cass DA, Campbell M. Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19:1079-1109. [PMID: 34551384 DOI: 10.6004/jnccn.2021.0042] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NCCN Guidelines for Acute Lymphoblastic Leukemia (ALL) focus on the classification of ALL subtypes based on immunophenotype and cytogenetic/molecular markers; risk assessment and stratification for risk-adapted therapy; treatment strategies for Philadelphia chromosome (Ph)-positive and Ph-negative ALL for both adolescent and young adult and adult patients; and supportive care considerations. Given the complexity of ALL treatment regimens and the required supportive care measures, the NCCN ALL Panel recommends that patients be treated at a specialized cancer center with expertise in the management of ALL This portion of the Guidelines focuses on the management of Ph-positive and Ph-negative ALL in adolescents and young adults, and management in relapsed settings.
Collapse
Affiliation(s)
- Patrick A Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | - Anjali Advani
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | - Shira Dinner
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Jordan Gauthier
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Nitin Jain
- The University of Texas MD Anderson Cancer Center
| | | | | | | | - Aaron Logan
- UCSF Helen Diller Family Comprehensive Cancer Center
| | - Selina Luger
- Abramson Cancer Center at the University of Pennsylvania
| | | | | | | | | | | | - Jae Park
- Memorial Sloan Kettering Cancer Center
| | | | | | - Jeffrey E Rubnitz
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Geoffrey L Uy
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Beth Lynn
- National Comprehensive Cancer Network
| | | | | | | |
Collapse
|
78
|
Paietta E, Roberts KG, Wang V, Gu Z, Buck GAN, Pei D, Cheng C, Levine RL, Abdel-Wahab O, Cheng Z, Wu G, Qu C, Shi L, Pounds S, Willman CL, Harvey R, Racevskis J, Barinka J, Zhang Y, Dewald GW, Ketterling RP, Alejos D, Lazarus HM, Luger SM, Foroni L, Patel B, Fielding AK, Melnick A, Marks DI, Moorman AV, Wiernik PH, Rowe JM, Tallman MS, Goldstone AH, Mullighan CG, Litzow MR. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL. Blood 2021; 138:948-958. [PMID: 33895809 PMCID: PMC9069478 DOI: 10.1182/blood.2020010144] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Genomic classification has improved risk assignment of pediatric, but not adult B-lineage acute lymphoblastic leukemia (B-ALL). The international UKALLXII/ECOG-ACRIN E2993 (#NCT00002514) trial accrued 1229 adolescent/adult patients with BCR-ABL1- B-ALL (aged 14 to 65 years). Although 93% of patients achieved remission, 41% relapsed at a median of 13 months (range, 28 days to 12 years). Five-year overall survival (OS) was 42% (95% confidence interval, 39, 44). Transcriptome sequencing, gene expression profiling, cytogenetics, and fusion polymerase chain reaction enabled genomic subtyping of 282 patient samples, of which 264 were eligible for trial, accounting for 64.5% of E2993 patients. Among patients with outcome data, 29.5% with favorable outcomes (5-year OS 65% to 80%) were deemed standard risk (DUX4-rearranged [9.2%], ETV6-RUNX1/-like [2.3%], TCF3-PBX1 [6.9%], PAX5 P80R [4.1%], high-hyperdiploid [6.9%]); 50.2% had high-risk genotypes with 5-year OS of 0% to 27% (Ph-like [21.2%], KMT2A-AFF1 [12%], low-hypodiploid/near-haploid [14.3%], BCL2/MYC-rearranged [2.8%]); 20.3% had intermediate-risk genotypes with 5-year OS of 33% to 45% (PAX5alt [12.4%], ZNF384/-like [5.1%], MEF2D-rearranged [2.8%]). IKZF1 alterations occurred in 86% of Ph-like, and TP53 mutations in patients who were low-hypodiploid (54%) and BCL2/MYC-rearranged (33%) but were not independently associated with outcome. Of patients considered high risk based on presenting age and white blood cell count, 40% harbored subtype-defining genetic alterations associated with standard- or intermediate-risk outcomes. We identified distinct immunophenotypic features for DUX4-rearranged, PAX5 P80R, ZNF384-R/-like, and Ph-like genotypes. These data in a large adult B-ALL cohort treated with a non-risk-adapted approach on a single trial show the prognostic importance of genomic analyses, which may translate into future therapeutic benefits.
