51
|
Vaishnav A, Singh J, Singh P, Rajput RS, Singh HB, Sarma BK. Sphingobacterium sp. BHU-AV3 Induces Salt Tolerance in Tomato by Enhancing Antioxidant Activities and Energy Metabolism. Front Microbiol 2020; 11:443. [PMID: 32308647 PMCID: PMC7145953 DOI: 10.3389/fmicb.2020.00443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salt tolerant bacteria can be helpful in improving a plant's tolerance to salinity. Although plant-bacteria interactions in response to salt stress have been characterized, the precise molecular mechanisms by which bacterial inoculation alleviates salt stress in plants are still poorly explored. In the present study, we aimed to determine the role of a salt-tolerant plant growth-promoting rhizobacteria (PGPR) Sphingobacterium BHU-AV3 for improving salt tolerance in tomato through investigating the physiological responses of tomato roots and leaves under salinity stress. Tomato plants inoculated with BHU-AV3 and challenged with 200 mM NaCl exhibited less senescence, positively correlated with the maintenance of ion balance, lowered reactive oxygen species (ROS), and increased proline content compared to the non-inoculated plants. BHU-AV3-inoculated plant leaves were less affected by oxidative stress, as evident from a reduction in superoxide contents, cell death, and lipid peroxidation. The reduction in ROS level was associated with the increased antioxidant enzyme activities along with multiple-isoform expression [peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD)] in plant roots. Additionally, BHU-AV3 inoculation induced the expression of proteins involved in (i) energy production [ATP synthase], (ii) carbohydrate metabolism (enolase), (iii) thiamine biosynthesis protein, (iv) translation protein (elongation factor 1 alpha), and the antioxidant defense system (catalase) in tomato roots. These findings have provided insight into the molecular mechanisms of bacteria-mediated alleviation of salt stress in plants. From the study, we can conclude that BHU-AV3 inoculation effectively induces antioxidant systems and energy metabolism in tomato roots, which leads to whole plant protection during salt stress through induced systemic tolerance.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jyoti Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prachi Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Singh Rajput
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
52
|
Qin T, Hao W, Sun R, Li Y, Wang Y, Wei C, Dong T, Wu B, Dong N, Wang W, Sun J, Yang Q, Zhang Y, Yang S, Wang Q. Verticillium dahliae VdTHI20, Involved in Pyrimidine Biosynthesis, Is Required for DNA Repair Functions and Pathogenicity. Int J Mol Sci 2020; 21:E1378. [PMID: 32085660 PMCID: PMC7073022 DOI: 10.3390/ijms21041378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 11/25/2022] Open
Abstract
Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.
Collapse
Affiliation(s)
- Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Wei Hao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yuqing Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yuanyuan Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Chunyan Wei
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Tao Dong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Bingjie Wu
- College of Agriculture, Liaocheng University, Liaocheng 252059, China;
| | - Na Dong
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Weipeng Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Qiuyue Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Yaxin Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Song Yang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China; (T.Q.); (R.S.); (Y.L.); (Y.W.); (C.W.); (N.D.); (W.W.); (J.S.); (Y.Z.); (S.Y.)
| |
Collapse
|
53
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
54
|
Law SR, Kellgren TG, Björk R, Ryden P, Keech O. Centralization Within Sub-Experiments Enhances the Biological Relevance of Gene Co-expression Networks: A Plant Mitochondrial Case Study. FRONTIERS IN PLANT SCIENCE 2020; 11:524. [PMID: 32582224 PMCID: PMC7287149 DOI: 10.3389/fpls.2020.00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 05/07/2023]
Abstract
UNLABELLED Gene co-expression networks (GCNs) can be prepared using a variety of mathematical approaches based on data sampled across diverse developmental processes, tissue types, pathologies, mutant backgrounds, and stress conditions. These networks are used to identify genes with similar expression dynamics but are prone to introducing false-positive and false-negative relationships, especially in the instance of large and heterogenous datasets. With the aim of optimizing the relevance of edges in GCNs and enhancing global biological insight, we propose a novel approach that involves a data-centering step performed simultaneously per gene and per sub-experiment, called centralization within sub-experiments (CSE). Using a gene set encoding the plant mitochondrial proteome as a case study, our results show that all CSE-based GCNs assessed had significantly more edges within the majority of the considered functional sub-networks, such as the mitochondrial electron transport chain and its complexes, than GCNs not using CSE; thus demonstrating that CSE-based GCNs are efficient at predicting canonical functions and associated pathways, here referred to as the core gene network. Furthermore, we show that correlation analyses using CSE-processed data can be used to fine-tune prediction of the function of uncharacterized genes; while its use in combination with analyses based on non-CSE data can augment conventional stress analyses with the innate connections underpinning the dynamic system being examined. Therefore, CSE is an effective alternative method to conventional batch correction approaches, particularly when dealing with large and heterogenous datasets. The method is easy to implement into a pre-existing GCN analysis pipeline and can provide enhanced biological relevance to conventional GCNs by allowing users to delineate a core gene network. AUTHOR SUMMARY Gene co-expression networks (GCNs) are the product of a variety of mathematical approaches that identify causal relationships in gene expression dynamics but are prone to the misdiagnoses of false-positives and false-negatives, especially in the instance of large and heterogenous datasets. In light of the burgeoning output of next-generation sequencing projects performed on a variety of species, and developmental or clinical conditions; the statistical power and complexity of these networks will undoubtedly increase, while their biological relevance will be fiercely challenged. Here, we propose a novel approach to generate a "core" GCN with enhanced biological relevance. Our method involves a data-centering step that effectively removes all primary treatment/tissue effects, which is simple to employ and can be easily implemented into pre-existing GCN analysis pipelines. The gain in biological relevance resulting from the adoption of this approach was assessed using a plant mitochondrial case study.
Collapse
Affiliation(s)
- Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå Universitet, Umeå, Sweden
| | - Therese G. Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
| | - Rafael Björk
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
| | - Patrik Ryden
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
- *Correspondence: Patrik Ryden,
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå Universitet, Umeå, Sweden
- Olivier Keech,
| |
Collapse
|
55
|
Kaya C, Aslan M. Hydrogen sulphide partly involves in thiamine-induced tolerance to cadmium toxicity in strawberry (Fragaria x ananassa Duch) plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:941-953. [PMID: 31820241 DOI: 10.1007/s11356-019-07056-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
Although thiamine (THI) and hydrogen sulphide (H2S) both have widely been tested in the plant under stress conditions, cross talk between THI and H2S in the acquisition of cadmium (Cd) stress tolerance needs to be studied. So, an experiment was designed to study the participation of endogenous H2S in THI-induced tolerance to Cd stress in strawberry plants. A foliar spray solution containing THI (50 mg L-1) was sprayed once a week for 4 weeks to the foliage of strawberry plants under Cd stress (1.0 mM CdCl2). The plant dry weight, total chlorophyll, maximum efficiency of PSII (Fv/Fm), leaf potassium (K+) and calcium (Ca2+) as well as leaf water potential were significantly reduced, but the proline, ascorbate (AsA), glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2), electron leakage (EL) and leaf Cd as well as endogenous H2S and NO were increased by Cd stress. Application of THI alleviated the oxidative damage due to Cd stress and caused a further elevation in endogenous H2S and NO contents. Remarkably, THI-induced Cd stress tolerance was further improved by addition of sodium hydrosulfide (0.2 mM NaHS), a H2S donor. To get an insight whether or not H2S involved in THI-improved tolerance to Cd toxicity in strawberry plants, an H2S scavenger, hypotaurine (HT 0.1 mM), was supplied along with the THI and NaHS treatments. THI-improved tolerance to Cd stress was partly reversed by HT by reducing leaf H2S and NO to the level and above of these under Cd toxicity alone, respectively. The findings evidently showed that leaf H2S and NO together involved in induced tolerance to Cd toxicity by THI. This evidence was also proved by the partly increases in MDA and H2O2 and decreases in antioxidant defence enzymes such as superoxide dismutase, catalase and peroxidase as well as the plant biomass and partly enhanced leaf Cd content by exogenous applied HT along with THI.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey.
