51
|
Liu Y, Wang M, Huang Y, Zhu P, Qian G, Zhang Y, Li L. Genome-Wide Identification and Analysis of R2R3-MYB Genes Response to Saline-Alkali Stress in Quinoa. Int J Mol Sci 2023; 24:ijms24119132. [PMID: 37298082 DOI: 10.3390/ijms24119132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Soil saline-alkalization inhibits plant growth and development and seriously affects crop yields. Over their long-term evolution, plants have formed complex stress response systems to maintain species continuity. R2R3-MYB transcription factors are one of the largest transcription factor families in plants, widely involved in plant growth and development, metabolism, and stress response. Quinoa (Chenopodium quinoa Willd.), as a crop with high nutritional value, is tolerant to various biotic and abiotic stress. In this study, we identified 65 R2R3-MYB genes in quinoa, which are divided into 26 subfamilies. In addition, we analyzed the evolutionary relationships, protein physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of CqR2R3-MYB family members. To investigate the roles of CqR2R3-MYB transcription factors in abiotic stress response, we performed transcriptome analysis to figure out the expression file of CqR2R3-MYB genes under saline-alkali stress. The results indicate that the expression of the six CqMYB2R genes was altered significantly in quinoa leaves that had undergone saline-alkali stress. Subcellular localization and transcriptional activation activity analysis revealed that CqMYB2R09, CqMYB2R16, CqMYB2R25, and CqMYB2R62, whose Arabidopsis homologues are involved in salt stress response, are localized in the nucleus and exhibit transcriptional activation activity. Our study provides basic information and effective clues for further functional investigation of CqR2R3-MYB transcription factors in quinoa.
Collapse
Affiliation(s)
- Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Peng Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
52
|
Zhang YS, Xu Y, Xing WT, Wu B, Huang DM, Ma FN, Zhan RL, Sun PG, Xu YY, Song S. Identification of the passion fruit ( Passiflora edulis Sims) MYB family in fruit development and abiotic stress, and functional analysis of PeMYB87 in abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1124351. [PMID: 37215287 PMCID: PMC10196401 DOI: 10.3389/fpls.2023.1124351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Environmental stresses are ubiquitous in agricultural cultivation, and they affect the healthy growth and development of edible tissues in passion fruit. The study of resistance mechanisms is important in understanding the adaptation and resistance of plants to environmental stresses. In this work, two differently resistant passion fruit varieties were selected, using the expression characteristics of the transcription factor MYB, to explore the resistance mechanism of the MYB gene under various environmental stresses. A total of 174 MYB family members were identified using high-quality passion fruit genomes: 98 2R-MYB, 5 3R-MYB, and 71 1R-MYB (MYB-relate). Their family information was systematically analyzed, including subcellular localization, physicochemical properties, phylogeny at the genomic level, promoter function, encoded proteins, and reciprocal regulation. In this study, bioinformatics and transcriptome sequencing were used to identify members of the PeMYB genes in passion fruit whole-genome data, and biological techniques, such as qPCR, gene clone, and transient transformation of yeast, were used to determine the function of the passion fruit MYB genes in abiotic stress tolerance. Transcriptomic data were obtained for differential expression characteristics of two resistant and susceptible varieties, three expression patterns during pulp development, and four induced expression patterns under abiotic stress conditions. We further focused on the resistance mechanism of PeMYB87 in environmental stress, and we selected 10 representative PeMYB genes for quantitative expression verification. Most of the genes were differentially induced by four abiotic stresses, among which PeMYB87 responded significantly to high-temperature-induced expression and overexpression of the PeMYB87 gene in the yeast system. The transgenic PeMYB87 in yeast showed different degrees of stress resistance under exposure to cold, high temperatures, drought, and salt stresses. These findings lay the foundation for further analysis of the biological functions of PeMYBs involved in stress resistance in passion fruit.
Collapse
Affiliation(s)
- Yan-shu Zhang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Yi Xu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Wen-ting Xing
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Bin Wu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Dong-mei Huang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Fu-ning Ma
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Ru-lin Zhan
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Pei-guang Sun
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Yong-yan Xu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Shun Song
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
53
|
Si Z, Wang L, Ji Z, Zhao M, Zhang K, Qiao Y. Comparative analysis of the MYB gene family in seven Ipomoea species. FRONTIERS IN PLANT SCIENCE 2023; 14:1155018. [PMID: 37021302 PMCID: PMC10067929 DOI: 10.3389/fpls.2023.1155018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The MYB transcription factors regulate plant growth, development, and defense responses. However, information about the MYB gene family in Ipomoea species is rare. Herein, we performed a comprehensive genome-wide comparative analysis of this gene family among seven Ipomoea species, sweet potato (I. batatas), I. trifida, I. triloba, I. nil, I. purpurea, I. cairica, and I. aquatic, and identified 296, 430, 411, 291, 226, 281, and 277 MYB genes, respectively. The identified MYB genes were classified into five types: 1R-MYB (MYB-related), 2R-MYB (R2R3-MYB), 3R-MYB (R1R2R3-MYB), 4R-MYB, and 5R-MYB, and the MYB-related or R2R3-MYB type was the most abundant MYB genes in the seven species. The Ipomoea MYB genes were classed into distinct subgroups based on the phylogenetic topology and the classification of the MYB superfamily in Arabidopsis. Analysis of gene structure and protein motifs revealed that members within the same phylogenetic group presented similar exon/intron and motif organization. The identified MYB genes were unevenly mapped on the chromosomes of each Ipomoea species. Duplication analysis indicated that segmental and tandem duplications contribute to expanding the Ipomoea MYB genes. Non-synonymous substitution (Ka) to synonymous substitution (Ks) [Ka/Ks] analysis showed that the duplicated Ipomoea MYB genes are mainly under purifying selection. Numerous cis-regulatory elements related to stress responses were detected in the MYB promoters. Six sweet potato transcriptome datasets referring to abiotic and biotic stresses were analyzed, and MYB different expression genes' (DEGs') responses to stress treatments were detected. Moreover, 10 sweet potato MYB DEGs were selected for qRT-PCR analysis. The results revealed that four responded to biotic stress (stem nematodes and Ceratocystis fimbriata pathogen infection) and six responded to the biotic stress (cold, drought, and salt). The results may provide new insights into the evolution of MYB genes in the Ipomoea genome and contribute to the future molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Lianjun Wang
- Institute of Food Corps, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Mingming Zhao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| |
Collapse
|
54
|
Cao Y, Fan T, Wang L, Zhang L, Li Y. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC PLANT BIOLOGY 2023; 23:145. [PMID: 36927311 PMCID: PMC10022305 DOI: 10.1186/s12870-023-04163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND MYB transcription factors are widely distributed in the plant kingdom and play key roles in regulatory networks governing plant metabolism and biochemical and physiological processes. RESULTS Here, we first determined the R2R3-MYB genes in five Euphorbiaceae genomes. The three Trp (W) residues from the first MYB domain (R2) were absolutely conserved, whereas the first W residue from the second MYB domain (R3) was preferentially mutated. The R2R3-MYBs were clustered into 48 functional subfamilies, of which 34 had both R2R3-MYBs of Euphorbiaceae species and AtMYBs, and four contained only Euphorbiaceae R2R3-MYBs. The whole-genome duplication (WGD) and/or segmental duplication (SD) played key roles in the expansion of the R2R3-MYB family. Unlike paralogous R2R3-MYB family members, orthologous R2R3-MYB members contained a higher selective pressure and were subject to a constrained evolutionary rate. VfMYB36 was specifically expressed in fruit, and its trend was consistent with the change in oil content, indicating that it might be involved in oil biosynthesis. Overexpression experiments showed that VfMYB36 could significantly provide linolenic acid (C18:3) content, which eventually led to a significant increase in oil content. CONCLUSION Our study first provides insight into understanding the evolution and expression of R2R3-MYBs in Euphorbiaceae species, and also provides a target for the production of biomass diesel and a convenient way for breeding germplasm resources with high linolenic acid content in the future.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, China
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 056009 Handan, China
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, 430065 Wuhan, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| |
Collapse
|
55
|
Ai P, Xue J, Shi Z, Liu Y, Li Z, Li T, Zhao W, Khan MA, Kang D, Wang K, Wang Z. Genome-wide characterization and expression analysis of MYB transcription factors in Chrysanthemum nankingense. BMC PLANT BIOLOGY 2023; 23:140. [PMID: 36915063 PMCID: PMC10012607 DOI: 10.1186/s12870-023-04137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chrysanthemum is a popular ornamental plant worldwide. MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors play an important role in everything from stress resistance to plant growth and development. However, the MYB family of chrysanthemums has not been the subject of a detailed bioinformatics and expression investigation. RESULTS In this study, we examined 324 CnMYB transcription factors from Chrysanthemum nankingense genome data, which contained 122 Cn1R-MYB, 183 CnR2R3-MYB, 12 Cn3R-MYB, 2 Cn4R-MYB, and 5 atypical CnMYB. The protein motifs and classification of CnMYB transcription factors were analyzed. Among them, motifs 1, 2, 3, and 4 were found to encode the MYB DNA-binding domain in R2R3-MYB proteins, while in other-MYB proteins, the motifs 1, 2, 3, 4, 5, 6, 7, and 8 encode the MYB DNA-binding domain. Among all CnMYBs, 44 genes were selected due to the presence of CpG islands, while methylation is detected in three genes, including CnMYB9, CnMYB152, and CnMYB219. We analyzed the expression levels of each CnMYB gene in ray floret, disc floret, flower bud, leaf, stem, and root tissues. Based on phylogenetic analysis and gene expression analysis, three genes appeared likely to control cellulose and lignin synthesis in stem tissue, and 16 genes appeared likely to regulate flowering time, anther, pollen development, and flower color. Fifty-one candidate genes that may be involved in stress response were identified through phylogenetic, stress-responseve motif of promoter, and qRT-PCR analyses. According to genes expression levels under stress conditions, six CnMYB genes (CnMYB9, CnMYB172, CnMYB186, CnMYB199, CnMYB219, and CnMYB152) were identified as key stress-responsive genes. CONCLUSIONS This research provides useful information for further functional analysis of the CnMYB gene family in chrysanthemums, as well as offers candidate genes for further study of cellulose and lignin synthesis, flowering traits, salt and drought stress mechanism.