Collapse
Affiliation(s)
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Victoria Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Zhaohui Gu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Georgina A N Buck
- Clinical Trial Service Unit, Nuttfield Department of Population Health, Oxford, United Kingdom
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Ross L Levine
- Human Oncology and Pathogenesis Program-Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program-Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhongshan Cheng
- Centre for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Gang Wu
- Centre for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheryl L Willman
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Richard Harvey
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Janis Racevskis
- Department of Oncology, Montefiore Medical Center, Bronx, NY
| | - Jan Barinka
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gordon W Dewald
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - David Alejos
- Department of Oncology, Montefiore Medical Center, Bronx, NY
| | - Hillard M Lazarus
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Selina M Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Letizia Foroni
- Centre for Haematology, Department of Medicine, Imperial College London Hammersmith Hospital, London, United Kingdom
| | - Bela Patel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - David I Marks
- Bristol Haematology and Oncology Centre, Bristol, United Kingdom
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
| | | | - Jacob M Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | | | | | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
79
|
Targeted Therapy in the Treatment of Pediatric Acute Lymphoblastic Leukemia-Therapy and Toxicity Mechanisms. Int J Mol Sci 2021; 22:ijms22189827. [PMID: 34575992 PMCID: PMC8468873 DOI: 10.3390/ijms22189827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Targeted therapy has revolutionized the treatment of poor-prognosis pediatric acute lymphoblastic leukemia (ALL) with specific genetic abnormalities. It is still being described as a new landmark therapeutic approach. The main purpose of the use of molecularly targeted drugs and immunotherapy in the treatment of ALL is to improve the treatment outcomes and reduce the doses of conventional chemotherapy, while maintaining the effectiveness of the therapy. Despite promising treatment results, there is limited clinical research on the effect of target cell therapy on the potential toxic events in children and adolescents. The recent development of highly specific molecular methods has led to an improvement in the identification of numerous unique expression profiles of acute lymphoblastic leukemia. The detection of specific genetic mutations determines patients’ risk groups, which allows for patient stratification and for an adjustment of the directed and personalized target therapies that are focused on particular molecular alteration. This review summarizes the knowledge concerning the toxicity of molecular-targeted drugs and immunotherapies applied in childhood ALL.
Collapse
|
80
|
Podgornik H, Doplihar Kebe A, Klun J, Reberšek K, Šućurović S, Škerget M, Zver S. Recognition of Philadelphia chromosome-like acute lymphoblastic leukemia as part of routine diagnostic work-up. Int J Lab Hematol 2021; 44:142-149. [PMID: 34491616 DOI: 10.1111/ijlh.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is a biologically and clinically challenging subtype of B-cell ALL which has been incorporated into the 2016 revision of the World Health classification of acute leukemia. It is independently associated with poor outcome. As it can only be reliably detected by expression profiling, it is difficult to diagnose with routine methods. Its recognition has become of greater importance due to prognostication and even more due to the new diagnostic options given by targeted therapies. There is still no standardized diagnostic test enabling its prompt recognition. Here, we introduce our approach how to detect it by combination of widely available techniques. METHODS 179 ALL patients diagnosed in our center during the last 8 years were included. Data on immunophenotype and cytogenetics were used to select patients with potentially Ph-like ALL (65/179). CRLF2 gene rearrangement (CRLF2-r) was tested by FISH in 59/65 patients, and next-generation sequencing was done by Archer FusionPlex ALL kit in 34 patients. TSLPR expression was determined in 20 patients. RESULTS Philadelphia chromosome-like aberrations were confirmed in 9 patients. In 10% of tested samples, CRLF2-r was confirmed. Due to a lack of material, NGS was done only in a half of potentially Ph-like cases. In 10%, other Ph-like fusions were found by NGS. CONCLUSIONS The obtained frequencies, and genetic and patients' characteristics are in concordance with the literature data, ensuring a reliable detection of this challenging ALL subtype. The proposed algorithm allows detection of Ph-like ALL at reasonable cost and acceptable workload.
Collapse
Affiliation(s)
- Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Doplihar Kebe
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jurka Klun
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Reberšek
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sandra Šućurović
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matevž Škerget
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Samo Zver
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
81
|
Abstract
Lymphoblastic leukemias/lymphomas are predominantly diseases of childhood, where they represent almost all acute leukemias; however, they are also encountered with significant frequency in the adult population. These neoplastic processes can be of B-cell or T-cell derivation and are composed of immature precursors of either lineage. The classification of B-lymphoblastic neoplasms relies predominantly on genetic and molecular findings, whereas the same is not true for those of T-lymphoid origin. Many of these recurrent cytogenetic abnormalities have important prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Dragoș C Luca
- Children's National Health System, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| |
Collapse
|
82
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
83
|
Angione SDA, Akalu AY, Gartrell J, Fletcher EP, Burckart GJ, Reaman GH, Leong R, Stewart CF. Fusion Oncoproteins in Childhood Cancers: Potential Role in Targeted Therapy. J Pediatr Pharmacol Ther 2021; 26:541-555. [PMID: 34421403 PMCID: PMC8372856 DOI: 10.5863/1551-6776-26.6.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2021] [Indexed: 11/11/2022]
Abstract
Cancer remains the leading cause of death from disease in children. Historically, in contrast to their adult counterparts, the causes of pediatric malignancies have remained largely unknown, with most pediatric cancers displaying low mutational burdens. Research related to molecular genetics in pediatric cancers is advancing our understanding of potential drivers of tumorigenesis and opening new opportunities for targeted therapies. One such area is fusion oncoproteins, which are a product of chromosomal rearrangements resulting in the fusion of different genes. They have been identified as oncogenic drivers in several sarcomas and leukemias. Continued advancement in the understanding of the biology of fusion oncoproteins will contribute to the discovery and development of new therapies for childhood cancers. Here we review the current scientific knowledge on fusion oncoproteins, focusing on pediatric sarcomas and hematologic cancers, and highlight the challenges and current efforts in developing drugs to target fusion oncoproteins.