| | - Mustafa Aslan
- Biology Department, Education Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
56
|
Zhang S, Sun F, Wang W, Yang G, Zhang C, Wang Y, Liu S, Xi Y. Comparative transcriptome analysis provides key insights into seedling development in switchgrass ( Panicum virgatum L.). BIOTECHNOLOGY FOR BIOFUELS 2019; 12:193. [PMID: 31402932 PMCID: PMC6683553 DOI: 10.1186/s13068-019-1534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.), a warm-season perennial C4 plant, can be used as a forage plant, a soil and water conservation plant, a windbreak plant, and as a good source of biofuels and alternative energy with low planting costs. However, switchgrass exhibits low rates of seedling development compared to other crops, which means it is typically out-competed by weeds. There is a large variation in seedling development rates among different plantlets in switchgrass, which limits its usefulness for large-scale cultivation. Little is currently known about the molecular reasons for slow seedling growth. RESULTS Characterization of the seedling development process via growth indices indicated a relatively stagnant growth stage in switchgrass. A total of 678 differentially expressed genes (DEGs) were identified from the comparison of transcriptomes from slowly developed (sd) and rapidly developed (rd) switchgrass seedlings. Gene ontology and pathway enrichment analysis showed that DEGs were enriched in diterpenoid biosynthesis, thiamine metabolism, and circadian rhythm. Transcription factor enrichment and expression analyses showed MYB-related, bHLH and NAC family genes were essential for seedling growth. The transcriptome results were consistent with those of quantitative real-time polymerase chain reaction. Then, the expression profiles of maize and switchgrass were compared during seedling leaf development. A total of 128 DEGs that play key roles in seedling growth were aligned to maize genes. Transcriptional information and physiological indices suggested that several genes involved in the circadian rhythm, thiamine metabolism, energy metabolism, gibberellic acid biosynthesis, and signal transduction played important roles in seedling development. CONCLUSIONS The seedling development process of switchgrass was characterized, and the molecular differences between slowly developed and rapidly developed seedlings were discussed. This study provides new insights into the reasons for slow seedling development in switchgrass and will be useful for the genetic improvement of switchgrass and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Guoyu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yongfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shudong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
57
|
Yuan L, Wang J, Xie S, Zhao M, Nie L, Zheng Y, Zhu S, Hou J, Chen G, Wang C. Comparative Proteomics Indicates That Redox Homeostasis Is Involved in High- and Low-Temperature Stress Tolerance in a Novel Wucai ( Brassica campestris L.) Genotype. Int J Mol Sci 2019; 20:ijms20153760. [PMID: 31374822 PMCID: PMC6696267 DOI: 10.3390/ijms20153760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
The genotype WS-1, previously identified from novel wucai germplasm, is tolerant to both low-temperature (LT) and high-temperature (HT) stress. However, it is unclear which signal transduction pathway or acclimation mechanisms are involved in the temperature-stress response. In this study, we used the proteomic method of tandem mass tag (TMT) coupled with liquid chromatography-mass spectrometry (LC-MS/MS) to identify 1022 differentially expressed proteins (DEPs) common to WS-1, treated with either LT or HT. Among these 1022 DEPs, 172 were upregulated in response to both LT and HT, 324 were downregulated in response to both LT and HT, and 526 were upregulated in response to one temperature stress and downregulated in response to the other. To illustrate the common regulatory pathway in WS-1, 172 upregulated DEPs were further analyzed. The redox homeostasis, photosynthesis, carbohydrate metabolism, heat-shockprotein, and chaperones and signal transduction pathways were identified to be associated with temperature stress tolerance in wucai. In addition, 35S:BcccrGLU1 overexpressed in Arabidopsis, exhibited higher reduced glutathione (GSH) content and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and less oxidative damage under temperature stress. This result is consistent with the dynamic regulation of the relevant proteins involved in redox homeostasis. These data demonstrate that maintaining redox homeostasis is an important common regulatory pathway for tolerance to temperature stress in novel wucai germplasm.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shilei Xie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Mengru Zhao
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
58
|
Yang B, Zhong Z, Wang T, Ou Y, Tian J, Komatsu S, Zhang L. Integrative omics of Lonicera japonica Thunb. Flower development unravels molecular changes regulating secondary metabolites. J Proteomics 2019; 208:103470. [PMID: 31374363 PMCID: PMC7102679 DOI: 10.1016/j.jprot.2019.103470] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Lonicera japonica Thunb. is an important medicinal plant. The secondary metabolites in L. japonica are diverse and vary in levels during development, leading to the ambiguous evaluation for its medical value. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Further proteomic analysis revealed that uniquely identified proteins were mainly involved in glycolysis/phenylpropanoids and tricarboxylic acid cycle/terpenoid backbone pathways in early and late stages, respectively. Transketolase was commonly identified in the 5 developmental stages and 2-fold increase in gold flowering stage compared with juvenile bud stage. Simple phenylpropanoids/flavonoids and 1-deoxy-D-xylulose-5-phosphate were accumulated in early stages and upregulated in late stages, respectively. These results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development. Biological Significance Lonicera japonica Thunb. is a native species in the East Asian and used in traditional Chinese medicine. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Our results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development. Metabolic changes were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, and carbon conversion. The unique DAPs were mainly involved in glycolysis and tricarboxylic acid cycle in early and late stages, respectively. Transketolase was commonly identified and 2-fold increase in gold flowering stage compared with juvenile bud stage. Simple phenylpropanoids/flavonoids and DXPS were accumulated in early stages and upregulated in late stages, respectively.
Collapse
Affiliation(s)
- Bingxian Yang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yuting Ou
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Lin Zhang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
59
|
Amraee L, Rahmani F, Abdollahi Mandoulakani B. 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:478-484. [PMID: 31005823 DOI: 10.1016/j.plaphy.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Salinity is a common environmental challenge limiting worldwide agricultural crop yield. Plants employ epigenetic regulatory strategies, such as DNA methylation which relatively allows rapid adaptation to new conditions in response to environmental stresses. Brassinosteroids (BRs) are a novel group of phytohormones recognized as transcription and translation regulators which are able to mitigate the impact of environmental stresses on the plants. In the current investigation, the influence of salinity and 24-epibrassinolide (24-epiBL) was investigated on the extent and pattern of cytosine DNA methylation using methylation-sensitive amplified polymorphisms (MSAP) technique in flax. Upon NaCl (150 mM) exposure, total methylation of CCGG sequences was decreased in comparison to control plants, while 24-epiBL (10-8 M) induced total methylation under salinity stress. Sequencing and analysis of six randomly selected MSAP fragments detected genes involved in various biological and molecular processes such as vitamine B1 biosynthesis, protein targeting and localization, post-translational modification and gene regulation. In conclusion, 24-epiBL seed priming could play critical role in regulation of cellular and biological processes in response to salt stress by epigenetic modification and induction of methylation.