Collapse
Affiliation(s)
- Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Jundong Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhongya Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Yuru Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Tong Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Dongru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Kangxiang Wang
- Technology&Media University of Henan Kaifeng, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.
| |
Collapse
|
56
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
57
|
Wu Z, Zeng W, Li C, Wang J, Shang X, Xiao L, Cao S, Zhang Y, Xu S, Yan H. Genome-wide identification and expression pattern analysis of R2R3-MYB transcription factor gene family involved in puerarin biosynthesis and response to hormone in Pueraria lobata var. thomsonii. BMC PLANT BIOLOGY 2023; 23:107. [PMID: 36814206 PMCID: PMC9945399 DOI: 10.1186/s12870-023-04115-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND R2R3-MYB transcription factors regulate secondary metabolism, stress responses and development in various plants. Puerarin is a bioactive ingredient and most abundant secondary metabolite isolated from Pueraria lobata. The biosynthesis of puerarin proceeds via the phenylpropanoid pathway and isoflavonoids pathway, in which 9 key enzymes are involved. The expression of these structural genes is under control of specific PtR2R3-MYB genes in different plant tissues. However, how PtR2R3-MYB genes regulates structural genes in puerarin biosynthesis remains elusive. This study mined the PtR2R3-MYB genes involved in puerarin biosynthesis and response to hormone in Pueraria lobata var. thomsonii. RESULTS A total of 209 PtR2R3-MYB proteins were identified, in which classified into 34 subgroups based on the phylogenetic topology and the classification of the R2R3-MYB superfamily in Arabidopsis thaliana. Furtherly physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze PtR2R3-MYBs. Combining puerarin content and RNA-seq data, speculated on the regulated puerarin biosynthesis of PtR2R3-MYB genes and structural genes, thus 21 PtR2R3-MYB genes and 25 structural genes were selected for validation gene expression and further explore its response to MeJA and GSH treatment by using qRT-PCR analysis technique. Correlation analysis and cis-acting element analysis revealed that 6 PtR2R3-MYB genes (PtMYB039, PtMYB057, PtMYB080, PtMYB109, PtMYB115 and PtMYB138) and 7 structural genes (PtHID2, PtHID9, PtIFS3, PtUGT069, PtUGT188, PtUGT286 and PtUGT297) were directly or indirectly regulation of puerarin biosynthesis in ZG11. It is worth noting that after MeJA and GSH treatment for 12-24 h, the expression changes of most candidate genes were consistent with the correlation of puerarin biosynthesis, which also shows that MeJA and GSH have the potential to mediate puerarin biosynthesis by regulating gene expression in ZG11. CONCLUSIONS Overall, this study provides a comprehensive understanding of the PtR2R3-MYB and will paves the way to reveal the transcriptional regulation of puerarin biosynthesis and response to phytohormone of PtR2R3-MYB genes in Pueraria lobata var. thomsonii.
Collapse
Affiliation(s)
- Zhengdan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Huabing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
58
|
Wang S, Xu Z, Yang Y, Ren W, Fang J, Wan L. Genome-wide analysis of R2R3-MYB genes in cultivated peanut ( Arachis hypogaea L.): Gene duplications, functional conservation, and diversification. FRONTIERS IN PLANT SCIENCE 2023; 14:1102174. [PMID: 36866371 PMCID: PMC9971814 DOI: 10.3389/fpls.2023.1102174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The cultivated Peanut (Arachis hypogaea L.), an important oilseed and edible legume, are widely grown worldwide. The R2R3-MYB transcription factor, one of the largest gene families in plants, is involved in various plant developmental processes and responds to multiple stresses. In this study we identified 196 typical R2R3-MYB genes in the genome of cultivated peanut. Comparative phylogenetic analysis with Arabidopsis divided them into 48 subgroups. The motif composition and gene structure independently supported the subgroup delineation. Collinearity analysis indicated polyploidization, tandem, and segmental duplication were the main driver of the R2R3-MYB gene amplification in peanut. Homologous gene pairs between the two subgroups showed tissue specific biased expression. In addition, a total of 90 R2R3-MYB genes showed significant differential expression levels in response to waterlogging stress. Furthermore, we identified an SNP located in the third exon region of AdMYB03-18 (AhMYB033) by association analysis, and the three haplotypes of the SNP were significantly correlated with total branch number (TBN), pod length (PL) and root-shoot ratio (RS ratio), respectively, revealing the potential function of AdMYB03-18 (AhMYB033) in improving peanut yield. Together, these studies provide evidence for functional diversity in the R2R3-MYB genes and will contribute to understanding the function of R2R3-MYB genes in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | - Liyun Wan
- *Correspondence: Jiahai Fang, ; Liyun Wan,
| |
Collapse
|
59
|
Yang W, Feng L, Luo J, Zhang H, Jiang F, He Y, Li X, Du J, Owusu Adjei M, Luan A, Ma J. Genome-Wide Identification and Characterization of R2R3-MYB Provide Insight into Anthocyanin Biosynthesis Regulation Mechanism of Ananas comosus var. bracteatus. Int J Mol Sci 2023; 24:3133. [PMID: 36834551 PMCID: PMC9964748 DOI: 10.3390/ijms24043133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The R2R3-MYB proteins comprise the largest class of MYB transcription factors, which play an essential role in regulating anthocyanin synthesis in various plant species. Ananas comosus var. bracteatus is an important colorful anthocyanins-rich garden plant. The spatio-temporal accumulation of anthocyanins in chimeric leaves, bracts, flowers, and peels makes it an important plant with a long ornamental period and highly improves its commercial value. We conducted a comprehensive bioinformatic analysis of the R2R3-MYB gene family based on genome data from A. comosus var. bracteatus. Phylogenetic analysis, gene structure and motif analysis, gene duplication, collinearity, and promoter analysis were used to analyze the characteristics of this gene family. In this work, a total of 99 R2R3-MYB genes were identified and classified into 33 subfamilies according to phylogenetic analysis, and most of them were localized in the nucleus. We found these genes were mapped to 25 chromosomes. Gene structure and protein motifs were conserved among AbR2R3-MYB genes, especially within the same subfamily. Collinearity analysis revealed four pairs of tandem duplicated genes and 32 segmental duplicates in AbR2R3-MYB genes, indicating that segmental duplication contributed to the amplification of the AbR2R3-MYB gene family. A total of 273 ABRE responsiveness, 66 TCA elements, 97 CGTCA motifs, and TGACG motifs were the main cis elements in the promoter region under response to ABA, SA, and MEJA. These results revealed the potential function of AbR2R3-MYB genes in response to hormone stress. Ten R2R3-MYBs were found to have high homology to MYB proteins reported to be involved in anthocyanin biosynthesis from other plants. RT-qPCR results revealed the 10 AbR2R3-MYB genes showed tissue-specific expression patterns, six of them expressed the highest in the flower, two genes in the bract, and two genes in the leaf. These results suggested that these genes may be the candidates that regulate anthocyanin biosynthesis of A. comosus var. bracteatus in the flower, leaf, and bract, respectively. In addition, the expressions of these 10 AbR2R3-MYB genes were differentially induced by ABA, MEJA, and SA, implying that these genes may play crucial roles in hormone-induced anthocyanin biosynthesis. Our study provided a comprehensive and systematic analysis of AbR2R3-MYB genes and identified the AbR2R3-MYB genes regulating the spatial-temporal anthocyanin biosynthesis in A. comosus var. bracteatus, which would be valuable for further study on the anthocyanin regulation mechanism of A. comosus var. bracteatus.
Collapse
Affiliation(s)
- Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Jiaheng Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Huiling Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Juan Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Mark Owusu Adjei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Aiping Luan
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| |
Collapse
|
60
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
61
|
Wang Y, Xi Z, Wang X, Zhang Y, Liu Y, Yuan S, Zhao S, Sheng J, Meng D. Identification of bHLH family genes in Agaricus bisporus and transcriptional regulation of arginine catabolism-related genes by AbbHLH1 after harvest. Int J Biol Macromol 2023; 226:496-509. [PMID: 36521696 DOI: 10.1016/j.ijbiomac.2022.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are widely distributed in eukaryotes and play an important role in biological growth and development. The identification and functional analyses of bHLH genes/proteins in edible mushrooms (Agaricus bisporus) have yet to be reported. In the present study, we identified 10 putative bHLH members carrying the conserved bHLH domains. Phylogenetic analyses revealed that the 10 AbbHLHs were the closest to sequences of species belonging to 7 different fungal subgroups, which was supported by loop length, intron patterns, and key amino acid residues. The substantial increase after harvest and continuously elevated expression of AbbHLH1 during the development until the disruption of mushroom velum, and the preferential expression in cap and gill tissues suggest the important function of AbbHLH1 in postharvest development of A. bisporus. The relationship of arginine catabolism-related genes with the early stage of postharvest continuing development also was revealed by expression determination. Subcellular localization showed that AbbHLH1 could be localized in nucleus. Importantly, the electrophoretic mobility shift and dual-luciferase reporter assays showed that AbbHLH1 activated the promoters of AbOAT, AbSPDS, and AbSAMDC and suppressed the expression of AbARG, AbUREA, and AbODC, probably for the modulation of arginine catabolism and thus control of postharvest mushroom development. Taken together, the available data provide valuable functional insight into the role of AbbHLH proteins in postharvest mushrooms.
Collapse
Affiliation(s)
- Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhiai Xi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shirui Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
62
|
Chanwala J, Khadanga B, Jha DK, Sandeep IS, Dey N. MYB Transcription Factor Family in Pearl Millet: Genome-Wide Identification, Evolutionary Progression and Expression Analysis under Abiotic Stress and Phytohormone Treatments. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020355. [PMID: 36679070 PMCID: PMC9865524 DOI: 10.3390/plants12020355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/03/2023]
Abstract
Transcription factors (TFs) are the regulatory proteins that act as molecular switches in controlling stress-responsive gene expression. Among them, the MYB transcription factor family is one of the largest TF family in plants, playing a significant role in plant growth, development, phytohormone signaling and stress-responsive processes. Pearl millet (Pennisetum glaucum L.) is one of the most important C4 crop plants of the arid and semi-arid regions of Africa and Southeast Asia for sustaining food and fodder production. To explore the evolutionary mechanism and functional diversity of the MYB family in pearl millet, we conducted a comprehensive genome-wide survey and identified 279 MYB TFs (PgMYB) in pearl millet, distributed unevenly across seven chromosomes of pearl millet. A phylogenetic analysis of the identified PgMYBs classified them into 18 subgroups, and members of the same group showed a similar gene structure and conserved motif/s pattern. Further, duplication events were identified in pearl millet that indicated towards evolutionary progression and expansion of the MYB family. Transcriptome data and relative expression analysis by qRT-PCR identified differentially expressed candidate PgMYBs (PgMYB2, PgMYB9, PgMYB88 and PgMYB151) under dehydration, salinity, heat stress and phytohormone (ABA, SA and MeJA) treatment. Taken together, this study provides valuable information for a prospective functional characterization of the MYB family members of pearl millet and their application in the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Jeky Chanwala
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Badrinath Khadanga
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Deepak Kumar Jha
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Inavolu Sriram Sandeep
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar 751023, India
| |
Collapse
|
63
|
Chen X, Mao Y, Chai W, Yan K, Liang Z, Xia P. Genome-wide identification and expression analysis of MYB gene family under nitrogen stress in Panax notoginseng. PROTOPLASMA 2023; 260:189-205. [PMID: 35524823 DOI: 10.1007/s00709-022-01770-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The myeloblastosis (MYB) gene family, involved in regulating many important physiological and biochemical processes, is one of the largest transcript factor superfamilies in plants. Since the identification of genome sequencing of Panax notoginseng has been completed, there was little known about the whole genome of its specific MYB gene family and the response to abiotic stresses, in consideration of the excessive application of nitrogen fertilizers in P. notoginseng. In this study, 123 PnMYB genes (MYB genes of P. notoginseng) have been identified and divided into 3 subfamilies by the phylogenetic analysis. These PnMYB genes were unevenly located on 12 chromosomes. Meanwhile, the gene structure and protein conserved domain were established by MEME Suite. The analysis of collinear relationships reflected that there were 121 homologous genes between P. notoginseng and Arabidopsis and 30 between P. notoginseng and rice. Moreover, cis-acting elements of PnMYB gene promoters were predicted which indicated that PnMYBs are involved in biotic, abiotic stress, and hormone induction. The expressions of PnMYB transcription factors in its roots, flowers, and leaves were detected by qRT-PCR and they had tissue-specific expressions and related to the growth of different tissues. Under nitrogen stress, MYB transcription factors had great feedback. Ten R2R3-MYB subfamily genes were significantly induced and indicated the possible function of protecting P. notoginseng from excess nitrogen. With further knowledge on identification of PnMYB gene related to tissue selectivity and abiotic stresses, this study laid the foundation for the functional development of PnMYB gene family and improved the cultivation of P. notoginseng.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yucheng Mao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weiguo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, Zhejiang Province, China
| | - Kaijing Yan
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, 300410, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
64
|
Feng X, Abubakar AS, Chen K, Yu C, Zhu A, Chen J, Gao G, Wang X, Mou P, Chen P. Genome-wide analysis of R2R3-MYB transcription factors in Boehmeria nivea (L.) gaudich revealed potential cadmium tolerance and anthocyanin biosynthesis genes. Front Genet 2023; 14:1080909. [PMID: 36896232 PMCID: PMC9989182 DOI: 10.3389/fgene.2023.1080909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Gene family, especially MYB as one of the largest transcription factor family in plants, the study of its subfunctional characteristics is a key step in the study of plant gene function. The sequencing of ramie genome provides a good opportunity to study the organization and evolutionary characters of the ramie MYB gene at the whole genome level. In this study, a total of 105 BnGR2R3-MYB genes were identified from ramie genome and subsequently grouped into 35 subfamilies according to phylogeny divergence and sequences similarity. Chromosomal localization, gene structure, synteny analysis, gene duplication, promoter analysis, molecular characteristics and subcellular localization were accomplished using several bioinformatics tools. Collinearity analysis showed that the segmental and tandem duplication events is the dominant form of the gene family expansion, and duplications prominent in distal telomeric regions. Highest syntenic relationship was obtained between BnGR2R3-MYB genes and that of Apocynum venetum (88). Furthermore, transcriptomic data and phylogenetic analysis revealed that BnGMYB60, BnGMYB79/80 and BnGMYB70 might inhibit the biosynthesis of anthocyanins, and UPLC-QTOF-MS data further supported the results. qPCR and phylogenetic analysis revealed that the six genes (BnGMYB9, BnGMYB10, BnGMYB12, BnGMYB28, BnGMYB41, and BnGMYB78) were cadmium stress responsive genes. Especially, the expression of BnGMYB10/12/41 in roots, stems and leaves all increased more than 10-fold after cadmium stress, and in addition they may interact with key genes regulating flavonoid biosynthesis. Thus, a potential link between cadmium stress response and flavonoid synthesis was identified through protein interaction network analysis. The study thus provided significant information into MYB regulatory genes in ramie and may serve as a foundation for genetic enhancement and increased productivity.
