51
|
Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood 2006; 108:1509-14. [PMID: 16670270 DOI: 10.1182/blood-2005-11-011957] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature megakaryocytes form structures called proplatelets that serve as conduits for platelet packaging and release at vascular sinusoids. Since the megakaryocyte expresses abundant levels of integrin alpha IIb beta3, we have examined a role for fibrinogen in proplatelet development and platelet release alongside that of other matrices. Primary mature murine megakaryocytes from bone marrow aspirates readily formed proplatelets when plated on fibrinogen at a degree that was significantly higher than that seen on other matrices. In addition, alpha IIb beta3 was essential for proplatelet formation on fibrinogen, as megakaryocytes failed to develop proplatelets in the presence of alpha IIb beta3 antagonists. Interestingly, inhibition of Src kinases or Ca2+ release did not inhibit proplatelet formation, indicating that alpha IIb beta3-mediated outside-in signals are not required for this response. Immunohistochemical studies demonstrated that fibrinogen is localized to the bone marrow sinusoids, a location that would allow it to readily influence platelet release. Further, thrombopoietin-stimulated alpha IIb-/- mice had a reduced increase in platelet number relative to controls. A similar observation was not observed for platelet recovery in alpha IIb-/- mice in response to antibody-induced thrombocytopenia, indicating the existence of additional pathways of regulation of proplatelet formation. These results demonstrate that fibrinogen is able to regulate proplatelet formation via integrin alpha IIb beta3.
Collapse
Affiliation(s)
- Mark K Larson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham, United Kingdom.
| | | |
Collapse
|
52
|
Price V, Barnes C, Canning P, Blanchette V, Greenberg M. Immune thrombocytopenia following successful treatment of cancer in children. Pediatr Blood Cancer 2006; 46:372-6. [PMID: 15700256 DOI: 10.1002/pbc.20341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A predisposition to developing immune thrombocytopenia (ITP) has not been reported in survivors of childhood cancer. We report a case series of childhood cancer survivors who developed an isolated thrombocytopenia in the presence of a normocellular bone marrow. Five children, two with endodermal sinus tumors and three with acute lymphoblastic leukemia, developed ITP at a median of 4 years (range: 0.2-8 years) after completion of therapy. We suggest the association of ITP in survivors of childhood malignancy may not be co-incidental as chemotherapy may cause persistent immune dysfunction.
Collapse
Affiliation(s)
- Victoria Price
- Department of Pediatrics, Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
53
|
Hillmann AG, Harmon S, Park SDE, O'brien J, Shields DC, Kenny D. Comparative RNA expression analyses from small-scale, single-donor platelet samples. J Thromb Haemost 2006; 4:349-56. [PMID: 16420564 DOI: 10.1111/j.1538-7836.2006.01684.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Comparisons of platelet RNAs could provide crucial information on platelet function, thrombopoiesis and the etiology of megakaryocyte (MK) or platelet disorders. OBJECTIVES We developed a method for stringent purification of platelets from small blood samples from single donors. Purity of the platelet preparations was verified by an RT-PCR assay. We tested three methods to identify the differences in RNA between platelet sources. METHODS Differential hybridization to cDNA macro-arrays and suppressive-subtractive hybridization PCR (SSH-PCR) were used to compare RNAs from normal platelets to those from a Bernard-Soulier syndrome (BSS) patient. Affymetrix GeneChip U133 plus 2.0 arrays were used to compare male and female platelet RNAs. RESULTS Macroarrays identified approximately 7500 platelet transcripts, but failed to identify differentially expressed transcripts with confidence. SSH-PCR produced libraries almost exclusively of mitochondrial-derived transcripts, but included nuclear-encoded genes that could not be confirmed by immunoblotting of normal and BSS platelet lysates. The Affymetrix platform gave reproducible profiles from our small-scale purified platelet preparations, whereas a partially purified platelet preparation produced a drastically skewed transcript profile. The microarray analysis identified the heparanase precursor transcript as overexpressed in female platelets, and we observed variable yet consistently higher levels of heparanase protein in female platelets compared with male platelets in four independent donor pairs. CONCLUSIONS This demonstrates for the first time that differential platelet transcript levels can identify changes in expression level of platelet proteins. Combined with our small-scale platelet preparation method, this establishes a system to compare platelets from the limited clinical sources to help elucidate molecular bases for platelet or megakaryocyte pathologies.
Collapse
Affiliation(s)
- A G Hillmann
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
54
|
Kosaki G. In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? Int J Hematol 2005; 81:208-19. [PMID: 15814332 DOI: 10.1532/ijh97.04177] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although platelets are universally accepted to be born from megakaryocytes (MKs), the mechanism by which platelets are formed and released from MKs in vivo remains controversial. One theory, known as the proplatelet theory, postulates that platelets are released from proplatelet processes protruding from MKs into sinusoids located in the bone marrow hematopoietic compartment. Proplatelet formation (PPF) has been observed in in vitro experiments involving detailed analyses of related molecular events. PPF has also been used as a marker of MK maturation. However, PPF is suggested to be a nonphysiological phenomenon. On the other hand, transmission electron microscopy (TEM) analyses have revealed platelet formation via explosive fragmentation of MK cytoplasm in bone marrow and lung capillaries prepared by immersion fixation. Moreover, TEM and scanning electron microscopy studies of liquid-cultured MKs kept in suspension show that platelet formation occurs without PPF. Rather, an explosive and global fragmentation of the MK cytoplasm composed of platelet territories has been reported as the mechanism of platelet formation. In addition, in vivo and ex vivo observations of platelet release from MKs with phase-contrast microscopy strongly support the explosive-fragmentation theory. With all observations taken into account, PPF may not be a prerequisite for platelet release from MKs under real-life conditions. In this review, a new "protoplatelet" concept is proposed to support the explosive-fragmentation theory. Additionally, the role of the lungs in platelet production is reviewed and discussed.