Collapse
Affiliation(s)
- Leila Amraee
- Department of Biology, Faculty and Sciences, Urmia University, Urmia, Iran; Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty and Sciences, Urmia University, Urmia, Iran; Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Babak Abdollahi Mandoulakani
- Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
60
|
Quantitative Phosphoproteomic and Physiological Analyses Provide Insights into the Formation of the Variegated Leaf in Catalpa fargesii. Int J Mol Sci 2019; 20:ijms20081895. [PMID: 30999580 PMCID: PMC6514904 DOI: 10.3390/ijms20081895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022] Open
Abstract
Variegated plants are valuable materials for investigating leaf color regulated mechanisms. To unveil the role of posttranslational modification in the variegated phenotype, we conducted global quantitative phosphoproteomic analysis on different leaf color sectors of Maiyuanjinqiu and the corresponding of Catalpa fargesii using Ti4+-IMAC phosphopeptide enrichment. A total of 3778 phosphorylated sites assigned to 1646 phosphoproteins were identified, and 3221 in 1434 proteins were quantified. Differential phosphoproteins (above 1.5 or below 1/1.5) in various leaf color sectors were selected for functional enrichment analyses. Gene ontology (GO) enrichment revealed that processes of photosynthesis, regulation of the generation of precursor metabolites, response to stress, homeostasis, amino acid metabolism, transport–related processes, and most of the energy metabolisms might contribute to leaf color. KEGG pathway enrichment analysis was performed based on differential phosphoproteins (DPs) in different organelles. The result showed that most enriched pathways were located in the chloroplasts and cytosol. The phosphorylation levels of glycometabolism enzymes might greatly affect leaf variegation. Measurements of fluorescence parameters and enzyme activities confirmed that protein phosphorylation could affect plant physiology by regulating enzyme activity. These results provide new clues for further study the formation mechanisms of naturally variegated phenotype.
Collapse
|
61
|
Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK. Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:76-91. [PMID: 30658287 DOI: 10.1016/j.plaphy.2018.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The activities of TCA cycle enzymes viz., pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase as well as levels of different organic acids viz., pyruvic acid, citric acid, succinic acid and malic acid were studied in two rice cultivars viz. cv. Nonabokra and cv. MTU 1010 differing in salt tolerance grown under 25, 50 and 100 mM NaCl salinity levels. A contrasting response to salt stress on enzyme activities of TCA cycle and accumulation of organic acid was observed between two cultivars during twenty-one days period of study. Salinity caused enhanced organic acid production and increase in all five enzyme activities in cv. Nonabokra whereas in cv. MTU 1010 decrease in both organic acid production and enzymes activities were noted. Joint application of exogenous silicon along with NaCl, altered the organic acids levels and activities of enzymes in both cultivars of rice seedlings conferring tolerance against salt induced stress. Rice cv. MTU 1010 showed better response to exogenous silicon on parameters tested compared to cv. Nonabokra.
Collapse
Affiliation(s)
- Prabal Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
62
|
Salgado MG, van Velzen R, Nguyen TV, Battenberg K, Berry AM, Lundin D, Pawlowski K. Comparative Analysis of the Nodule Transcriptomes of Ceanothus thyrsiflorus (Rhamnaceae, Rosales) and Datisca glomerata (Datiscaceae, Cucurbitales). FRONTIERS IN PLANT SCIENCE 2018; 9:1629. [PMID: 30487804 PMCID: PMC6246699 DOI: 10.3389/fpls.2018.01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 05/09/2023]
Abstract
Two types of nitrogen-fixing root nodule symbioses are known, rhizobial and actinorhizal symbioses. The latter involve plants of three orders, Fagales, Rosales, and Cucurbitales. To understand the diversity of plant symbiotic adaptation, we compared the nodule transcriptomes of Datisca glomerata (Datiscaceae, Cucurbitales) and Ceanothus thyrsiflorus (Rhamnaceae, Rosales); both species are nodulated by members of the uncultured Frankia clade, cluster II. The analysis focused on various features. In both species, the expression of orthologs of legume Nod factor receptor genes was elevated in nodules compared to roots. Since arginine has been postulated as export form of fixed nitrogen from symbiotic Frankia in nodules of D. glomerata, the question was whether the nitrogen metabolism was similar in nodules of C. thyrsiflorus. Analysis of the expression levels of key genes encoding enzymes involved in arginine metabolism revealed up-regulation of arginine catabolism, but no up-regulation of arginine biosynthesis, in nodules compared to roots of D. glomerata, while arginine degradation was not upregulated in nodules of C. thyrsiflorus. This new information corroborated an arginine-based metabolic exchange between host and microsymbiont for D. glomerata, but not for C. thyrsiflorus. Oxygen protection systems for nitrogenase differ dramatically between both species. Analysis of the antioxidant system suggested that the system in the nodules of D. glomerata leads to greater oxidative stress than the one in the nodules of C. thyrsiflorus, while no differences were found for the defense against nitrosative stress. However, induction of nitrite reductase in nodules of C. thyrsiflorus indicated that here, nitrite produced from nitric oxide had to be detoxified. Additional shared features were identified: genes encoding enzymes involved in thiamine biosynthesis were found to be upregulated in the nodules of both species. Orthologous nodule-specific subtilisin-like proteases that have been linked to the infection process in actinorhizal Fagales, were also upregulated in the nodules of D. glomerata and C. thyrsiflorus. Nodule-specific defensin genes known from actinorhizal Fagales and Cucurbitales, were also found in C. thyrsiflorus. In summary, the results underline the variability of nodule metabolism in different groups of symbiotic plants while pointing at conserved features involved in the infection process.