Collapse
Affiliation(s)
- Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Agronomy, Bayero University, Kano, Nigeria
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
65
|
Wang Z, Yao X, Jia C, Zheng Y, Lin Q, Wang J, Liu J, Zhu Z, Peng L, Xu B, Cong X, Jin Z. Genome-Wide Characterization and Analysis of R2R3-MYB Genes Related to Fruit Ripening and Stress Response in Banana ( Musa acuminata L. AAA Group, cv. 'Cavendish'). PLANTS (BASEL, SWITZERLAND) 2022; 12:152. [PMID: 36616281 PMCID: PMC9823626 DOI: 10.3390/plants12010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
MYB is an important type of transcription factor in eukaryotes. It is widely involved in a variety of biological processes and plays a role in plant morphogenesis, growth and development, primary and secondary metabolite synthesis, and other life processes. In this study, bioinformatics methods were used to identify the R2R3-MYB transcription factor family members in the whole Musa acuminata (DH-Pahang) genome, one of the wild ancestors of banana. A total of 280 MaMYBs were obtained, and phylogenetic analysis indicated that these MaMYBs could be classified into 33 clades with MYBs from Arabidopsis thaliana. The amino acid sequences of the R2 and R3 Myb-DNA binding in all MaMYB protein sequences were quite conserved, especially Arg-12, Arg-13, Leu-23, and Leu-79. Distribution mapping results showed that 277 MaMYBs were localized on the 11 chromosomes in the Musa acuminata genome. The MaMYBs were distributed unevenly across the 11 chromosomes. More than 40.0% of the MaMYBs were located in collinear fragments, and segmental duplications likely played a key role in the expansion of the MaMYBs. Moreover, the expression profiles of MaMYBs in different fruit development and ripening stages and under various abiotic and biotic stresses were investigated using available RNA-sequencing data to obtain fruit development, ripening-specific, and stress-responsive candidate genes. Weighted gene co-expression network analysis (WGCNA) was used to analyze transcriptome data of banana from the above 11 samples. We found MaMYBs participating in important metabolic biosynthesis pathways in banana. Collectively, our results represent a comprehensive genome-wide study of the MaMYB gene family, which should be helpful in further detailed studies on MaMYBs functions related to fruit development, postharvest ripening, and the seedling response to stress in an important banana cultivar.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | | | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yunke Zheng
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Qiumei Lin
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhao Zhu
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Long Peng
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology of Ministry of Agriculture and Rural Affairs of China, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
66
|
Zhao X, Li B, Zhai X, Liu H, Deng M, Fan G. Genome-Wide Analysis of Specific PfR2R3-MYB Genes Related to Paulownia Witches' Broom. Genes (Basel) 2022; 14:genes14010007. [PMID: 36672749 PMCID: PMC9858720 DOI: 10.3390/genes14010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Paulownia witches' broom (PaWB), caused by phytoplasmas, is the most devastating infectious disease of Paulownia. R2R3-MYB transcription factors (TF) have been reported to be involved in the plant's response to infections caused by these pathogens, but a comprehensive study of the R2R3-MYB genes in Paulownia has not been reported. In this study, we identified 138 R2R3-MYB genes distributed on 20 chromosomes of Paulownia fortunei. These genes were classified into 27 subfamilies based on their gene structures and phylogenetic relationships, which indicated that they have various evolutionary relationships and have undergone rich segmental replication events. We determined the expression patterns of the 138 R2R3-MYB genes of P. fortunei by analyzing the RNA sequencing data and found that PfR2R3-MYB15 was significantly up-regulated in P. fortunei in response to phytoplasma infections. PfR2R3-MYB15 was cloned and overexpressed in Populus trichocarpa. The results show that its overexpression induced branching symptoms. Subsequently, the subcellular localization results showed that PfR2R3-MYB15 was located in the nucleus. Yeast two-hybrid and bimolecular fluorescence complementation experiments showed that PfR2R3-MYB15 interacted with PfTAB2. The analysis of the PfR2R3-MYB15 gene showed that it not only played an important role in plant branching, but also might participate in the biosynthesis of photosystem elements. Our results will provide a foundation for future studies of the R2R3-MYB TF family in Paulownia and other plants.
Collapse
Affiliation(s)
- Xiaogai Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoqiao Zhai
- Forestry Academy of Henan, Zhengzhou 450002, China
- Correspondence: (X.Z.); (G.F.); Tel.: +86-0371-63391935 (X.Z.); +86-0371-63558605 (G.F.)
| | - Haifang Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
- College of Forestry, Henan Agricultural University, 95 Wenhua Road, Jinshui District, Zhengzhou 450002, China
- Correspondence: (X.Z.); (G.F.); Tel.: +86-0371-63391935 (X.Z.); +86-0371-63558605 (G.F.)
| |
Collapse
|
67
|
Kavas M, Abdulla MF, Mostafa K, Seçgin Z, Yerlikaya BA, Otur Ç, Gökdemir G, Kurt Kızıldoğan A, Al-Khayri JM, Jain SM. Investigation and Expression Analysis of R2R3-MYBs and Anthocyanin Biosynthesis-Related Genes during Seed Color Development of Common Bean ( Phaseolus vulgaris). PLANTS (BASEL, SWITZERLAND) 2022; 11:3386. [PMID: 36501424 PMCID: PMC9736660 DOI: 10.3390/plants11233386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Anthocyanins are responsible for the coloration of common bean seeds, and their accumulation is positively correlated with the expression level of anthocyanin biosynthetic genes. The MBW (MYB-bHLH-WD40) complex is thought to regulate the expression of these genes, and MYB proteins, which are a key factor in activating anthocyanin pathway genes, have been identified in several plants. This study demonstrated gene structures, chromosomal placements, gene duplications of R2R3-MYBs, miRNAs associated with R2R3-MYBs, and the interaction of these genes with other flavonoid regulatory genes. qRT-PCR was used to investigate the role of specific R2R3-MYBs and flavonoid genes in common bean seed color development. As a result of a comprehensive analysis with the help of in silico tools, we identified 160 R2R3-MYB genes in the common bean genome. We divided these genes into 16 classes on the basis of their intron-exon and motif structures. Except for three, the rest of the common bean R2R3-MYB members were distributed to all chromosomes with different densities, primarily located on chromosomes 3 and 8. We identified a total of 44 duplicated gene pairs dispersed across 11 chromosomes and evolved under purifying selection (Ka/Ks < 1), 19 of which were derived from a whole-genome duplication. Our research uncovered 25 putative repressor PvMYB proteins that contain the EAR motif. Additionally, fifty different cis-regulatory elements regulated by light, stress, and hormone were identified. Within the genome of the common bean, we discovered a total of 36 microRNAs that target a total of 72 R2R3-MYB transcripts. The effect of 16 R2R3-MYB genes and 16 phenylpropanoid pathway genes, selected on the basis of their interaction in the protein-protein interaction map, playing role in the regulation of seed coat color development was evaluated using qRT-PCR in 5 different tissues at different developmental stages. The results revealed that these specific genes have different expression levels during different developmental periods, with higher levels in the pod filling and early pod stages than in the rest of the developmental periods. Furthermore, it was shown that PvTT8 (bHLH), PvTT2 (PvMYB42), PvMYB113, PvTTG1, and PvWD68 genes have effects on the regulation of seed coat color. The findings of this study, which is the first to use whole-genome analysis to identify and characterize the R2R3-MYB genes in common bean, may serve as a reference for future functional research in the legume.
Collapse
Affiliation(s)
- Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Mohamed Farah Abdulla
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Karam Mostafa
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
- The Central Laboratory for Date Palm Research and Development, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Zafer Seçgin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Bayram Ali Yerlikaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Gökhan Gökdemir
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Aslıhan Kurt Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Jameel Mohammed Al-Khayri
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shri Mohan Jain
- Department of Agricultural Sciences, University of Helsinki, PL-27, 00014 Helsinki, Finland
| |
Collapse
|
68
|
Pratyusha DS, Sarada DVL. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. PLANT CELL REPORTS 2022; 41:2245-2260. [PMID: 36171500 DOI: 10.1007/s00299-022-02927-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB's in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.
Collapse
Affiliation(s)
- Durvasula Sumana Pratyusha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
69
|
Genome-Wide Identification and Characterization of the SBP Gene Family in Passion Fruit ( Passiflora edulis Sims). Int J Mol Sci 2022; 23:ijms232214153. [PMID: 36430627 PMCID: PMC9695787 DOI: 10.3390/ijms232214153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The SQUAMOSA promoter binding proteins (SBPs) gene family plays important roles in plant growth and development. The SBP gene family has been identified and reported in many species, but it has not been well studied in passion fruit. In this study, a total of 14 SBP genes were identified in passion fruit and named from PeSBP1 to PeSBP14 based on their chromosomal distribution. The phylogenetic tree, gene structure, conserved motifs, collinearity analysis, and expression patterns of the identified SBP members were analyzed. We classified the PeSBP genes into eight groups (I to VIII) according to the phylogenetic tree, gene structure, and conserved motifs. Synteny analysis found that 5 homologous gene pairs existed in PeSBP genes and 11 orthologous gene pairs existed between passion fruit and Arabidopsis. Synonymous nucleotide substitution analysis showed that the PeSBP genes were under strong negative selection. The expression pattern of PeSBP genes in seed, root, leaf, and flower showed that nine of the PeSBP genes displayed high expression in the leaf and the flower. The expression patterns of PeSBP3/6/8/9/10 were further detected by qRT-PCR. In addition, differences in the expression levels occurred for each gene in the different flower organs and at the different developmental stages. There were large differences among SBPs based on transcriptional levels under cold, heat, salt, and osmotic stress conditions. Altogether, this study provides an overview of SBP genes in passion fruit and lays the foundation for further functional analysis.