Collapse
|
84
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
85
|
Gupta SK, Bakhshi S, Kamal VK, Gupta R, Sharma P, Pushpam D, Sahoo RK, Sharma A. Proposal and clinical application of molecular genetic risk scoring system, "MRplus", for BCR-ABL1 negative pediatric B-cell acute lymphoblastic leukemia- report from a single centre. Leuk Res 2021; 111:106683. [PMID: 34371436 DOI: 10.1016/j.leukres.2021.106683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION We propose "MRplus", a molecular genetic risk score and check its clinical application in the risk-stratification of pediatric B-ALL. METHODS The genomic DNA of untreated pediatricBCR-ABL1 negative B-ALL patients was analyzed for deletions of IKZF1, PAX5, CDKN2A/B, BTG1, RB1, ETV6, EBF1, ERG, pseudoautosomal region(PAR) genes using multiplex ligation-dependent probe amplification, along with the routine genetic work-up. The patients were assigned an 'M'score- 0 (M0) for low and 1 (M1) for high genetic-risk as per the criteria by Moorman et al., and another score "IKplus"-1 (IKplus1) for IKZF1plus as per the criteria by Stanulla et al., and 0 (IKplus0) for other patients. The final "MRplus" risk-score of 0 (MRplus0), 1 (MRplus1) or 2 (MRplus2) was obtained by adding both these scores. The association of risk scores with overall survival (OS) and event free survival(EFS) was seen using Cox proportion hazard model. The overall goodness of fit of the model was done using Cox-Snell residuals. RESULTS The median age of 320 patients was 6 years (1-18 years). The patients with score M1 were 139 (43.4 %), M0-181 (56.6 %); IKplus1-32 (10 %) and IKplus0-288 (90 %). The final "MRplus" score of 0,1,or 2 was obtained in 181(56.6 %), 107(33.4 %) and 32(10 %) patients respectively. The post-induction remission rate was 90.7 %, 77.8 %, 73.9 % (p = 0.004); 4-year OS 67 %, 48 %, 27 % (p < 0.001); and 4-year EFS 56 %, 34 %, 19 %(p < 0.001) in patients with "MRplus" score 0,1,and 2 respectively. CONCLUSIONS The proposed "MRplus" scoring at baseline could identify three distinct risk groups-good (MRplus0), intermediate (MRplus1) and poor (MRplus2), with different outcomes; in pediatricBCR-ABL1 negative B-ALL. This may help in better risk-stratification and selection of patients for alternative treatment approaches.
Collapse
Affiliation(s)
- Sanjeev Kumar Gupta
- Laboratory Oncology Unit, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vineet Kumar Kamal
- Division of Epidemiology & Biostatistics, ICMR National Institute of Epidemiology, Chennai, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Preity Sharma
- Laboratory Oncology Unit, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Deepam Pushpam
- Department of Medical Oncology, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Atul Sharma
- Department of Medical Oncology, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
86
|
Tran TH, Nguyen JV, Stecula A, Akutagawa J, Moorman AV, Braun BS, Sali A, Mullighan CG, Shah NP, Dai Y, Devidas M, Roberts KG, Smith CC, Loh ML. The EBF1-PDGFRB T681I mutation is highly resistant to imatinib and dasatinib in vitro and detectable in clinical samples prior to treatment. Haematologica 2021; 106:2242-2245. [PMID: 33626861 PMCID: PMC8327742 DOI: 10.3324/haematol.2020.261354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA.
| | - Jonathan V Nguyen
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA
| | - Jon Akutagawa
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne
| | - Benjamin S Braun
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA
| | | | - Neil P Shah
- Division of Hematology-Oncology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Yunfeng Dai
- Department of Biostatistics, College of Medicine and Public Health and Health Professions, University of Florida, Gainesville, FL
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Catherine C Smith
- Division of Hematology-Oncology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
87
|
Ansuinelli M, Cesini L, Chiaretti S, Foà R. Emerging tyrosine kinase inhibitors for the treatment of adult acute lymphoblastic leukemia. Expert Opin Emerg Drugs 2021; 26:281-294. [PMID: 34259120 DOI: 10.1080/14728214.2021.1956462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The broadening of targeted and immunotherapeutic strategies markedly impacted on the management of acute lymphoblastic leukemia (ALL). The advent of tyrosine kinase inhibitors (TKIs) changed the history of Philadelphia-chromosome positive (Ph+) ALL. Nowadays, almost all Ph+ ALL patients treated with TKIs achieve a complete hematologic response, and most become minimal residual disease negative. In Ph- ALL, genomic profiling studies have identified a subtype associated with a high relapse risk and a transcriptional profile similar to that of Ph+ ALL, the so-called Ph-like ALL. Given the high prevalence of kinase-activating lesions in this subset, there is compelling evidence from experimental models and clinical observations favoring TKI administration.Areas covered: We discuss the main findings exploring the efficacy of TKIs in ALL.Expert opinion: The use of more potent TKIs will further enhance the inhibitory activity on leukemia cells and increase the possibility of eradicating the disease at a molecular level. In the future, 'combined' approaches of different inhibitors may be considered to prevent/avoid resistance and/or mutations. A rapid identification of Ph-like ALL patients is needed to propose early TKI-based intervention. Several questions remain open, including the initial TKI choice in Ph+ ALL and whether Ph-like ALL patients might benefit from immunotherapy.
