51
|
Zhuang X, Sun X, Zhou H, Zhang S, Zhong X, Xu X, Guo Y, Xiong Z, Liu M, Lin Y, Zhang M, Liao X. Klotho attenuated Doxorubicin-induced cardiomyopathy by alleviating Dynamin-related protein 1 - mediated mitochondrial dysfunction. Mech Ageing Dev 2021; 195:111442. [PMID: 33539906 DOI: 10.1016/j.mad.2021.111442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Doxorubicin (Dox)-induced cardiotoxicity could lead to dilated cardiomyopathy and heart failure. Our previous study reported the protective effects of Klotho against hyperglycemia-induced cardiomyopathy. We investigated whether Klotho alleviated Dox-induced cardiotoxicity. Neonatal rat ventricular cardiomyocytes and H9c2 cells were incubated with 5 μM Dox for 24 h with or without Klotho (0.1 μg/mL). Dox-induced cardiotoxicity model was approached in C57BL/6 mice. Cardiac function and serum enzyme activity, apoptosis and mitochondrial dysfunction were measured. We found that pretreatment with Klotho significantly reduced Dox-induced apoptosis in cardiomyocytes. In Dox-treated mice, Klotho also suppressed cardiac cell death and improved cardiac function. Moreover, the expression of Dynamin-related protein 1 (Drp1) was increased after Dox-treatment both in vitro and in vivo, which was related to apoptosis in cardiomyocytes. In vitro experiments, Drp1 ser 616 phosphorylation post-Dox stimulation could be significantly attenuated by Klotho or Drp1 specific inhibitor Mdivi-1. Overexpression of Drp1 in cardiomyocytes increased Dox-induced heart injury which could also be attenuated by Klotho. This study demonstrated that Klotho alleviated Dox-induced cardiotoxicity by reducing apoptosis and mitochondrial fission through down-regulating Drp1 expression. Our findings highlighted new targets for the therapy of Dox-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China.
| | - Xiuting Sun
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Huimin Zhou
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Shaozhao Zhang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Xiangbin Zhong
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Xingfeng Xu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yue Guo
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Zhenyu Xiong
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Menghui Liu
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yifen Lin
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Meifen Zhang
- School of Nursing, Sun Yat-Sen University, Guangzhou, China
| | - Xinxue Liao
- Department of Cardiology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China.
| |
Collapse
|
52
|
Russell DL, Oates JC, Markiewicz M. Association Between the Anti-Aging Gene Klotho and Selected Rheumatologic Autoimmune Diseases. Am J Med Sci 2021; 361:169-175. [PMID: 33349438 PMCID: PMC9741923 DOI: 10.1016/j.amjms.2020.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Klotho long recognized for its role in anti-aging, is potentially implicated in the pathogenesis of rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. Aging of the immune system coincides with the inability of the body to recognize self-antigens, which often leads to autoimmune responses. The role of Klotho in these autoimmune diseases should be of high interest; however, few articles have been published exploring the role of Klotho in the pathogenesis, organ involvement, or clinical manifestation of rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. Herein, we discuss information gathered from peer-reviewed publications to describe the emerging role of Kl in these select rheumatologic autoimmune diseases.
Collapse
Affiliation(s)
| | - Jim C Oates
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina;,Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Margaret Markiewicz
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
53
|
Agoro R, Park MY, Le Henaff C, Jankauskas S, Gaias A, Chen G, Mohammadi M, Sitara D. C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica 2021; 106:391-403. [PMID: 32193252 PMCID: PMC7849576 DOI: 10.3324/haematol.2019.237040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoferremia results as an acute phase response to infection and inflammation aiming to reduce iron availability to pathogens. Activation of toll-like receptors (TLR), the key sensors of the innate immune system, induces hypoferremia mainly through the rise of the iron hormone hepcidin. Conversely, stimulation of erythropoiesis suppresses hepcidin expression via induction of the erythropoietin-responsive hormone erythroferrone. Iron deficiency stimulates transcription of the osteocyte- secreted protein FGF23. Here we hypothesized that induction of FGF23 in response to TLR4 activation is a potent contributor to hypoferremia and, thus, impairment of its activity may alleviate hypoferremia induced by lipopolysaccharide (LPS), a TLR 4 agonist. We used the C-terminal tail of FGF23 to impair endogenous full-length FGF23 signaling in wildtype mice, and investigated its impact on hypoferremia. Our data show that FGF23 is induced as early as pro-inflammatory cytokines in response to LPS, followed by upregulation of hepcidin and downregulation of erythropoietin (Epo) expression in addition to decreased serum iron and transferrin saturation. Further, LPS-induced hepatic and circulating hepcidin were significantly reduced by FGF23 signaling disruption. Accordingly, iron sequestration in liver and spleen caused by TLR4 activation was completely abrogated by FGF23 signaling inhibition, resulting in alleviation of serum iron and transferrin saturation deficit. Taken together, our studies highlight for the first time that inhibition of FGF23 signaling alleviates LPS-induced acute hypoferremia.