Collapse
|
70
|
Zhang H, Liu Z, Luo R, Sun Y, Yang C, Li X, Gao A, Pu J. Genome-Wide Characterization, Identification and Expression Profile of MYB Transcription Factor Gene Family during Abiotic and Biotic Stresses in Mango ( Mangifera indica). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223141. [PMID: 36432870 PMCID: PMC9699602 DOI: 10.3390/plants11223141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/03/2023]
Abstract
Mango (Mangifera indica) is an economically important fruit tree, and is cultivated in tropical, subtropical, and dry-hot valley areas around the world. Mango fruits have high nutritional value, and are mainly consumed fresh and used for commercial purposes. Mango is affected by various environmental factors during its growth and development. The MYB transcription factors participates in various physiological activities of plants, such as phytohormone signal transduction and disease resistance. In this study, 54 MiMYB transcription factors were identified in the mango genome (371.6 Mb). A phylogenetic tree was drawn based on the amino acid sequences of 222 MYB proteins of mango and Arabidopsis. The phylogenetic tree showed that the members of the mango MYB gene family were divided into 7 group, including Groups 1, -3, -4, -5, -6, -8, and -9. Ka/Ks ratios generally indicated that the MiMYBs of mango were affected by negative or positive selection. Quantitative real-time PCR showed that the transcription levels of MiMYBs were different under abiotic and biotic stresses, including salicylic acid, methyl jasmonate, and H2O2 treatments, and Colletotrichum gloeosporioides and Xanthomonas campestris pv. mangiferaeindicae infection, respectively. The transcript levels of MiMYB5, -35, -36, and -54 simultaneously responded positively to early treatments with salicylic acid, methyl jasmonate, and H2O2. The transcript level of MiMYB54 was activated by pathogenic fungal and bacterial infection. These results are beneficial for future interested researchers aiming to understand the biological functions and molecular mechanisms of MiMYB genes.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Agricultural, Guizhou University, Guiyang 550225, China
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Zhixin Liu
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Agricultural, Guizhou University, Guiyang 550225, China
| | - Ruixiong Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu Sun
- Key Laboratory of Integrated Pest Management on Tropical Grops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Cuifeng Yang
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Xi Li
- Guangxi Key Laboratory of Biology for Mango, College of Agriculture and Food Engineering, Baise University, Baise 533000, China
| | - Aiping Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinji Pu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
71
|
Wang X, Zhang J, Zhang J, Zhou C, Han L. Genome-wide characterization of AINTEGUMENTA-LIKE family in Medicago truncatula reveals the significant roles of AINTEGUMENTAs in leaf growth. FRONTIERS IN PLANT SCIENCE 2022; 13:1050462. [PMID: 36407624 PMCID: PMC9669440 DOI: 10.3389/fpls.2022.1050462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
AINTEGUMENTA-LIKE (AIL) transcription factors are widely studied and play crucial roles in plant growth and development. However, the functions of the AIL family in legume species are largely unknown. In this study, 11 MtAIL genes were identified in the model legume Medicago truncatula, of which four of them are MtANTs. In situ analysis showed that MtANT1 was highly expressed in the shoot apical meristem (SAM) and leaf primordium. Characterization of mtant1 mtant2 mtant3 mtant4 quadruple mutants and MtANT1-overexpressing plants revealed that MtANTs were not only necessary but also sufficient for the regulation of leaf size, and indicated that they mainly function in the regulation of cell proliferation during secondary morphogenesis of leaves in M. truncatula. This study systematically analyzed the MtAIL family at the genome-wide level and revealed the functions of MtANTs in leaf growth. Thus, these genes may provide a potential application for promoting the biomass of legume forages.
Collapse
|
72
|
Su L, Lv A, Wen W, Fan N, Li J, Gao L, Zhou P, An Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:756-771. [PMID: 36097968 DOI: 10.1111/tpj.15977] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity severely restricts plant growth in acidic soils (pH < 5.0). In this study, an R2R3-MYB transcription factor (TF) gene, MsMYB741, was cloned from alfalfa. Its function and gene regulatory pathways were studied via overexpression and RNA interference of MsMYB741 in alfalfa seedlings. Results showed that root elongation increased as a result of MsMYB741 overexpression (MsMYB741-OE) and decreased with MsMYB741 RNA interference (MsMYB741-RNAi) in alfalfa seedlings compared with the wild-type under Al stress. These were attributed to the reduced Al content in MsMYB741-OE lines, and increased Al content in MsMYB741-RNAi lines. MsMYB741 positively activated the expression of phenylalanine ammonia-lyase 1 (MsPAL1) and chalcone isomerase (MsCHI) by binding to MYB and ABRE elements in their promoters, respectively, which directly affected flavonoid accumulation in roots and secretion from root tips in plants under Al stress, eventually affecting Al accumulation in alfalfa. Additionally, MsABF2 TF directly activated the expression of MsMYB741 by binding to the ABRE element in its promoter. Taken together, our results indicate that MsMYB741 transcriptionally activates MsPAL1 and MsCHI expression to increase flavonoid accumulation in roots and secretion from root tips, leading to increased resistance of alfalfa to Al stress.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
73
|
Komatsuzaki A, Hoshino A, Otagaki S, Matsumoto S, Shiratake K. Genome-wide analysis of R2R3-MYB transcription factors in Japanese morning glory. PLoS One 2022; 17:e0271012. [PMID: 36264987 PMCID: PMC9584510 DOI: 10.1371/journal.pone.0271012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The R2R3-MYB transcription factor is one of the largest transcription factor families in plants. R2R3-MYBs play a variety of functions in plants, such as cell fate determination, organ and tissue differentiations, primary and secondary metabolisms, stress and defense responses and other physiological processes. The Japanese morning glory (Ipomoea nil) has been widely used as a model plant for flowering and morphological studies. In the present study, 127 R2R3-MYB genes were identified in the Japanese morning glory genome. Information, including gene structure, protein motif, chromosomal location and gene expression, were assigned to the InR2R3-MYBs. Phylogenetic tree analysis revealed that the 127 InR2R3-MYBs were classified into 29 subfamilies (C1-C29). Herein, physiological functions of the InR2R3-MYBs are discussed based on the functions of their Arabidopsis orthologues. InR2R3-MYBs in C9, C15, C16 or C28 may regulate cell division, flavonol biosynthesis, anthocyanin biosynthesis or response to abiotic stress, respectively. C16 harbors the known anthocyanin biosynthesis regulator, InMYB1 (INIL00g10723), and putative anthocyanin biosynthesis regulators, InMYB2 (INIL05g09650) and InMYB3 (INIL05g09651). In addition, INIL05g09649, INIL11g40874 and INIL11g40875 in C16 were suggested as novel anthocyanin biosynthesis regulators. We organized the R2R3-MYB transcription factors in the morning glory genome and assigned information to gene and protein structures and presuming their functions. Our study is expected to facilitate future research on R2R3-MYB transcription factors in Japanese morning glory.
Collapse
Affiliation(s)
- Ayane Komatsuzaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Hoshino
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
74
|
Liu M, Li K, Sheng S, Wang M, Hua P, Wang Y, Chen P, Wang K, Zhao M, Wang Y, Zhang M. Transcriptome analysis of MYB transcription factors family and PgMYB genes involved in salt stress resistance in Panax ginseng. BMC PLANT BIOLOGY 2022; 22:479. [PMID: 36209052 PMCID: PMC9547452 DOI: 10.1186/s12870-022-03871-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND As the king of all herbs, the medicinal value of ginseng is self-evident. The perennial nature of ginseng causes its quality to be influenced by various factors, one of which is the soil environment. During plant growth and development, MYB transcription factors play an important role in responding to abiotic stresses and regulating the synthesis of secondary metabolites. However, there are relatively few reports on the MYB transcription factor family in Panax ginseng. RESULTS This study identified 420 PgMYB transcripts under 117 genes ID in the Jilin ginseng transcriptome database. Phylogenetic analysis showed that PgMYB transcripts in Jilin ginseng were classified into 19 functional subclasses. The GO annotation result indicated that the functional differentiation of PgMYB transcripts was annotated to 11 functional nodes at GO Level 2 in ginseng. Expression pattern analysis of PgMYB transcripts based on the expression data (TPM) that PgMYB transcripts were revealed spatiotemporally specific in expression patterns. We performed a weighted network co-expression network analysis on the expression of PgMYB transcripts from different samples. The co-expression network containing 51 PgMYB transcripts was formed under a soft threshold of 0.85, revealing the reciprocal relationship of PgMYB in ginseng. Treatment of adventitious roots of ginseng with different concentrations of NaCl revealed four up-regulated expression of PgMYB transcripts that can candidate genes for salt resistance studies in ginseng. CONCLUSIONS The present findings provide data resources for the subsequent study of the functions of MYB transcription factor family members in ginseng, and provide an experimental basis for the anti-salt functions of MYB transcription factors in Panax ginseng.
Collapse
Affiliation(s)
- Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Ke Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Shichao Sheng
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Mingyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Panpan Hua
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yanfang Wang
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| |
Collapse
|
75
|
Duan AQ, Tan SS, Deng YJ, Xu ZS, Xiong AS. Genome-Wide Identification and Evolution Analysis of R2R3-MYB Gene Family Reveals S6 Subfamily R2R3-MYB Transcription Factors Involved in Anthocyanin Biosynthesis in Carrot. Int J Mol Sci 2022; 23:11859. [PMID: 36233158 PMCID: PMC9569430 DOI: 10.3390/ijms231911859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
The taproot of purple carrot accumulated rich anthocyanin, but non-purple carrot did not. MYB transcription factors (TFs) condition anthocyanin biosynthesis in many plants. Currently, genome-wide identification and evolution analysis of R2R3-MYB gene family and their roles involved in conditioning anthocyanin biosynthesis in carrot is still limited. In this study, a total of 146 carrot R2R3-MYB TFs were identified based on the carrot transcriptome and genome database and were classified into 19 subfamilies on the basis of R2R3-MYB domain. These R2R3-MYB genes were unevenly distributed among nine chromosomes, and Ka/Ks analysis suggested that they evolved under a purified selection. The anthocyanin-related S6 subfamily, which contains 7 MYB TFs, was isolated from R2R3-MYB TFs. The anthocyanin content of rhizodermis, cortex, and secondary phloem in 'Black nebula' cultivar reached the highest among the 3 solid purple carrot cultivars at 110 days after sowing, which was approximately 4.20- and 3.72-fold higher than that in the 'Deep purple' and 'Ziwei' cultivars, respectively. The expression level of 7 MYB genes in purple carrot was higher than that in non-purple carrot. Among them, DcMYB113 (DCAR_008994) was specifically expressed in rhizodermis, cortex, and secondary phloem tissues of 'Purple haze' cultivar, with the highest expression level of 10,223.77 compared with the control 'DPP' cultivar at 70 days after sowing. DcMYB7 (DCAR_010745) was detected in purple root tissue of 'DPP' cultivar and its expression level in rhizodermis, cortex, and secondary phloem was 3.23-fold higher than that of secondary xylem at 110 days after sowing. Our results should be useful for determining the precise role of S6 subfamily R2R3-MYB TFs participating in anthocyanin biosynthesis in carrot.