Collapse
Affiliation(s)
- Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Laura Cesini
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
88
|
Salvaris R, Fedele PL. Targeted Therapy in Acute Lymphoblastic Leukaemia. J Pers Med 2021; 11:715. [PMID: 34442359 PMCID: PMC8398498 DOI: 10.3390/jpm11080715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
The last decade has seen a significant leap in our understanding of the wide range of genetic lesions underpinning acute lymphoblastic leukaemia (ALL). Next generation sequencing has led to the identification of driver mutations with significant implications on prognosis and has defined entities such as BCR-ABL-like ALL, where targeted therapies such as tyrosine kinase inhibitors (TKIs) and JAK inhibitors may play a role in its treatment. In Philadelphia positive ALL, the introduction of TKIs into frontline treatment regimens has already transformed patient outcomes. In B-ALL, agents targeting surface receptors CD19, CD20 and CD22, including monoclonal antibodies, bispecific T cell engagers, antibody drug conjugates and chimeric antigen receptor (CAR) T cells, have shown significant activity but come with unique toxicities and have implications for how treatment is sequenced. Advances in T-ALL have lagged behind those seen in B-ALL. However, agents such as nelarabine, bortezomib and CAR T cell therapy targeting T cell antigens have been examined with promising results seen. As our understanding of disease biology in ALL grows, as does our ability to target pathways such as apoptosis, through BH3 mimetics, chemokines and epigenetic regulators. This review aims to highlight a range of available and emerging targeted therapeutics in ALL, to explore their mechanisms of action and to discuss the current evidence for their use.
Collapse
Affiliation(s)
- Ross Salvaris
- Department of Clinical Haematology, Monash Health, Clayton 3168, Australia;
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| | - Pasquale Luke Fedele
- Department of Clinical Haematology, Monash Health, Clayton 3168, Australia;
- School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia
| |
Collapse
|
89
|
Mittelman SD, Kim J, Raca G, Li G, Oberley MJ, Orgel E. Increased prevalence of CRLF2 rearrangements in obesity-associated acute lymphoblastic leukemia. Blood 2021; 138:199-202. [PMID: 33876219 PMCID: PMC8288656 DOI: 10.1182/blood.2021011106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Affiliation(s)
- Steven D Mittelman
- Division of Pediatric Endocrinology, University of California, Los Angeles (UCLA) Children's Discovery and Innovation Institute, David Geffen School of Medicine, and
| | - Jiyoon Kim
- Department of Biostatistics and Computational Medicine, Jonathan and Karin Fielding School of Public Health, UCLA, Los Angeles, CA
| | - Gordana Raca
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA; and
| | - Gang Li
- Department of Biostatistics and Computational Medicine, Jonathan and Karin Fielding School of Public Health, UCLA, Los Angeles, CA
| | | | - Etan Orgel
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA; and
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
90
|
Ding YY, Kim H, Madden K, Loftus JP, Chen GM, Allen DH, Zhang R, Xu J, Chen CH, Hu Y, Tasian SK, Tan K. Network Analysis Reveals Synergistic Genetic Dependencies for Rational Combination Therapy in Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia. Clin Cancer Res 2021; 27:5109-5122. [PMID: 34210682 DOI: 10.1158/1078-0432.ccr-21-0553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Systems biology approaches can identify critical targets in complex cancer signaling networks to inform new therapy combinations that may overcome conventional treatment resistance. EXPERIMENTAL DESIGN We performed integrated analysis of 1,046 childhood B-ALL cases and developed a data-driven network controllability-based approach to identify synergistic key regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-ALL), a common high-risk leukemia subtype associated with hyperactive signal transduction and chemoresistance. RESULTS We identified 14 dysregulated network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis pathways and other critical processes. Genetic cotargeting of the synergistic key regulator pair STAT5B and BCL2-associated athanogene 1 (BAG1) significantly reduced leukemia cell viability in vitro. Pharmacologic inhibition with dual small molecule inhibitor therapy targeting this pair of key nodes further demonstrated enhanced antileukemia efficacy of combining the BCL-2 inhibitor venetoclax with the tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like ALL cell lines and in vivo in multiple childhood Ph-like ALL patient-derived xenograft models. Consistent with network controllability theory, co-inhibitor treatment also shifted the transcriptomic state of Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and more similar to prognostically favorable childhood B-ALL subtypes. CONCLUSIONS Our study represents a powerful conceptual framework for combinatorial drug discovery based on systematic interrogation of synergistic vulnerability pathways with pharmacologic inhibitor validation in preclinical human leukemia models.