Collapse
Affiliation(s)
- Goro Kosaki
- Surgery II, Osaka University Medical School, Japan
| |
Collapse
|
55
|
|
56
|
Zhou B, Zhao H, Yang RC, Han ZC. Multi-dysfunctional pathophysiology in ITP. Crit Rev Oncol Hematol 2005; 54:107-16. [PMID: 15843093 DOI: 10.1016/j.critrevonc.2004.12.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2004] [Indexed: 11/26/2022] Open
Abstract
Idiopathic thrombocytopenic purpura (ITP) is an organ-specific autoimmune disorder characterized by a low platelet count and mucocutaneous bleeding. The decrease of platelets is caused by increased autoantibodies against self-antigens, particularly IgG antibodies against GPIIb/IIIa. The production of these autoantibodies by B cells depends on a number of cellular mechanisms that form a network of modulation, with T cells playing a pivotal role in pathophysiology. Delineation of the dysfunction of cellular immunity has recently been attempted. This review will focus on these recent advances applicable to ITP and to highlight how these may translate into novel approaches to treatment in the future. Multi-dysfunction in these networks may include a failure of self-antigen recognition and tolerance, involvement of abnormal cell surface molecules, altered Th1/Th2 cytokine profiles, impaired megakaryocytopoiesis and impaired cell-mediated cytotoxicity. In ITP, multi-step dysfunctions in these networks may take place that finally lead to the occurrence of the disease. Therefore, unveiling these dysfunctions is vital in understanding the pathophysiology of ITP and will finally lead to the development of new therapies to fight the disease.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, PR China
| | | | | | | |
Collapse
|
57
|
Abstract
Immune thrombocytopenic purpura (ITP) is a disorder manifested by isolated thrombocytopenia. In vivo infusion studies in the 1950s and 1960s provided evidence that the thrombocytopenia was due to autoantibody-induced platelet destruction. However, there is mounting evidence that platelet production in this disorder may also be suppressed by antibodies. Early morphologic studies showed megakaryocytic damage in ITP, and these results have been confirmed by ultrastructural studies. Autologous platelet turnover studies in the 1980s showed that most ITP patients have either normal or reduced platelet turnover rather than increased turnover, as would be expected if platelet destruction were the only pathogenetic mechanism. More recently, in vitro culture studies of both adult and pediatric ITP have shown that some ITP plasmas suppress both megakaryocytopoiesis and thrombopoiesis. In view of these findings, both platelet destruction and suppression of platelet production seem likely to be involved in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Robert McMillan
- The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
58
|
Kanaji T, Russell S, Cunningham J, Izuhara K, Fox JEB, Ware J. Megakaryocyte proliferation and ploidy regulated by the cytoplasmic tail of glycoprotein Ibα. Blood 2004; 104:3161-8. [PMID: 15271795 DOI: 10.1182/blood-2004-03-0893] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractWe have investigated the ability of glycoprotein (GP) Ibα, a megakaryocytic gene product, to sequester the signal transduction protein 14-3-3ξ and to influence megakaryocytopoiesis. Using a Gp1ba–/– mouse colony, we compared the rescued phenotypes produced by a wild-type human GP Ibα allele or a similar allele containing a 6-residue cytoplasmic tail truncation that abrogates binding to 14-3-3ξ. The observed phenotypes illustrate an involvement for GP Ibα in thrombopoietin-mediated events of megakaryocyte proliferation, polyploidization, and the expression of apoptotic markers in maturing megakaryocytes. We developed a hypothesis for the involvement of a GP Ibα/14-3-3ξ/PI-3 kinase complex in regulating thrombopoietin-mediated responses. An observed increase in thrombopoietin-mediated Akt phosphorylation in the truncated variant supported the hypothesis and led to the development of a model in which the GP Ibα cytoplasmic tail sequestered signaling proteins during megakaryocytopoiesis and, as such, became a critical regulator in the temporal sequence of events that led to normal megakaryocyte maturation.