Collapse
Affiliation(s)
| | | | | | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
76
|
Zhu Y, Zhang X, Zhang Q, Chai S, Yin W, Gao M, Li Z, Wang X. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. MOLECULAR PLANT PATHOLOGY 2022; 23:1415-1432. [PMID: 35822262 PMCID: PMC9452770 DOI: 10.1111/mpp.13223] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 06/01/2023]
Abstract
Botrytis cinerea is a fungus that infects cultivated grape (Vitis vinifera); the identification and characterization of resistance mechanisms in the host is of great importance for the grape industry. Here, we report that a transcription factor in the ethylene-responsive factor (ERF) family (VaERF16) from Chinese wild grape (Vitis amurensis 'Shuang You') is expressed during B. cinerea infection and in response to treatments with the hormones ethylene and methyl jasmonate. Heterologous overexpression of VaERF16 in Arabidopsis thaliana substantially enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae DC3000 via the salicylic acid and jasmonate/ethylene signalling pathways. Yeast two-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assays indicated that VaERF16 interacts with the MYB family transcription factor VaMYB306. Overexpression of VaERF16 or VaMYB306 in grape leaves increased resistance to B. cinerea and caused an up-regulation of the defence-related gene PDF1.2, which encodes a defensin-like protein. Conversely, silencing of either gene resulted in increased susceptibility to B. cinerea. Yeast one-hybrid and dual-luciferase assays indicated that VaERF16 increased the transcript levels of VaPDF1.2 by binding directly to the GCC box in its promoter. Notably, VaMYB306 alone did not bind to the VaPDF1.2 promoter, but the VaERF16-VaMYB306 transcriptional complex resulted in higher transcript levels of VaPDF1.2, suggesting that the proteins function through their mutual interaction. Elucidation of this regulatory module may be of value in enhancing resistance of grapevine to B. cinerea infection.
Collapse
Affiliation(s)
- Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| | - Qihan Zhang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| | - Shengyue Chai
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
77
|
Du J, Zhang Q, Hou S, Chen J, Meng J, Wang C, Liang D, Wu R, Guo Y. Genome-Wide Identification and Analysis of the R2R3-MYB Gene Family in Theobroma cacao. Genes (Basel) 2022; 13:1572. [PMID: 36140738 PMCID: PMC9498333 DOI: 10.3390/genes13091572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The MYB gene family is involved in the regulation of plant growth, development and stress responses. In this paper, to identify Theobroma cacao R2R3-MYB (TcMYB) genes involved in environmental stress and phytohormones, we conducted a genome-wide analysis of the R2R3-MYB gene family in Theobroma cacao (cacao). A total of 116 TcMYB genes were identified, and they were divided into 23 subgroups according to the phylogenetic analysis. Meanwhile, the conserved motifs, gene structures and cis-acting elements of promoters were analyzed. Moreover, these TcMYB genes were distributed on 10 chromosomes. We conducted a synteny analysis to understand the evolution of the cacao R2R3-MYB gene family. A total of 37 gene pairs of TcMYB genes were identified through tandem or segmental duplication events. Additionally, we also predicted the subcellular localization and physicochemical properties. All the studies showed that TcMYB genes have multiple functions, including responding to environmental stresses. The results provide an understanding of R2R3-MYB in Theobroma cacao and lay the foundation for a further functional analysis of TcMYB genes in the growth of cacao.
Collapse
Affiliation(s)
- Junhong Du
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sijia Hou
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Jing Chen
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Jianqiao Meng
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Cong Wang
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Dan Liang
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Guo
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
78
|
Yang Q, Li B, Rizwan HM, Sun K, Zeng J, Shi M, Guo T, Chen F. Genome-wide identification and comprehensive analyses of NAC transcription factor gene family and expression analysis under Fusarium kyushuense and drought stress conditions in Passiflora edulis. FRONTIERS IN PLANT SCIENCE 2022; 13:972734. [PMID: 36092439 PMCID: PMC9453495 DOI: 10.3389/fpls.2022.972734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 05/07/2023]
Abstract
The NAC gene family is one of the largest plant transcription factors (TFs) families and plays important roles in plant growth, development, metabolism, and biotic and abiotic stresses. However, NAC gene family has not been reported in passion fruit (Passiflora edulis). In this study, a total of 105 NAC genes were identified in the passion fruit genome and were unevenly distributed across all nine-passion fruit chromomere, with a maximum of 48 PeNAC genes on chromosome one. The physicochemical features of all 105 PeNAC genes varied including 120 to 3,052 amino acids, 3 to 8 conserved motifs, and 1 to 3 introns. The PeNAC genes were named (PeNAC001-PeNAC105) according to their chromosomal locations and phylogenetically grouped into 15 clades (NAC-a to NAC-o). Most PeNAC proteins were predicted to be localized in the nucleus. The cis-element analysis indicated the possible roles of PeNAC genes in plant growth, development, light, hormones, and stress responsiveness. Moreover, the PeNAC gene duplications including tandem (11 gene pairs) and segmental (12 gene pairs) were identified and subjected to purifying selection. All PeNAC proteins exhibited similar 3D structures, and a protein-protein interaction network analysis with known Arabidopsis proteins was predicted. Furthermore, 17 putative ped-miRNAs were identified to target 25 PeNAC genes. Potential TFs including ERF, BBR-BPC, Dof, and bZIP were identified in promoter region of all 105 PeNAC genes and visualized in a TF regulatory network. GO and KEGG annotation analysis exposed that PeNAC genes were related to different biological, molecular, and cellular terms. The qRT-PCR expression analysis discovered that most of the PeNAC genes including PeNAC001, PeNAC003, PeNAC008, PeNAC028, PeNAC033, PeNAC058, PeNAC063, and PeNAC077 were significantly upregulated under Fusarium kyushuense and drought stress conditions compared to controls. In conclusion, these findings lay the foundation for further functional studies of PeNAC genes to facilitate the genetic improvement of plants to stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
79
|
Yang Y, Chen L, Su G, Liu F, Zeng Q, Li R, Cha G, Liu C, Xing L, Ren X, Ding Y. Identification and expression analysis of the lipid phosphate phosphatases gene family reveal their involvement in abiotic stress response in kiwifruit. FRONTIERS IN PLANT SCIENCE 2022; 13:942937. [PMID: 36092394 PMCID: PMC9449726 DOI: 10.3389/fpls.2022.942937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Lipid phosphate phosphatases (LPPs) are a key enzyme in the production and degradation of phosphatidic acid (PA), which plays an important role in plant growth, development, stress resistance and plant hormone response. Thus far, little is known about the LPP family genes in kiwifruit (Actinidia spp.). According to this study, 7 members in the AcLPP family were identified from the whole genome of kiwifruit, the subcellular localization predictions were mainly on the plasma membrane. Chromosomal localization analysis showed that the AcLPP genes were unevenly distributed on 5 chromosomes, it was determined to have undergone strong purifying selection pressure. There were 5 duplicate gene pairs and all underwent segmental duplication events. The LPP genes of kiwifruit were conserved when compared with other plants, especially in terms of evolutionary relationships, conserved motifs, protein sequences, and gene structures. Cis-regulatory elements mainly included hormone response elements and abiotic response elements. Functional annotation of GO revealed that AcLPP genes were closely related to phosphatase/hydrolase activity, phosphorus metabolism and dephosphorylation. AcLPP genes family were predicted to be targets of miRNA. Transcript level analysis revealed that the AcLPP family played diverse functions in different tissues and during growth, development, and postharvest storage stages. qPCR analysis showed that the members of AcLPP gene family might be regulated by ETH, ABA, GA3, and IAA hormone signals. The family members were regulated by the stress of salt stress, osmotic stress, cold stress, and heat stress. These results would provide a basis and reference for studying the agricultural characteristics of kiwifruit and improving its stress resistance.
Collapse
Affiliation(s)
- Yaming Yang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Lijuan Chen
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Gen Su
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Fangfang Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Qiang Zeng
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Rui Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Guili Cha
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Cuihua Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Yuduan Ding
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| |
Collapse
|
80
|
Aleem M, Aleem S, Sharif I, Aleem M, Shahzad R, Khan MI, Batool A, Sarwar G, Farooq J, Iqbal A, Jan BL, Kaushik P, Feng X, Bhat JA, Ahmad P. Whole-Genome Identification of APX and CAT Gene Families in Cultivated and Wild Soybeans and Their Regulatory Function in Plant Development and Stress Response. Antioxidants (Basel) 2022; 11:1626. [PMID: 36009347 PMCID: PMC9404807 DOI: 10.3390/antiox11081626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Plants coevolved with their antioxidant defense systems, which detoxify and adjust levels of reactive oxygen species (ROS) under multiple plant stresses. We performed whole-genome identification of ascorbate peroxidase (APX) and catalase (CAT) families in cultivated and wild soybeans. In cultivated and wild soybean genomes, we identified 11 and 10 APX genes, respectively, whereas the numbers of identified CAT genes were four in each species. Comparative phylogenetic analysis revealed more homology among cultivated and wild soybeans relative to other legumes. Exon/intron structure, motif and synteny blocks are conserved in cultivated and wild species. According to the Ka/Ks value, purifying selection is a major force for evolution of these gene families in wild soybean; however, the APX gene family was evolved by both positive and purifying selection in cultivated soybean. Segmental duplication was a major factor involved in the expansion of APX and CAT genes. Expression patterns revealed that APX and CAT genes are differentially expressed across fourteen different soybean tissues under water deficit (WD), heat stress (HS) and combined drought plus heat stress (WD + HS). Altogether, the current study provides broad insights into these gene families in soybeans. Our results indicate that APX and CAT gene families modulate multiple stress response in soybeans.
Collapse
Affiliation(s)
- Muqadas Aleem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan
| | - Saba Aleem
- Barani Agricultural Research Station, Fatehjang 43350, Pakistan
| | - Iram Sharif
- Cotton Research Station, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Maida Aleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | | | - Amina Batool
- Barani Agricultural Research Station, Fatehjang 43350, Pakistan
| | - Gulam Sarwar
- Cotton Research Station, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Jehanzeb Farooq
- Cotton Research Station, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Azeem Iqbal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Xianzhong Feng
- Zhejiang Lab, Hangzhou 311121, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
| | - Javaid Akhter Bhat
- Zhejiang Lab, Hangzhou 311121, China
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, 8, Riyadh 11451, Saudi Arabia
- Department of Botany, GDC, Pulwama 192301, India
| |
Collapse
|
81
|
Systematic Analysis and Functional Characterization of R2R3-MYB Genes in Scutellaria baicalensis Georgi. Int J Mol Sci 2022; 23:ijms23169342. [PMID: 36012606 PMCID: PMC9408826 DOI: 10.3390/ijms23169342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
R2R3-MYB transcription factors participate in multiple critical biological processes, particularly as relates to the regulation of secondary metabolites. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine and possesses various bioactive attributes including anti-inflammation, anti-HIV, and anti-COVID-19 properties due to its flavonoids. In the current study, a total of 95 R2R3-MYB genes were identified in S. baicalensis and classified into 34 subgroups, as supported by similar exon–intron structures and conserved motifs. Among them, 93 R2R3-SbMYBs were mapped onto nine chromosomes. Collinear analysis revealed that segmental duplications were primarily responsible for driving the evolution and expansion of the R2R3-SbMYB gene family. Synteny analyses showed that the ortholog numbers of the R2R3-MYB genes between S. baicalensis and other dicotyledons had a higher proportion compared to that which is found from the monocotyledons. RNA-seq data indicated that the expression patterns of R2R3-SbMYBs in different tissues were different. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that 36 R2R3-SbMYBs from different subgroups exhibited specific expression profiles under various conditions, including hormone stimuli treatments (methyl jasmonate and abscisic acid) and abiotic stresses (drought and cold shock treatments). Further investigation revealed that SbMYB18/32/46/60/70/74 localized in the nucleus, and SbMYB18/32/60/70 possessed transcriptional activation activity, implying their potential roles in the regulatory mechanisms of various biological processes. This study provides a comprehensive understanding of the R2R3-SbMYBs gene family and lays the foundation for further investigation of their biological function.