Collapse
Affiliation(s)
- Rafiou Agoro
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Min Young Park
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Carole Le Henaff
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | | | - Alina Gaias
- Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, USA
| | - Gaozhi Chen
- Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China
| | - Moosa Mohammadi
- Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, USA
| | - Despina Sitara
- NYU College of Dentistry and NYU School of Medicine, New York, USA
| |
Collapse
|
54
|
Kim MD, Baumlin N, Dennis JS, Yoshida M, Kis A, Aguiar C, Schmid A, Mendes E, Salathe M. Losartan reduces cigarette smoke-induced airway inflammation and mucus hypersecretion. ERJ Open Res 2021; 7:00394-2020. [PMID: 33532463 PMCID: PMC7836504 DOI: 10.1183/23120541.00394-2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 11/05/2022] Open
Abstract
The aim was to determine whether losartan reduces cigarette smoke (CS)-induced airway inflammation and mucus hypersecretion in an in vitro model and a small clinical trial. Primary human bronchial epithelial cells (HBECs) were differentiated at the air-liquid interface (ALI) and exposed to CS. Expression of transforming growth factor (TGF)-β1 and the mucin MUC5AC, and expression or activity of matrix metalloproteinase (MMP)-9 were measured after CS exposure. Parameters of mucociliary clearance were evaluated by measuring airway surface liquid volumes, mucus concentrations, and conductance of cystic fibrosis transmembrane conductance regulator (CFTR) and large conductance, Ca2+-activated and voltage-dependent potassium (BK) channels. Nasal cells were collected from study participants and expression of MUC5AC, TGF-β1, and MMP-9 mRNAs was measured before and after losartan treatment. In vitro, CS exposure of HBECs caused a significant increase in mRNA expression of MUC5AC and TGF-β1 and MMP-9 activity and decreased CFTR and BK channel activities, thereby reducing airway surface liquid volumes and increasing mucus concentrations. Treatment of HBECs with losartan rescued CS-induced CFTR and BK dysfunction and caused a significant decrease in MUC5AC expression and mucus concentrations, partially by inhibiting TGF-β signalling. In a prospective clinical study, cigarette smokers showed significantly reduced mRNA expression levels of MUC5AC, TGF-β1, and MMP-9 in the upper airways after 2 months of losartan treatment. Our findings suggest that losartan may be an effective therapy to reduce inflammation and mucus hypersecretion in CS-induced chronic airway diseases.
Collapse
Affiliation(s)
- Michael D Kim
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - Nathalie Baumlin
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,These authors contributed equally
| | - John S Dennis
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Makoto Yoshida
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Adrian Kis
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carolina Aguiar
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andreas Schmid
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eliana Mendes
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthias Salathe
- Dept of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
55
|
Zheng K, Lin L, Cui P, Liu T, Chen L, Yang C, Jiang W. Association of Fibroblast Growth Factor 23 With Ischemic Stroke and Its Subtypes: A Mendelian Randomization Study. Front Genet 2020; 11:608517. [PMID: 33424930 PMCID: PMC7785587 DOI: 10.3389/fgene.2020.608517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23), which is involved in the regulation of vitamin D, is an emerging independent risk factor for cardiovascular diseases. Previous studies have demonstrated a positive association between FGF23 and stroke. In this study, we aimed to assess the association of FGF23 with ischemic stroke and its subtypes by applying a Mendelian randomization (MR) framework. Five genetic variants obtained from a genome-wide association study involving 16,624 European subjects were used as valid instruments of circulating FGF23 levels. MR was applied to infer the causality of FGF23 levels and the risk of ischemic stroke using data from the MEGASTROKE consortium. Subsequently, several MR analyses, including inverse-variance weighted meta-analysis, MR-Egger, weighted median estimate (WME), MR Pleiotropy Residual Sum and Outlier were performed. The heterogeneity test analysis, including Cochran's Q, I 2 test and leave-one-out analysis were also applied. Furthermore, potential horizontal/vertical pleiotropy was assessed. Lastly, the power of MR analysis was tested. Three validated variants were found to be associated with circulating FGF23 levels and were used for further investigation. We found that high expression level of FGF23 was not associated with any ischemic stroke. However, a causal association between genetically predicted FGF23 levels and the risk of large-artery atherosclerotic stroke (LAS) was significant, with an odds ratio of 1.74 (95% confidence interval = 1.08-2.81) per standard deviation increase in circulating FGF23 levels. Our findings provide support for the causal association between FGF23 and LAS, and therefore, offer potential therapeutic targets for LAS. The specific roles of FGF23 in LAS and associated molecules require further investigation.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingmin Lin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Pan Cui
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Chen
- Department of Physical Medicine and Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Jiang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
56
|
Xu TH, Du Y, Sheng Z, Li Y, Qiu X, Tian B, Yao L. OGT-Mediated KEAP1 Glycosylation Accelerates NRF2 Degradation Leading to High Phosphate-Induced Vascular Calcification in Chronic Kidney Disease. Front Physiol 2020; 11:1092. [PMID: 33192538 PMCID: PMC7649800 DOI: 10.3389/fphys.2020.01092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Unraveling the complex regulatory pathways that mediate the effects of phosphate on vascular smooth muscle cells (VSMCs) may provide novel targets and therapies to limit the destructive effects of vascular calcification (VC) in patients with chronic kidney disease (CKD). Our previous studies have highlighted several signaling networks associated with VSMC autophagy, but the underlying mechanisms remain poorly understood. Thereafter, the current study was performed to characterize the functional relevance of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in high phosphate-induced VC in CKD settings. We generated VC models in 5/6 nephrectomized rats in vivo and VSMC calcification models in vitro. Artificial modulation of OGT (knockdown and overexpression) was performed to explore the role of OGT in VSMC autophagy and VC in thoracic aorta, and in vivo experiments were used to substantiate in vitro findings. Mechanistically, co-immunoprecipitation (Co-IP) assay was performed to examine interaction between OGT and kelch like ECH associated protein 1 (KEAP1), and in vivo ubiquitination assay was performed to examine ubiquitination extent of nuclear factor erythroid 2-related factor 2 (NRF2). OGT was highly expressed in high phosphate-induced 5/6 nephrectomized rats and VSMCs. OGT silencing was shown to suppress high phosphate-induced calcification of VSMCs. OGT enhances KEAP1 glycosylation and thereby results in degradation and ubiquitination of NRF2, concurrently inhibiting VSMC autophagy to promote VSMC calcification in 5/6 nephrectomized rats. OGT inhibits VSMC autophagy through the KEAP1/NRF2 axis and thus accelerates high phosphate-induced VC in CKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