Collapse
Affiliation(s)
- Yang-Yang Ding
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hannah Kim
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Kellyn Madden
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph P Loftus
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Hottman Allen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ruitao Zhang
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Sarah K Tasian
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. .,Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
91
|
Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10:cells10061533. [PMID: 34204560 PMCID: PMC8235236 DOI: 10.3390/cells10061533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies originating from mesenchymal tissues with limited therapeutic options. Recently, alterations in components of the fibroblast growth factor receptor (FGFR) signaling pathway have been identified in a range of different sarcoma subtypes, most notably gastrointestinal stromal tumors, rhabdomyosarcomas, and liposarcomas. These alterations include genetic events such as translocations, mutations, and amplifications as well as transcriptional overexpression. Targeting FGFR has therefore been proposed as a novel potential therapeutic approach, also in light of the clinical activity shown by multi-target tyrosine kinase inhibitors in specific subtypes of sarcomas. Despite promising preclinical evidence, thus far, clinical trials have enrolled very few sarcoma patients and the efficacy of selective FGFR inhibitors appears relatively low. Here, we review the known alterations of the FGFR pathway in sarcoma patients as well as the preclinical and clinical evidence for the use of FGFR inhibitors in these diseases. Finally, we discuss the possible reasons behind the current clinical data and highlight the need for biomarker stratification to select patients more likely to benefit from FGFR targeted therapies.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- Department of Medical Oncology, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alexandra E. Ostler
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Correspondence: ; Tel.: +44-207-153-5554
| |
Collapse
|
92
|
A reporter system for enriching CRISPR/Cas9 knockout cells in technically challenging settings like patient models. Sci Rep 2021; 11:12649. [PMID: 34135367 PMCID: PMC8209181 DOI: 10.1038/s41598-021-91760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas9 represents a valuable tool to determine protein function, but technical hurdles limit its use in challenging settings such as cells unable to grow in vitro like primary leukemia cells and xenografts derived thereof (PDX). To enrich CRISPR/Cas9-edited cells, we improved a dual-reporter system and cloned the genomic target sequences of the gene of interest (GOI) upstream of an out-of-frame fluorochrome which was expressed only upon successful gene editing. To reduce rounds of in vivo passaging required for PDX leukemia growth, targets of 17 GOI were cloned in a row, flanked by an improved linker, and PDX cells were lentivirally transduced for stable expression. The reporter enriched scarce, successfully gene-edited PDX cells as high as 80%. Using the reporter, we show that KO of the SRC-family kinase LYN increased the response of PDX cells of B precursor cell ALL towards Vincristine, even upon heterozygous KO, indicating haploinsufficiency. In summary, our reporter system enables enriching KO cells in technically challenging settings and extends the use of gene editing to highly patient-related model systems.
Collapse
|
93
|
Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like-Recent Progress in Treatment. Int J Mol Sci 2021; 22:ijms22126411. [PMID: 34203891 PMCID: PMC8232636 DOI: 10.3390/ijms22126411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pediatric acute lymphoblastic leukemia (ALL) with t(9;22)(q34;q11.2) is a very rare malignancy in children. Approximately 3-5% of pediatric ALL patients present with the Philadelphia chromosome. Previously, children with Ph+ had a poor prognosis, and were considered for allogeneic stem cell transplantation (allo-HSCT) in their first remission (CR1). Over the last few years, the treatment of childhood ALL has significantly improved due to standardized research protocols. Hematopoietic stem cell transplantation (HSCT) has been the gold standard therapy in ALL Ph+ patients, but recently first-generation tyrosine kinase inhibitor (TKI)-imatinib became a major milestone in increasing overall survival. Genomic analyses give the opportunity for the investigation of new fusions or mutations, which can be used to establish effective targeted therapies. Alterations of the IKZF1 gene are present in a large proportion of pediatric and adult ALL Ph+ cases. IKZF1 deletions are present in ~15% of patients without BCR-ABL1 rearrangements. In BCR-ABL1-negative cases, IKZF1 deletions have been shown to have an independent prognostic impact, carrying a three-fold increased risk of treatment failure. The prognostic significance of IKZF1 gene aberrations in pediatric ALL Ph+ is still under investigation. More research should focus on targeted therapies and immunotherapy, which is not associated with serious toxicity in the same way as classic chemotherapy, and on the improvement of patient outcomes. In this review, we provide a molecular analysis of childhood ALL with t(9;22)(q34;q11.2), including the Ph-like subtype, and of treatment strategies.