Collapse
|
82
|
Liang D, Shu R, Jiang S, Yang L, Wang Y, Zhao Y, Cai Y, Xie R, Meng Y. Identification and functional analysis of carbonyl reductases related to tetrahydrobiopterin synthesis in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:403-416. [PMID: 35184330 DOI: 10.1111/imb.12768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The superfamily of short-chain dehydrogenases/reductases (SDRs) is crucial in biosynthetic and signalling pathways, in which the carbonyl reductases (CBRs) subfamily is important in the biosynthesis of tetrahydrobiopterin (BH4). BH4 is an essential coenzyme for animals, and its deficiency can lead to neurological diseases. There are few reports on CBRs involved in BH4 synthesis of silkworms, Bombyx mori. Here, we identified 67 SDR genes in B. mori (BmSDR) through whole genome survey for the first time. Based on bioinformatics analyses and KEGG verification, four BmCBRs that may be related to BH4 synthesis were further characterized and functionally analysed. The results showed these four genes were high expressed in the head and gonads of ah09 (a lem mutant with defective BH4 synthesis). Enzyme activity, BH4 content and the related gene expression levels after intracellular interference with BmCBR and the main catalytic enzymes sepiapterin reductase of B. mori (BmSpr) in the de novo pathway of BH4 showed BmCBR2 plays a role in the salvage pathway. BmCBR3 and BmCBR4 regulate BH4 synthesis through the alternative pathway. Among the four pathways of silkworm BH4 synthesis, the de novo pathway occupies the dominant position, followed by the alternative pathway and salvage pathway. According to the overexpression of BmCBR3 after interference with BmSpr, the BH4 content did not change significantly. It is speculated that BmCBR3 is located upstream of BmSpr. These results provide a theoretical basis for in-depth exploration of the role of BmSDR in B. mori and also provide clues for the research of other animal-related diseases.
Collapse
Affiliation(s)
- Dan Liang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Rui Shu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Liangli Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Ying Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yue Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yangyang Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ruiping Xie
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
83
|
Yang Y, Yuan Z, Ning C, Zhao B, Wang R, Zheng X, Liu Y, Chen J, He L. The Pea R2R3-MYB Gene Family and Its Role in Anthocyanin Biosynthesis in Flowers. Front Genet 2022; 13:936051. [PMID: 35873471 PMCID: PMC9299958 DOI: 10.3389/fgene.2022.936051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pea (Pisum sativum L.) is one of the most important legume crops in the world, and it has attracted great attention for its high nutritive values. Recently, the crop breeding program has been focused on the crop metabolic engineering (i.e., color, flavor, nutrition) to improve the quality of crop. As a major group of transcription factors forming the ternary MYB–bHLH–WD repeat protein (MBW) complex to regulate the anthocyanin biosynthesis pathway, members of R2R3-MYB gene family have always been the focus of research targets to improve the valuable metabolic product of crops. Until now, few report about the R2R3-MYB gene family of pea has been released. In this study, we identified 119 R2R3-MYB genes in the assembled pea genome (Version 1a), of which 111 were distributed across 14 chromosomes. Combining with the 126 R2R3-MYB protein sequences of Arabidopsis, we categorized 245 R2R3-MYB proteins into 36 subgroups according to sequence similarity and phylogenetic relationships. There was no member from subgroup 12, 15 and 29 existing in pea genome, whereas three novel subgroups were found in pea and named as N1-N3. Further analyses of conserved domains and Motifs, gene structures, and chromosomal locations showed that the typical R2 and R3 domains were present across all R2R3-MYB proteins, and Motif 1, 2, and 3 were identified in most members. Most of them had no more than two introns. Additionally, 119 pea R2R3-MYB genes did not experience large-scale duplication events. Finally, we concluded that several candidate genes may be responsible for the spatiotemporal accumulation of anthocyanins in pea petals. PsMYB116 was predominantly expressed in the dorsal petals to presumably activate the anthocyanin biosynthesis pathway, while PsMYB37 and PsMYB32 may positively regulates the anthocyanin accumulation in the lateral petals. This study not only provides a good reference to further characterize the diverse functions of R2R3-MYB genes but also helps researchers to understand the color formation of pea flowers.
Collapse
Affiliation(s)
- Yating Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Zhuo Yuan
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Conghui Ning
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,College of Life Science, Southwest Forestry University, Kunming, China
| | - Baoling Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ruoruo Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Xiaoling Zheng
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Yu Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
84
|
Ma S, Yang Z, Wu F, Ma J, Fan J, Dong X, Hu R, Feng G, Li D, Wang X, Nie G, Zhang X. R2R3-MYB gene family: Genome-wide identification provides insight to improve the content of proanthocyanidins in Trifolium repens. Gene 2022; 829:146523. [PMID: 35452706 DOI: 10.1016/j.gene.2022.146523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
The R2R3-MYB family is one of largest transcription factor families in plants playing significant roles in regulating anthocyanin and proanthocyanidin biosynthesis. Proanthocyanidins are one of major objectives to improve the quality of white clover (Trifolium repens L.), which have a beneficial effect on ruminant to prevent the lethal pasture bloat. A total of 133 TrR2R3-MYB genes were identified and distributed on all 16 chromosomes based on the whole genome information of white clover. Also, by exploring the gene structure, motifs and duplication events of TrR2R3-MYBs, as well as the evolutionary relationship with TrR2R3-MYB genes of other species, 10 TrR2R3-MYB genes with the potential to regulate the anthocyanins and proanthocyanidins biosynthesis were screened. These TrR2R3-MYB genes responded significantly to low temperature in white clover. In addition, they have different expression patterns in leaves, petioles and inflorescences of white clover. Importantly, TrMYB116 and TrMYB118 may positively regulate anthocyanin accumulation and low temperature response in white clover. TrMYB118 may also be associated with anthocyanin pigmentation pattern in Purple leaves. This study provides a basis for verifying the function of TrR2R3-MYB and breeding white clover cultivars with high proanthocyanidins.
Collapse
Affiliation(s)
- Sainan Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feifei Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jieyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinwan Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xintan Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ruchang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
85
|
Song P, Li G, Xu J, Ma Q, Qi B, Zhang Y. Genome-Wide Analysis of Genes Involved in the GA Signal Transduction Pathway in ' duli' Pear ( Pyrus betulifolia Bunge). Int J Mol Sci 2022; 23:6570. [PMID: 35743013 PMCID: PMC9224306 DOI: 10.3390/ijms23126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Gibberellic acid (GA) is an important phytohormone that regulates every aspect of plant growth and development. While elements involved in GA signaling have been identified and, hence, their functions have been well studied in model plants, such as Arabidopsis and rice, very little is known in pear. We, therefore, analyzed the genes related to GA signaling from the recently sequenced genome of the wildtype 'duli' pear (Pyrus betulifolia Bunge), a widely used rootstock for grafting in pear cultivation in China due to its vigorous growth and resistance to abiotic and biotic stress. In total, 15 genes were identified, including five GA receptors PbGID1s (GA-INSENSTIVE DWARF 1), six GA negative regulators, PbDELLAs, and four GA positive regulators, PbSLYs. Exogenous application of GA could promote the expression of PbGID1s but inhibit that of PbDELLAs and PbSLYs in tissue culture 'duli' pear seedlings. The expression profiles of these genes in field-grown trees under normal growth conditions, as well as in tissue-cultured seedlings treated with auxin (IAA), GA, paclobutrazol (PAC), abscisic acid (ABA), and sodium chloride (NaCl), were also studied, providing further evidence of the involvement of these genes in GA signaling in 'duli' pear plants. The preliminary results obtained in this report lay a good foundation for future research into GA signaling pathways in pear. Importantly, the identification and preliminary functional verification of these genes could guide molecular breeding in order to obtain the highly desired dwarf pear rootstocks for high-density plantation to aid easy orchard management and high yielding of pear fruits.
Collapse
Affiliation(s)
- Pingli Song
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Gang Li
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Qingcui Ma
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| | - Baoxiu Qi
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (P.S.); (G.L.); (J.X.); (Q.M.)
| |
Collapse
|
86
|
Yang J, Zhang B, Gu G, Yuan J, Shen S, Jin L, Lin Z, Lin J, Xie X. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.). BMC Genomics 2022; 23:432. [PMID: 35681121 PMCID: PMC9178890 DOI: 10.1186/s12864-022-08658-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The R2R3-MYB transcription factor is one of the largest gene families in plants and involved in the regulation of plant development, hormone signal transduction, biotic and abiotic stresses. Tobacco is one of the most important model plants. Therefore, it will be of great significance to investigate the R2R3-MYB gene family and their expression patterns under abiotic stress and senescence in tobacco. RESULTS A total of 174 R2R3-MYB genes were identified from tobacco (Nicotiana tabacum L.) genome and were divided into 24 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were especially conserved among the NtR2R3-MYB genes, especially members within the same subgroup. The NtR2R3-MYB genes were distributed on 24 tobacco chromosomes. Analysis of gene duplication events obtained 3 pairs of tandem duplication genes and 62 pairs of segmental duplication genes, suggesting that segmental duplications is the major pattern for R2R3-MYB gene family expansion in tobacco. Cis-regulatory elements of the NtR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponsive. Expression profile analysis showed that NtR2R3-MYB genes were widely expressed in different maturity tobacco leaves, and however, the expression patterns of different members appeared to be diverse. The qRT-PCR analysis of 15 NtR2R3-MYBs confirmed their differential expression under different abiotic stresses (cold, salt and drought), and notably, NtMYB46 was significantly up-regulated under three treatments. CONCLUSIONS In summary, a genome-wide identification, evolutionary and expression analysis of R2R3-MYB gene family in tobacco were conducted. Our results provided a solid foundation for further biological functional study of NtR2R3-MYB genes in tobacco.
Collapse
Affiliation(s)
- Jiahan Yang
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, 28301, USA
| | - Shaojun Shen
- Longyan Company of Fujian Tobacco Corporation, Longyan, 364000, China
| | - Liao Jin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | - Zhiqiang Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | - Jianfeng Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture & Forestry University, Fuzhou, China.
| |
Collapse
|
87
|
Liu T, Chen T, Kan J, Yao Y, Guo D, Yang Y, Ling X, Wang J, Zhang B. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:722-735. [PMID: 34812570 PMCID: PMC8989497 DOI: 10.1111/pbi.13751] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Drought and Verticillium wilt disease are two main factors that limit cotton production, which necessitates the identification of key molecular switch to simultaneously improve cotton resistance to Verticillium dahliae and tolerance to drought stress. R2R3-type MYB proteins could play such a role because of their conserved functions in plant development, growth, and metabolism regulation, however, till date a MYB gene conferring the desired resistance to both biotic and abiotic stresses has not been found in cotton. Here, we describe the identification of GhMYB36, a gene encoding a R2R3-type MYB protein in Gossypium hirsutum, which confers drought tolerance and Verticilium wilt resistance in both Arabidopsis and cotton. GhMYB36 was highly induced by PEG-simulated drought stress in G. hirsutum. GhMYB36-silenced cotton plants were more sensitive to both drought stress and Verticillium wilt. GhMYB36 overexpression in transgenic Arabidopsis and cotton plants gave rise to improved drought tolerance and Verticillium wilt resistance. Transient expression of fused GhMYB36-GFP in tobacco cells was able to localize GhMYB36 in the cell nucleus. In addition, RNA-seq analysis together with qRT-PCR validation in transgenic Arabidopsis overexpressing GhMYB36 revealed significantly enhanced PR1 expression. Luciferase interaction assays indicated that GhMYB36 are probably bound to the promoter of PR1 to activate its expression and the interaction, which was further verified by Yeast one hybrid assay. Taken together, our results suggest that GhMYB36 functions as a transcription factor that is involved in drought tolerance and Verticillium wilt resistance in Arabidopsis and cotton by enhancing PR1 expression.
