51
|
Stegmayr J, Wagner DE. The dawn of the omics era in human precision-cut lung slices. Eur Respir J 2021; 58:58/1/2100203. [PMID: 34215663 DOI: 10.1183/13993003.00203-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 11/05/2022]
Affiliation(s)
- John Stegmayr
- Dept of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy E Wagner
- Dept of Experimental Medical Sciences, Lund University, Lund, Sweden .,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
52
|
Bai S, Ye R, Wang C, Sun P, Wang D, Yue Y, Wang H, Wu S, Yu M, Xi S, Zhao L. Identification of Proteomic Signatures in Chronic Obstructive Pulmonary Disease Emphysematous Phenotype. Front Mol Biosci 2021; 8:650604. [PMID: 34277700 PMCID: PMC8280333 DOI: 10.3389/fmolb.2021.650604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease. Emphysematous phenotype is the most common and critical phenotype, which is characterized by progressive lung destruction and poor prognosis. However, the underlying mechanism of this structural damage has not been completely elucidated. A total of 12 patients with COPD emphysematous phenotype (COPD-E) and nine patients with COPD non-emphysematous phenotype (COPD-NE) were enrolled to determine differences in differential abundant protein (DAP) expression between both groups. Quantitative tandem mass tag–based proteomics was performed on lung tissue samples of all patients. A total of 29 and 15 lung tissue samples from patients in COPD-E and COPD-NE groups, respectively, were used as the validation cohort to verify the proteomic analysis results using western blotting. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted for DAPs. A total of 4,343 proteins were identified, of which 25 were upregulated and 11 were downregulated in the COPD-E group. GO and KEGG analyses showed that wound repair and retinol metabolism–related pathways play an essential role in the molecular mechanism of COPD emphysematous phenotype. Three proteins, namely, KRT17, DHRS9, and FMO3, were selected for validation. While KRT17 and DHRS9 were highly expressed in the lung tissue samples of the COPD-E group, FMO3 expression was not significantly different between both groups. In conclusion, KRT17 and DHRS9 are highly expressed in the lung tissue of patients with COPD emphysematous phenotype. Therefore, these proteins might involve in wound healing and retinol metabolism in patients with emphysematous phenotype and can be used as phenotype-specific markers.
Collapse
Affiliation(s)
- Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Ye
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuihong Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengbo Sun
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Di Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Yue
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huiying Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
53
|
Best Practices and Progress in Precision-Cut Liver Slice Cultures. Int J Mol Sci 2021; 22:ijms22137137. [PMID: 34281187 PMCID: PMC8267882 DOI: 10.3390/ijms22137137] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
Thirty-five years ago, precision-cut liver slices (PCLS) were described as a promising tool and were expected to become the standard in vitro model to study liver disease as they tick off all characteristics of a good in vitro model. In contrast to most in vitro models, PCLS retain the complex 3D liver structures found in vivo, including cell–cell and cell–matrix interactions, and therefore should constitute the most reliable tool to model and to investigate pathways underlying chronic liver disease in vitro. Nevertheless, the biggest disadvantage of the model is the initiation of a procedure-induced fibrotic response. In this review, we describe the parameters and potential of PCLS cultures and discuss whether the initially described limitations and pitfalls have been overcome. We summarize the latest advances in PCLS research and critically evaluate PCLS use and progress since its invention in 1985.
Collapse
|
54
|
Dutra Silva J, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, O'Kane C, Krasnodembskaya AD. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J 2021; 58:13993003.02978-2020. [PMID: 33334945 PMCID: PMC8318599 DOI: 10.1183/13993003.02978-2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Alveolar epithelial–capillary barrier disruption is a hallmark of acute respiratory distress syndrome (ARDS). Contribution of mitochondrial dysfunction to the compromised alveolar-capillary barrier in ARDS remains unclear. Mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) are considered as a cell-free therapy for ARDS. Mitochondrial transfer was shown to be important for the therapeutic effects of MSCs and MSC-EVs. Here we investigated the contribution of mitochondrial dysfunction to the injury of alveolar epithelial and endothelial barriers in ARDS and the ability of MSC-EVs to modulate alveolar–capillary barrier integrity through mitochondrial transfer. Primary human small airway epithelial and pulmonary microvascular endothelial cells and human precision cut lung slices (PCLSs) were stimulated with endotoxin or plasma samples from patients with ARDS and treated with MSC-EVs, barrier properties and mitochondrial functions were evaluated. Lipopolysaccharide (LPS)-injured mice were treated with MSC-EVs and degree of lung injury and mitochondrial respiration of the lung tissue were assessed. Inflammatory stimulation resulted in increased permeability coupled with pronounced mitochondrial dysfunction in both types of primary cells and PCLSs. Extracellular vesicles derived from normal MSCs restored barrier integrity and normal levels of oxidative phosphorylation while an extracellular vesicles preparation which did not contain mitochondria was not effective. In vivo, presence of mitochondria was critical for extracellular vesicles ability to reduce lung injury and restore mitochondrial respiration in the lung tissue. In the ARDS environment, MSC-EVs improve alveolar–capillary barrier properties through restoration of mitochondrial functions at least partially via mitochondrial transfer. This study demonstrates that mitochondrial dysfunction is an important mechanism of ARDS pathogenesis. Mitochondrial transfer is crucial for the ability of MSC extracellular vesicles to restore integrity of the alveolar–capillary barrier.https://bit.ly/2JuqoCY
Collapse
Affiliation(s)
- Johnatas Dutra Silva
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Yue Su
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Carolyn S Calfee
- Dept of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA.,Dept of Anesthesia, University of California, San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin L Delucchi
- Dept of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Weiss
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Danny F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Cecilia O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
55
|
Khedoe PPPSJ, Wu X, Gosens R, Hiemstra PS. Repairing damaged lungs using regenerative therapy. Curr Opin Pharmacol 2021; 59:85-94. [PMID: 34161852 PMCID: PMC9188766 DOI: 10.1016/j.coph.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022]
Abstract
There is an urgent need for better treatment of lung diseases that are a major cause of morbidity and mortality worldwide. This urgency is illustrated by the current COVID-19 health crisis. Moderate-to-extensive lung injury characterizes several lung diseases, and not only therapies that reduce such lung injury are needed but also those that regenerate lung tissue and repair existing lung injury. At present, such therapies are not available, but as a result of a rapid increase in our understanding of lung development and repair, lung regenerative therapies are on the horizon. Here, we discuss existing targets for treatment, as well as novel strategies for development of pharmacological and cell therapy-based regenerative treatment for a variety of lung diseases and clinical studies. We discuss how both patient-relevant in vitro disease models using innovative culture techniques and other advanced new technologies aid in the development of pulmonary regenerative medicine.
Collapse
Affiliation(s)
| | - Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
56
|
Acharya AP, Tang Y, Bertero T, Tai Y, Harvey LD, Woodcock CC, Sun W, Pineda R, Mitash N, Königshoff M, Little SR, Chan SY. Simultaneous Pharmacologic Inhibition of Yes-Associated Protein 1 and Glutaminase 1 via Inhaled Poly(Lactic-co-Glycolic) Acid-Encapsulated Microparticles Improves Pulmonary Hypertension. J Am Heart Assoc 2021; 10:e019091. [PMID: 34056915 PMCID: PMC8477870 DOI: 10.1161/jaha.120.019091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Background Pulmonary hypertension (PH) is a deadly disease characterized by vascular stiffness and altered cellular metabolism. Current treatments focus on vasodilation and not other root causes of pathogenesis. Previously, it was demonstrated that glutamine metabolism, as catalyzed by GLS1 (glutaminase 1) activity, is mechanoactivated by matrix stiffening and the transcriptional coactivators YAP1 (yes-associated protein 1) and transcriptional coactivator with PDZ-binding motif (TAZ), resulting in pulmonary vascular proliferation and PH. Pharmacologic inhibition of YAP1 (by verteporfin) or glutaminase (by CB-839) improved PH in vivo. However, systemic delivery of these agents, particularly YAP1 inhibitors, may have adverse chronic effects. Furthermore, simultaneous use of pharmacologic blockers may offer additive or synergistic benefits. Therefore, a strategy that delivers these drugs in combination to local lung tissue, thus avoiding systemic toxicity and driving more robust improvement, was investigated. Methods and Results We used poly(lactic-co-glycolic) acid polymer-based microparticles for delivery of verteporfin and CB-839 simultaneously to the lungs of rats suffering from monocrotaline-induced PH. Microparticles released these drugs in a sustained fashion and delivered their payload in the lungs for 7 days. When given orotracheally to the rats weekly for 3 weeks, microparticles carrying this drug combination improved hemodynamic (right ventricular systolic pressure and right ventricle/left ventricle+septum mass ratio), histologic (vascular remodeling), and molecular markers (vascular proliferation and stiffening) of PH. Importantly, only the combination of drug delivery, but neither verteporfin nor CB-839 alone, displayed significant improvement across all indexes of PH. Conclusions Simultaneous, lung-specific, and controlled release of drugs targeting YAP1 and GLS1 improved PH in rats, addressing unmet needs for the treatment of this deadly disease.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Benzeneacetamides/administration & dosage
- Benzeneacetamides/chemistry
- Cells, Cultured
- Delayed-Action Preparations
- Disease Models, Animal
- Drug Carriers
- Drug Combinations
- Drug Compounding
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/chemistry
- Glutaminase/antagonists & inhibitors
- Glutaminase/metabolism
- Hemodynamics/drug effects
- Humans
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/metabolism
- Lung/drug effects
- Lung/metabolism
- Lung/physiopathology
- Male
- Mechanotransduction, Cellular
- Monocrotaline
- Particle Size
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Rats, Sprague-Dawley
- Thiadiazoles/administration & dosage
- Thiadiazoles/chemistry
- Time Factors
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Verteporfin/administration & dosage