Collapse
Affiliation(s)
- Taisuke Kanaji
- Department of Molecular and Experimental Medicine, Division of Experimental Hemostasis and Thrombosis, Roon Research Center for Arteriosclerosis and Thrombosis, MEM175, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
59
|
Houwerzijl EJ, Blom NR, van der Want JJL, Esselink MT, Koornstra JJ, Smit JW, Louwes H, Vellenga E, de Wolf JTM. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 2004; 103:500-6. [PMID: 12969975 DOI: 10.1182/blood-2003-01-0275] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To investigate whether altered megakaryocyte morphology contributes to reduced platelet production in idiopathic thrombocytopenic purpura (ITP), ultrastructural analysis of megakaryocytes was performed in 11 ITP patients. Ultrastructural abnormalities compatible with (para-)apoptosis were present in 78% +/- 14% of ITP megakaryocytes, which could be reversed by in vivo treatment with prednisone and intravenous immunoglobulin. Immunohistochemistry of bone marrow biopsies of ITP patients with extensive apoptosis showed an increased number of megakaryocytes with activated caspase-3 compared with normal (28% +/- 4% versus 0%). No difference, however, was observed in the number of bone marrow megakaryocyte colony-forming units (ITP, 118 +/- 93/105 bone marrow cells; versus controls, 128 +/- 101/105 bone marrow cells; P =.7). To demonstrate that circulating antibodies might affect megakaryocytes, suspension cultures of CD34+ cells were performed with ITP or normal plasma. Morphology compatible with (para-)apoptosis could be induced in cultured megakaryocytes with ITP plasma (2 of 10 samples positive for antiplatelet autoantibodies). Finally, the plasma glycocalicin index, a parameter of platelet and megakaryocyte destruction, was increased in ITP (57 +/- 70 versus 0.7 +/- 0.2; P =.009) and correlated with the proportion of megakaryocytes showing (para-) apoptotic ultrastructure (P =.02; r = 0.7). In conclusion, most ITP megakaryocytes show ultrastructural features of (para-) apoptosis, probably due to action of factors present in ITP plasma.
Collapse
Affiliation(s)
- Ewout J Houwerzijl
- Department of Hematology, University Hospital Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Cassens U, Sibrowski W. Stammzellen aus Nabelschnurblut. TRANSFUSIONSMEDIZIN 2004. [DOI: 10.1007/978-3-662-10597-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the 'magic bullet'. Nat Rev Drug Discov 2003; 2:775-89. [PMID: 14526381 DOI: 10.1038/nrd1198] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The central importance of platelets in the development of arterial thrombosis and cardiovascular disease is well established. No other single cell type is responsible for as much morbidity and mortality as the platelet and, as a consequence, it represents a major target for therapeutic intervention. The growing awareness of the importance of platelets is reflected in the increasing number of patients receiving antiplatelet therapy, a trend that is likely to continue in the future. There are, however, significant drawbacks with existing therapies, including issues related to limited efficacy and safety. The discovery of a 'magic bullet' that selectively targets pathological thrombus formation without undermining haemostasis remains elusive, although recent progress in unravelling the molecular events regulating thrombosis has provided promising new avenues to solve this long-standing problem.
Collapse
Affiliation(s)
- Shaun P Jackson
- The Australian Centre for Blood Diseases, Department of Medicine, Monash University, Arnold Street, Box Hill Hospital, Box Hill, Victoria 3128, Australia.
| | | |
Collapse
|
62
|
Chang M, Nakagawa PA, Williams SA, Schwartz MR, Imfeld KL, Buzby JS, Nugent DJ. Immune thrombocytopenic purpura (ITP) plasma and purified ITP monoclonal autoantibodies inhibit megakaryocytopoiesis in vitro. Blood 2003; 102:887-95. [PMID: 12676790 DOI: 10.1182/blood-2002-05-1475] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine if megakaryocytes are targeted by immune thrombocytopenic purpura (ITP) autoantibodies, as are platelets, we have studied the effects of ITP plasma on in vitro megakaryocytopoiesis. Umbilical cord blood mononuclear cells were incubated in the presence of thrombopoietin and 10% plasma from either ITP patients (n = 53) or healthy donors. The yield of megakaryocytic cells, as determined by flow cytometry, was significantly reduced in the presence of ITP plasma containing antiplatelet glycoprotein Ib (GPIb) autoantibodies (P <.001) as compared with both the control and patient plasma with no detectable anti-GPIIb/IIIa or anti-GPIb autoantibodies. Platelet absorption of anti-GPIb autoantibodies in ITP plasmas resulted in double the megakaryocyte production of the same plasmas without absorption, whereas platelet absorption of control plasma had no effect on megakaryocyte yield. Furthermore, 2 human monoclonal autoantibodies isolated from ITP patients, 2E7, specific for human platelet glycoprotein IIb heavy chain, and 5E5, specific for a neoantigen on glycoprotein IIIa expressed on activated platelets, had significant inhibitory effects on in vitro megakaryocytopoiesis (P <.001). Taken together, these data indicate that autoantibodies against either platelet GPIb or platelet GPIIb/IIIa in ITP plasma not only are involved in platelet destruction, but may also contribute to the inhibition of platelet production.