Collapse
|
94
|
Bayram N, Yaman Y, Özdilli K, Telhan L, Nepesov S, Bilgen H, Elli M, Behar SS, Anak S. Clinical Efficacy of Ruxolitinib Monotherapy and Haploidentical Hematopoeitic Stem Cell Transplantation in a Child with Philadelphia Chromosome-like Relapsed/Refractory acute lymphoblastic leukemia. Pediatr Transplant 2021; 25:e14024. [PMID: 33860589 DOI: 10.1111/petr.14024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION (Ph-like) ALL is a subset of leukemia which has a gene expression profile similar to Ph+disease, but without the presence of BCR-ABL1 translocation. CASE DESCRIPTION We reported an exceptional case of a child with relapsed Ph-like ALL with IKZF1 gene deletion treated with high-dose ruxolitinib as monotherapy, after multi-agent chemotherapy. He remains in continued MRD-negative leukemia remission with full donor chimerism at 12 months post-HSCT. DISCUSSION The circumstance that makes our case featured is the usage of ruxolitinib as monotherapy. This report, we believe, is a pioneering report for a frequent disease with a high risk of failure for the outcome.
Collapse
Affiliation(s)
- Nihan Bayram
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| | - Yöntem Yaman
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| | - Kürşat Özdilli
- Pediatric Hematology and Oncology, Istanbul Medipol University- Medical Biology, Istanbul, Turkey
| | - Leyla Telhan
- Pediatric Intensive Care Unit, Istanbul Medipol University, Istanbul, Turkey
| | - Serdar Nepesov
- Pediatric Immunology, Istanbul Medipol University, Istanbul, Turkey
| | - Hülya Bilgen
- Hematology, Istanbul Medipol University, Istanbul, Turkey
| | - Murat Elli
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| | - Sude Sema Behar
- Medical Faculty Student, Istanbul Medipol University, Istanbul, Turkey
| | - Sema Anak
- Pediatric Hematology and Oncology, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
95
|
Chiaretti S, Messina M, Della Starza I, Piciocchi A, Cafforio L, Cavalli M, Taherinasab A, Ansuinelli M, Elia L, Albertini Petroni G, La Starza R, Canichella M, Lauretti A, Puzzolo MC, Pierini V, Santoro A, Spinelli O, Apicella V, Capria S, Di Raimondo F, De Fabritiis P, Papayannidis C, Candoni A, Cairoli R, Cerrano M, Fracchiolla N, Mattei D, Cattaneo C, Vitale A, Crea E, Fazi P, Mecucci C, Rambaldi A, Guarini A, Bassan R, Foà R. Philadelphia-like acute lymphoblastic leukemia is associated with minimal residual disease persistence and poor outcome. First report of the minimal residual disease-oriented GIMEMA LAL1913. Haematologica 2021; 106:1559-1568. [PMID: 32467145 PMCID: PMC8168510 DOI: 10.3324/haematol.2020.247973] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Early recognition of Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) cases could impact on the management and outcome of this subset of B-lineage ALL. In order to assess the prognostic value of the Ph-like status in a pediatric-inspired, minimal residual disease (MRD)- driven trial, we screened 88 B-lineage ALL cases negative for major fusion genes (BCR-ABL1, ETV6-RUNX1, TCF3-PBX1 and KTM2Ar) enrolled in the GIMEMA LAL1913 front-line protocol for adult BCR/ABL1-negative ALL. The screening - performed using the “BCR/ABL1-like predictor” - identified 28 Ph-like cases (31.8%), characterized by CRLF2 overexpression (35.7%), JAK/STAT pathway mutations (33.3%), IKZF1 (63.6%), BTG1 (50%) and EBF1 (27.3%) deletions, and rearrangements targeting tyrosine kinases or CRLF2 (40%). The correlation with outcome highlighted that: i) the complete remission rate was significantly lower in Ph-like compared to non-Phlike cases (74.1% vs. 91.5%, P=0.044); ii) at time point 2, decisional for transplant allocation, 52.9% of Ph-like cases versus 20% of non-Ph-like were MRD-positive (P=0.025); iii) the Ph-like profile was the only parameter associated with a higher risk of being MRD-positive at time point 2 (P=0.014); iv) at 24 months, Ph-like patients had a significantly inferior event-free and disease-free survival compared to non-Ph-like patients (33.5% vs. 66.2%, P=0.005 and 45.5% vs. 72.3%, P=0.062, respectively). This study documents that Ph-like patients have a lower complete remission rate, event-free survival and disease-free survival, as well as a greater MRD persistence also in a pediatric-oriented and MRD-driven adult ALL protocol, thus reinforcing that the early recognition of Ph-like ALL patients at diagnosis is crucial to refine risk-stratification and to optimize therapeutic strategies. Clinicaltrials gov. Identifier: 02067143.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Hematology, Dept of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Monica Messina
- Dept of Translational and Precision Medicine, Sapienza University and GIMEMA Data Center, Rome, Italy