Collapse
Affiliation(s)
- Marco G. Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Robin van Velzen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Thanh Van Nguyen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Alison M. Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
63
|
Xu Y, Huang B. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Sci Rep 2018; 8:15181. [PMID: 30315246 PMCID: PMC6185948 DOI: 10.1038/s41598-018-33597-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Heat and drought stress are primary abiotic stresses confining growth of cool-season grass species during summer. The objective of this study was to identify common molecular factors and metabolic pathways associated with heat and drought responses in creeping bentgrass (Agrostis stolonifera) by comparative analysis of transcriptomic profiles between plants exposed to heat and drought stress. Plants were exposed to heat stress (35/30 °C day/night temperature) or drought stress by withholding irrigation for 21 d in growth chambers. Transcriptomic profiling by RNA-seq in A. stolonifera (cv. 'Penncross') found 670 commonly up-regulated and 812 commonly down-regulated genes by heat and drought stress. Transcriptional up-regulations of differentially expressed genes (DEGs) due to heat and drought stress include genes that were highly enriched in oxylipin biosynthetic process and proline biosynthetic process. Transcriptional down-regulations of genes under heat and drought stress were highly enriched and involved in thiamine metabolic process and calcium sensing receptor. These commonly-regulated genes by heat and drought stress identified in A. stolonifera suggested that drought and heat responses shared such common molecular factors and pathways, which could be potential candidate genes for genetic modification of improving plant tolerance to the combined heat and drought stress.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
64
|
Hu C, Quan C, Zhou J, Yu Q, Bai Z, Xu Z, Gao X, Li L, Zhu J, Chen R. Identification and characterization of a novel abiotic stress responsive OsTHIC gene from rice. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1457984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Changqiong Hu
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Changqian Quan
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jingmin Zhou
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qiang Yu
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhigang Bai
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhengjun Xu
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoling Gao
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Lihua Li
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jianqing Zhu
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Rongjun Chen
- Key Laboratory of Crop Genetic Resources and Improvement, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
65
|
Draft Genome Sequence of Phosphate-Solubilizing Chryseobacterium sp. Strain ISE14, a Biocontrol and Plant Growth-Promoting Rhizobacterium Isolated from Cucumber. GENOME ANNOUNCEMENTS 2018; 6:6/26/e00612-18. [PMID: 29954909 PMCID: PMC6025925 DOI: 10.1128/genomea.00612-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chryseobacterium sp. strain ISE14 is a phosphate-solubilizing endophytic bacterium that exhibits plant growth promotion and biocontrol activities against Phytophthora blight and anthracnose on pepper. Chryseobacterium sp. strain ISE14 is a phosphate-solubilizing endophytic bacterium that exhibits plant growth promotion and biocontrol activities against Phytophthora blight and anthracnose on pepper. Here, we report the draft genome sequence of strain ISE14, which contains genes relating to phosphate solubilization, plant growth promotion, and biocontrol traits.
Collapse
|
66
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
67
|
Idris ZHC, Abidin AAZ, Subki A, Yusof ZNB. The Effect of Oxidative Stress Towards The Expression of Thiamine Biosynthesis Genes (THIC and THI1/THI4) in Oil Palm ( Elaeis guineensis). Trop Life Sci Res 2018; 29:71-85. [PMID: 29644016 PMCID: PMC5893237 DOI: 10.21315/tlsr2018.29.1.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Thiamine is known to be an important compound in human diet and it is a cofactor required for vital metabolic processes such as acetyl-CoA biosynthesis, amino acid biosynthesis, Krebs and Calvin cycle. Besides that, thiamine has been shown to be involved in plant protection against stress. In this study, the level of expression of THIC and THI1/THI4, the genes for the first two enzymes in the thiamine biosynthesis pathway were observed when oil palm (Elaeis guineensis) was subjected to oxidative stress. Primers were designed based on the consensus sequence of thiamine biosynthesis genes obtained from Arabidopsis thaliana, Zea mays, Oryza sativa, and Alnus glutinosa. Oxidative stress were induced with various concentrations of paraquat and samplings were done at various time points post-stress induction. The expression of THIC and THI1/THI4 genes were observed via RT-PCR and qPCR analysis. The expression of THIC was increased 2-fold, while THI1/THI4 gene transcript was increased 4-fold upon induction of oxidative stress. These findings showed that oil palm responded to oxidative stress by over-expressing the genes involved in thiamine biosynthesis. These findings support the suggestion that thiamine may play an important role in plant protection against stress.
Collapse
Affiliation(s)
- Zainor Hafisah Che Idris
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Atiqah Subki
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
68
|
Amiri A, Dehkordi RAF, Heidarnejad MS, Dehkordi MJ. Effect of the Zinc Oxide Nanoparticles and Thiamine for the Management of Diabetes in Alloxan-Induced Mice: a Stereological and Biochemical Study. Biol Trace Elem Res 2018; 181:258-264. [PMID: 28534098 DOI: 10.1007/s12011-017-1035-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/21/2017] [Indexed: 01/05/2023]
Abstract
This research was carried out to evaluate the antidiabetic effects of zinc oxide nanoparticles (ZnO NPs) and thiamine following experimental diabetes. Fifty-six 6-week-old female mice were used and divided into seven groups of eight animals. Diabetes was induced in fasted mice by using intraperitoneal (IP) injection of alloxan (180 mg/kg). Groups included (I) non-diabetic control, (II) thiamine (30 mg/l, IP), (III) alloxan-induced diabetic mice, (IV) diabetes + ZnO NPs (0.1 mg/kg IP), (V) diabetes + ZnO NPs (0.5 mg/kg IP), (VI) diabetes + ZnO NPs (0.1 mg/kg IP) + thiamine (30 mg/l, IP), and (VII) diabetes + ZnO NPs (0.5 mg/kg IP) + thiamine (30 mg/l, IP). Coincident with pancreas recovery, in diabetic treated mice (groups IV to VII), the mean islet volume, islets per square micrometer, and volume density of the pancreas had increased than in alloxan-induced diabetic mice. ZnO NPs and thiamine induced a decreasing blood glucose, lower serum triglyceride (TG), LDL, and total cholesterol (TC) levels in alloxan-induced diabetic mice treated with ZnO NPs and thiamine, simultaneously increasing HDL as well. In conclusion, ZnO NPs and thiamine are potent antidiabetic factors, and that, these compound supplementation possesses hypoglycemic properties and have effect on serum lipid parameters in diabetes mice.
Collapse
Affiliation(s)
| | | | | | - Mohsen Jafarian Dehkordi
- Department of Clinical pathology, Faculty of Veterinary Medicine, Azad University of Shahrekord, Shahrekord, Iran
| |
Collapse
|
69
|
Yaish MW, Al-Lawati A, Al-Harrasi I, Patankar HV. Genome-wide DNA Methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula). BMC Genomics 2018; 19:78. [PMID: 29361906 PMCID: PMC5781308 DOI: 10.1186/s12864-018-4484-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 01/16/2018] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation has a potential role in controlling gene expression and may, therefore, contribute to salinity adaptation in plants. Caliph medic (Medicago truncatula) is a model legume of moderate salinity tolerance capacity; however, a base-resolution DNA methylome map is not yet available for this plant. Results In this report, a differential whole-genome bisulfite sequencing (WGBS) was carried out using DNA samples extracted from root tissues exposed to either control or saline conditions. Around 50 million differentially methylated sites (DMSs) were recognized, 7% of which were significantly (p < 0.05, FDR < 0.05) altered in response to salinity. This analysis showed that 77.0% of the contexts of DMSs were mCHH, while only 9.1% and 13.9% were mCHG and mCG, respectively. The average change in methylation level was increased in all sequence contexts, ranging from 3.8 to 10.2% due to salinity stress. However, collectively, the level of the DNA methylation in the gene body slightly decreased in response to salinity treatment. The global increase in DNA methylation due to salinity was confirmed by mass spectrometry analysis. Gene expression analysis using qPCR did not reveal a constant relationship between the level of mCG methylation and the transcription abundance of some genes of potential importance in salinity tolerance, such as the potassium channel KAT3, the vacuolar H+-pyrophosphatase (V-PPase), and the AP2/ERF and bZIP transcription factors, implying the involvement of other epigenetic gene expression controllers. Computational functional prediction of the annotated genes that embrace DMSs revealed the presence of enzymes with potential cellular functions in biological processes associated with salinity tolerance mechanisms. Conclusions The information obtained from this study illustrates the effect of salinity on DNA methylation and shows how plants can remodel the landscape of 5-methylcytosine nucleotide (5-mC) in the DNA across gene structures, in response to salinity. This remodeling varies between gene regions and between 5-mC sequence contexts. The mCG has a vague impact on the expression levels of a few selected potentially important genes in salt tolerant mechanisms. Electronic supplementary material The online version of this article (10.1186/s12864-018-4484-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman.