57
|
Easter M, Bollenbecker S, Barnes JW, Krick S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E6924. [PMID: 32967225 PMCID: PMC7555616 DOI: 10.3390/ijms21186924] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
58
|
Easter M, Garth J, Harris ES, Shei RJ, Helton ES, Wei Y, Denson R, Zaharias R, Rowe SM, Geraghty P, Faul C, Barnes JW, Krick S. Fibroblast Growth Factor Receptor 4 Deficiency Mediates Airway Inflammation in the Adult Healthy Lung? Front Med (Lausanne) 2020; 7:317. [PMID: 32793609 PMCID: PMC7393220 DOI: 10.3389/fmed.2020.00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) 4 has been shown to mediate pro-inflammatory signaling in the liver and airway epithelium in chronic obstructive pulmonary disease. In past reports, FGFR4 knockout (Fgfr4 -/- ) mice did not show any lung phenotype developmentally or at birth, unless FGFR3 deficiency was present simultaneously. Therefore, we wanted to know whether the loss of FGFR4 had any effect on the adult murine lung. Our results indicate that adult Fgfr4 -/- mice demonstrate a lung phenotype consisting of widened airway spaces, increased airway inflammation, bronchial obstruction, and right ventricular hypertrophy consistent with emphysema. Despite downregulation of FGF23 serum levels, interleukin (IL) 1β and IL-6 in the Fgfr4 -/- lung, and abrogation of p38 signaling, primary murine Fgfr4 -/- airway cells showed increased expression of IL-1β and augmented secretion of IL-6, which correlated with decreased airway surface liquid depth as assessed by micro-optical coherence tomography. These findings were paralleled by increased ERK phosphorylation in Fgfr4 -/- airway cells when compared with their control wild-type cells. Analysis of a murine model with constitutive activation of FGFR4 showed attenuation of pro-inflammatory mediators in the lung and airway epithelium. In conclusion, we are the first to show an inflammatory and obstructive airway phenotype in the adult healthy murine Fgfr4 -/- lung, which might be due to the upregulation of ERK phosphorylation in the Fgfr4 -/- airway epithelium.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jaleesa Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex S. Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ren-Jay Shei
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric S. Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rennan Zaharias
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M. Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
59
|
Schrumpf JA, van der Does AM, Hiemstra PS. Impact of the Local Inflammatory Environment on Mucosal Vitamin D Metabolism and Signaling in Chronic Inflammatory Lung Diseases. Front Immunol 2020; 11:1433. [PMID: 32754156 PMCID: PMC7366846 DOI: 10.3389/fimmu.2020.01433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)2D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)2D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)2D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)2D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)2D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)2D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)2D and signaling in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
60
|
Anti-aging Klotho Protects SH-SY5Y Cells Against Amyloid β1-42 Neurotoxicity: Involvement of Wnt1/pCREB/Nrf2/HO-1 Signaling. J Mol Neurosci 2020; 71:19-27. [PMID: 32627121 DOI: 10.1007/s12031-020-01621-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is considered a prevalent neurological disorder with a neurodegenerative nature in elderly people. Oxidative stress and neuroinflammation due to amyloid β (Aβ) peptides are strongly involved in AD pathogenesis. Klotho is an anti-aging protein with multiple protective effects that its deficiency is involved in development of age-related disorders. In this study, we investigated the beneficial effect of Klotho pretreatment at different concentrations of 0.5, 1, and 2 nM against Aβ1-42 toxicity at a concentration of 20 μM in human SH-SY5Y neuroblastoma cells. Our findings showed that Klotho could significantly and partially restore cell viability and decrease reactive oxygen species (known as ROS) and improve superoxide dismutase activity (SOD) in addition to reduction of caspase 3 activity and DNA fragmentation following Aβ1-42 challenge. In addition, exogenous Klotho also reduced inflammatory biomarkers consisting of nuclear factor-kB (NF-kB), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in Aβ-exposed cells. Besides, Klotho caused downregulation of Wnt1 level, upregulation of phosphorylated cyclic AMP response element binding (pCREB), and mRNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) with no significant alteration of epsilon isoform of protein kinase C (PKCε) after Aβ toxicity. In summary, Klotho could alleviate apoptosis, oxidative stress, and inflammation in human neuroblastoma cells after Aβ challenge and its beneficial effect is partially exerted through appropriate modulation of Wnt1/pCREB/Nrf2/HO-1 signaling.
Collapse
|
61
|
Chen PC, Chang YD, Lee MC, Hsu BG. High Serum Fibroblast Growth Factor 23 Level Is Associated With Metabolic Syndrome in Kidney Transplantation Patients. Transplant Proc 2020; 52:3168-3172. [PMID: 32430147 DOI: 10.1016/j.transproceed.2020.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23), an important regulator of phosphate and vitamin D metabolism, has also been suggested to perform metabolic functions. This retrospective study evaluated the relationship between metabolic syndrome (MetS) and fasting FGF23 levels in patients undergoing kidney transplantation (KT). METHODS Serum carboxyl-terminal FGF23 levels were measured in fasting blood samples of 74 KT patients using a commercially available enzyme-linked immunosorbent assay. MetS and its components were defined using the diagnostic criteria of the International Diabetes Federation. RESULTS Twenty-four KT patients (32.4%) had MetS. Hypertension (P = .008); diabetes (P = .002), body weight (P < .001); body mass index (P < .001); waist circumference (P < .004); body fat mass (P < .001); systolic blood pressure (P = .008); and levels of triglycerides (P = .003), blood urea nitrogen (P = .007), and insulin (P = .004); homeostasis model assessment of insulin resistance (P = .001); and FGF23 (P = .002) were higher, whereas high-density lipoprotein cholesterol (P = .049) levels were lower in KT patients with MetS. Multivariable logistic regression analysis including significant variables revealed that FGF23 (odds ratio 1.030, 95% confidence interval [CI] 1.000-1.060, P = .048) was an independent predictor of MetS in KT patients. The area under the receiver operating characteristic curve to evaluate the ability of serum FGF23 in discriminating KT patients with MetS was 0.727 (95% CI 0.611-0.824, P = .0005). CONCLUSION These results revealed that a high serum FGF23 level was positively associated with MetS in KT patients.