| | - Irene Della Starza
- Dept of Translational and Precision Medicine, Sapienza University and GIMEMA Data Center, Rome, Italy
| | - Alfonso Piciocchi
- GIMEMA Data Center, Fondazione GIMEMA Franco Mandelli Onlus, Rome, Italy
| | - Luciana Cafforio
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Marzia Cavalli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Akram Taherinasab
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Roberta La Starza
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Italy
| | - Martina Canichella
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessia Lauretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Maria Cristina Puzzolo
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Valentina Pierini
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Italy
| | - Alessandra Santoro
- Div of Hematology and Bone Marrow Transplantation,Ospedali Riuniti Villa Sofia-Cervello, Palermo,Italy
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Valerio Apicella
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Saveria Capria
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome
| | - Francesco Di Raimondo
- Dept. of General Surgery and Medical-Surgical Specialties, University of Catania, Italy
| | | | - Cristina Papayannidis
- Seragnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Anna Candoni
- Clinica di Ematologia e Unita' di terapie Cellulari Carlo Melzi, Udine, Italy
| | | | - Marco Cerrano
- Dept of Oncology, Division of Hematology, Presidio Molinette, Torino, Italy
| | - Nicola Fracchiolla
- UOC Oncoematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Daniele Mattei
- Department of Hematology, Ospedale S. Croce, Cuneo, Italy
| | - Chiara Cattaneo
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Enrico Crea
- GIMEMA Data Center, Fondazione GIMEMA Franco Mandelli Onlus, Rome, Italy
| | - Paola Fazi
- GIMEMA Data Center, Fondazione GIMEMA Franco Mandelli Onlus, Rome, Italy
| | - Cristina Mecucci
- Dept. of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Renato Bassan
- Hematology Unit, Ospedale dell'Angelo and Ospedale Ss Giovanni e Paolo, Mestre Venezia, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
96
|
Hrabovsky S, Vrzalova Z, Stika J, Jelinkova H, Jarosova M, Navrkalova V, Martenek J, Folber F, Salek C, Horacek JM, Pospisilova S, Mayer J, Doubek M. Genomic landscape of B-other acute lymphoblastic leukemia in an adult retrospective cohort with a focus on BCR-ABL1-like subtype. Acta Oncol 2021; 60:760-770. [PMID: 33750258 DOI: 10.1080/0284186x.2021.1900908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION BCR-ABL1-like acute lymphoblastic leukemia (ALL) is a high-risk disease with a complex genomic background. Though extensively studied, data on the frequency and mutual associations of present mutations are still incomplete in adult patients. This retrospective study aims to map the genomic landscape of B-other ALL in a cohort of adult patients with a focus on the BCR-ABL1-like ALL subtype. METHODS We analyzed bone marrow and peripheral blood samples of adult B-other ALL patients treated consecutively at three major Czech teaching hospitals. Samples were analyzed by cytogenetic methods, gene expression profiling, multiplex ligation-dependent probe amplification (MLPA), and next-generation sequencing (NGS). RESULTS Fifty-eight B-other ALL patients (not BCR-ABL1, KMT2A-rearranged, ETV6-RUNX1, TCF3-PBX1, or iAMP21) were included in the study. Median follow-up was 23.8 months. Samples from 33 patients were available for a gene expression analysis, 48.9% identified as BCR-ABL1-like ALL. Of the BCR-ABL1-like ALL cases, 18.8% harbored IGH-CRLF2 and 12.5% P2RY8-CRLF2 fusion gene. We observed a higher MRD failure rate in BCR-ABL1-like than in non-BCR-ABL1-like ALL patients after the induction treatment (50.0 vs. 13.3%, p=.05). There was a trend to worse progression-free and overall survival in the BCR-ABL1-like group, though not statistically significant. Deletions in IKZF1 gene were found in 31.3% of BCR-ABL1-like cases. Patients with concurrent IKZF1 and CDKN2A/B, PAX5 or PAR1 region deletions (IKZF1plus profile) had significantly worse progression-free survival than those with sole IKZF1 deletion or IKZF1 wild-type (p=.02). NGS analysis was performed in 54 patients and identified 99 short variants in TP53, JAK2, NRAS, PAX5, CREBBP, NF1, FLT3, ATM, KRAS, RUNX1, and other genes. Seventy-five of these gene variants have not yet been described in B-cell precursor ALL to date. CONCLUSION This study widens existing knowledge of the BCR-ABL1-like and B-other ALL genomic landscape in the adult population, supports previous findings, and identifies a number of novel gene variants.