Collapse
Affiliation(s)
- Mei Chang
- Hemostasis and Thrombosis, Children's Hospital of Orange County, 455 S Main St, Orange, CA 92868, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Pierleoni C, Castellucci M, Kaufmann P, Lund LR, Schnack Nielsen B. Urokinase receptor is up-regulated in endothelial cells and macrophages associated with fibrinoid deposits in the human placenta. Placenta 2003; 24:677-85. [PMID: 12828926 DOI: 10.1016/s0143-4004(03)00082-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clearance of fibrin deposits within the human placenta is an ongoing process during normal placental development. Plasminogen is a circulating fibrinolytic protease zymogen activated in situ by plasminogen activators. We have previously reported that the receptor for urokinase plasminogen activator (uPAR) is expressed by cells either covering or enmeshed within the perivillous fibrinoid deposits. Whereas these cells seemed likely to be trophoblasts, a definitive identification was lacking, and this question is central to the understanding of the cellular mechanisms directing fibrinolysis in the placenta. In this study we have performed immunohistochemical co-localization studies and found that the uPAR-positive cells covering fibrinoid deposits are immunoreactive for CD31 and vWF, indicating that they are actually endothelial cells. In addition, we found that perivillous fibrinoid deposits not covered with uPAR-positive endothelial cells were covered with platelets identified by integrin alpha(IIb)beta(3)-immunoreactivity. Also surprisingly, the uPAR-positive cells enmeshed within fibrinoid deposits express a cell specific marker indicating that they are macrophages. Both uPAR-positive cell populations also express uPA immunoreactivity. Taken together, the data suggest that both fibrinoid-covering endothelial cells and fibrinoid-enmeshed macrophages can participate in the clearance process of perivillous fibrinoid deposits formed in the human placenta.
Collapse
Affiliation(s)
- C Pierleoni
- Institute of Normal Human Morphology, Faculty of Medicine, University of Ancona, Italy
| | | | | | | | | |
Collapse
|
64
|
Abstract
Bernard-Soulier Syndrome (BSS) is an autosomal recessive bleeding disorder due to quantitative or qualitative abnormalities in the glycoprotein (GP) Ib/IX/V complex, the platelet receptor for von Willebrand factor. BSS is characterized by giant platelets, thrombocytopenia, and prolonged bleeding time, and the hallmark of this disorder is the absence of ristocetin-induced platelet agglutination. In the last 10 years, the molecular and genetic bases of many GPIb/IX/V defects have been elucidated, providing a better understanding of primary hemostasis and structure-function relations of the complex. Thus far, more than 30 mutations of the GPIbalpha, GPIbbeta, or GPIX genes have been described in BSS. Recent studies also have shown that the phenotypes caused by mutations in the subunits of the GPIb/IX/V span a wide spectrum, from the normal phenotype, to isolated giant platelet disorders/macrothrombocytopenia, to full-blown BSS and platelet-type von Willebrand disease. Although recent progress in molecular biology has clarified the genotype-phenotype relationships of the GPIb/IX/V disorders, a close examination of platelet morphology on blood smears is still indispensable for a proper diagnosis. In this review, we summarize recent advances in the molecular basis of BSS with special emphasis on giant platelets and the genetic characteristics of Japanese BSS.
Collapse
|
65
|
Eto K, Murphy R, Kerrigan SW, Bertoni A, Stuhlmann H, Nakano T, Leavitt AD, Shattil SJ. Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci U S A 2002; 99:12819-24. [PMID: 12239348 PMCID: PMC130543 DOI: 10.1073/pnas.202380099] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen binding to integrin alphaIIbbeta3 mediates platelet aggregation and requires agonist-induced "inside-out" signals that increase alphaIIbbeta3 affinity. Agonist regulation of alphaIIbbeta3 also takes place in megakaryocytes, the bone marrow cells from which platelets are derived. To facilitate mechanistic studies of inside-out signaling, we describe here the generation of megakaryocytes in quantity from murine embryonic stem (ES) cells. Coculture of ES cells for 8-12 days with OP9 stromal cells in the presence of thrombopoietin, IL-6, and IL-11 resulted in the development of large, polyploid megakaryocytes that produced proplatelets. These cells expressed alphaIIbbeta3 and platelet glycoprotein Ibalpha but were devoid of hematopoietic stem cell, erythrocyte, and leukocyte markers. Mature megakaryocytes, but not megakaryocyte progenitors, specifically bound fibrinogen by way of alphaIIbbeta3 in response to platelet agonists. Retrovirus-mediated expression of the reporter gene, green fluorescent protein, in ES cell-derived megakaryocytes did not affect viability or alphaIIbbeta3 function. On the other hand, retroviral expression of CalDAG-GEFI, a Rap1 exchange factor identified by megakaryocyte gene profiling as a candidate integrin regulator, enhanced agonist-induced activation of Rap1b and fibrinogen binding to alphaIIbbeta3 (P < 0.01). These results establish that ES cells are a ready source of mature megakaryocytes for integrin studies and other biological applications, and they implicate CalDAG-GEFI in inside-out signaling to alphaIIbbeta3.