| | - Abbas Al-Lawati
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ibtisam Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
70
|
Millán T, Madrid E, Castro P, Gil J, Rubio J. Genetic Mapping and Quantitative Trait Loci. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-66117-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
71
|
Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X, Wang Q, She Y, Chen S, Zhou Z, Dai S. Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach. FRONTIERS IN PLANT SCIENCE 2018; 9:800. [PMID: 29997633 PMCID: PMC6029058 DOI: 10.3389/fpls.2018.00800] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
Elevated temperatures limit plant growth and reproduction and pose a growing threat to agriculture. Plant heat stress response is highly conserved and fine-tuned in multiple pathways. Spinach (Spinacia oleracea L.) is a cold tolerant but heat sensitive green leafy vegetable. In this study, heat adaptation mechanisms in a spinach sibling inbred heat-tolerant line Sp75 were investigated using physiological, proteomic, and phosphoproteomic approaches. The abundance patterns of 911 heat stress-responsive proteins, and phosphorylation level changes of 45 phosphoproteins indicated heat-induced calcium-mediated signaling, ROS homeostasis, endomembrane trafficking, and cross-membrane transport pathways, as well as more than 15 transcription regulation factors. Although photosynthesis was inhibited, diverse primary and secondary metabolic pathways were employed for defense against heat stress, such as glycolysis, pentose phosphate pathway, amino acid metabolism, fatty acid metabolism, nucleotide metabolism, vitamin metabolism, and isoprenoid biosynthesis. These data constitute a heat stress-responsive metabolic atlas in spinach, which will springboard further investigations into the sophisticated molecular mechanisms of plant heat adaptation and inform spinach molecular breeding initiatives.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wenxin Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jiayi Bian
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Hao Xie
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Ying Li
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Chenxi Xu
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Jiaying Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaofeng Cai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Quanhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Yimin She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Sixue Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Zhiqiang Zhou
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| |
Collapse
|
72
|
Landa P, Prerostova S, Langhansova L, Marsik P, Vanek T. Transcriptomic response of Arabidopsis thaliana (L.) Heynh. roots to ibuprofen. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:695-700. [PMID: 28398082 DOI: 10.1080/15226514.2016.1267697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface waters in urban areas are contaminated by ibuprofen (IBP), a popular and extensively used anti-inflammatory drug. In this study, we investigated the transcriptomic response in Arabidopsis thaliana (L.) Heynh. roots with the aim of revealing genes that are potentially involved in IBP detoxification and elucidating the effect of IBP on plants. IBP upregulated 63 and downregulated 38 transcripts (p-value < 0.1, fold change ≥2) after 2-day exposure to a 5-µM (1.03 mg/L) concentration of IBP under hydroponic conditions. Although the IBP concentration used in the experiment was highly relative to the concentrations found in rivers and wastewater, the number of genes with transcriptional changes was relatively low. The upregulation of cytochrome P450s, glutathione S-transferases, and UDP-glycosyltransferases indicates the occurrence of IBP oxidation in the first phase, followed by conjugation with glutathione and sugar in the second detoxification phase. ABC transporters could be involved in the transport of IBP and its metabolites. The identification of genes potentially involved in IBP detoxification could be useful in an IBP phytoremediation approach.
Collapse
Affiliation(s)
- Premysl Landa
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Sylva Prerostova
- b Laboratory of Hormonal Regulations in Plants , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
- c Department of Experimental Plant Biology, Faculty of Science , Charles University in Prague , Prague , Czech Republic
| | - Lenka Langhansova
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Petr Marsik
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| | - Tomas Vanek
- a Laboratory of Plant Biotechnologies , Institute of Experimental Botany AS CR, v.v.i. , Prague , Lysolaje , Czech Republic
| |
Collapse
|
73
|
Hsieh WY, Liao JC, Wang HT, Hung TH, Tseng CC, Chung TY, Hsieh MH. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B 1 biosynthesis pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:145-157. [PMID: 28346710 DOI: 10.1111/tpj.13552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
74
|
Mangel N, Fudge JB, Fitzpatrick TB, Gruissem W, Vanderschuren H. Vitamin B1 diversity and characterization of biosynthesis genes in cassava. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3351-3363. [PMID: 28859374 PMCID: PMC5853225 DOI: 10.1093/jxb/erx196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Vitamin B1, which consists of the vitamers thiamin and its phosphorylated derivatives, is an essential micronutrient for all living organisms because it is required as a metabolic cofactor in several enzymatic reactions. Genetic diversity of vitamin B1 biosynthesis and accumulation has not been investigated in major crop species other than rice and potato. We analyzed cassava germplasm for accumulation of B1 vitamers. Vitamin B1 content in leaves and roots of 41 cassava accessions showed significant variation between accessions. HPLC analyses of B1 vitamers revealed distinct profiles in cassava leaves and storage roots, with nearly equal relative levels of thiamin pyrophosphate and thiamin monophosphate in leaves, but mostly thiamin pyrophosphate in storage roots. Unusually, the cassava genome has two genes encoding the 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, THIC (MeTHIC1 and MeTHIC2), both of which carry a riboswitch in the 3'-UTR, as well as the adenylated thiazole synthase, THI1 (MeTHI1a and MeTHI1b). The THIC and THI1 genes are expressed at very low levels in storage roots compared with the accumulation of vitamin B1, indicating only limited biosynthesis de novo therein. In leaves, vitamin B1 content is negatively correlated with THIC and THI1 expression levels, suggesting post-transcriptional regulation of THIC by the riboswitch present in the 3'-UTR of the THIC mRNA and regulation of THI1 by promoter activity or alternative post-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Jared B Fudge
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Hervé Vanderschuren
- Department of Biology, ETH Zurich, Zurich, Switzerland
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
75
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
Yoo YH, Nalini Chandran AK, Park JC, Gho YS, Lee SW, An G, Jung KH. OsPhyB-Mediating Novel Regulatory Pathway for Drought Tolerance in Rice Root Identified by a Global RNA-Seq Transcriptome Analysis of Rice Genes in Response to Water Deficiencies. FRONTIERS IN PLANT SCIENCE 2017; 8:580. [PMID: 28491065 PMCID: PMC5405136 DOI: 10.3389/fpls.2017.00580] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/30/2017] [Indexed: 05/18/2023]
Abstract
Water deficiencies are one of the most serious challenges to crop productivity. To improve our understanding of soil moisture stress, we performed RNA-Seq analysis using roots from 4-week-old rice seedlings grown in soil that had been subjected to drought conditions for 2-3 d. In all, 1,098 genes were up-regulated in response to soil moisture stress for 3 d, which causes severe damage in root development after recovery, unlikely that of 2 d. Comparison with previous transcriptome data produced in drought condition indicated that more than 68% of our candidate genes were not previously identified, emphasizing the novelty of our transcriptome analysis for drought response in soil condition. We then validated the expression patterns of two candidate genes using a promoter-GUS reporter system in planta and monitored the stress response with novel molecular markers. An integrating omics tool, MapMan analysis, indicated that RING box E3 ligases in the ubiquitin-proteasome pathways are significantly stimulated by induced drought. We also analyzed the functions of 66 candidate genes that have been functionally investigated previously, suggesting the primary roles of our candidate genes in resistance or tolerance relating traits including drought tolerance (29 genes) through literature searches besides diverse regulatory roles of our candidate genes for morphological traits (15 genes) or physiological traits (22 genes). Of these, we used a T-DNA insertional mutant of rice phytochrome B (OsPhyB) that negatively regulates a plant's degree of tolerance to water deficiencies through the control of total leaf area and stomatal density based on previous finding. Unlike previous result, we found that OsPhyB represses the activity of ascorbate peroxidase and catalase mediating reactive oxygen species (ROS) processing machinery required for drought tolerance of roots in soil condition, suggesting the potential significance of remaining uncharacterized candidate genes for manipulating drought tolerance in rice.