Collapse
Affiliation(s)
- Pei-Chen Chen
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Der Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Che Lee
- School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan; Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| |
Collapse
|
62
|
Tan Y, Qiao Y, Chen Z, Liu J, Guo Y, Tran T, Tan KS, Wang DY, Yan Y. FGF2, an Immunomodulatory Factor in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Front Cell Dev Biol 2020; 8:223. [PMID: 32300593 PMCID: PMC7142218 DOI: 10.3389/fcell.2020.00223] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a potent mitogenic factor belonging to the FGF family. It plays a role in airway remodeling associated with chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Recently, research interest has been raised in the immunomodulatory function of FGF2 in asthma and COPD, through its involvement in not only the regulation of inflammatory cells but also its participation as a mediator between immune cells and airway structural cells. Herein, this review provides the current knowledge on the biology of FGF2, its expression pattern in asthma and COPD patients, and its role as an immunomodulatory factor. The potential that FGF2 is involved in regulating inflammation indicates that FGF2 could be a therapeutic target for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yuanyang Tan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | | | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- Department of Respiratory Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yanrong Guo
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
63
|
Muñoz-Castañeda JR, Rodelo-Haad C, Pendon-Ruiz de Mier MV, Martin-Malo A, Santamaria R, Rodriguez M. Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins (Basel) 2020; 12:E185. [PMID: 32188018 PMCID: PMC7150840 DOI: 10.3390/toxins12030185] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) and Klotho play an essential role in the regulation of mineral metabolism, and both are altered as a consequence of renal failure. FGF23 increases to augment phosphaturia, which prevents phosphate accumulation at the early stages of chronic kidney disease (CKD). This effect of FGF23 requires the presence of Klotho in the renal tubules. However, Klotho expression is reduced as soon as renal function is starting to fail to generate a state of FGF23 resistance. Changes in these proteins directly affect to other mineral metabolism parameters; they may affect renal function and can produce damage in other organs such as bone, heart, or vessels. Some of the mechanisms responsible for the changes in FGF23 and Klotho levels are related to modifications in the Wnt signaling. This review examines the link between FGF23/Klotho and Wnt/β-catenin in different organs: kidney, heart, and bone. Activation of the canonical Wnt signaling produces changes in FGF23 and Klotho and vice versa; therefore, this pathway emerges as a potential therapeutic target that may help to prevent CKD-associated complications.
Collapse
Affiliation(s)
- Juan Rafael Muñoz-Castañeda
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Cristian Rodelo-Haad
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Pendon-Ruiz de Mier
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rafael Santamaria
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Mariano Rodriguez
- Maimonides Institute for Biomedical Research (IMIBIC), 14005 Cordoba, Spain; (J.R.M.-C.); (C.R.-H.); (A.M.-M.); (R.S.); (M.R.)
- School of Medicine, Department of Medicine, University of Cordoba, 14005 Cordoba, Spain
- Nephrology Service, Reina Sofia University Hospital, 14005 Cordoba, Spain
- Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
64
|
Garth J, Easter M, Skylar Harris E, Sailland J, Kuenzi L, Chung S, Dennis JS, Baumlin N, Adewale AT, Rowe SM, King G, Faul C, Barnes JW, Salathe M, Krick S. The Effects of the Anti-aging Protein Klotho on Mucociliary Clearance. Front Med (Lausanne) 2020; 6:339. [PMID: 32039219 PMCID: PMC6992571 DOI: 10.3389/fmed.2019.00339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/24/2019] [Indexed: 01/23/2023] Open
Abstract
α-klotho (KL) is an anti-aging protein and has been shown to exert anti-inflammatory and anti-oxidative effects in the lung and pulmonary diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. The current study investigated the direct effect of KL on the bronchial epithelium in regards to mucociliary clearance parameters. Primary human bronchial and murine tracheal epithelial cells, cultured, and differentiated at the air liquid interface (ALI), were treated with recombinant KL or infected with a lentiviral vector expressing KL. Airway surface liquid (ASL) volume, airway ion channel activities, and expression levels were analyzed. These experiments were paired with ex vivo analyses of mucociliary clearance in murine tracheas from klotho deficient mice and their wild type littermates. Our results showed that klotho deficiency led to impaired mucociliary clearance with a reduction in ASL volume in vitro and ex vivo. Overexpression or exogenous KL increased ASL volume, which was paralleled by increased activation of the large-conductance, Ca2+-activated, voltage-dependent potassium channel (BK) without effect on the cystic fibrosis transmembrane conductance regulator (CFTR). Furthermore, KL overexpression downregulated IL-8 levels and attenuated TGF-β-mediated downregulation of LRRC26, the γ subunit of BK, necessary for its function in non-excitable cells. In summary, we show that KL regulates mucociliary function by increasing ASL volume in the airways possibly due to underlying BK activation. The KL mediated BK channel activation may be a potentially important target to design therapeutic strategies in inflammatory airway diseases when ASL volume is decreased.