- Verteporfin/chemistry
- YAP-Signaling Proteins
- Rats
Collapse
Affiliation(s)
- Abhinav P. Acharya
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPA
- Biological Design Graduate ProgramSchool for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeAZ
- Chemical EngineeringSchool for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeAZ
| | - Ying Tang
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Thomas Bertero
- Université Côte d'AzurCentre national de la recherche scientifique (CNRS) Bienvenue à l'Institut de Pharmacologie Moléculaire et Cellulaire (IPMC)ValbonneFrance
| | - Yi‐Yin Tai
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Lloyd D. Harvey
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Chen‐Shan C. Woodcock
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Ricardo Pineda
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Nilay Mitash
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Steven R. Little
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPA
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePA
- Department of BioengineeringUniversity of PittsburghPA
- Department of Pharmaceutical SciencesUniversity of PittsburghPA
- Department of OphthalmologyUniversity of PittsburghPA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| |
Collapse
|
57
|
Costa R, Wagner DE, Doryab A, De Santis MM, Schorpp K, Rothenaigner I, Lehmann M, Baarsma HA, Liu X, Schmid O, Campillos M, Yildirim AÖ, Hadian K, Königshoff M. A drug screen with approved compounds identifies amlexanox as a novel Wnt/β-catenin activator inducing lung epithelial organoid formation. Br J Pharmacol 2021; 178:4026-4041. [PMID: 34089180 PMCID: PMC8965750 DOI: 10.1111/bph.15581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose: Emphysema is an incurable disease characterized by loss of lung tissue leading to impaired gas exchange. Wnt/β-catenin signalling is reduced in emphysema, and exogenous activation of the pathway in experimental models in vivo and in human ex vivo lung tissue improves lung function and structure. We sought to identify a pharmaceutical able to activate Wnt/β-catenin signalling and assess its potential to activate lung epithelial cells and repair. Experimental Approach: We screened 1216 human-approved compounds for Wnt/β-catenin signalling activation using luciferase reporter cells and selected candidates based on their computationally predicted protein targets. We further performed confirmatory luciferase reporter and metabolic activity assays. Finally, we studied the regenerative potential in murine adult epithelial cell-derived lung organoids and in vivo using a murine elastase-induced emphysema model. Key Results: The primary screen identified 16 compounds that significantly induced Wnt/β-catenin-dependent luciferase activity. Selected compounds activated Wnt/β-catenin signalling without inducing cell toxicity or proliferation. Two compounds were able to promote organoid formation, which was reversed by pharmacological Wnt/β-catenin inhibition, confirming the Wnt/β-catenin-dependent mechanism of action. Amlexanox was used for in vivo evaluation, and preventive treatment resulted in improved lung function and structure in emphysematous mouse lungs. Moreover, gene expression of Hgf, an important alveolar repair marker, was increased, whereas disease marker Eln was decreased, indicating that amlexanox induces proregenerative signalling in emphysema. Conclusion and Implications: Using a drug screen based on Wnt/β-catenin activity, organoid assays and a murine emphysema model, amlexanox was identified as a novel potential therapeutic agent for emphysema.
Collapse
Affiliation(s)
- Rita Costa
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, Ludwig Maximilian University of Munich, University Hospital Großhadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Virology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Darcy E Wagner
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, Ludwig Maximilian University of Munich, University Hospital Großhadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Experimental Medical Sciences, Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Stem Cell Centre, Lund University, Lund, Sweden
| | - Ali Doryab
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, Ludwig Maximilian University of Munich, University Hospital Großhadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Pulmonary Aerosol Delivery, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martina M De Santis
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, Ludwig Maximilian University of Munich, University Hospital Großhadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Experimental Medical Sciences, Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Stem Cell Centre, Lund University, Lund, Sweden
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, Ludwig Maximilian University of Munich, University Hospital Großhadern, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hoeke A Baarsma
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, Ludwig Maximilian University of Munich, University Hospital Großhadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xueping Liu
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Otmar Schmid
- Pulmonary Aerosol Delivery, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Monica Campillos
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Ali Önder Yildirim
- Immunopathology of COPD, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute for Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Königshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München-German Research Center for Environmental Health, Ludwig Maximilian University of Munich, University Hospital Großhadern, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
58
|
Lehmann M, Königshoff M. Regenerative Medicine and the Hope for a Cure. Clin Chest Med 2021; 42:365-373. [PMID: 34024411 PMCID: PMC11283847 DOI: 10.1016/j.ccm.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current therapeutic strategies have succeeded in slowing down the progression of idiopathic pulmonary fibrosis (IPF). Emerging evidence highlights IPF as a disease of aging and impaired regeneration. Novel antiaging and regenerative medicine approaches hold promise to be able to reverse disease and might present hope for a cure. Research focusing on a deeper understanding of lung stem cell populations and how these are regulated and altered in fibrotic disease continues to drive the field, and accompanied by earlier diagnosis, the adaptation of clinically relevant models and readouts for regeneration of diseased lung, ultimately paves the way for translation into clinics.
Collapse
Affiliation(s)
- Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Center of Lung Research (DZL), Max-Lebsche-Platz 31, München 81377, Germany
| | - Melanie Königshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Center of Lung Research (DZL), Max-Lebsche-Platz 31, München 81377, Germany; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
59
|
Oglesby IK, Schweikert A, Fox B, Redmond C, Donnelly SC, Hurley K. Lung organoids and other preclinical models of pulmonary fibrosis. QJM 2021; 114:167-173. [PMID: 33484260 DOI: 10.1093/qjmed/hcaa281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fatal disease affecting over 100 000 people in Europe with an increasing incidence. Available treatments offer only slowing of disease progression and are poorly tolerated by patients leading to cessation of therapy. Lung transplant remains the only cure. Therefore, alternative treatments are urgently required. The pathology of IPF is complex and poorly understood and thus creates a major obstacle to the discovery of novel treatments. Additionally, preclinical assessment of new treatments currently relies upon animal models where disparities with human lung biology often hamper drug development. At a cellular level, IPF is characterized by persistent and abnormal deposition of extracellular matrix by fibroblasts and alveolar epithelial cell injury which is seen as a key event in initiation of disease progression. In-depth investigation of the role of alveolar epithelial cells in health and disease has been impeded due to difficulties in primary cell isolation and culture ex vivo. Novel strategies employing patient-derived induced pluripotent stem cells engineered to produce type 2 alveolar epithelial cells (iAEC2) cultured as three-dimensional organoids have the potential to overcome these hurdles and inform new effective precision treatments for IPF leading to improved survival and quality of life for patients worldwide.
Collapse
Affiliation(s)
- I K Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, D09 YD60, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, D02 H903, Ireland
| | - A Schweikert
- Interfaculty Institute of Biochemistry, Eberhard Karls Universität Tübingen, Geschwister-Scholl-Platz 72074 Tübingen, Germany
| | - B Fox
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, D09 YD60, Ireland
| | - C Redmond
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, D09 YD60, Ireland
| | - S C Donnelly
- Department of Respiratory & Interstitial Lung Disease, Tallaght University Hospital Tallaght, Dublin D24 NR0A, Ireland
- School of Medicine, Trinity College Dublin, The University of Dublin, College Green, Dublin D02 PN40, Ireland
| | - K Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, D09 YD60, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, D02 H903, Ireland
| |
Collapse
|
60
|
Han D, Xu Y, Peng WP, Feng F, Wang Z, Gu C, Zhou X. Citrus Alkaline Extracts Inhibit Senescence of A549 Cells to Alleviate Pulmonary Fibrosis via the β-Catenin/P53 Pathway. Med Sci Monit 2021; 27:e928547. [PMID: 33707405 PMCID: PMC7962417 DOI: 10.12659/msm.928547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a disease related to aging, which has become increasingly prevalent as the population has aged. However, there remains no effective treatment for the disease. Alveolar epithelial type II cell (AEC II) senescence plays an important role in the occurrence and development of IPF. Therefore, enhancing our understanding of aging AEC IIs might facilitate the development of a new therapeutic strategy for the prevention and treatment of IPF. The aim of this study was to investigate the effect of citrus alkaline extracts (CAE) on senescence in A549 cells and elucidate the mechanism by which CAE function. MATERIAL AND METHODS Adriamycin RD (ARD) induces the senescence of A549 cells. Relevant indicators were identified following administration of 3 concentrations of CAE (50 μg/mL, 100 μg/mL, and 200 μg/mL) to A549 cells. RESULTS CAE inhibited senescence in ARD-induced A549 cells. It inhibited p16, p21, p53, and a senescence-associated secretory phenotype, and reduced expression of the senescence-related positive cells of ß-galactosidase. Further study revealed that activation of the ß-catenin signaling pathway is closely associated with p53. CAE inhibited senescence in A549 cells via the ß-catenin/p53 pathway. Further, inhibition of b-catenin was associated with reduced expression levels of p53 and p21, and the anti-aging effects of CAE were enhanced. When expression of p53 was inhibited, expression levels of ß-catenin also tended to decrease. CONCLUSIONS In summary, our study showed that CAE can inhibit aging in A549 cells to alleviate pulmonary fibrosis, and thus limit the secretion of the extracellular matrix and collagen in lung fibroblasts.