Collapse
|
77
|
Kamarudin AN, Lai KS, Lamasudin DU, Idris AS, Balia Yusof ZN. Enhancement of Thiamine Biosynthesis in Oil Palm Seedlings by Colonization of Endophytic Fungus Hendersonia toruloidea. FRONTIERS IN PLANT SCIENCE 2017; 8:1799. [PMID: 29089959 PMCID: PMC5651052 DOI: 10.3389/fpls.2017.01799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/03/2017] [Indexed: 05/18/2023]
Abstract
Thiamine, or vitamin B1 plays an indispensable role as a cofactor in crucial metabolic reactions including glycolysis, pentose phosphate pathway and the tricarboxylic acid cycle in all living organisms. Thiamine has been shown to play a role in plant adaptation toward biotic and abiotic stresses. The modulation of thiamine biosynthetic genes in oil palm seedlings was evaluated in response to root colonization by endophytic Hendersonia toruloidea. Seven-month-old oil palm seedlings were inoculated with H. toruloidea and microscopic analyses were performed to visualize the localization of endophytic H. toruloidea in oil palm roots. Transmission electron microscopy confirmed that H. toruloidea colonized cortical cells. The expression of thiamine biosynthetic genes and accumulation of total thiamine in oil palm seedlings were also evaluated. Quantitative real-time PCR was performed to measure transcript abundances of four key thiamine biosynthesis genes (THI4, THIC, TH1, and TPK) on days 1, 7, 15, and 30 in response to H. toruloidea colonization. The results showed an increase of up to 12-fold in the expression of all gene transcripts on day 1 post-inoculation. On days 7, 15, and 30 post-inoculation, the relative expression levels of these genes were shown to be downregulated. Thiamine accumulation was observed on day 7 post-colonization and subsequently decreased until day 30. This work provides the first evidence for the enhancement of thiamine biosynthesis by endophytic colonization in oil palm seedlings.
Collapse
Affiliation(s)
- Amirah N. Kamarudin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Ganoderma and Diseases Research Group, Biology Division, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Kok S. Lai
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Dhilia U. Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abu S. Idris
- Ganoderma and Diseases Research Group, Biology Division, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Zetty N. Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- *Correspondence: Zetty N. Balia Yusof,
| |
Collapse
|
78
|
Zeng WY, Tang YQ, Gou M, Sun ZY, Xia ZY, Kida K. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability. Appl Microbiol Biotechnol 2016; 101:1753-1767. [DOI: 10.1007/s00253-016-8046-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
|
79
|
Hanson AD, Beaudoin GA, McCarty DR, Gregory JF. Does Abiotic Stress Cause Functional B Vitamin Deficiency in Plants? PLANT PHYSIOLOGY 2016; 172:2082-2097. [PMID: 27807106 PMCID: PMC5129723 DOI: 10.1104/pp.16.01371] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/19/2016] [Indexed: 05/20/2023]
Abstract
B vitamins are the precursors of essential metabolic cofactors but are prone to destruction under stress conditions. It is therefore a priori reasonable that stressed plants suffer B vitamin deficiencies and that certain stress symptoms are metabolic knock-on effects of these deficiencies. Given the logic of these arguments, and the existence of data to support them, it is a shock to realize that the roles of B vitamins in plant abiotic stress have had minimal attention in the literature (100-fold less than hormones) and continue to be overlooked. In this article, we therefore aim to explain the connections among B vitamins, enzyme cofactors, and stress conditions in plants. We first outline the chemistry and biochemistry of B vitamins and explore the concept of vitamin deficiency with the help of information from mammals. We then summarize classical and recent evidence for stress-induced vitamin deficiencies and for plant responses that counter these deficiencies. Lastly, we consider potential implications for agriculture.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Guillaume A Beaudoin
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Donald R McCarty
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| | - Jesse F Gregory
- Horticultural Sciences Department (A.D.H., G.A.B., D.R.M) and Food Science and Human Nutrition Department (J.F.G.), University of Florida, Gainesville, Florida 32611-0690
| |
Collapse
|
80
|
Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 2016; 6:35040. [PMID: 27713524 PMCID: PMC5054369 DOI: 10.1038/srep35040] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/23/2016] [Indexed: 11/16/2022] Open
Abstract
The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton.