Collapse
Affiliation(s)
- Tingli Liu
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tianzi Chen
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jialiang Kan
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yao Yao
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Dongshu Guo
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yuwen Yang
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xitie Ling
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Jinyan Wang
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| | - Baolong Zhang
- Excellence and innovation centerJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
88
|
Xu B, Chen B, Qi X, Liu S, Zhao Y, Tang C, Meng X. Genome-wide Identification and Expression Analysis of RcMYB Genes in Rhodiola crenulata. Front Genet 2022; 13:831611. [PMID: 35432456 PMCID: PMC9008588 DOI: 10.3389/fgene.2022.831611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Modern research has proved that the main medicinal component of Rhodiola crenulata, which has a wide range of medicinal value, is its secondary metabolite salidroside. The MYB transcription factor family is widely involved in biosynthesis of second metabolism and other roles in the stress response in plants, so a genome-wide identification and analysis for this family in R. crenulata is worth conducting. In this research, genome-wide analysis identified 139 MYB genes based on conserved domains in the R. crenulata genome, and 137 genes were used to construct a phylogenetic tree and modified with expression files to reveal evolutionary characteristics. Physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze RcMYBs. Additionally, cis-acting elements related to transcription, hormone, and MYB binding were found in the promoter region of the selected RcMYBs. Four RcMYBs were cloned, sequenced, and their gene expression pattern was analyzed for further analysis of their functions. The research results lay the foundation for further research on the function of RcMYB and R. crenulata.
Collapse
Affiliation(s)
- Binjie Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Resources Sanjiu (Ya’an) Pharmaceutical Co., Ltd., Ya’an, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| | - Bang Chen
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Qi
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunli Liu
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yibing Zhao
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Binjie Xu, ; Xianli Meng,
| |
Collapse
|
89
|
Wu Y, Wen J, Xia Y, Zhang L, Du H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. HORTICULTURE RESEARCH 2022; 9:uhac058. [PMID: 35591925 PMCID: PMC9113232 DOI: 10.1093/hr/uhac058] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 05/31/2023]
Abstract
R2R3-MYB genes (R2R3-MYBs) form one of the largest transcription factor gene families in the plant kingdom, with substantial structural and functional diversity. However, the evolutionary processes leading to this amazing functional diversity have not yet been clearly established. Recently developed genomic and classical molecular technologies have provided detailed insights into the evolutionary relationships and functions of plant R2R3-MYBs. Here, we review recent genome-level and functional analyses of plant R2R3-MYBs, with an emphasis on their evolution and functional diversification. In land plants, this gene family underwent a large expansion by whole genome duplications and small-scale duplications. Along with this population explosion, a series of functionally conserved or lineage-specific subfamilies/groups arose with roles in three major plant-specific biological processes: development and cell differentiation, specialized metabolism, and biotic and abiotic stresses. The rapid expansion and functional diversification of plant R2R3-MYBs are highly consistent with the increasing complexity of angiosperms. In particular, recently derived R2R3-MYBs with three highly homologous intron patterns (a, b, and c) are disproportionately related to specialized metabolism and have become the predominant subfamilies in land plant genomes. The evolution of plant R2R3-MYBs is an active area of research, and further studies are expected to improve our understanding of the evolution and functional diversification of this gene family.
Collapse
Affiliation(s)
- Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
90
|
Zhang ZX, Zhang R, Wang SC, Zhang D, Zhao T, Liu B, Wang YX, Wu YX. Identification of Malus halliana R2R3-MYB gene family under iron deficiency stress and functional characteristics of MhR2R3-MYB4 in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:344-355. [PMID: 34921493 DOI: 10.1111/plb.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Iron (Fe) is an essential element for plant growth and development. Fe deficiency can trigger leaf chlorosis and reduce fruit yield. Therefore, it is necessary to explore transcription factors in response to Fe deficiency stress. A total of 29 MhR2R3-MYB transcription factors were identified based on the transcriptome of Malus halliana under Fe deficiency stress. A comprehensive analysis of physical and chemical properties, gene structures, conserved motif composition, evolutionary relationship and chromosome distribution was performed. Subsequently, based on the transcriptome, 14 genes with the most significant expression under Fe deficiency stress were screened for qRT-PCR verification. Among them,the functional characteristics of MhR2R3-MYB4 (MD05G1089600) were further studied in Arabidopsis thaliana. Expression of 13 out of these 14 genes was upregulated, only one was downregulated. Maximum upregulation of MhR2R3-MYB4 under Fe deficiency was 36.39-fold and 58.21-fold compared with day 0 in leaves and roots, respectively. Overexpression of MhR2R3-MYB4 enhanced tolerance to Fe deficiency in A. thaliana and led to multiple biochemical changes: transgenic lines have higher chl a, chl b and Fe2+ content, higher enzyme activity (SOD, POD, CAT and FCR) and lower chlorosis than the wild type in Fe deficiency conditions. We suggest that MhR2R3-MYB4 plays an important part in Fe deficiency stress, which may contribute to improve Fe deficiency tolerance of apple in future.
Collapse
Affiliation(s)
- Z-X Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - R Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - S-C Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - D Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - T Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - B Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Y-X Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Y-X Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
91
|
Zeng Q, Liu H, Chu X, Niu Y, Wang C, Markov GV, Teng L. Independent Evolution of the MYB Family in Brown Algae. Front Genet 2022; 12:811993. [PMID: 35186015 PMCID: PMC8854648 DOI: 10.3389/fgene.2021.811993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloblastosis (MYB) proteins represent one of the largest families of eukaryotic transcription factors and regulate important processes in growth and development. Studies on MYBs have mainly focused on animals and plants; however, comprehensive analysis across other supergroups such as SAR (stramenopiles, alveolates, and rhizarians) is lacking. This study characterized the structure, evolution, and expression of MYBs in four brown algae, which comprise the biggest multicellular lineage of SAR. Subfamily 1R-MYB comprised heterogeneous proteins, with fewer conserved motifs found outside the MYB domain. Unlike the SHAQKY subgroup of plant 1R-MYB, THAQKY comprised the largest subgroup of brown algal 1R-MYBs. Unlike the expansion of 2R-MYBs in plants, brown algae harbored more 3R-MYBs than 2R-MYBs. At least ten 2R-MYBs, fifteen 3R-MYBs, and one 6R-MYB orthologs existed in the common ancestor of brown algae. Phylogenetic analysis showed that brown algal MYBs had ancient origins and a diverged evolution. They showed strong affinity with stramenopile species, while not with red algae, green algae, or animals, suggesting that brown algal MYBs did not come from the secondary endosymbiosis of red and green plastids. Sequence comparison among all repeats of the three types of MYB subfamilies revealed that the repeat of 1R-MYBs showed higher sequence identity with the R3 of 2R-MYBs and 3R-MYBs, which supports the idea that 1R-MYB was derived from loss of the first and second repeats of the ancestor MYB. Compared with other species of SAR, brown algal MYB proteins exhibited a higher proportion of intrinsic disordered regions, which might contribute to multicellular evolution. Expression analysis showed that many MYB genes are responsive to different stress conditions and developmental stages. The evolution and expression analyses provided a comprehensive analysis of the phylogeny and functions of MYBs in brown algae.
Collapse
Affiliation(s)
| | - Hanyu Liu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xiaonan Chu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Yonggang Niu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, China
| |
Collapse
|
92
|
Sabir IA, Manzoor MA, Shah IH, Liu X, Zahid MS, Jiu S, Wang J, Abdullah M, Zhang C. MYB transcription factor family in sweet cherry (Prunus avium L.): genome-wide investigation, evolution, structure, characterization and expression patterns. BMC PLANT BIOLOGY 2022; 22:2. [PMID: 34979911 PMCID: PMC8722155 DOI: 10.1186/s12870-021-03374-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/01/2021] [Indexed: 05/10/2023]
Abstract
BACK GROUND MYB Transcription factors (TFs) are most imperative and largest gene family in plants, which participate in development, metabolism, defense, differentiation and stress response. The MYB TFs has been studied in various plant species. However, comprehensive studies of MYB gene family in the sweet cherry (Prunus avium L.) are still unknown. RESULTS In the current study, a total of 69 MYB genes were investigated from sweet cherry genome and classified into 28 subfamilies (C1-C28 based on phylogenetic and structural analysis). Microcollinearity analysis revealed that dispersed duplication (DSD) events might play an important role in the MYB genes family expansion. Chromosomal localization, the synonymous (Ks) and nonsynonymous (Ka) analysis, molecular characteristics (pI, weight and length of amino acids) and subcellular localization were accomplished using several bioinformatics tools. Furthermore, the members of distinct subfamilies have diverse cis-acting regions, conserved motifs, and intron-exon architectures, indicating functional heterogeneity in the MYB family. Moreover, the transcriptomic data exposed that MYB genes might play vital role in bud dormancy. The quantitative real-time qRT-PCR was carried out and the expression pattern indicated that MYB genes significantly expressed in floral bud as compared to flower and fruit. CONCLUSION Our comprehensive findings provide supportive insights into the evolutions, expansion complexity and functionality of PavMYB genes. These PavMYB genes should be further investigated as they seem to be brilliant candidates for dormancy manipulation in sweet cherry.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhmmad Salman Zahid
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
93
|
Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L. Mol Genet Genomics 2022; 297:125-145. [PMID: 34978004 DOI: 10.1007/s00438-021-01839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022]
Abstract
The MYB transcription factors comprise one of the largest superfamilies in plants that have been implicated in the regulation of plant-specific metabolites and responses to biotic and abiotic stresses. Here, we present the first comprehensive genome-wide analysis and functional characterization of the CtMYB family in Carthamus tinctorius. A total of 272 CtMYBs were identified and classified into 12 subgroups using comparative phylogenetic analysis with Arabidopsis and rice orthologs. The overview of conserved motifs, gene structures, and cis elements as well as the expression pattern of CtMYB genes indicated the diverse roles of these transcription factors during plant growth, regulation of secondary metabolites, and various abiotic stress responses. The subcellular localization and transactivation analysis of four CtMYB proteins indicated predominant localization in the nuclei with enhanced transcriptional activation in yeast. The expression of CtMYB63 induced with various abiotic stress conditions showed upregulation in its transcription level. In addition, the expression analysis of the core structural genes of anthocyanin biosynthetic pathway under drought and cold stress in CtMYB63 overexpressed transgenic lines also supports the notion of CtMYB63 transcriptional reprogramming in response to abiotic stress by upregulating the anthocyanin biosynthesis. Together, our findings revealed the underlying regulatory mechanism of CtMYB TF network involving enhanced cold and drought stress tolerance through activating the rapid biosynthesis of anthocyanin in C. tinctorius. This study also presents useful insights towards the establishment of new strategies for crop improvements.