Collapse
Affiliation(s)
- Di Han
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Yong Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Wen-Pan Peng
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Fanchao Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Zhichao Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Cheng Gu
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xianmei Zhou
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
61
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
62
|
Conlon TM, John-Schuster G, Heide D, Pfister D, Lehmann M, Hu Y, Ertüz Z, Lopez MA, Ansari M, Strunz M, Mayr C, Angelidis I, Ciminieri C, Costa R, Kohlhepp MS, Guillot A, Günes G, Jeridi A, Funk MC, Beroshvili G, Prokosch S, Hetzer J, Verleden SE, Alsafadi H, Lindner M, Burgstaller G, Becker L, Irmler M, Dudek M, Janzen J, Goffin E, Gosens R, Knolle P, Pirotte B, Stoeger T, Beckers J, Wagner D, Singh I, Theis FJ, de Angelis MH, O'Connor T, Tacke F, Boutros M, Dejardin E, Eickelberg O, Schiller HB, Königshoff M, Heikenwalder M, Yildirim AÖ. Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 2020; 588:151-156. [PMID: 33149305 PMCID: PMC7718297 DOI: 10.1038/s41586-020-2882-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Lymphotoxin β-receptor (LTβR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTβR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTβR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTβR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTβR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTβR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTβR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFβ signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/β-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTβR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.
Collapse
Affiliation(s)
- Thomas M Conlon
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Gerrit John-Schuster
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Danijela Heide
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Dominik Pfister
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Zeynep Ertüz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Martin A Lopez
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Christoph Mayr
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Rita Costa
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Gizem Günes
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Aicha Jeridi
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Maja C Funk
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
| | - Giorgi Beroshvili
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Sandra Prokosch
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Jenny Hetzer
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | | | - Hani Alsafadi
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Michael Lindner
- Asklepios Fachkliniken Munich-Gauting, Member of the German Center for Lung Research (DZL), Munich, Germany
- Translational Lung Research and CPC-M bioArchive, Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Janzen
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric Goffin
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Percy Knolle
- Institute of Molecular Immunology & Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Darcy Wagner
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian J Theis
- Institute of Computional Biology (ICB), Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
- Experimental Genetics, Technische Universität München, Freising, Germany
| | - Tracy O'Connor
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, Heidelberg, Germany
- Medical Faculty Mannheim & BioQuant, Heidelberg University, Heidelberg, Germany
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Lung Repair and Regeneration Research Unit, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Heidelberg, Germany.
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany.
| |
Collapse
|
63
|
Stegmayr J, Alsafadi HN, Langwiński W, Niroomand A, Lindstedt S, Leigh ND, Wagner DE. Isolation of high-yield and -quality RNA from human precision-cut lung slices for RNA-sequencing and computational integration with larger patient cohorts. Am J Physiol Lung Cell Mol Physiol 2020; 320:L232-L240. [PMID: 33112185 DOI: 10.1152/ajplung.00401.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Precision-cut lung slices (PCLS) have gained increasing interest as a model to study lung biology/disease and screening novel therapeutics. In particular, PCLS derived from human tissue can better recapitulate some aspects of lung biology/disease as compared with animal models. Several experimental readouts have been established for use with PCLS, but obtaining high-yield and -quality RNA for downstream analysis has remained challenging. This is particularly problematic for utilizing the power of next-generation sequencing techniques, such as RNA-sequencing (RNA-seq), for nonbiased and high-throughput analysis of PCLS human cohorts. In the current study, we present a novel approach for isolating high-quality RNA from a small amount of tissue, including diseased human tissue, such as idiopathic pulmonary fibrosis. We show that the RNA isolated using this method has sufficient quality for RT-qPCR and RNA-seq analysis. Furthermore, the RNA-seq data from human PCLS could be used in several established computational pipelines, including deconvolution of bulk RNA-seq data using publicly available single-cell RNA-seq data. Deconvolution using Bisque revealed a diversity of cell populations in human PCLS, including several immune cell populations, which correlated with cell populations known to be present and aberrant in human disease.
Collapse
Affiliation(s)
- John Stegmayr
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Wojciech Langwiński
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Department of Pediatric Pulmonology, Allergy, and Clinical Immunology, Poznan University of Medical Science, Poznan, Poland
| | - Anna Niroomand
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Department of Thoracic Surgery, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Department of Thoracic Surgery, Lund University, Lund, Sweden
| | - Nicholas D Leigh
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Darcy E Wagner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
64
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
65
|
Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine 2020; 61:103034. [PMID: 33045470 PMCID: PMC7559244 DOI: 10.1016/j.ebiom.2020.103034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a devastating lung disease, mainly due to cigarette smoking, which represents the third cause of mortality worldwide. The mechanisms driving its epithelial salient features remain largely elusive. We aimed to evaluate the activation and the role of the canonical, β-catenin-dependant WNT pathway in the airway epithelium from COPD patients. METHODS The WNT/β-catenin pathway was first assessed by WNT-targeted RNA sequencing of the air/liquid interface-reconstituted bronchial epithelium from COPD and control patients. Airway expression of total and active β-catenin was assessed in lung sections, as well as WNT components in laser-microdissected airway epithelium. Finally, we evaluated the role of WNT at the bronchial epithelial level by modulating the pathway in the reconstituted COPD epithelium. FINDINGS We show that the WNT/β-catenin pathway is upregulated in the COPD airway epithelium as compared with that of non-smokers and control smokers, in targeted RNA-sequencing of in vitro reconstituted airway epithelium, and in situ in lung tissue and laser-microdissected epithelium. Extrinsic activation of this pathway in COPD-derived airway epithelium inhibited epithelial differentiation, polarity and barrier function, and induced TGF-β-related epithelial-to-mesenchymal transition (EMT). Conversely, canonical WNT inhibition increased ciliated cell numbers, epithelial polarity and barrier function, whilst inhibiting EMT, thus reversing COPD features. INTERPRETATION In conclusion, the aberrant reactivation of the canonical WNT pathway in the adult airway epithelium recapitulates the diseased phenotype observed in COPD patients, suggesting that this pathway or its downstream effectors could represent a future therapeutic target. FUNDING This study was supported by the Fondation Mont-Godinne, the FNRS and the WELBIO.
Collapse
|
66
|
Wagner DE, Ikonomou L, Gilpin SE, Magin CM, Cruz F, Greaney A, Magnusson M, Chen YW, Davis B, Vanuytsel K, Rolandsson Enes S, Krasnodembskaya A, Lehmann M, Westergren-Thorsson G, Stegmayr J, Alsafadi HN, Hoffman ET, Weiss DJ, Ryan AL. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Res 2020; 6:00123-2020. [PMID: 33123557 PMCID: PMC7569162 DOI: 10.1183/23120541.00123-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.
Collapse
Affiliation(s)
- Darcy E. Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
- These authors contributed equally
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- These authors contributed equally
| | - Sarah E. Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Chelsea M. Magin
- Depts of Medicine and Bioengineering, University of Colorado, Denver, Aurora, CO, USA
| | - Fernanda Cruz
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allison Greaney
- Dept of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mattias Magnusson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara Rolandsson Enes
- Dept of Medicine, University of Vermont, Burlington, VT, USA
- Dept of Experimental Medical Science, Division of Lung Biology, Lund University, Lund, Sweden
| | | | - Mareike Lehmann
- Comprehensive Pneumology Center, Lung Repair and Regeneration Unit, Helmholtz Center Munich, Munich, Germany
| | | | - John Stegmayr
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Dept of Experimental Medicine, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Evan T. Hoffman
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Daniel J. Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Dept of Medicine, University of Southern California, Los Angeles, CA, USA
- Dept of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
67
|
Sucre JMS, Vickers KC, Benjamin JT, Plosa EJ, Jetter CS, Cutrone A, Ransom M, Anderson Z, Sheng Q, Fensterheim BA, Ambalavanan N, Millis B, Lee E, Zijlstra A, Königshoff M, Blackwell TS, Guttentag SH. Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A. Am J Respir Crit Care Med 2020; 201:1249-1262. [PMID: 32023086 DOI: 10.1164/rccm.201908-1513oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/β-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.
Collapse
Affiliation(s)
- Jennifer M S Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics.,Department of Cell and Developmental Biology, and
| | | | - John T Benjamin
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Erin J Plosa
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | | | - Alissa Cutrone
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | - Benjamin A Fensterheim
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan Millis
- Department of Cell and Developmental Biology, and.,Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Ethan Lee
- Department of Cell and Developmental Biology, and
| | | | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Colorado; and
| | - Timothy S Blackwell
- Department of Cell and Developmental Biology, and.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | | |
Collapse
|
68
|
Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH, Tsidiridis G, Lange M, Mattner LF, Yee M, Ogar P, Sengupta A, Kukhtevich I, Schneider R, Zhao Z, Voss C, Stoeger T, Neumann JHL, Hilgendorff A, Behr J, O'Reilly M, Lehmann M, Burgstaller G, Königshoff M, Chapman HA, Theis FJ, Schiller HB. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun 2020; 11:3559. [PMID: 32678092 PMCID: PMC7366678 DOI: 10.1038/s41467-020-17358-3] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.