Collapse
Affiliation(s)
- Koji Eto
- Departments of Cell Biology and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Kanaji T, Russell S, Ware J. Amelioration of the macrothrombocytopenia associated with the murine Bernard-Soulier syndrome. Blood 2002; 100:2102-7. [PMID: 12200373 DOI: 10.1182/blood-2002-03-0997] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An absent platelet glycoprotein (GP) Ib-IX receptor results in the Bernard-Soulier syndrome and is characterized by severe bleeding and the laboratory presentation of macrothrombocytopenia. Although the macrothrombocytopenic phenotype is directly linked to an absent GP Ib-IX complex, the disrupted molecular mechanisms that produce the macrothrombocytopenia are unknown. We have utilized a mouse model of the Bernard-Soulier syndrome to engineer platelets expressing an alpha-subunit of GP Ib (GP Ibalpha) in which most of the extracytoplasmic sequence has been replaced by an isolated domain of the alpha-subunit of the human interleukin-4 receptor (IL-4Ralpha). The IL-4Ralpha/GP Ibalpha fusion is membrane expressed in Chinese hamster ovary (CHO) cells, and its expression is facilitated by the presence of human GP IX and the beta-subunit of GP Ib. Transgenic animals expressing a chimeric receptor were generated and bred into the murine Bernard-Soulier syndrome-producing animals devoid of mouse GP Ibalpha but expressing the IL-4Ralpha/GP Ibalpha fusion sequence. The characterization of these mice revealed a 2-fold increase in circulating platelet count and a 50% reduction in platelet size when compared with platelets from the mouse model of the Bernard-Soulier syndrome. Immunoprecipitation confirmed that the IL-4Ralpha/GP Ibalpha subunit interacts with filamin-1 and 14-3-3zeta, known binding proteins to the GP Ibalpha cytoplasmic tail. Mice expressing the chimeric receptor retain a severe bleeding phenotype, confirming a critical role for the GP Ibalpha extracytoplasmic domain in hemostasis. These results provide in vivo insights into the structural elements of the GP Ibalpha subunit that contribute to normal megakaryocyte maturation and thrombopoiesis.
Collapse
Affiliation(s)
- Taisuke Kanaji
- Roon Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
67
|
Poujol C, Ware J, Nieswandt B, Nurden AT, Nurden P. Absence of GPIbalpha is responsible for aberrant membrane development during megakaryocyte maturation: ultrastructural study using a transgenic model. Exp Hematol 2002; 30:352-60. [PMID: 11937271 DOI: 10.1016/s0301-472x(02)00774-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The glycoprotein Ib/IX/V complex (GPIb-IX-V) mediates platelet attachment to von Willebrand factor in exposed subendothelium. Molecular defects in the genes for GPIbalpha, GPIbbeta, and GPIX give rise to the Bernard-Soulier syndrome, in which thrombocytopenia and giant platelets suggest that this receptor also is involved in platelet production. To study how giant platelets are produced in vivo, we used a model of GPIbalpha-deficient mice (GPIbalpha(null)) and mice rescued with the human GPIbalpha transgene (GPIbalpha(null;hTg)). MATERIALS AND METHODS Using electron microscopy and immunogold labeling, we examined megakaryocytopoiesis in the bone marrow of these mice and developed a method to quantify the membranes of megakaryocytes (MK) and proplatelets by computer analysis. RESULTS Abnormal membrane development in the perinuclear zone was found in immature MK of GPIbalpha(null) mice. This led to a poorly developed demarcation membrane system and other ultrastructural changes. As a result, well-organized platelet territories were rarely seen within the cytoplasm of mature MK. Membrane quantification confirmed that MK of GPIbalpha(null) mice had a reduced internal membrane pool. Whereas these MK normally crossed the endothelial barrier, their migration was accompanied by the production of unusually large MK fragments or proplatelets in the vascular sinus with an approximately 50% decrease in internal membrane content compared to wild-type. In the rescued GPIbalpha(null;hTg) model, GPIbalpha was normally localized in MK, and there was a total correction of the ultrastructural defects. CONCLUSIONS GPIbalpha is essential for membrane development and distribution in maturing MK. Its absence leads to abnormal partitioning of the membrane systems and abnormal proplatelet production.
Collapse
Affiliation(s)
- Christel Poujol
- UMR 5533 CNRS, Laboratoire d'Hématologie, Hôpital Cardiologique, Avenue de Magellan, 33604 Pessac, France
| | | | | | | | | |
Collapse
|
68
|
Li J, Kuter DJ. The end is just the beginning: megakaryocyte apoptosis and platelet release. Int J Hematol 2001; 74:365-74. [PMID: 11794690 DOI: 10.1007/bf02982078] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under influence of hematopoietic growth factors, particularly thrombopoietin (TPO), hematopoietic stem cells in the bone marrow go through a process of commitment, proliferation, differentiation, and maturation and become mature megakaryocytes. At this critical point, terminally differentiated megakaryocytes face a new fate: ending the old life as mature megakaryocytes by induction of apoptosis and beginning a new life as platelets by fragmentation of the large megakaryocyte cytoplasm. These events are as important as megakaryocyte commitment, proliferation, differentiation, and maturation, but the molecular mechanisms regulating these events are not well established. Although TPO drives megakaryocyte proliferation and differentiation and protects hematopoietic progenitor cells from death, it does not appear to promote platelet release from terminally differentiated megakaryocytes. Although mature megakaryocyte apoptosis is temporally associated with platelet formation, premature megakaryocyte death directly causes thrombocytopenia in cancer therapy and in diseases such as mvelodysplastic syndromes and human immunodeficiency virus infection. Also, genetic studies have shown that accumulation of megakaryocytes in bone marrow is not necessarily sufficient to produce platelets. All of these findings suggest that platelet release from megakaryocytes is an important and regulated aspect of platelet production, in which megakaryocyte apoptosis may also play a role. This review summarizes recent research progress on megakaryocyte apoptosis and platelet release.