Collapse
Affiliation(s)
- Jaleesa Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex Skylar Harris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juliette Sailland
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lisa Kuenzi
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Samuel Chung
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - John S. Dennis
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Adegboyega T. Adewale
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Steven M. Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gwendalyn King
- Department of Biology, Creighton University, Omaha, NE, United States
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine University of Kansas Medical Center, Kansas City, KS, United States
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
65
|
Blaskovic S, Donati Y, Zanetti F, Ruchonnet-Métrailler I, Lemeille S, Cremona TP, Schittny JC, Barazzone-Argiroffo C. Gestation and lactation exposure to nicotine induces transient postnatal changes in lung alveolar development. Am J Physiol Lung Cell Mol Physiol 2020; 318:L606-L618. [PMID: 31967849 DOI: 10.1152/ajplung.00228.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Harmful consequences of cigarette smoke (CS) exposure during lung development can already manifest in infancy. In particular, early life exposure to nicotine, the main component of CS, was shown to affect lung development in animal models. We aimed to characterize the effect of nicotine on alveoli formation. We analyzed the kinetics of normal alveolar development during the alveolarization phase and then looked at the effect of nicotine in a mouse model of gestational and early life exposure. Immunohistochemical staining revealed that the wave of cell proliferation [i.e., vascular endothelial cells, alveolar epithelial cells (AEC) type II and mesenchymal cell] occurs at postnatal day (pnd) 8 in control and nicotine-exposed lungs. However, FACS analysis of individual epithelial alveolar cells revealed nicotine-induced transient increase of AEC type I proliferation and decrease of vascular endothelial cell proliferation at pnd8. Furthermore, nicotine increased the percentage of endothelial cells at pnd2. Transcriptomic data also showed significant changes in nicotine samples compared with the controls on cell cycle-associated genes at pnd2 but not anymore at pnd16. Accordingly, the expression of survivin, involved in cell cycle regulation, also follows a different kinetics in nicotine lung extracts. These changes resulted in an increased lung size detected by stereology at pnd16 but no longer in adult age, suggesting that nicotine can act on the pace of lung maturation. Taken together, our results indicate that early life nicotine exposure could be harmful to alveolar development independently from other toxicants contained in CS.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Yves Donati
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Filippo Zanetti
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Isabelle Ruchonnet-Métrailler
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Tiziana P Cremona
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| |
Collapse
|
66
|
Wagner CA, Rubio-Aliaga I, Egli-Spichtig D. Fibroblast growth factor 23 in chronic kidney disease: what is its role in cardiovascular disease? Nephrol Dial Transplant 2019; 34:1986-1990. [PMID: 30903187 DOI: 10.1093/ndt/gfz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Carsten A Wagner
- National Center of Competence in Research Kidney, CH, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Isabel Rubio-Aliaga
- National Center of Competence in Research Kidney, CH, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- National Center of Competence in Research Kidney, CH, Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
67
|
Smith ER, Holt SG, Hewitson TD. αKlotho-FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci 2019; 76:4705-4724. [PMID: 31350618 PMCID: PMC11105488 DOI: 10.1007/s00018-019-03241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| |
Collapse
|
68
|
Zhang J, Cao K, Pastor JV, Li L, Moe OW, Hsia CCW. Alpha-Klotho, a critical protein for lung health, is not expressed in normal lung. FASEB Bioadv 2019; 1:675-687. [PMID: 32123814 PMCID: PMC6996373 DOI: 10.1096/fba.2019-00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 02/25/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Alpha-Klotho (αKlotho), produced by the kidney and selected organs, is essential for tissue maintenance and protection. Homozygous αKlotho-deficiency leads to premature multi-organ degeneration and death; heterozygous insufficiency leads to apoptosis, oxidative stress, and increased injury susceptibility. There is inconsistent data in the literature regarding whether αKlotho is produced locally in the lung or derived from circulation. We probed murine and human lung by immunohistochemistry (IHC) and immunoblot (IB) using two monoclonal (anti-αKlotho Kl1 and Kl2 domains) and three other common commercial antibodies. Monoclonal anti-Kl1 and anti-Kl2 yielded no labeling in lung on IHC or IB; specific labeling was observed in kidney (positive control) and also murine lungs following tracheal delivery of αKlotho cDNA, demonstrating specificity and ability to detect artificial pulmonary expression. Other commercial antibodies labeled numerous lung structures (IHC) and multiple bands (IB) incompatible with known αKlotho mobility; labeling was not abolished by blocking with purified αKlotho or using lungs from hypomorphic αKlotho-deficient mice, indicating nonspecificity. Results highlight the need for rigorous validation of reagents. The lung lacks native αKlotho expression and derives full-length αKlotho from circulation; findings could explain susceptibility to lung injury in extrapulmonary pathology associated with reduced circulating αKlotho levels, for example, renal failure. Conversely, αKlotho may be artificially expressed in the lung, suggesting therapeutic opportunities.
Collapse
Affiliation(s)
- Jianning Zhang
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Khoa Cao
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Johanne V. Pastor
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Liping Li
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Orson W. Moe
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Departments of PhysiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Connie C. W. Hsia
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
69
|
Hanudel MR, Zinter MS, Chen L, Gala K, Lim M, Guglielmo M, Deshmukh T, Vangala S, Matthay M, Sapru A. Plasma total fibroblast growth factor 23 levels are associated with acute kidney injury and mortality in children with acute respiratory distress syndrome. PLoS One 2019; 14:e0222065. [PMID: 31487315 PMCID: PMC6728039 DOI: 10.1371/journal.pone.0222065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) has high rates of mortality and multisystem morbidity. Pre-clinical data suggest that fibroblast growth factor 23 (FGF23) may contribute to pulmonary pathology, and FGF23 is associated with mortality and morbidity, including acute kidney injury (AKI), in non-ARDS cohorts. Here, we assess whether FGF23 is associated with AKI and/or mortality in a cohort of 161 pediatric ARDS patients. Plasma total (intact + C-terminal) FGF23 and intact FGF23 concentrations were measured within 24 hours of ARDS diagnosis (Day 1), and associations with Day 3 AKI and 60-day mortality were evaluated. 35 patients (22%) developed AKI by 3 days post-ARDS diagnosis, and 25 (16%) died by 60 days post-ARDS diagnosis. In unadjusted models, higher Day 1 total FGF23 was associated with Day 3 AKI (odds ratio (OR) 2.22 [95% confidence interval (CI) 1.62, 3.03], p<0.001), but Day 1 intact FGF23 was not. In a model adjusted for demographics and disease severity, total FGF23 remained associated with AKI (OR 1.52 [95% CI 1.02, 2.26], p = 0.039). In unadjusted models, both higher Day 1 total and intact FGF23 were associated with 60-day mortality (OR 1.43 [95% CI 1.07, 1.91], p = 0.014; and OR 1.44 [95% CI 1.02, 2.05], p = 0.039, respectively). In the adjusted model, only total FGF23 remained associated with 60-day mortality (OR 1.62 [95% CI 1.07, 2.45], p = 0.023). In a subgroup analysis of patients with Day 1 plasma IL-6 concentrations available, inflammation partially mediated the association between total FGF23 and AKI. Our data suggest both inflammation-dependent and inflammation-independent associations between total FGF23 and clinical outcomes in pediatric ARDS patients.