Collapse
Affiliation(s)
- Maximilian Strunz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lukas M Simon
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Meshal Ansari
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Jaymin J Kathiriya
- Biomedical Center, University of California San Francisco, San Francisco, CA, USA
| | - Ilias Angelidis
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christoph H Mayr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - George Tsidiridis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Marius Lange
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Laura F Mattner
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Min Yee
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Paulina Ogar
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arunima Sengupta
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Igor Kukhtevich
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Munich, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Munich, Germany
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Carola Voss
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jens H L Neumann
- Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Member of the German Center for Lung Research (DZL), Center for Comprehensive Developmental Care (CDeCLMU), Department of Neonatology, Perinatal Center Grosshadern, Hospital of the Ludwig-Maximilians University (LMU), Munich, Germany
| | - Jürgen Behr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Member of the German Center for Lung Research (DZL), Department of Internal Medicine V, Ludwig Maximilians University Hospital (LMU) Munich, Munich, Germany
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
| | - Michael O'Reilly
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- University of Colorado, Department of Pulmonary Sciences and Critical Care Medicine, Denver, CO, USA
| | - Harold A Chapman
- Biomedical Center, University of California San Francisco, San Francisco, CA, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
- Department of Mathematics, Technische Universität München, Munich, Germany.
| | - Herbert B Schiller
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
69
|
Hu Y, Ng-Blichfeldt JP, Ota C, Ciminieri C, Ren W, Hiemstra PS, Stolk J, Gosens R, Königshoff M. Wnt/β-catenin signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis and emphysema. Stem Cells 2020; 38:1467-1478. [PMID: 32526076 PMCID: PMC7116441 DOI: 10.1002/stem.3241] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Wnt/β-catenin signaling regulates progenitor cell fate decisions during lung development and in various adult tissues. Ectopic activation of Wnt/β-catenin signaling promotes tissue repair in emphysema, a devastating lung disease with progressive loss of parenchymal lung tissue. The identity of Wnt/β-catenin responsive progenitor cells and the potential impact of Wnt/β-catenin signaling on adult distal lung epithelial progenitor cell function in emphysema are poorly understood. Here, we used TCF/ Lef:H2B/GFP reporter mice to investigate the role of Wnt/β-catenin signaling in lung organoid formation. We identified an organoid-forming adult distal lung epithelial progenitor cell population characterized by a low Wnt/β-catenin activity, which was enriched in club and alveolar epithelial type (AT)II cells. Endogenous Wnt/β-catenin activity was required for the initiation of multiple subtypes of distal lung organoids derived from the Wntlow epithelial progenitors. Further ectopic Wnt/β-catenin activation specifically led to an increase in alveolar organoid number; however, the subsequent proliferation of alveolar epithelial cells in the organoids did not require constitutive Wnt/β-catenin signaling. Distal lung epithelial progenitor cells derived from the mouse model of elastase-induced emphysema exhibited reduced organoid forming capacity. This was rescued by Wnt/β-catenin signal activation, which largely increased the number of alveolar organoids. Together, our study reveals a novel mechanism of lung epithelial progenitor cell activation in homeostasis and emphysema.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - John-Poul Ng-Blichfeldt
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Chiharu Ota
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Wenhua Ren
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA.,Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
70
|
Boutanquoi PM, Burgy O, Beltramo G, Bellaye PS, Dondaine L, Marcion G, Pommerolle L, Vadel A, Spanjaard M, Demidov O, Mailleux A, Crestani B, Kolb M, Garrido C, Goirand F, Bonniaud P. TRIM33 prevents pulmonary fibrosis by impairing TGF-β1 signalling. Eur Respir J 2020; 55:13993003.01346-2019. [PMID: 32184320 DOI: 10.1183/13993003.01346-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterised by myofibroblast proliferation and abnormal extracellular matrix accumulation in the lungs. Transforming growth factor (TGF)-β1 initiates key profibrotic signalling involving the SMAD pathway and the small heat shock protein B5 (HSPB5). Tripartite motif-containing 33 (TRIM33) has been reported to negatively regulate TGF-β/SMAD signalling, but its role in fibrogenesis remains unknown. The objective of this study was to elucidate the role of TRIM33 in IPF. METHODS TRIM33 expression was assessed in the lungs of IPF patients and rodent fibrosis models. Bone marrow-derived macrophages (BMDM), primary lung fibroblasts and 3D lung tissue slices were isolated from Trim33-floxed mice and cultured with TGF-β1 or bleomycin (BLM). Trim33 expression was then suppressed by adenovirus Cre recombinase (AdCre). Pulmonary fibrosis was evaluated in haematopoietic-specific Trim33 knockout mice and in Trim33-floxed mice that received AdCre and BLM intratracheally. RESULTS TRIM33 was overexpressed in alveolar macrophages and fibroblasts in IPF patients and rodent fibrotic lungs. Trim33 inhibition in BMDM increased TGF-β1 secretion upon BLM treatment. Haematopoietic-specific Trim33 knockout sensitised mice to BLM-induced fibrosis. In primary lung fibroblasts and 3D lung tissue slices, Trim33 deficiency increased expression of genes downstream of TGF-β1. In mice, AdCre-Trim33 inhibition worsened BLM-induced fibrosis. In vitro, HSPB5 was able to bind directly to TRIM33, thereby diminishing its protein level and TRIM33/SMAD4 interaction. CONCLUSION Our results demonstrate a key role of TRIM33 as a negative regulator of lung fibrosis. Since TRIM33 directly associates with HSPB5, which impairs its activity, inhibitors of TRIM33/HSPB5 interaction may be of interest in the treatment of IPF.
Collapse
Affiliation(s)
- Pierre-Marie Boutanquoi
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Olivier Burgy
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Guillaume Beltramo
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Dept of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, Dijon, France.,Reference Center for Rare Lung Diseases, University Hospital, Bourgogne-Franche Comté, Dijon, France
| | | | - Lucile Dondaine
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Reference Center for Rare Lung Diseases, University Hospital, Bourgogne-Franche Comté, Dijon, France
| | - Guillaume Marcion
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Lenny Pommerolle
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Aurélie Vadel
- INSERM U1152, Faculty of Medicine, University of Bichat, Paris, France
| | - Maximilien Spanjaard
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,Dept of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, Dijon, France
| | - Oleg Demidov
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Arnaud Mailleux
- INSERM U1152, Faculty of Medicine, University of Bichat, Paris, France
| | - Bruno Crestani
- INSERM U1152, Faculty of Medicine, University of Bichat, Paris, France
| | | | - Carmen Garrido
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| | - Françoise Goirand
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France.,These authors codirected this work and contributed equally to this work
| | - Philippe Bonniaud
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France .,Dept of Pulmonary Medicine and Intensive Care Unit, University Hospital, Bourgogne-Franche Comté, Dijon, France.,Reference Center for Rare Lung Diseases, University Hospital, Bourgogne-Franche Comté, Dijon, France.,These authors codirected this work and contributed equally to this work
| |
Collapse
|
71
|
Mondoñedo JR, Bartolák-Suki E, Bou Jawde S, Nelson K, Cao K, Sonnenberg A, Obrochta WP, Imsirovic J, Ram-Mohan S, Krishnan R, Suki B. A High-Throughput System for Cyclic Stretching of Precision-Cut Lung Slices During Acute Cigarette Smoke Extract Exposure. Front Physiol 2020; 11:566. [PMID: 32655401 PMCID: PMC7326018 DOI: 10.3389/fphys.2020.00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Rationale Precision-cut lung slices (PCLSs) are a valuable tool in studying tissue responses to an acute exposure; however, cyclic stretching may be necessary to recapitulate physiologic, tidal breathing conditions. Objectives To develop a multi-well stretcher and characterize the PCLS response following acute exposure to cigarette smoke extract (CSE). Methods A 12-well stretching device was designed, built, and calibrated. PCLS were obtained from male Sprague-Dawley rats (N = 10) and assigned to one of three groups: 0% (unstretched), 5% peak-to-peak amplitude (low-stretch), and 5% peak-to-peak amplitude superimposed on 10% static stretch (high-stretch). Lung slices were cyclically stretched for 12 h with or without CSE in the media. Levels of Interleukin-1β (IL-1β), matrix metalloproteinase (MMP)-1 and its tissue inhibitor (TIMP1), and membrane type-MMP (MT1-MMP) were assessed via western blot from tissue homogenate. Results The stretcher system produced nearly identical normal Lagrangian strains (Exx and Eyy, p > 0.999) with negligible shear strain (Exy < 0.0005) and low intra-well variability 0.127 ± 0.073%. CSE dose response curve was well characterized by a four-parameter logistic model (R2 = 0.893), yielding an IC50 value of 0.018 cig/mL. Cyclic stretching for 12 h did not decrease PCLS viability. Two-way ANOVA detected a significant interaction between CSE and stretch pattern for IL-1β (p = 0.017), MMP-1, TIMP1, and MT1-MMP (p < 0.001). Conclusion This platform is capable of high-throughput testing of an acute exposure under tightly-regulated, cyclic stretching conditions. We conclude that the acute mechano-inflammatory response to CSE exhibits complex, stretch-dependence in the PCLS.