Collapse
Affiliation(s)
- J Li
- Hematology/Oncology Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| | | |
Collapse
|
69
|
Cassens U, Garritsen H, Kelsch R, van der Werf N, Frosch M, Witteler R, Ebell W, Sibrowski W. Platelet glycoprotein complex Ia/IIa antibodies cause neonatal alloimmune thrombocytopenia but do not inhibit megakaryopoiesis and platelet recovery after allogeneic cord blood stem cell transplantation. Bone Marrow Transplant 2001; 28:803-6. [PMID: 11781636 DOI: 10.1038/sj.bmt.1703235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2001] [Accepted: 08/13/2001] [Indexed: 11/09/2022]
Abstract
A sibling cord blood (CB) transplantation was performed in a boy with Wiskott-Aldrich syndrome. The CB (31 x 10(6) CD34(+) cells) derived from a newborn sister with neonatal alloimmune thrombocytopenia (NAIT) with 40,000 platelets/microl, caused by a maternal anti-HPA-5b and HLA-A2 antibody. Maternal serum did not inhibit clonogenicity after in vitro testing of megakaryopoiesis. Accordingly, this CB was accepted for sibling transplantation. The transplantation showed a good course with fast and sustained hematopoietic reconstitution (granulocytes >500/microl on day +16, platelets >50,000/microl on day +30). This case demonstrates a successful CB transplantation from a donor suffering from NAIT.
Collapse
Affiliation(s)
- U Cassens
- Department of Transfusion Medicine/Transplantation Immunology, University Hospital Muenster, Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
70
|
The αIIbβ3 integrin and GPIb-V-IX complex identify distinct stages in the maturation of CD34+cord blood cells to megakaryocytes. Blood 2000. [DOI: 10.1182/blood.v96.13.4169] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMegakaryocytopoiesis is a complex multistep process involving cell division, endoreplication, and maturation and resulting in the release of platelets into the blood circulation. Megakaryocytes (MK) progressively express lineage-restricted proteins, some of which play essential roles in platelet physiology. Glycoprotein (GP)Ib-V-IX (CD42) and GPIIb (CD41) are examples of MK-specific proteins having receptor properties essential for platelet adhesion and aggregation. This study defined the progressive expression of the GPIb-V-IX complex during in vitro MK maturation and compared it to that of GPIIb, an early MK marker. Human cord blood CD34+ progenitor cells were cultured in the presence of cytokines inducing megakaryocytic differentiation. GPIb-V-IX expression appeared at day 3 of culture and was strictly dependent on MK cytokine induction, whereas GPIIb was already present in immature CD34+ cells. Analysis by flow cytometry and of the messenger RNA level both showed that GPV appeared 1 day later than GPIb-IX. Microscopy studies confirmed the late appearance of GPV, which was principally localized in the cytoplasm when GPIb-IX was found on the cell surface, suggesting a delayed program of GPV synthesis and trafficking. Cell sorting studies revealed that the CD41+GPV+ population contained 4N and 8N cells at day 7, and was less effective than CD41+GPV− cells in generating burst-forming units of erythrocytes or MK colonies. This study shows that the subunits of the GPIb-V-IX complex represent unique surface markers of MK maturation. The genes coding for GPIb-IX and GPV are useful tools to study megakaryocytopoiesis and for tissue-specific or conditional expression in mature MK and platelets.
Collapse
|
71
|
The αIIbβ3 integrin and GPIb-V-IX complex identify distinct stages in the maturation of CD34+cord blood cells to megakaryocytes. Blood 2000. [DOI: 10.1182/blood.v96.13.4169.h8004169_4169_4177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Megakaryocytopoiesis is a complex multistep process involving cell division, endoreplication, and maturation and resulting in the release of platelets into the blood circulation. Megakaryocytes (MK) progressively express lineage-restricted proteins, some of which play essential roles in platelet physiology. Glycoprotein (GP)Ib-V-IX (CD42) and GPIIb (CD41) are examples of MK-specific proteins having receptor properties essential for platelet adhesion and aggregation. This study defined the progressive expression of the GPIb-V-IX complex during in vitro MK maturation and compared it to that of GPIIb, an early MK marker. Human cord blood CD34+ progenitor cells were cultured in the presence of cytokines inducing megakaryocytic differentiation. GPIb-V-IX expression appeared at day 3 of culture and was strictly dependent on MK cytokine induction, whereas GPIIb was already present in immature CD34+ cells. Analysis by flow cytometry and of the messenger RNA level both showed that GPV appeared 1 day later than GPIb-IX. Microscopy studies confirmed the late appearance of GPV, which was principally localized in the cytoplasm when GPIb-IX was found on the cell surface, suggesting a delayed program of GPV synthesis and trafficking. Cell sorting studies revealed that the CD41+GPV+ population contained 4N and 8N cells at day 7, and was less effective than CD41+GPV− cells in generating burst-forming units of erythrocytes or MK colonies. This study shows that the subunits of the GPIb-V-IX complex represent unique surface markers of MK maturation. The genes coding for GPIb-IX and GPV are useful tools to study megakaryocytopoiesis and for tissue-specific or conditional expression in mature MK and platelets.