Collapse
Affiliation(s)
- Mark R. Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- * E-mail:
| | - Matthew S. Zinter
- Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, United States of America
| | - Lucia Chen
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Kinisha Gala
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Michelle Lim
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Mona Guglielmo
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Tanaya Deshmukh
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Sitaram Vangala
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Michael Matthay
- Department of Medicine, UCSF School of Medicine, San Francisco, CA, United States of America
| | - Anil Sapru
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
70
|
Czaya B, Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019; 20:E4195. [PMID: 31461904 PMCID: PMC6747522 DOI: 10.3390/ijms20174195] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
71
|
Lower levels of α-Klotho in serum are associated with decreased lung function in individuals with interstitial lung abnormalities. Sci Rep 2019; 9:10801. [PMID: 31346213 PMCID: PMC6658567 DOI: 10.1038/s41598-019-47199-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022] Open
Abstract
Interstitial lung abnormalities (ILA) represent aging-associated bilateral interstitial abnormalities in nondependent areas of the lung. However, the aging mechanisms associated with ILA remain uncertain. α-Klotho is an anti-aging molecule that decreases progressively with age, and abnormally low circulating levels of this protein have been revealed in several chronic-degenerative diseases. In this study, we evaluated α-Klotho serum concentrations in individuals with ILA, and examined whether its levels were associated with pulmonary function decline. α-Klotho was measured by ELISA in 50 respiratory asymptomatic adults with ILA and 150 healthy individuals over 60 years. Compared with controls, ILA subjects were predominantly older males, and showed lower lung diffusing capacity (DLCO), higher desaturation after exercise, and higher concentrations of serum matrix metalloprotease-7 (6.24 ± 4.1 versus 4.3 ± 1.7 ng/ml; p = 0.002). No differences were found in serum concentrations of α-Klotho. However, lower levels of this protein in ILA significantly correlated with lower values of forced vital capacity (Rho = 0.39; p = 0.005), forced expiratory volume in one second (Rho = 0.39; p = 0.005), and DLCO (Rho = 0.29, p = 0.04). These findings suggest that decreased concentrations of α-Klotho may be a predictive biomarker of accelerated decline of lung function in individuals with ILA.
Collapse
|
72
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
73
|
Vo HT, Phillips ML, Herskowitz JH, King GD. Klotho deficiency affects the spine morphology and network synchronization of neurons. Mol Cell Neurosci 2019; 98:1-11. [PMID: 30991103 PMCID: PMC6613977 DOI: 10.1016/j.mcn.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Klotho-deficient mice rapidly develop cognitive impairment and show some evidence of the onset of neurodegeneration. However, it is impossible to investigate the long-term consequences on the brain because of the dramatic shortening of lifespan caused by systemic klotho deficiency. As klotho expression is downregulated with advancing organismal age, understanding the mechanisms of klotho action is important for developing novel strategies to support healthy brain aging. Previously, we reported that klotho-deficient mice show enhanced long-term potentiation prior to the onset of cognitive impairment. To inform this unusual phenotype, herein, we examined neuronal structure and in vitro synaptic function. Our results indicate that klotho deficiency causes the population of dendritic spines to shift towards increased head diameter and decreased length consistent with mature, mushroom type spines. Multi-electrode array recordings from klotho-deficient neurons show increased synchronous firing and activity changes reflective of increased neuronal network activity. Supplementation of the neuronal growth media with recombinant shed klotho corrected some but not all of the activity changes caused by klotho deficiency. Last, in vivo we found that klotho-deficient mice have a decreased latency to induced seizure activity. Together these data show that klotho-deficient memory impairments are underpinned by structural and functional changes that may preclude ongoing normal cognition.
Collapse
Affiliation(s)
- Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd. Shelby 913, Birmingham 35294, AL, USA
| | - Mary L Phillips
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd. Shelby 913, Birmingham 35294, AL, USA
| | - Jeremy H Herskowitz
- Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd. Shelby 1114, Birmingham 35294, AL, USA
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd. Shelby 913, Birmingham 35294, AL, USA.