Collapse
Affiliation(s)
- Jarred R Mondoñedo
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States.,Boston University School of Medicine, Boston, MA, United States
| | - Elizabeth Bartolák-Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Samer Bou Jawde
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Kara Nelson
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Kun Cao
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Adam Sonnenberg
- Department of Systems Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Walter Patrick Obrochta
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Jasmin Imsirovic
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| | - Sumati Ram-Mohan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Béla Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
72
|
Alsafadi HN, Uhl FE, Pineda RH, Bailey KE, Rojas M, Wagner DE, Königshoff M. Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. Am J Respir Cell Mol Biol 2020; 62:681-691. [PMID: 31991090 PMCID: PMC7401444 DOI: 10.1165/rcmb.2019-0276tr] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine
- Vascular Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ricardo H. Pineda
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Mauricio Rojas
- Division of Respiratory, Allergy and Critical Care Medicine, The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darcy E. Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
73
|
Wu Y, Guan S, Ge Y, Yang Y, Cao Y, Zhou J. Cigarette smoke promotes chronic obstructive pulmonary disease (COPD) through the miR-130a/Wnt1 axis. Toxicol In Vitro 2020; 65:104770. [PMID: 31935487 DOI: 10.1016/j.tiv.2020.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
Cigarette smoke (CS) is a crucial factor in chronic obstructive pulmonary disease (COPD). Wnt/β-catenin signaling deregulation may further contribute to COPD progression. The deregulation and dysfunction of miRNAs in COPD have been reported. Investigating the deregulated miRNAs and their potential role in COPD progression may provide novel strategies for COPD treatment. In the present study, we analyzed significantly differentially-expressed miRNAs in COPD according to GSE44531 and miR-130a was selected. We revealed the upregulation of miR-130a in COPD, both in cigarette smoke extract (CSE)-treated BEAS-2B cells and CS-exposed mice. MiR-130a negatively regulated three critical factors in Wnt/β-catenin signaling, Wnt1, β-Catenin, and LEF1. MiR-130a inhibition rescued CSE-blocked activation of Wnt/β-catenin signaling in vitro. MiR-130a targets WNT1 3'UTR to inhibit its expression. Moreover, in CSE-stimulated BEAS-2B cells, miR-130a overexpression aggravated, while miR-130a inhibition partially attenuated CSE-caused suppression on cell migration and proliferation. MiR-130a aggravates CSE-induced cellular injury in BEAS-2B cells by targeting Wnt signaling. In summary, miR-130a has a pathogenetic role in CS-induced COPD and regulates Wnt/β-catenin signaling via targeting Wnt1. Our findings indicate that miR-130a is a potential therapeutic target for the treatment of CS-induced COPD.
Collapse
Affiliation(s)
- Yudi Wu
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Shuhong Guan
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Yunqi Ge
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Yun Yang
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Yi Cao
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China
| | - Jun Zhou
- Department of Respiratory, The Third Affiliation Hospital of Soochow University, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
74
|
Osei ET, Hackett TL. Epithelial-mesenchymal crosstalk in COPD: An update from in vitro model studies. Int J Biochem Cell Biol 2020; 125:105775. [PMID: 32473924 DOI: 10.1016/j.biocel.2020.105775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Chronic Obstructive Pulmonary disease (COPD) involves airway inflammation and remodeling leading to small airways disease and emphysema, which results in irreversible airflow obstruction. During lung development, reciprocal interactions between the endoderm and mesoderm (epithelial-mesenchymal trophic unit (EMTU)) are essential for morphogenetic cues that direct cell proliferation, differentiation, and extracellular (ECM) production. In COPD, a significant number of the inflammation and remodeling mediators resemble those released during lung development, which has led to the hypothesis that aberrant activation of the EMTU may occur in the disease. Studies assessing lung epithelial and fibroblast function in COPD, have been primarily focused on monoculture studies. To capture the in vivo environment of the human lung and aid in the understanding of mechanisms and mediators involved in abnormal epithelial-fibroblast communication in COPD, complex co-culture models are required. In this review, we describe the studies that have used co-culture models to assess epithelial-fibroblast interactions and their role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Emmanuel T Osei
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
75
|
Yanagihara T, Chong SG, Vierhout M, Hirota JA, Ask K, Kolb M. Current models of pulmonary fibrosis for future drug discovery efforts. Expert Opin Drug Discov 2020; 15:931-941. [PMID: 32396021 DOI: 10.1080/17460441.2020.1755252] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pulmonary fibrosis includes several lung disorders characterized by progressive fibrosis, of which idiopathic pulmonary fibrosis (IPF) is a particularly severe form with a median survival time of 3-5 years after diagnosis. Although numerous compounds have shown efficacy in attenuating pulmonary fibrosis using animal models, only a few compounds have shown their beneficial effects for IPF in clinical trials. Thus, there is an emergent need to improve the preclinical development process to better identify, characterize and select clinically useful targets. AREAS COVERED In this review, the authors extensively describe current models of pulmonary fibrosis, including rodent models, ex vivo models, and in vitro models. EXPERT OPINION Based upon our current understanding, improving the identification and characterization of clinically relevant molecules or pathways responsible for progressive fibrotic diseases and use of the appropriate preclinical model system to test these will likely be required to improve the drug development pipeline for pulmonary fibrosis. Combination with appropriate preclinical models with ex vivo (precision-cut lung slices) or in vitro models would be beneficial for high-throughput drug discovery or validation of drug effects.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada.,Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Sy Giin Chong
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Megan Vierhout
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| |
Collapse
|
76
|
Huang Q, Chen Y, Shen S, Wang Y, Liu L, Wu S, Xu W, Zhao W, Lin M, Wu J. Klotho antagonizes pulmonary fibrosis through suppressing pulmonary fibroblasts activation, migration, and extracellular matrix production: a therapeutic implication for idiopathic pulmonary fibrosis. Aging (Albany NY) 2020; 12:5812-5831. [PMID: 32244228 PMCID: PMC7185122 DOI: 10.18632/aging.102978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) has been widely accepted as an aging-related fatal lung disease with a therapeutic impasse, largely a consequence of the complex and polygenic gene architecture underlying the molecular pathology of IPF. Here, by conducting an integrative network analysis on the largest IPF case-control RNA-seq dataset to date, we attributed the systems-level alteration in IPF to disruptions in a handful of biological processes including cell migration, transforming growth factor-β (TGF-β) signaling and extracellular matrix (ECM), and identified klotho (KL), a typical anti-aging molecule, as a potential master regulator of those disease-relevant processes. Following experiments showed reduced Kl in isolated pulmonary fibroblasts from bleomycin-exposed mice, and demonstrated that recombinant KL effectively mitigated pulmonary fibrosis in an ex vivo model and alleviated TGF-β-induced pulmonary fibroblasts activation, migration, and ECM production in vitro, which was partially ascribed to FOXF1 and CAV1, two highly co-expressed genes of KL in the IPF. Overall, KL appears to be a vital regulator during pulmonary fibrosis. Given that administration of exogenous KL is a feasible treatment strategy, our work highlighted a promising target gene that could be easily manipulated, leaving the field well placed to further explore the therapeutic potential of KL for IPF.
Collapse
Affiliation(s)
- Qiqing Huang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yan Chen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Shaoran Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuangshuang Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weihong Zhao
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
77
|
Basil MC, Morrisey EE. Lung regeneration: a tale of mice and men. Semin Cell Dev Biol 2020; 100:88-100. [PMID: 31761445 PMCID: PMC7909713 DOI: 10.1016/j.semcdb.2019.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023]
Abstract
The respiratory system is the main site of gas exchange with the external environment in complex terrestrial animals. Within the trachea and lungs are multiple different tissue niches each consisting of a myriad of cells types with critical roles in air conduction, gas exchange, providing important niche specific cell-cell interactions, connection to the cardiovascular system, and immune surveillance. How the respiratory system responds to external insults and executes the appropriate regenerative response remains challenging to study given the plethora of cell and tissue interactions for this to occur properly. This review will examine the various cell types and tissue niches found within the respiratory system and provide a comparison between mouse and human lungs and trachea to highlight important similarities and differences. Defining the critical gaps in knowledge in human lung and tracheal regeneration is critical for future development of therapies directed towards respiratory diseases.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine; Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Edward E Morrisey
- Department of Medicine; Department of Cell and Developmental Biology; Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
78
|
Lehmann M, Hu Q, Hu Y, Hafner K, Costa R, van den Berg A, Königshoff M. Chronic WNT/β-catenin signaling induces cellular senescence in lung epithelial cells. Cell Signal 2020; 70:109588. [PMID: 32109549 DOI: 10.1016/j.cellsig.2020.109588] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/22/2022]
Abstract
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF). Cellular senescence is a major hallmark of aging and has a higher occurrence in IPF. The lung epithelium represents a major site of tissue injury, cellular senescence and aberrant activity of developmental pathways such as the WNT/β-catenin pathway in IPF. The potential impact of WNT/β-catenin signaling on alveolar epithelial senescence in general as well as in IPF, however, remains elusive. Here, we characterized alveolar epithelial cells of aged mice and assessed the contribution of chronic WNT/β-catenin signaling on alveolar epithelial type (AT) II cell senescence. Whole lungs from old (16-24 months) versus young (3 months) mice had relatively less epithelial (EpCAM+) but more inflammatory (CD45+) cells, as assessed by flow cytometry. Compared to young ATII cells, old ATII cells showed decreased expression of the ATII cell marker Surfactant Protein C along with increased expression of the ATI cell marker Hopx, accompanied by increased WNT/β-catenin activity. Notably, when placed in an organoid assay, old ATII cells exhibited decreased progenitor cell potential. Chronic canonical WNT/β-catenin activation for up to 7 days in primary ATII cells as well as alveolar epithelial cell lines induced a robust cellular senescence, whereas the non-canonical ligand WNT5A was not able to induce cellular senescence. Moreover, chronic WNT3A treatment of precision-cut lung slices (PCLS) further confirmed ATII cell senescence. Simultaneously, chronic but not acute WNT/β-catenin activation induced a profibrotic state with increased expression of the impaired ATII cell marker Keratin 8. These results suggest that chronic WNT/β-catenin activity in the IPF lung contributes to increased ATII cell senescence and reprogramming. In the fibrotic environment, WNT/β-catenin signaling thus might lead to further progenitor cell dysfunction and impaired lung repair.