Collapse
Affiliation(s)
- Stepan Hrabovsky
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Zuzana Vrzalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Stika
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Hana Jelinkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Marie Jarosova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Veronika Navrkalova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Martenek
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Frantisek Folber
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
| | - Cyril Salek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Institute of Clinical and Experimental Hematology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan M. Horacek
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Fourth Department of Internal Medicine – Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czechia
- Department of Military Internal Medicine and Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Czech Leukemia Study Group – for Life (CELL), Brno, Czechia
- Central European Institute of Technology (CEITEC), Brno, Czechia
| |
Collapse
|
97
|
Gout AM, Arunachalam S, Finkelstein DB, Zhang J. Data-driven approaches to advance research and clinical care for pediatric cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188571. [PMID: 34051287 DOI: 10.1016/j.bbcan.2021.188571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022]
Abstract
Pediatric cancer is a rare disease with a distinct etiology and mutational landscape compared with adult cancer. Multi-omics profiling of retrospective and prospective cohorts coupled with innovative computational analysis have been instrumental in uncovering mechanisms of tumorigenesis and drug resistance that are now informing pediatric cancer clinical therapy. In this review we present the major data resources of pediatric cancer and actionable insights into pediatric cancer etiology stemming from the identification of oncogenic gene fusions, mutational signature analysis, systems biology, cancer predisposition and survivorship studies - that have led to improved clinical diagnosis, discovery of new drug-targets, pharmacological therapy, and screening for genetic predisposition. Ultimately, integration of large-scale omics datasets generated through international collaboration is required to maximize the power of data-driven approaches to advance pediatric cancer research informing clinical therapy.
Collapse
Affiliation(s)
- Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sasi Arunachalam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
98
|
Sharma P, Rana S, Virk H, Sachdeva MUS, Sharma P, Varma N, Jain R, Bansal D, Trehan A, Khadwal AR, Malhotra P, Sreedharanunni S. The frequency, hematological characteristics, and end-of induction residual disease in B-acute lymphoblastic leukemia with BCR-ABL1-like chimeric gene fusions in a high-risk cohort from India. Leuk Lymphoma 2021; 63:2474-2478. [PMID: 34027795 DOI: 10.1080/10428194.2021.1929964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Praveen Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sonia Rana
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harpreet Virk
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Jain
- Pediatric Hematology/Oncology Unit, Department of Pediatric Medicine, Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Bansal
- Pediatric Hematology/Oncology Unit, Department of Pediatric Medicine, Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Pediatric Hematology/Oncology Unit, Department of Pediatric Medicine, Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Rani Khadwal
- Adult Clinical Hematology Unit, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Adult Clinical Hematology Unit, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
99
|
Dasatinib induces a dramatic response in a child with refractory juvenile xanthogranuloma with a novel MRC1-PDGFRB fusion. Blood Adv 2021; 4:2991-2995. [PMID: 32609843 DOI: 10.1182/bloodadvances.2020001890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Key Points
Juvenile xanthogranuloma (JXG) usually presents with lesions isolated to the skin; however, aggressive, disseminated forms also occur. Identification of a novel MRC1-PDGFRB fusion in a child with JXG guided targeted therapy with dasatinib, leading to a dramatic response.
Collapse
|
100
|
Tavakoli Shirazi P, Eadie LN, Page EC, Heatley SL, Bruning JB, White DL. Constitutive JAK/STAT signaling is the primary mechanism of resistance to JAKi in TYK2-rearranged acute lymphoblastic leukemia. Cancer Lett 2021; 512:28-37. [PMID: 33971281 DOI: 10.1016/j.canlet.2021.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Activating TYK2-rearrangements have recently been identified and implicated in the leukemogenesis of high-risk acute lymphoblastic leukemia (HR-ALL) cases. Pre-clinical studies indicated the JAK/TYK2 inhibitor (JAKi), cerdulatinib, as a promising therapeutic against TYK2-rearranged ALL, attenuating the constitutive JAK/STAT signaling resulting from the TYK2 fusion protein. However, following a period of clinical efficacy, JAKi resistance often occurs resulting in relapse. In this study, we modeled potential mechanisms of JAKi resistance in TYK2-rearranged ALL cells in vitro in order to recapitulate possible clinical scenarios and provide a rationale for alternative therapies. Cerdulatinib resistant B-cells, driven by the MYB-TYK2 fusion oncogene, were generated by long-term exposure to the drug. Sustained treatment of MYB-TYK2-rearranged ALL cells with cerdulatinib led to enhanced and persistent JAK/STAT signaling, co-occurring with JAK1 overexpression. Hyperactivation of JAK/STAT signaling and JAK1 overexpression was reversible as cerdulatinib withdrawal resulted in re-sensitization to the drug. Importantly, histone deacetylase inhibitor (HDACi) therapies were efficacious against cerdulatinib-resistant cells demonstrating a potential alternative therapy for use in TYK2-rearranged B-ALL patients who have lost response to JAKi treatment regimens.
Collapse
Affiliation(s)
- Paniz Tavakoli Shirazi
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - Elyse C Page
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Sciences, University of Adelaide, Adelaide, Australia.
| | - Susan L Heatley
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - John B Bruning
- Faculty of Sciences, University of Adelaide, Adelaide, Australia.
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Faculty of Sciences, University of Adelaide, Adelaide, Australia; Australian Genomics Health Alliance (AGHA), Australia.
| |
Collapse
|