| |
Collapse
|
74
|
Barnes JW, Duncan D, Helton S, Hutcheson S, Kurundkar D, Logsdon NJ, Locy M, Garth J, Denson R, Farver C, Vo HT, King G, Kentrup D, Faul C, Kulkarni T, De Andrade JA, Yu Z, Matalon S, Thannickal VJ, Krick S. Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L141-L154. [PMID: 31042083 PMCID: PMC6689746 DOI: 10.1152/ajplung.00246.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia that mainly affects the elderly. Several reports have demonstrated that aging is involved in the underlying pathogenic mechanisms of IPF. α-Klotho (KL) has been well characterized as an "age-suppressing" hormone and can provide protection against cellular senescence and oxidative stress. In this study, KL levels were assessed in human plasma and primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF-FB) and in lung tissue from mice exposed to bleomycin, which showed significant downregulation when compared with controls. Conversely, transgenic mice overexpressing KL were protected against bleomycin-induced lung fibrosis. Treatment of human lung fibroblasts with recombinant KL alone was not sufficient to inhibit transforming growth factor-β (TGF-β)-induced collagen deposition and inflammatory marker expression. Interestingly, fibroblast growth factor 23 (FGF23), a proinflammatory circulating protein for which KL is a coreceptor, was upregulated in IPF and bleomycin lungs. To our surprise, FGF23 and KL coadministration led to a significant reduction in fibrosis and inflammation in IPF-FB; FGF23 administration alone or in combination with KL stimulated KL upregulation. We conclude that in IPF downregulation of KL may contribute to fibrosis and inflammation and FGF23 may act as a compensatory antifibrotic and anti-inflammatory mediator via inhibition of TGF-β signaling. Upon restoration of KL levels, the combination of FGF23 and KL leads to resolution of inflammation and fibrosis. Altogether, these data provide novel insight into the FGF23/KL axis and its antifibrotic/anti-inflammatory properties, which opens new avenues for potential therapies in aging-related diseases like IPF.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Dawn Duncan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Samuel Hutcheson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Deepali Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Morgan Locy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Jaleesa Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Rebecca Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Carol Farver
- Department of Pathology, Cleveland Clinic , Cleveland, Ohio
| | - Hai T Vo
- Department of Neurobiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Gwendalyn King
- Department of Neurobiology, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Joao A De Andrade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
- Birmingham VA Medical Center , Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama , Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine (Molecular and Translational Biomedicine), University of Alabama , Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama , Birmingham, Alabama
| |
Collapse
|
75
|
Gulati S, Wells JM, Urdaneta GP, Balestrini K, Vital I, Tovar K, Barnes JW, Bhatt SP, Campos M, Krick S. Fibroblast Growth Factor 23 is Associated with a Frequent Exacerbator Phenotype in COPD: A Cross-Sectional Pilot Study. Int J Mol Sci 2019; 20:ijms20092292. [PMID: 31075857 PMCID: PMC6539353 DOI: 10.3390/ijms20092292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory airway disease punctuated by exacerbations (AECOPD). Subjects with frequent AECOPD, defined by having at least two exacerbations per year, experience accelerated loss of lung function, deterioration in quality of life and increase in mortality. Fibroblast growth factor (FGF)23, a hormone associated with systemic inflammation and altered metabolism is elevated in COPD. However, associations between FGF23 and AECOPD are unknown. In this cross-sectional study, individuals with COPD were enrolled between June 2016 and December 2016. Plasma samples were analyzed for intact FGF23 levels. Logistic regression analyses were used to measure associations between clinical variables, FGF23, and the frequent exacerbator phenotype. Our results showed that FGF23 levels were higher in frequent exacerbators as compared to patients without frequent exacerbations. FGF23 was also independently associated with frequent exacerbations (OR 1.02; 95%CI 1.004–1.04; p = 0.017), after adjusting for age, lung function, smoking, and oxygen use. In summary, FGF23 was associated with the frequent exacerbator phenotype and correlated with number of exacerbations recorded retrospectively and prospectively. Further studies are needed to explore the role of FGF 23 as a possible biomarker for AECOPD to better understand the pathobiology of COPD and to help develop therapeutic targets.
Collapse
Affiliation(s)
- Swati Gulati
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- UAB Lung Health Center, Birmingham, AL 35294, USA.
- Birmingham VA Medical Center, Birmingham, AL 35294, USA.
| | - Gisel P Urdaneta
- Pulmonary Section, Miami VA Medical Center, Miami, FL 33125, USA.
| | - Kira Balestrini
- Pulmonary Section, Miami VA Medical Center, Miami, FL 33125, USA.
| | - Isabel Vital
- Pulmonary Section, Miami VA Medical Center, Miami, FL 33125, USA.
| | - Katherine Tovar
- Pulmonary Section, Miami VA Medical Center, Miami, FL 33125, USA.
| | - Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- UAB Lung Health Center, Birmingham, AL 35294, USA.
| | - Michael Campos
- Pulmonary Section, Miami VA Medical Center, Miami, FL 33125, USA.
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
76
|
van Vuren AJ, Gaillard CAJM, Eisenga MF, van Wijk R, van Beers EJ. The EPO-FGF23 Signaling Pathway in Erythroid Progenitor Cells: Opening a New Area of Research. Front Physiol 2019; 10:304. [PMID: 30971944 PMCID: PMC6443968 DOI: 10.3389/fphys.2019.00304] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
We provide an overview of the evidence for an erythropoietin-fibroblast growth factor 23 (FGF23) signaling pathway directly influencing erythroid cells in the bone marrow. We outline its importance for red blood cell production, which might add, among others, to the understanding of bone marrow responses to endogenous erythropoietin in rare hereditary anemias. FGF23 is a hormone that is mainly known as the core regulator of phosphate and vitamin D metabolism and it has been recognized as an important regulator of bone mineralization. Osseous tissue has been regarded as the major source of FGF23. Interestingly, erythroid progenitor cells highly express FGF23 protein and carry the FGF receptor. This implies that erythroid progenitor cells could be a prime target in FGF23 biology. FGF23 is formed as an intact, biologically active protein (iFGF23) and proteolytic cleavage results in the formation of the presumed inactive C-terminal tail of FGF23 (cFGF23). FGF23-knockout or injection of an iFGF23 blocking peptide in mice results in increased erythropoiesis, reduced erythroid cell apoptosis and elevated renal and bone marrow erythropoietin mRNA expression with increased levels of circulating erythropoietin. By competitive inhibition, a relative increase in cFGF23 compared to iFGF23 results in reduced FGF23 receptor signaling and mimics the positive effects of FGF23-knockout or iFGF23 blocking peptide. Injection of recombinant erythropoietin increases FGF23 mRNA expression in the bone marrow with a concomitant increase in circulating FGF23 protein. However, erythropoietin also augments iFGF23 cleavage, thereby decreasing the iFGF23 to cFGF23 ratio. Therefore, the net result of erythropoietin is a reduction of iFGF23 to cFGF23 ratio, which inhibits the effects of iFGF23 on erythropoiesis and erythropoietin production. Elucidation of the EPO-FGF23 signaling pathway and its downstream signaling in hereditary anemias with chronic hemolysis or ineffective erythropoiesis adds to the understanding of the pathophysiology of these diseases and its complications; in addition, it provides promising new targets for treatment downstream of erythropoietin in the signaling cascade.