Collapse
Affiliation(s)
- Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany; Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA.
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Kathrin Hafner
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Rita Costa
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Anastasia van den Berg
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich 81377, Germany; Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
79
|
Bailey KE, Pino C, Lennon ML, Lyons A, Jacot JG, Lammers SR, Königshoff M, Magin CM. Embedding of Precision-Cut Lung Slices in Engineered Hydrogel Biomaterials Supports Extended Ex Vivo Culture. Am J Respir Cell Mol Biol 2020; 62:14-22. [PMID: 31513744 PMCID: PMC6938134 DOI: 10.1165/rcmb.2019-0232ma] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/12/2019] [Indexed: 01/03/2023] Open
Abstract
Maintaining the three-dimensional architecture and cellular complexity of lung tissue ex vivo can enable elucidation of the cellular and molecular pathways underlying chronic pulmonary diseases. Precision-cut lung slices (PCLS) are one human-lung model with the potential to support critical mechanistic studies and early drug discovery. However, many studies report short culture times of 7-10 days. Here, we systematically evaluated poly(ethylene glycol)-based hydrogel platforms for the encapsulation of PCLS. We demonstrated the ability to support ex vivo culture of embedded PCLS for at least 21 days compared with control PCLS floating in media. These customized hydrogels maintained PCLS architecture (no difference), viability (4.7-fold increase, P < 0.0001), and cellular phenotype as measured by SFTPC (1.8-fold increase, P < 0.0001) and vimentin expression (no change) compared with nonencapsulated controls. Collectively, these results demonstrate that hydrogel biomaterials support the extended culture times required to study chronic pulmonary diseases ex vivo using PCLS technology.
Collapse
Affiliation(s)
- Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
| | - Christopher Pino
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Mallory L. Lennon
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Anne Lyons
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Jeffrey G. Jacot
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Steven R. Lammers
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
| | - Chelsea M. Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| |
Collapse
|
80
|
Deep sequencing and automated histochemistry of human tissue slice cultures improve their usability as preclinical model for cancer research. Sci Rep 2019; 9:19961. [PMID: 31882946 PMCID: PMC6934722 DOI: 10.1038/s41598-019-56509-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer research requires models closely resembling the tumor in the patient. Human tissue cultures can overcome interspecies limitations of animal models or the loss of tissue architecture in in vitro models. However, analysis of tissue slices is often limited to histology. Here, we demonstrate that slices are also suitable for whole transcriptome sequencing and present a method for automated histochemistry of whole slices. Tumor and peritumoral tissue from a patient with glioblastoma was processed to slice cultures, which were treated with standard therapy including temozolomide and X-irradiation. Then, RNA sequencing and automated histochemistry were performed. RNA sequencing was successfully accomplished with a sequencing depth of 243 to 368 x 106 reads per sample. Comparing tumor and peritumoral tissue, we identified 1888 genes significantly downregulated and 2382 genes upregulated in tumor. Treatment significantly downregulated 2017 genes, whereas 1399 genes were upregulated. Pathway analysis revealed changes in the expression profile of treated glioblastoma tissue pointing towards downregulated proliferation. This was confirmed by automated analysis of whole tissue slices stained for Ki67. In conclusion, we demonstrate that RNA sequencing of tissue slices is possible and that histochemical analysis of whole tissue slices can be automated which increases the usability of this preclinical model.
Collapse
|
81
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
82
|
Benam KH, Königshoff M, Eickelberg O. Breaking the In Vitro Barrier in Respiratory Medicine. Engineered Microphysiological Systems for Chronic Obstructive Pulmonary Disease and Beyond. Am J Respir Crit Care Med 2019; 197:869-875. [PMID: 29262260 DOI: 10.1164/rccm.201709-1795pp] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Kambez H Benam
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and.,2 Department of Bioengineering, University of Colorado Denver, Aurora, Colorado
| | - Melanie Königshoff
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Oliver Eickelberg
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
83
|
Daneshgar A, Tang P, Remde C, Lommel M, Moosburner S, Kertzscher U, Klein O, Weinhart M, Pratschke J, Sauer IM, Hillebrandt KH. Teburu—Open source 3D printable bioreactor for tissue slices as dynamic three‐dimensional cell culture models. Artif Organs 2019; 43:1035-1041. [DOI: 10.1111/aor.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Assal Daneshgar
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Peter Tang
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Christopher Remde
- Cluster of Excellence, Interdisciplinary Laboratory Image Knowledge Gestaltung Humboldt‐Universität zu Berlin Berlin Germany
| | - Michael Lommel
- Biofluid Machanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Simon Moosburner
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ulrich Kertzscher
- Biofluid Machanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Oliver Klein
- Berlin‐Brandenburg Center for Regenerative Therapies Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Marie Weinhart
- Institute for Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Johann Pratschke
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Igor M. Sauer
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Karl H. Hillebrandt
- Department of Surgery Campus Charité Mitte I Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
84
|
Wu X, van Dijk EM, Bos IST, Kistemaker LEM, Gosens R. Mouse Lung Tissue Slice Culture. Methods Mol Biol 2019; 1940:297-311. [PMID: 30788834 DOI: 10.1007/978-1-4939-9086-3_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Precision-cut lung slices (PCLS) represent an ex vivo model widely used in visualizing interactions between lung structure and function. The major advantage of this technique is that the presence, differentiation state, and localization of the more than 40 cell types that make up the lung are in accordance with the physiological situation found in lung tissue, including the right localization and patterning of extracellular matrix elements. Here we describe the methodology involved in preparing and culturing PCLS followed by detailed practical information about their possible applications.
Collapse
Affiliation(s)
- Xinhui Wu
- Faculty of Science and Engineering, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eline M van Dijk
- Faculty of Science and Engineering, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - I Sophie T Bos
- Faculty of Science and Engineering, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Faculty of Science and Engineering, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Faculty of Science and Engineering, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
85
|
Franssen FME, Alter P, Bar N, Benedikter BJ, Iurato S, Maier D, Maxheim M, Roessler FK, Spruit MA, Vogelmeier CF, Wouters EFM, Schmeck B. Personalized medicine for patients with COPD: where are we? Int J Chron Obstruct Pulmon Dis 2019; 14:1465-1484. [PMID: 31371934 PMCID: PMC6636434 DOI: 10.2147/copd.s175706] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic airflow limitation is the common denominator of patients with chronic obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and mortality of individual patients based on the degree of lung function impairment, nor does the degree of airflow limitation allow guidance regarding therapies. Over the last decades, understanding of the factors contributing to the heterogeneity of disease trajectories, clinical presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic assessment and treatment algorithms for COPD have become more personalized. In addition to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comorbidities have been studied and are considered essential components of comprehensive disease management, including lifestyle interventions. Despite these advances, predicting and/or modifying the course of the disease remains currently impossible, and selection of patients with a beneficial response to specific interventions is unsatisfactory. Consequently, non-response to pharmacologic and non-pharmacologic treatments is common, and many patients have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic management of the disease, incorporating the basic principles of P4 medicine (predictive, preventive, personalized, and participatory). This review describes the current status and unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a systems medicine approach, integrating genetic, environmental, (micro)biological, and clinical factors in experimental and computational models in order to decipher the multilevel complexity of COPD. Ultimately, the acquired insights will enable the development of clinical decision support systems and advance personalized medicine for patients with COPD.
Collapse
Affiliation(s)
- Frits ME Franssen
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
- Department of Medical Microbiology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | | | - Michael Maxheim
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Fabienne K Roessler
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martijn A Spruit
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Emiel FM Wouters
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
86
|
Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat Commun 2019; 10:2987. [PMID: 31278260 PMCID: PMC6611870 DOI: 10.1038/s41467-019-10839-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease in which the intricate alveolar network of the lung is progressively replaced by fibrotic scars. Myofibroblasts are the effector cells that excessively deposit extracellular matrix proteins thus compromising lung structure and function. Emerging literature suggests a correlation between fibrosis and metabolic alterations in IPF. In this study, we show that the first-line antidiabetic drug metformin exerts potent antifibrotic effects in the lung by modulating metabolic pathways, inhibiting TGFβ1 action, suppressing collagen formation, activating PPARγ signaling and inducing lipogenic differentiation in lung fibroblasts derived from IPF patients. Using genetic lineage tracing in a murine model of lung fibrosis, we show that metformin alters the fate of myofibroblasts and accelerates fibrosis resolution by inducing myofibroblast-to-lipofibroblast transdifferentiation. Detailed pathway analysis revealed a two-arm mechanism by which metformin accelerates fibrosis resolution. Our data report an antifibrotic role for metformin in the lung, thus warranting further therapeutic evaluation. Idiopathic pulmonary fibrosis is associated with myofibroblast activation in the lungs and metabolic alterations. Here, the authors show that the antidiabetic drug metformin has antifibrotic effects in human-derived samples and mouse models, by modulating a number of metabolic pathways to induce lipogenic transdifferentiation of myofibroblasts.