Collapse
|
72
|
Nurden P, Chretien F, Poujol C, Winckler J, Borel-Derlon A, Nurden A. Platelet ultrastructural abnormalities in three patients with type 2B von Willebrand disease. Br J Haematol 2000; 110:704-14. [PMID: 10997984 DOI: 10.1046/j.1365-2141.2000.02246.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several reports have described the presence of giant platelets in patients with type 2B von Willebrand disease (VWD). We have now characterized the ultrastructural changes in platelets from three unrelated patients with type 2B VWD and different mutations within exon 28 of the von Willebrand factor (VWF) gene. Electron microscopy showed that each of these subjects had an increased proportion of large platelets when compared with those of a patient with type 2A VWD or control subjects. Immunogold labelling for VWF was performed. Large masses detected by anti-VWF antibody were seen not only on the platelet surface, but also inside the platelet surface-connected canalicular system (SCCS) when ultrathin sections were labelled. This suggested translocation of the abnormally bound VWF from the platelet surface. Labelling of the alpha-granules was eccentric as for normal platelets. Labelling for glycoprotein (GP) Ib was seen on the surface and within the SCCS, suggesting co-localization with the bound VWF. However, there was no evidence for VWF in endosomes or other endocytic vesicles. The presence of platelet-bound VWF was not accompanied by high levels of platelet activation, as detected by electron microscopy, or by using monoclonal antibodies against P-selectin or activation-dependent determinants on GP IIb-IIIa in flow cytometry. Intriguingly, platelet ultrastructure often resembled that seen in patients with congenital thrombocytopathies characteristic of giant platelet syndromes.
Collapse
Affiliation(s)
- P Nurden
- UMR 5533 CNRS, Laboratoire d'Hématologie, Hôpital Cardiologique, Pessac, France.
| | | | | | | | | | | |
Collapse
|
73
|
Gevorkian G, Manoutcharian K, Govezensky T, Cano JA, Dominguez V, Santamaria H, Larralde C. Identification of mimotopes of platelet autoantigens associated with autoimmune thrombocytopenic purpura. J Autoimmun 2000; 15:33-40. [PMID: 10936026 DOI: 10.1006/jaut.2000.0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GPIIb/IIIa, the human platelet glycoprotein complex, is the autoantigen most commonly recognized by autoantibodies in autoimmune thrombocytopenic purpura (AITP). Two murine monoclonal antibodies (mAbs), namely Y2/51 and 5B12, directed against gpIIIa and gpIIb/IIIa, respectively, and rabbit anti-human platelet polyclonal antibodies have been used to select AITP-related epitopes from a phage display peptide library expressing random dodecapeptides in the pIII coat protein of M13 phage. The selected phage clones were tested by ELISA for binding to rabbit anti-human platelet antibodies as well as to sera from AITP patients. Seven clones reacted strongly with rabbit anti-human platelet antibodies, and four clones reacted with sera from AITP patients. Some homology between peptide inserts sequences of selected clones and human platelet gpIIIa and gpIb were found.
Collapse
Affiliation(s)
- G Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|
74
|
Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci U S A 2000; 97:2803-8. [PMID: 10706630 PMCID: PMC16010 DOI: 10.1073/pnas.050582097] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1999] [Accepted: 12/30/1999] [Indexed: 01/30/2023] Open
Abstract
The human Bernard-Soulier syndrome is an autosomal recessive disorder of platelet dysfunction presenting with mild thrombocytopenia, circulating "giant" platelets and a bleeding phenotype. The bleeding in patients with the Bernard-Soulier syndrome is disproportionately more severe than suggested by the reduced platelet count and is explained by a defect in primary hemostasis owing to the absence of the platelet glycoprotein (GP) Ib-IX-V membrane receptor. However, the molecular basis for the giant platelet phenotype and thrombocytopenia have remained unresolved but assumed to be linked to an absent receptor complex. We have disrupted the gene encoding the alpha-subunit of mouse GP Ib-IX-V (GP Ibalpha) and describe a murine model recapitulating the hallmark characteristics of the human Bernard-Soulier syndrome. The results demonstrate a direct link between expression of a GP Ib-IX-V complex and normal megakaryocytopoiesis and platelet morphogenesis. Moreover, using transgenic technology the murine Bernard-Soulier phenotype was rescued by expression of a human GP Ibalpha subunit on the surface of circulating mouse platelets. Thus, an in vivo model is defined for analysis of the human GP Ib-IX-V receptor and its role in the processes performed exclusively by megakaryocytes and platelets.