Collapse
Affiliation(s)
- Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaohong Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Waqas Malik
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Rong Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Khin Myat Lwin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Biotechnology Research Department, Ministry of Science and Technology, Naypyidaw, Myanmar
| | - Fazhuang Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
81
|
Hong JK, Kim HJ, Jung H, Yang HJ, Kim DH, Sung CH, Park CJ, Chang SW. Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants. THE PLANT PATHOLOGY JOURNAL 2016; 32:469-480. [PMID: 27721697 PMCID: PMC5051566 DOI: 10.5423/ppj.oa.03.2016.0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 05/30/2023]
Abstract
Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (106 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Hyeon Ji Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Heesoo Jung
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Hye Ji Yang
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Do Hoon Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Chang Hyun Sung
- Turfgrass Science Institute, Hanul Inc., Hapcheon 50229,
Korea
| | - Chang-Jin Park
- Department of Bioresources Engineering and PERI, Sejong University, Seoul 05006,
Korea
| | - Seog Won Chang
- Department of Golf Course Management, Korea Golf University, Gangwon 25247,
Korea
| |
Collapse
|
82
|
Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS, Chakrabarty D, Nautiyal CS. Elucidation of Complex Nature of PEG Induced Drought-Stress Response in Rice Root Using Comparative Proteomics Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:1466. [PMID: 27746797 PMCID: PMC5040710 DOI: 10.3389/fpls.2016.01466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/14/2016] [Indexed: 05/22/2023]
Abstract
Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions. A total of 510 protein spots were observed by PDQuest analysis and 125 differentially regulated spots were subjected for MALDI-TOF MS-MS analysis out of which 102 protein spots identified which further led to identification of 78 proteins with a significant score. These 78 differentially expressed proteins appeared to be involved in different biological pathways. The largest percentage of identified proteins was involved in bioenergy and metabolism (29%) and mainly consists of malate dehydrogenase, succinyl-CoA, putative acetyl-CoA synthetase, and pyruvate dehydrogenase etc. This was followed by proteins related to cell defense and rescue (22%) such as monodehydroascorbate reductase and stress-induced protein sti1, then by protein biogenesis and storage class (21%) e.g. putative thiamine biosynthesis protein, putative beta-alanine synthase, and cysteine synthase. Further, cell signaling (9%) proteins like actin and prolyl endopeptidase, and proteins with miscellaneous function (19%) like Sgt1 and some hypothetical proteins were also represented a large contribution toward drought regulatory mechanism in rice. We propose that protein biogenesis, cell defense, and superior homeostasis may render better drought-adaptation. These findings might expedite the functional determination of the drought-responsive proteins and their prioritization as potential molecular targets for perfect adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chandra S. Nautiyal
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research InstituteLucknow, India
| |
Collapse
|
83
|
Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS. Soybean miR172a Improves Salt Tolerance and Can Function as a Long-Distance Signal. MOLECULAR PLANT 2016; 9:1337-1340. [PMID: 27235547 DOI: 10.1016/j.molp.2016.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 05/03/2023]
Affiliation(s)
- Wen-Jia Pan
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
84
|
Qi X, Su X, Guo H, Qi J, Cheng H. VdThit, a Thiamine Transport Protein, Is Required for Pathogenicity of the Vascular Pathogen Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:545-559. [PMID: 27089469 DOI: 10.1094/mpmi-03-16-0057-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Verticillium dahliae causes a serious wilt disease of important crops and is difficult to control. Few plasma-membrane transport proteins for nutrient acquisition have been identified for this fungus, and their involvement in the disease process is unknown. Here, a plasma-membrane protein, the V. dahliae thiamine transporter protein VdThit, was characterized functionally by deletion of the VdThit gene in V. dahliae. Disruption strains were viable, but growth and conidial germination and production were reduced and virulence was impaired. Interestingly, by supplementing exogenous thiamine, growth, conidiation, and virulence of the VdΔThit mutants were partially restored. Stress-tolerance assays showed that the VdΔThit mutant strains were markedly more susceptible to oxidative stress and UV damage. High-pressure liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses showed low levels of pyruvate metabolism intermediates acetoin and acetyl coenzyme A (acetyl-CoA) in the VdΔThit mutant strains, suggesting that pyruvate metabolism was suppressed. Expression analysis of VdThit confirmed the importance of VdThit in vegetative growth, reproduction, and invasive hyphal growth. Furthermore, a green fluorescent protein (GFP)-labeled VdΔThit mutant (VdΔThit-7-GFP) was suppressed in initial infection and root colonization, as viewed with light microscopy. Together, these results showed that VdThit plays an indispensable role in the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Xiliang Qi
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Xiaofeng Su
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Huiming Guo
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Juncang Qi
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Hongmei Cheng
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| |
Collapse
|
85
|
Desalegn G, Turetschek R, Kaul HP, Wienkoop S. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. J Proteomics 2016; 143:173-187. [PMID: 27016040 DOI: 10.1016/j.jprot.2016.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. BIOLOGICAL SIGNIFICANCE A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis.
Collapse
Affiliation(s)
- G Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - R Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - H-P Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - S Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
86
|
Ma J, Li J, Cao Y, Wang L, Wang F, Wang H, Li H. Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5. PLoS One 2016; 11:e0158028. [PMID: 27332982 PMCID: PMC4917089 DOI: 10.1371/journal.pone.0158028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022] Open
Abstract
Zhengdan958 and Anyu5 are two elite maize hybrids of China, which manifest similar paternal lines (Chang7-2) but different maternal lines (Zheng58 and Ye478). Zhengdan958 has a 10–15% yield advantage over Anyu5. In this study, we applied digital gene expression technology to analyze transcriptomes of mature embryos from the two hybrids and their parents, aimed to investigate molecular mechanism of heterosis and genetic effects of maternal lines. Results showed that 71.66% and 49.70% of differentially expressed genes exhibited non-additive expression in Zhengdan958 and Anyu5, respectively. The number of non-additive genes involved in abiotic and biotic stress responses in Zhengdan958 was higher than that in Anyu5, which was in agreement with their phenotypic performance. Furthermore, common over-dominance and under-dominance genes (137 and 162, respectively) between the two hybrids focused on plant development and abiotic stress response. Zhengdan958 contained 97 maternal expression-level dominance (maternal-ELD) genes, and the number was higher than that of Anyu5 (45). Common up-regulated maternal-ELD genes were significantly enriched in meristem and shoot development while common down-regulated maternal-ELD genes were involved in pyruvate metabolic process, negative regulation of catalytic activity and response to stress. Therefore, non-additive genes mainly contribute to heterosis in Zhengdan958, including many genes for plant development, abiotic and biotic stress responses. Maternal effects may play important roles in maize heterosis.
Collapse
Affiliation(s)
- Juan Ma
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jingjing Li
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yanyong Cao
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Lifeng Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Fei Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Hao Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Huiyong Li
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- * E-mail:
| |
Collapse
|
87
|
Mosquera T, Alvarez MF, Jiménez-Gómez JM, Muktar MS, Paulo MJ, Steinemann S, Li J, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert HR, Walkemeier B, Gebhardt C. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS One 2016; 11:e0156254. [PMID: 27281327 PMCID: PMC4900573 DOI: 10.1371/journal.pone.0156254] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
Collapse
Affiliation(s)
- Teresa Mosquera
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Fernanda Alvarez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute Jean-Pierre Bourgin, INRA, AgroParis Tech, CNRS, Université Paris-Saclay, Versailles, France
| | - Meki Shehabu Muktar
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sebastian Steinemann
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jinquan Li
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Astrid Draffehn
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Hofmann
- Department of Genomics, Life & Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Lübeck
- SaKa-Pflanzenzucht GmbH & Co. KG, 24340, Windeby, Germany
| | | | | | | | - Birgit Walkemeier
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
88
|
Martinis J, Gas-Pascual E, Szydlowski N, Crèvecoeur M, Gisler A, Bürkle L, Fitzpatrick TB. Long-Distance Transport of Thiamine (Vitamin B1) Is Concomitant with That of Polyamines. PLANT PHYSIOLOGY 2016; 171:542-53. [PMID: 27006489 PMCID: PMC4854701 DOI: 10.1104/pp.16.00009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/20/2016] [Indexed: 05/03/2023]
Abstract
Thiamine (vitamin B1) is ubiquitous and essential for cell energy supply in all organisms as a vital metabolic cofactor, known for over a century. In plants, it is established that biosynthesis de novo is taking place predominantly in green tissues and is furthermore limited to plastids. Therefore, transport mechanisms are required to mediate the movement of this polar metabolite from source to sink tissue to activate key enzymes in cellular energy generating pathways but are currently unknown. Similar to thiamine, polyamines are an essential set of charged molecules required for diverse aspects of growth and development, the homeostasis of which necessitates long-distance transport processes that have remained elusive. Here, a yeast-based screen allowed us to identify Arabidopsis (Arabidopsis thaliana) PUT3 as a thiamine transporter. A combination of biochemical, physiological, and genetic approaches permitted us to show that PUT3 mediates phloem transport of both thiamine and polyamines. Loss of function of PUT3 demonstrated that the tissue distribution of these metabolites is altered with growth and developmental consequences. The pivotal role of PUT3 mediated thiamine and polyamine homeostasis in plants, and its importance for plant fitness is revealed through these findings.