Collapse
|
87
|
Qu J, Yue L, Gao J, Yao H. Perspectives on Wnt Signal Pathway in the Pathogenesis and Therapeutics of Chronic Obstructive Pulmonary Disease. J Pharmacol Exp Ther 2019; 369:473-480. [PMID: 30952680 PMCID: PMC6538889 DOI: 10.1124/jpet.118.256222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with progressive airflow limitation and functional decline. The pathogenic mechanisms for this disease include oxidative stress, inflammatory responses, disturbed protease/antiprotease equilibrium, apoptosis/proliferation imbalance, senescence, autophagy, metabolic reprogramming, and mitochondrial dysfunction. The Wnt signaling pathway is an evolutionarily conserved signaling pathway that is abnormal in COPD, including chronic bronchitis and pulmonary emphysema. Furthermore, Wnt signaling has been shown to modulate aforementioned cellular processes involved in COPD. From this perspective, we provide an updated understanding of the crosstalk between Wnt signal and these cellular processes, and highlight the crucial role of the Wnt signal during the development of COPD. We also discuss the potential for targeting the Wnt signal in future translational and pharmacological therapeutics aimed at prevention and treatment of this disease.
Collapse
Affiliation(s)
- Jiao Qu
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Li Yue
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Jian Gao
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Hongwei Yao
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| |
Collapse
|
88
|
Nikolić MZ, Garrido-Martin EM, Greiffo FR, Fabre A, Heijink IH, Boots A, Greene CM, Hiemstra PS, Bartel S. From the pathophysiology of the human lung alveolus to epigenetic editing: Congress 2018 highlights from ERS Assembly 3 "Basic and Translational Science.". ERJ Open Res 2019; 5:00194-2018. [PMID: 31111040 PMCID: PMC6513036 DOI: 10.1183/23120541.00194-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
The European Respiratory Society (ERS) International Congress is the largest respiratory congress and brings together leading experts in all fields of respiratory medicine and research. ERS Assembly 3 shapes the basic and translational science aspects of this congress, aiming to combine cutting-edge novel developments in basic research with novel clinical findings. In this article, we summarise a selection of the scientific highlights from the perspective of the three groups within Assembly 3. In particular, we discuss new insights into the pathophysiology of the human alveolus, novel tools in organoid development and (epi)genome editing, as well as insights from the presented abstracts on novel therapeutic targets being identified for idiopathic pulmonary fibrosis. The amount of basic and translational science presented at #ERSCongress is steadily increasing, showing novel cutting-edge technologies and models.http://bit.ly/2GgXIJi
Collapse
Affiliation(s)
- Marko Z Nikolić
- University College London, Division of Medicine, London, UK.,These contributed equally to this work
| | - Eva M Garrido-Martin
- H12O-CNIO Lung Cancer Clinical Research Unit, Research Institute Hospital 12 Octubre - Spanish National Cancer Research Centre (CNIO), and Biomedical Research Networking Centre Consortium of Cancer (CIBERONC), Madrid, Spain.,These contributed equally to this work
| | - Flavia R Greiffo
- Comprehensive Pneumology Center, Ludwig-Maximilians University (LMU), University Hospital Grosshadern, and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany.,These contributed equally to this work
| | - Aurélie Fabre
- University College Dublin, St Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, GRIAC Research Institute, Groningen, The Netherlands
| | - Agnes Boots
- Dept of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Catherine M Greene
- Lung Biology Group, Dept of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
89
|
Sundarakrishnan A, Zukas H, Coburn J, Bertini BT, Liu Z, Georgakoudi I, Baugh L, Dasgupta Q, Black LD, Kaplan DL. Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomater Sci Eng 2019; 5:2417-2429. [PMID: 33405750 DOI: 10.1021/acsbiomaterials.8b01262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown etiology with no current curative treatment. Modeling pulmonary fibrotic (PF) tissue has the potential to improve our understanding of IPF disease progression and treatment. Rodent animal models do not replicate human fibroblastic foci (Hum-FF) pathology, and current iterations of in vitro model systems (e.g., collagen hydrogels, polyacrylamide hydrogels, and fibrosis-on-chip systems) are unable to replicate the three-dimensional (3D) complexity and biochemical composition of human PF tissue. Herein, we fabricated a 3D bioengineered pulmonary fibrotic (Eng-PF) tissue utilizing cell laden silk collagen type I dityrosine cross-linked hydrogels and Flexcell bioreactors. We show that silk collagen type I hydrogels have superior stability and mechanical tunability compared to other hydrogel systems. Using customized Flexcell bioreactors, we reproduced Hum-FF-like pathology with airway epithelial and microvascular endothelial cells. Eng-PF tissues can model myofibroblast differentiation and permit evaluation of antifibrotic drug treatments. Further, Eng-PF tissues could be used to model different facets of IPF disease, including epithelial injury with the addition of bleomycin and cellular recruitment by perfusion of cells through the hydrogel microchannel.
Collapse
Affiliation(s)
- Aswin Sundarakrishnan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Heather Zukas
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01605, United States
| | - Brian T Bertini
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren Baugh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Queeny Dasgupta
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
90
|
Bailey KE, Floren ML, D'Ovidio TJ, Lammers SR, Stenmark KR, Magin CM. Tissue-informed engineering strategies for modeling human pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 316:L303-L320. [PMID: 30461289 PMCID: PMC6397349 DOI: 10.1152/ajplung.00353.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.
Collapse
Affiliation(s)
- Kolene E Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael L Floren
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Tyler J D'Ovidio
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Lammers
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
91
|
Lehmann M, Buhl L, Alsafadi HN, Klee S, Hermann S, Mutze K, Ota C, Lindner M, Behr J, Hilgendorff A, Wagner DE, Königshoff M. Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respir Res 2018; 19:175. [PMID: 30219058 PMCID: PMC6138909 DOI: 10.1186/s12931-018-0876-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 01/31/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Repetitive injury and reprogramming of the lung epithelium are thought to be critical drivers of disease progression, contributing to fibroblast activation, extracellular matrix remodeling, and subsequently loss of lung architecture and function. To date, Pirfenidone and Nintedanib are the only approved drugs known to decelerate disease progression, however, if and how these drugs affect lung epithelial cell function, remains largely unexplored. Methods We treated murine and human 3D ex vivo lung tissue cultures (3D-LTCs; generated from precision cut lung slices (PCLS)) as well as primary murine alveolar epithelial type II (pmATII) cells with Pirfenidone or Nintedanib. Murine 3D-LTCs or pmATII cells were derived from the bleomycin model of fibrosis. Early fibrotic changes were induced in human 3D-LTCs by a mixture of profibrotic factors. Epithelial and mesenchymal cell function was determined by qPCR, Western blotting, Immunofluorescent staining, and ELISA. Results Low μM concentrations of Nintedanib (1 μM) and mM concentrations of Pirfenidone (2.5 mM) reduced fibrotic gene expression including Collagen 1a1 and Fibronectin in murine and human 3D-LTCs as well as pmATII cells. Notably, Nintedanib stabilized expression of distal lung epithelial cell markers, especially Surfactant Protein C in pmATII cells as well as in murine and human 3D-LTCs. Conclusions Pirfenidone and Nintedanib exhibit distinct effects on murine and human epithelial cells, which might contribute to their anti-fibrotic action. Human 3D-LTCs represent a valuable tool to assess anti-fibrotic mechanisms of potential drugs for the treatment of IPF patients. Electronic supplementary material The online version of this article (10.1186/s12931-018-0876-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lara Buhl
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hani N Alsafadi
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stephan Klee
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sarah Hermann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kathrin Mutze
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Chiharu Ota
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Lindner
- Center for Thoracic Surgery, Asklepios Biobank for Lung Diseases, Comprehensive Pneumology Center, Asklepios Clinic Munich-Gauting, Munich, Germany
| | - Jürgen Behr
- Center for Thoracic Surgery, Asklepios Biobank for Lung Diseases, Comprehensive Pneumology Center, Asklepios Clinic Munich-Gauting, Munich, Germany.,Medizinische Klinik und Poliklinik V, Klinikum der Ludwig Maximilians University, Munich, Germany
| | - Anne Hilgendorff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Darcy E Wagner
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Melanie Königshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany. .,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, AMC, Research 2, 9th Flr, 12700 East 19th Ave, Aurora, Denver, CO, 80045, USA.
| |
Collapse
|
92
|
Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Sci Rep 2018; 8:12983. [PMID: 30154568 PMCID: PMC6113210 DOI: 10.1038/s41598-018-31214-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 01/29/2023] Open
Abstract
Mechanisms of injury and repair in alveolar epithelial cells (AECs) are critically involved in the progression of various lung diseases including idiopathic pulmonary fibrosis (IPF). Homeobox only protein x (HOPX) contributes to the formation of distal lung during development. In adult lung, alveolar epithelial type (AT) I cells express HOPX and lineage-labeled Hopx+ cells give rise to both ATI and ATII cells after pneumonectomy. However, the cell function of HOPX-expressing cells in adult fibrotic lung diseases has not been investigated. In this study, we have established a flow cytometry-based method to evaluate HOPX-expressing cells in the lung. HOPX expression in cultured ATII cells increased over culture time, which was accompanied by a decrease of proSP-C, an ATII marker. Moreover, HOPX expression was increased in AECs from bleomycin-instilled mouse lungs in vivo. Small interfering RNA-based knockdown of Hopx resulted in suppressing ATII-ATI trans-differentiation and activating cellular proliferation in vitro. In IPF lungs, HOPX expression was decreased in whole lungs and significantly correlated to a decline in lung function and progression of IPF. In conclusion, HOPX is upregulated during early alveolar injury and repair process in the lung. Decreased HOPX expression might contribute to failed regenerative processes in end-stage IPF lungs.