Collapse
Affiliation(s)
- J Ware
- Roon Research Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
75
|
Shiraga M, Ritchie A, Aidoudi S, Baron V, Wilcox D, White G, Ybarrondo B, Murphy G, Leavitt A, Shattil S. Primary megakaryocytes reveal a role for transcription factor NF-E2 in integrin alpha IIb beta 3 signaling. J Cell Biol 1999; 147:1419-30. [PMID: 10613901 PMCID: PMC2174239 DOI: 10.1083/jcb.147.7.1419] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/1999] [Accepted: 11/24/1999] [Indexed: 01/10/2023] Open
Abstract
Platelet integrin alphaIIbbeta3 responds to intracellular signals by binding fibrinogen and triggering cytoskeletal reorganization, but the mechanisms of alphaIIbbeta3 signaling remain poorly understood. To better understand this process, we established conditions to study alphaIIbbeta3 signaling in primary murine megakaryocytes. Unlike platelets, these platelet precursors are amenable to genetic manipulation. Cytokine-stimulated bone marrow cultures produced three arbitrary populations of alphaIIbbeta3-expressing cells with increasing size and DNA ploidy: small progenitors, intermediate-size young megakaryocytes, and large mature megakaryocytes. A majority of the large megakaryocytes bound fibrinogen in response to agonists, while almost none of the smaller cells did. Fibrinogen binding to large megakaryocytes was inhibited by Sindbis virus-mediated expression of isolated beta3 integrin cytoplasmic tails. Strikingly, large megakaryocytes from mice deficient in the transcription factor NF-E2 failed to bind fibrinogen in response to agonists, despite normal surface expression of alphaIIbbeta3. Furthermore, while megakaryocytes from wild-type mice spread on immobilized fibrinogen and exhibited filopodia, lamellipodia and Rho-dependent focal adhesions and stress fibers, NF-E2-deficient megakaryocytes adhered poorly. These studies establish that agonist-induced activation of alphaIIbbeta3 is controlled by NF-E2-regulated signaling pathways that mature late in megakaryocyte development and converge at the beta3 cytoplasmic tail. Megakaryocytes provide a physiologically relevant and tractable system for analysis of bidirectional alphaIIbbeta3 signaling.
Collapse
Affiliation(s)
- Masamichi Shiraga
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Alec Ritchie
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Sallouha Aidoudi
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Veronique Baron
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - David Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Gilbert White
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | - George Murphy
- Department of Laboratory Medicine, The University of California at San Francisco, San Francisco, California 94143
| | - Andrew Leavitt
- Department of Laboratory Medicine, The University of California at San Francisco, San Francisco, California 94143
| | - Sanford Shattil
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
76
|
Poujol C, Durrieu-Jais C, Larrue B, Nurden AT, Nurden P. Accessibility of abciximab to megakaryocytes and endothelial cells in the bone marrow compartment: studies on a patient receiving antithrombotic therapy. Br J Haematol 1999; 107:526-31. [PMID: 10583253 DOI: 10.1046/j.1365-2141.1999.01740.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abciximab, chimaeric Fab fragments of the monoclonal antibody 7E3 (c7E3 Fab), has achieved widespread use as an anti-platelet agent for blocking GP IIb-IIIa (alphaIIbbeta3) function and preventing ischaemic complications after coronary artery angioplasty. However, its accessibility to the bone marrow compartment during therapy is unknown, as is its ability to bind alphavbeta3 in vivo. Using electron microscopy and immunogold labelling, we have looked for abciximab in the bone marrow of a patient who became thrombocytopenic during treatment. The presence of abciximab was assessed on ultrathin frozen sections of a marrow aspirate, the drug being revealed by a rabbit antibody to c7E3 Fab. Labelling was maximal on fragmenting megakaryocytes (MK) and proplatelets in the vascular sinus and in direct access to the blood compartment. Not only the plasma membrane but also the demarcation membrane system (DMS) and the membranes of alpha-granules were labelled. Abciximab was also revealed on the luminal surface of endothelial cells lining the marrow sinuses, thereby confirming for the first time its ability to bind to alphavbeta3 in vivo. The study revealed no signs that abciximab had accumulated in the marrow.
Collapse
Affiliation(s)
- C Poujol
- Unité des Soins Intensifs, Institut Fédératif de Recherche, 'Coeur-Vaisseaux-Thrombose', Hôpital Cardiologique, Pessac, France
| | | | | | | | | |
Collapse
|
77
|
Abstract
Recent advances in the understanding of megakaryocyte (MK) function largely have been made through the careful observation of the morphological and structural events underlying MK development. Ultrastructural localization of enzymatic activities has facilitated the specific recognition of their committed diploid precursors. Observation of the sequential features of endomitosis demonstrates that although similar to normal mitosis, cell division aborts at the anaphase stage. The ability of thrombopoietin to induce the full maturation MKs in vitro not only facilitates platelet release but has increased our knowledge of various subcellular aspects of the phenomenon and eventually will improve the in vivo detection of the site of platelet formation and shedding. Finally, the structural and functional consequences of MK molecular dysfunction leading to thrombocytopenia or myelofibrosis can now be investigated because of the development of transgenic animal models. This review aims to incorporate these new findings within the classical knowledge of MK structure related to its function.
Collapse
Affiliation(s)
- E M Cramer
- INSERM U.474, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|