Collapse
|
94
|
Chen Q, Zhang X, Fang Y, Wang B, Xu S, Zhao K, Zhang J, Fang J. Genome-Wide Identification and Expression Analysis of the R2R3-MYB Transcription Factor Family Revealed Their Potential Roles in the Flowering Process in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 13:820439. [PMID: 35401601 PMCID: PMC8990856 DOI: 10.3389/fpls.2022.820439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 05/10/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a productive fruit crop with high nutritional and medical value in tropical and subtropical regions. The MYB gene family is one of the most widespread plant transcription factor (TF) families participating in the flowering regulation. However, little is known about the MYB TFs involved in the flowering process in longan and its regulatory network. In this study, a total of 119 DlR2R3-MYB genes were identified in the longan genome and were phylogenetically grouped into 28 subgroups. The groupings were supported by highly conserved gene structures and motif composition of DlR2R3-MYB genes in each subgroup. Collinearity analysis demonstrated that segmental replications played a more crucial role in the expansion of the DlR2R3-MYB gene family compared to tandem duplications, and all tandem/segmental duplication gene pairs have evolved under purifying selection. Interspecies synteny analysis among longan and five representative species implied the occurrence of gene duplication events was one of the reasons contributing to functional differentiation among species. RNA-seq data from various tissues showed DlR2R3-MYB genes displayed tissue-preferential expression patterns. The pathway of flower development was enriched with six DlR2R3-MYB genes. Cis-acting element prediction revealed the putative functions of DlR2R3-MYB genes were related to the plant development, phytohormones, and environmental stresses. Notably, the orthologous counterparts between Arabidopsis and longan R2R3-MYB members tended to play conserved roles in the flowering regulation and stress responses. Transcriptome profiling on off-season flower induction (FI) by KClO3 indicated two up-regulated and four down-regulated DlR2R3-MYB genes involved in the response to KClO3 treatment compared with control groups. Additionally, qRT-PCR confirmed certain genes exhibited high expression in flowers/flower buds. Subcellular localization experiments revealed that three predicted flowering-associated MYB proteins were localized in the nucleus. Future functional studies on these potential candidate genes involved in the flowering development could further the understanding of the flowering regulation mechanism.
Collapse
Affiliation(s)
- Qinchang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaosi Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Jisen Zhang,
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- *Correspondence: Jingping Fang,
| |
Collapse
|
95
|
Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K, Atif RM, Kashif M, Bhat JA, Zhao T. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics 2022; 114:45-60. [PMID: 34813918 DOI: 10.1016/j.ygeno.2021.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Class III peroxidases (PODs) are plant-specific glycoproteins, that play essential roles in various plant physiological processes and defence responses. To date, scarce information is available about the POD gene family in soybean. Hence, the present study is the first comprehensive report about the genome-wide characterization of GmPOD gene family in soybean (Glycine max L.). Here, we identified a total of 124 GmPOD genes in soybean, that are unevenly distributed across the genome. Phylogenetic analysis classified them into six distinct sub-groups (A-F), with one soybean specific subgroup. Exon-intron and motif analysis suggested the existence of structural and functional diversity among the sub-groups. Duplication analysis identified 58 paralogous gene pairs; segmental duplication and positive/Darwinian selection were observed as the major factors involved in the evolution of GmPODs. Furthermore, RNA-seq analysis revealed that 23 out of a total 124 GmPODs showed differential expression between drought-tolerant and drought-sensitive genotypes under stress conditions; however, two of them (GmPOD40 and GmPOD42) revealed the maximum deregulation in all contrasting genotypes. Overexpression (OE) lines of GsPOD40 showed considerably higher drought tolerance compared to wild type (WT) plants under stress treatment. Moreover, the OE lines showed enhanced photosynthesis and enzymatic antioxidant activities under drought stress, resulting in alleviation of ROS induced oxidative damage. Hence, the GsPOD40 enhanced drought tolerance in soybean by regulating the key physiological and biochemical pathways involved in the defence response. Lastly, the results of our study will greatly assist in further functional characterization of GsPODs in plant growth and stress tolerance in soybean.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Awais Riaz
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Qasim Raza
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Maida Aleem
- Government Post Graduate College Samanabad, Faisalabad, Pakistan
| | - Muhammad Aslam
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
96
|
Xie YF, Zhang RX, Qin LJ, Song LL, Zhao DG, Xia ZM. Genome-wide identification and genetic characterization of the CaMYB family and its response to five types of heavy metal stress in hot pepper (Capsicum annuum cv. CM334). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:98-109. [PMID: 34863059 DOI: 10.1016/j.plaphy.2021.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
MYB proteins play a crucial role in plant growth and development and stress responses. In this study, 160 members of the MYB gene family from the pepper genome database were used to analyze gene structures, chromosome localization, collinearity, genetic affinity and expression in response to heavy metals. The results identified R2R3-MYB members and further phylogenetically classified them into 35 subgroups based on highly conserved gene structures and motifs. Collinearity analysis showed that segmental duplication events played a crucial role in the functional expansion of the CaMYB gene family by intraspecific collinearity, and at least 12 pairs of CaMYB genes existed between species prior to the differentiation between monocots and dicots. Moreover, the upstream CaMYB genes were mainly localized to the phytohormone elements ABRE and transcription factor elements MYB and MYC. Further analysis revealed that MYB transcription factors were closely associated with a variety of abiotic stress-related proteins (e.g., MAC-complex and SKIP). Under the stress of five metal ions, Cd2+, Cu2+, Pb2+, Zn2+, and Fe3+, the expression levels of some CaMYB family genes were upregulated. Of these genes, pairing homologous 1 (PH-1), PH-13, and PH-15 in the roots of Capsicum annuum were upregulated to the greatest extent, indicating that these three MYB family members are particularly sensitive to these five metals. This study provides a theoretical reference for the analysis of the molecular regulatory mechanism of MYB family genes in mediating the response to heavy metals in plants. This study reveals the mode of interaction between MYB and a variety of abiotic stress proteins and clarifies the biological functions of CaMYB family members in the regulation of heavy metal stress.
Collapse
Affiliation(s)
- Yu-Feng Xie
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, PR China
| | | | - Li-Jun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, PR China.
| | - La-la Song
- Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - De-Gang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - Zhong-Min Xia
- Guizhou Soil and Fertilizer General Station, Guiyang, 550001, PR China
| |
Collapse
|
97
|
Salvato F, Figueiredo R, Mazzafera P. Nuclei Enrichment from Sugarcane Stems for Proteomics Analyses. Methods Mol Biol 2022; 2469:79-87. [PMID: 35508831 DOI: 10.1007/978-1-0716-2185-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclei enrichment procedures enable a large variety of investigations. These studies include structural characterization of nuclear proteins, identification of posttranslational modifications, and regulation of stress or development-related gene expression. Successful enrichment of nuclei samples from plant tissues is crucial for a comprehensive analysis of the plant nuclear proteome. Here, we describe a method for nuclei enrichment from sugarcane stems and its assessment by western blot.
Collapse
Affiliation(s)
- Fernanda Salvato
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, USA
| | - Raquel Figueiredo
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Department of Biology, Faculty of Sciences and LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.
- Department of Crop Science, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil.
| |
Collapse
|
98
|
Genome-Wide Identification of the MYB Gene Family in Cymbidiumensifolium and Its Expression Analysis in Different Flower Colors. Int J Mol Sci 2021; 22:ijms222413245. [PMID: 34948043 PMCID: PMC8706735 DOI: 10.3390/ijms222413245] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
MYB transcription factors of plants play important roles in flavonoid synthesis, aroma regulation, floral organ morphogenesis, and responses to biotic and abiotic stresses. Cymbidium ensifolium is a perennial herbaceous plant belonging to Orchidaceae, with special flower colors and high ornamental value. In this study, a total of 136 CeMYB transcription factors were identified from the genome of C. ensifolium, including 27 1R-MYBs, 102 R2R3-MYBs, 2 3R-MYBs, 2 4R-MYBs, and 3 atypical MYBs. Through phylogenetic analysis in combination with MYB in Arabidopsis thaliana, 20 clusters were obtained, indicating that these CeMYBs may have a variety of biological functions. The 136 CeMYBs were distributed on 18 chromosomes, and the conserved domain analysis showed that they harbored typical amino acid sequence repeats. The motif prediction revealed that multiple conserved elements were mostly located in the N-terminal of CeMYBs, suggesting their functions to be relatively conserved. CeMYBs harbored introns ranging from 0 to 13 and contained a large number of stress- and hormone-responsive cis-acting elements in the promoter regions. The subcellular localization prediction demonstrated that most of CeMYBs were positioned in the nucleus. The analysis of the CeMYBs expression based on transcriptome data showed that CeMYB52, and CeMYB104 of the S6 subfamily may be the key genes leading to flower color variation. The results lay a foundation for the study of MYB transcription factors of C. ensifolium and provide valuable information for further investigations of the potential function of MYB genes in the process of anthocyanin biosynthesis.
Collapse
|
99
|
Yang X, Guo T, Li J, Chen Z, Guo B, An X. Genome-wide analysis of the MYB-related transcription factor family and associated responses to abiotic stressors in Populus. Int J Biol Macromol 2021; 191:359-376. [PMID: 34534587 DOI: 10.1016/j.ijbiomac.2021.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
MYB proteins are one of the most abundant transcription factor families in the plant kingdom. Evidence has increasingly revealed that MYB-related proteins function in diverse plant biological processes. However, little is known about the genome-wide characterization and functions of MYB-related proteins in Populus, an important model and commercial tree species. In this study, 152 PtrMYBRs were identified and unevenly located on 19 Populus chromosomes. A phylogenetic analysis divided them into six major subgroups, supported by conserved gene organization, consensus motifs, and protein domain architecture. Promoter assessment and gene ontology classification results indicated that the MYB-related family is likely involved in plant development and responses to various environmental stressors. The Populus MYB-related family members showed various expression patterns in different tissues and stress conditions, implying their crucial roles in the development and stress responses in Populus. Co-expression analyses revealed that Populus MYB-related genes might participate in the regulation of antioxidant defense system and various signaling pathways in response to stress. The three-dimensional structures of different subgroup of Populus MYB-related proteins further provided functional information at the proteomic level. These findings provide valuable information for a prospective functional dissection of MYB-related proteins and genetic improvement of Populus.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ting Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Zhong Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bin Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Shanxi Academy of Forest Sciences, Taiyuan, Shanxi 030012, China
| | - Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
100
|
Yang D, Liu Y, Cheng H, Wang Q, Lv L, Zhang Y, Zuo D, Song G. Genome-Wide Analysis of AAT Genes and Their Expression Profiling during Fiber Development in Cotton. PLANTS 2021; 10:plants10112461. [PMID: 34834823 PMCID: PMC8619630 DOI: 10.3390/plants10112461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Amino acid transporters (AATs) are a kind of membrane proteins that mediate the transport of amino acids across cell membranes in higher plants. The AAT proteins are involved in regulating plant cell growth and various developmental processes. However, the biological function of this gene family in cotton fiber development is not clear. In this study, 190, 190, 101, and 94 full-length AAT genes were identified from Gossypiumhirsutum, G. barbadense, G. arboreum, and G. raimondii. A total of 575 AAT genes from the four cotton species were divided into two subfamilies and 12 clades based on phylogenetic analysis. The AAT genes in the four cotton species were distributed on all the chromosomes. All GhAAT genes contain multiple exons, and each GhAAT protein has multiple conserved motifs. Transcriptional profiling and RT qPCR analysis showed that four GhATT genes tend to express specifically at the fiber initiation stage. Eight genes tend to express specifically at the fiber elongation and maturity stage, and four genes tend to express specifically at the fiber initiation and elongation stages. Our results provide a solid basis for further elucidating the biological function of AAT genes related to cotton fiber development and offer valuable genetic resources for crop improvement in the future.
Collapse
Affiliation(s)
- Dongjie Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanyuan Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Hailiang Cheng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Limin Lv
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Youping Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongyun Zuo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (D.Z.); (G.S.); Tel.: +86-037-2256-2375 (D.Z.); +86-037-2256-2377 (G.S.)
| | - Guoli Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (D.Y.); (Y.L.); (H.C.); (Q.W.); (L.L.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (D.Z.); (G.S.); Tel.: +86-037-2256-2375 (D.Z.); +86-037-2256-2377 (G.S.)
| |
Collapse
|