Collapse
|
93
|
Burgstaller G, Sengupta A, Vierkotten S, Preissler G, Lindner M, Behr J, Königshoff M, Eickelberg O. Distinct niches within the extracellular matrix dictate fibroblast function in (cell free) 3D lung tissue cultures. Am J Physiol Lung Cell Mol Physiol 2018; 314:L708-L723. [DOI: 10.1152/ajplung.00408.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cues from the extracellular matrix (ECM) and their functional interplay with cells play pivotal roles for development, tissue repair, and disease. However, the precise nature of this interplay remains elusive. We used an innovative 3D cell culture ECM model by decellularizing 300-µm-thick ex vivo lung tissue scaffolds (d3D-LTCs) derived from diseased and healthy mouse lungs, which widely mimics the native (patho)physiological in vivo ECM microenvironment. We successfully repopulated all d3D-LTCs with primary human and murine fibroblasts, and moreover, we demonstrated that the cells also populated the innermost core regions of the d3D-LTCs in a real 3D fashion. The engrafted fibroblasts revealed a striking functional plasticity, depending on their localization in distinct ECM niches of the d3D-LTCs, affecting the cells’ tissue engraftment, cellular migration rates, cell morphologies, and protein expression and phosphorylation levels. Surprisingly, we also observed fibroblasts that were homing to the lung scaffold’s interstitium as well as fibroblasts that were invading fibrotic areas. To date, the functional nature and even the existence of 3D cell matrix adhesions in vivo as well as in 3D culture models is still unclear and controversial. Here, we show that attachment of fibroblasts to the d3D-LTCs evidently occurred via focal adhesions, thus advocating for a relevant functional role in vivo. Furthermore, we found that protein levels of talin, paxillin, and zyxin and phosphorylation levels of paxillin Y118, as well as the migration-relevant small GTPases RhoA, Rac, and CDC42, were significantly reduced compared with their attachment to 2D plastic dishes. In summary, our results strikingly indicate that inherent physical or compositional characteristics of the ECM act as instructive cues altering the functional behavior of engrafted cells. Thus, d3D-LTCs might aid to obtain more realistic data in vitro, with a high relevance for drug discovery and mechanistic studies alike.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arunima Sengupta
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sarah Vierkotten
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Lindner
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Fachkliniken München-Gauting, Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - Oliver Eickelberg
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
94
|
Sundarakrishnan A, Chen Y, Black LD, Aldridge BB, Kaplan DL. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv Rev 2018; 129:78-94. [PMID: 29269274 DOI: 10.1016/j.addr.2017.12.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/15/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis.
Collapse
Affiliation(s)
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States; Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Bree B Aldridge
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States; Department of Molecular Biology & Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States.
| |
Collapse
|
95
|
Skronska-Wasek W, Gosens R, Königshoff M, Baarsma HA. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther 2018; 187:150-166. [PMID: 29458107 DOI: 10.1016/j.pharmthera.2018.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The WNT signalling cascades have emerged as critical regulators of a wide variety of biological aspects involved in lung development as well as in physiological and pathophysiological processes in the adult lung. WNTs (secreted glycoproteins) interact with various transmembrane receptors and co-receptors to activate signalling pathways that regulate transcriptional as well as non-transcriptional responses within cells. In physiological conditions, the majority of WNT receptors and co-receptors can be detected in the adult lung. However, dysregulation of WNT signalling pathways contributes to the development and progression of chronic lung pathologies, including idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. The interaction between a WNT and the (co-)receptor(s) present at the cell surface is the initial step in transducing an extracellular signal into an intracellular response. This proximal event in WNT signal transduction with (cell-specific) ligand-receptor interactions is of great interest as a potential target for pharmacological intervention. In this review we highlight the diverse expression of various WNT receptors and co-receptors in the aforementioned chronic lung diseases and discuss the currently available biologicals and pharmacological tools to modify proximal WNT signalling.
Collapse
Affiliation(s)
- Wioletta Skronska-Wasek
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Hoeke Abele Baarsma
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center for Lung Research, Ludwig Maximilians University Munich, University Hospital Grosshadern, Munich, Germany; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
96
|
An Official American Thoracic Society Workshop Report 2015. Stem Cells and Cell Therapies in Lung Biology and Diseases. Ann Am Thorac Soc 2018; 13:S259-78. [PMID: 27509163 DOI: 10.1513/annalsats.201606-466st] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The University of Vermont College of Medicine, in collaboration with the NHLBI, Alpha-1 Foundation, American Thoracic Society, Cystic Fibrosis Foundation, European Respiratory Society, International Society for Cellular Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," held July 27 to 30, 2015, at the University of Vermont. The conference objectives were to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are all rapidly expanding areas of study that both provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, discuss and debate current controversies, and identify future research directions and opportunities for both basic and translational research in cell-based therapies for lung diseases. This 10th anniversary conference was a follow up to five previous biennial conferences held at the University of Vermont in 2005, 2007, 2009, 2011, and 2013. Each of those conferences, also sponsored by the National Institutes of Health, American Thoracic Society, and respiratory disease foundations, has been important in helping guide research and funding priorities. The major conference recommendations are summarized at the end of the report and highlight both the significant progress and major challenges in these rapidly progressing fields.
Collapse
|
97
|
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), represent a significant and increasing health burden. Current therapies are largely symptomatic, and novel therapeutic approaches are needed. Aging has emerged as a contributing factor for the development of both IPF and COPD because their prevalence increases with age, and several pathological features of these diseases resemble classical hallmarks of aging. Aging is thought to be driven in part by aberrant activity of developmental signaling pathways that thus might drive pathological changes, a process termed antagonistic pleiotropy or developmental drift. The developmental WNT pathway is fundamental for lung development, and altered WNT activity has been reported to contribute to the pathogenesis of CLD, in particular to COPD and IPF. Although to date only limited data on WNT signaling during lung aging exist, WNT signal regulation during aging and its effects on age-related pathologies in other organs have recently been investigated. In this review, we discuss evidence of dysregulated WNT signaling in CLD in the context of WNT signal alteration in organ aging and its potential impact on age-related cellular mechanisms, such as senescence or stem cell exhaustion.
Collapse
|
98
|
Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, Hippenstiel S, Hocke AC. Human Pulmonary 3D Models For Translational Research. Biotechnol J 2018; 13:1700341. [PMID: 28865134 PMCID: PMC7161817 DOI: 10.1002/biot.201700341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Lung diseases belong to the major causes of death worldwide. Recent innovative methodological developments now allow more and more for the use of primary human tissue and cells to model such diseases. In this regard, the review covers bronchial air-liquid interface cultures, precision cut lung slices as well as ex vivo cultures of explanted peripheral lung tissue and de-/re-cellularization models. Diseases such as asthma or infections are discussed and an outlook on further areas for development is given. Overall, the progress in ex vivo modeling by using primary human material could make translational research activities more efficient by simultaneously fostering the mechanistic understanding of human lung diseases while reducing animal usage in biomedical research.
Collapse
Affiliation(s)
- Katja Zscheppang
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Johanna Berg
- Department of BiotechnologyTechnical University of BerlinGustav‐Meyer‐Allee 25Berlin 13335Germany
| | - Sarah Hedtrich
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Leonie Verheyen
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Darcy E. Wagner
- Helmholtz Zentrum Munich, Lung Repair and Regeneration Unit, Comprehensive Pneumology CenterMember of the German Center for Lung ResearchMunichGermany
| | - Norbert Suttorp
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Stefan Hippenstiel
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Andreas C. Hocke
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| |
Collapse
|
99
|
Bartel S, Greene CM. Best of Milan 2017-ERS Lung Science Conference session "Lung tissue repair and remodeling in chronic lung diseases: mechanisms and therapeutic approaches". J Thorac Dis 2017; 9:S1541-S1543. [PMID: 29255636 DOI: 10.21037/jtd.2017.11.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Center for Medicine and Biosciences, member of the German Center for Lung Research (DZL) and Airway Research Center North (ARCN), Borstel, Germany
| | - Catherine M Greene
- Department of Microbiology, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
100
|
Wu J, Wang Y, Liu G, Jia Y, Yang J, Shi J, Dong J, Wei J, Liu X. Characterization of air-liquid interface culture of A549 alveolar epithelial cells. ACTA ACUST UNITED AC 2017; 51:e6950. [PMID: 29267508 PMCID: PMC5731333 DOI: 10.1590/1414-431x20176950] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Alveolar epithelia play an essential role in maintaining the integrity and homeostasis of lungs, in which alveolar epithelial type II cells (AECII) are a cell type with stem cell potential for epithelial injury repair and regeneration. However, mechanisms behind the physiological and pathological roles of alveolar epithelia in human lungs remain largely unknown, partially owing to the difficulty of isolation and culture of primary human AECII cells. In the present study, we aimed to characterize alveolar epithelia generated from A549 lung adenocarcinoma cells that were cultured in an air-liquid interface (ALI) state. Morphological analysis demonstrated that A549 cells could reconstitute epithelial layers in ALI cultures as evaluated by histochemistry staining and electronic microscopy. Immunofluorescent staining further revealed an expression of alveolar epithelial type I cell (AECI) markers aquaporin-5 protein (AQP-5), and AECII cell marker surfactant protein C (SPC) in subpopulations of ALI cultured cells. Importantly, molecular analysis further revealed the expression of AQP-5, SPC, thyroid transcription factor-1, zonula occludens-1 and Mucin 5B in A549 ALI cultures as determined by both immunoblotting and quantitative RT-PCR assay. These results suggest that the ALI culture of A549 cells can partially mimic the property of alveolar epithelia, which may be a feasible and alternative model for investigating roles and mechanisms of alveolar epithelia in vitro.
Collapse
Affiliation(s)
- J Wu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Y Wang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - G Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Y Jia
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Yang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Shi
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - J Wei
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - X Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,College of Life Science, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|