Collapse
Affiliation(s)
- Annelies J van Vuren
- Van Creveldkliniek, Department of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Carlo A J M Gaillard
- Department of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michele F Eisenga
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eduard J van Beers
- Van Creveldkliniek, Department of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
77
|
Tan Q, Chen B, Wang Q, Xu W, Wang Y, Lin Z, Luo F, Huang S, Zhu Y, Su N, Jin M, Li C, Kuang L, Qi H, Ni Z, Wang Z, Luo X, Jiang W, Chen H, Chen S, Li F, Zhang B, Huang J, Zhang R, Jin K, Xu X, Deng C, Du X, Xie Y, Chen L. A novel FGFR1-binding peptide attenuates the degeneration of articular cartilage in adult mice. Osteoarthritis Cartilage 2018; 26:1733-1743. [PMID: 30201491 DOI: 10.1016/j.joca.2018.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously reported that genetic ablation of (Fibroblast Growth Factors Receptors) FGFR1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice, which suggests that FGFR1 is a potential targeting molecule for osteoarthritis (OA). Here, we identified R1-P1, an inhibitory peptide for FGFR1 and investigated its effect on the pathogenesis of OA in mice induced by destabilization of medial meniscus (DMM). DESIGN Binding ability between R1-P1 and FGFR1 protein was evaluated by enzyme-linked immuno sorbent assay (ELISA) and molecular docking. Alterations in cartilage were evaluated histologically. The expression levels of molecules associated with articular cartilage homeostasis and FGFR1 signaling were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry (IHC). The chondrocyte apoptosis was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) assay. RESULTS R1-P1 had highly binding affinities to human FGFR1 protein, and efficiently inhibited extracellular signal-regulated kinase (ERK)1/2 pathway in mouse primary chondrocytes. In addition, R1-P1 attenuated the IL-1β induced significant loss of proteoglycan in full-thickness cartilage tissue from human femur head. Moreover, this peptide can significantly restore the IL-1β mediated loss of proteoglycan and type II collagen (Col II) and attenuate the expression of matrix metalloproteinase-13 (MMP13) in mouse primary chondrocytes. Finally, intra-articular injection of R1-P1 remarkably attenuated the loss of proteoglycan and the destruction of articular cartilage and decreased the expressions of extracellular matrix (ECM) degrading enzymes and apoptosis in articular chondrocytes of mice underwent DMM surgery. CONCLUSIONS R1-P1, a novel inhibitory peptide for FGFR1, attenuates the degeneration of articular cartilage in adult mice, which is a potential leading molecule for the treatment of OA.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/pathology
- Drug Evaluation, Preclinical/methods
- Extracellular Matrix/drug effects
- Extracellular Matrix/pathology
- Humans
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred C57BL
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Osteoarthritis/prevention & control
- Proteoglycans/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Q Tan
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - B Chen
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Q Wang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W Xu
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y Wang
- College of Bioengineering, Chongqing Institute of Technology, Chongqing 400050, China
| | - Z Lin
- College of Bioengineering, Chongqing Institute of Technology, Chongqing 400050, China
| | - F Luo
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - S Huang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Y Zhu
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - N Su
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - M Jin
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - C Li
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - L Kuang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - H Qi
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Z Ni
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Z Wang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X Luo
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - W Jiang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - H Chen
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - S Chen
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - F Li
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - B Zhang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - J Huang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - R Zhang
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - K Jin
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - X Xu
- Faculty of Health Sciences, University of Macau, Macau SAR 00853, China
| | - C Deng
- Faculty of Health Sciences, University of Macau, Macau SAR 00853, China
| | - X Du
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Y Xie
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - L Chen
- Department of Rehabilitation Medicine, Laboratory for the Rehabilitation of Traumatic Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
78
|
Targeting Cytokines as Evolving Treatment Strategies in Chronic Inflammatory Airway Diseases. Int J Mol Sci 2018; 19:ijms19113402. [PMID: 30380761 PMCID: PMC6275012 DOI: 10.3390/ijms19113402] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.
Collapse
|
79
|
Krick S, Helton ES, Hutcheson SB, Blumhof S, Garth JM, Denson RS, Zaharias RS, Wickham H, Barnes JW. FGF23 Induction of O-Linked N-Acetylglucosamine Regulates IL-6 Secretion in Human Bronchial Epithelial Cells. Front Endocrinol (Lausanne) 2018; 9:708. [PMID: 30538676 PMCID: PMC6277595 DOI: 10.3389/fendo.2018.00708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) generates the substrate for the O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins. The HBP also serves as a stress sensor and has been reported to be involved with nuclear factor of activated T-cells (NFAT) activation, which can contribute to multiple cellular processes including cell metabolism, proliferation, and inflammation. In our previously published report, Fibroblast Growth Factor (FGF) 23, an important endocrine pro-inflammatory mediator, was shown to activate the FGFR4/phospholipase Cγ (PLCγ)/nuclear factor of activated T-cells (NFAT) signaling in chronic inflammatory airway diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Here, we demonstrate that FGF23 increased the O-GlcNAc modification of proteins in HBECs. Furthermore, the increase in O-GlcNAc levels by FGF23 stimulation resulted in the downstream activation of NFAT and secretion of interleukin-6 (IL-6). Conversely, inhibition of FGF23 signaling and/or O-GlcNAc transferase (OGT)/O-GlcNAc reversed these effects. Collectively, these data suggest that FGF23 induced IL-6 upregulation and secretion is, at least, partially mediated via the activation of the HBP and O-GlcNAc levels in HBECs. These findings identify a novel link whereby FGF23 and the augmentation of O-GlcNAc levels regulate airway inflammation through NFAT activation and IL-6 upregulation in HBECs. The crosstalk between these signaling pathways may contribute to the pathogenesis of chronic inflammatory airway diseases such as COPD and CF as well as metabolic syndromes, including diabetes.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel B. Hutcheson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott Blumhof
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jaleesa M. Garth
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca S. Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Hillel Connections Program, Bloom Hillel, University of Alabama, Tuscaloosa, AL, United States
| | - Rennan S. Zaharias
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hannah Wickham
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Hillel Connections Program, Bloom Hillel, University of Alabama, Tuscaloosa, AL, United States
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Jarrod W. Barnes
| |
Collapse
|