Collapse
Affiliation(s)
- Jacopo Martinis
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Elisabet Gas-Pascual
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Nicolas Szydlowski
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Michèle Crèvecoeur
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Alexandra Gisler
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Lukas Bürkle
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| |
Collapse
|
89
|
Brereton NJB, Gonzalez E, Marleau J, Nissim WG, Labrecque M, Joly S, Pitre FE. Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants. PLANT PHYSIOLOGY 2016; 171:3-24. [PMID: 27002060 PMCID: PMC4854704 DOI: 10.1104/pp.16.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/20/2016] [Indexed: 05/09/2023]
Abstract
Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/β-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system.
Collapse
Affiliation(s)
- Nicholas J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal QC H1X 2B2, Canada (N.J.B.B., E.G., J.M., M.L., S.J., F.E.P.); andMontreal Botanical Garden, Montreal, QC H1X 2B2, Canada (W.G.N., M.L., S.J., F.E.P.)
| | - Emmanuel Gonzalez
- Institut de recherche en biologie végétale, University of Montreal, Montreal QC H1X 2B2, Canada (N.J.B.B., E.G., J.M., M.L., S.J., F.E.P.); andMontreal Botanical Garden, Montreal, QC H1X 2B2, Canada (W.G.N., M.L., S.J., F.E.P.)
| | - Julie Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal QC H1X 2B2, Canada (N.J.B.B., E.G., J.M., M.L., S.J., F.E.P.); andMontreal Botanical Garden, Montreal, QC H1X 2B2, Canada (W.G.N., M.L., S.J., F.E.P.)
| | - Werther Guidi Nissim
- Institut de recherche en biologie végétale, University of Montreal, Montreal QC H1X 2B2, Canada (N.J.B.B., E.G., J.M., M.L., S.J., F.E.P.); andMontreal Botanical Garden, Montreal, QC H1X 2B2, Canada (W.G.N., M.L., S.J., F.E.P.)
| | - Michel Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal QC H1X 2B2, Canada (N.J.B.B., E.G., J.M., M.L., S.J., F.E.P.); andMontreal Botanical Garden, Montreal, QC H1X 2B2, Canada (W.G.N., M.L., S.J., F.E.P.)
| | - Simon Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal QC H1X 2B2, Canada (N.J.B.B., E.G., J.M., M.L., S.J., F.E.P.); andMontreal Botanical Garden, Montreal, QC H1X 2B2, Canada (W.G.N., M.L., S.J., F.E.P.)
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal QC H1X 2B2, Canada (N.J.B.B., E.G., J.M., M.L., S.J., F.E.P.); andMontreal Botanical Garden, Montreal, QC H1X 2B2, Canada (W.G.N., M.L., S.J., F.E.P.)
| |
Collapse
|
90
|
Wang L, Ye, Liu H, Liu X, Wei C, Huang Y, Liu Y, Tu J. Both overexpression and suppression of an Oryza sativa NB-LRR-like gene OsLSR result in autoactivation of immune response and thiamine accumulation. Sci Rep 2016; 6:24079. [PMID: 27052628 PMCID: PMC4823736 DOI: 10.1038/srep24079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/18/2016] [Indexed: 01/27/2023] Open
Abstract
Tight and accurate regulation of immunity and thiamine biosynthesis is critical for proper defence mechanisms and several primary metabolic cycles in plants. Although thiamine is known to enhance plant defence by priming, the mechanism by which thiamine biosynthesis responds to immune signals remains poorly understood. Here we identified a novel rice (Oryza sativa L.) NB-LRR gene via an insertion mutation, this mutant confesses a low seed setting phenotype and the corresponding genetic locus was named OsLSR (Low seed setting related). Comparing with wildtype plant, both overexpression and suppression of OsLSR lead to the autoactivation of the rice immune system and accumulation of thiamine, which result in a great fitness cost and yield penalty. Moreover, when fused with eGFP at their C terminus, two fragments, OsLSR1-178 and OsLSR464-546, localized to chloroplasts where thiamine is produced. Our result suggests that OsLSR differs from traditional NB-LRR genes. Its expression is closely related to the immune status and thiamine level in plant cells and should be maintained within a narrow range for rice growth.
Collapse
Affiliation(s)
- Liangchao Wang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Ye
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Huachun Liu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Xuejiao Liu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Chuchu Wei
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Yuqing Huang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Yujun Liu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Jumin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| |
Collapse
|
91
|
Rodriguez M, Rau D, Bitocchi E, Bellucci E, Biagetti E, Carboni A, Gepts P, Nanni L, Papa R, Attene G. Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. THE NEW PHYTOLOGIST 2016; 209:1781-94. [PMID: 26526745 DOI: 10.1111/nph.13713] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/06/2015] [Indexed: 05/19/2023]
Abstract
Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.
Collapse
Affiliation(s)
- Monica Rodriguez
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. de Nicola, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, Surigheddu, 07040, Alghero, Italy
| | - Domenico Rau
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. de Nicola, 07100, Sassari, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Eleonora Biagetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Carboni
- Centro di Ricerca per le Colture Industriali (CRA-CIN), Consiglio per la Ricerca e la Sperimentazione in Agricoltura, via di Corticella, 133, 40128, Bologna, Italy
| | - Paul Gepts
- Department of Plant Sciences/MS1, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Laura Nanni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giovanna Attene
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. de Nicola, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, Surigheddu, 07040, Alghero, Italy
| |
Collapse
|
92
|
Li CL, Wang M, Wu XM, Chen DH, Lv HJ, Shen JL, Qiao Z, Zhang W. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1090-104. [PMID: 26662273 PMCID: PMC4734576 DOI: 10.1104/pp.15.01649] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 05/06/2023]
Abstract
Thiamine is required for both plant growth and development. Here, the involvement of a thiamine thiazole synthase, THI1, has been demonstrated in both guard cell abscisic acid (ABA) signaling and the drought response in Arabidopsis (Arabidopsis thaliana). THI1 overexpressors proved to be more sensitive to ABA than the wild type with respect to both the activation of guard cell slow type anion channels and stomatal closure; this effectively reduced the rate of water loss from the plant and thereby enhanced its level of drought tolerance. A yeast two-hybrid strategy was used to screen a cDNA library from epidermal strips of leaves for THI1 regulatory factors, and identified CPK33, a Ca(2+)-dependent protein kinase, as interactor with THI1 in a plasma membrane-delimited manner. Loss-of-function cpk33 mutants were hypersensitive to ABA activation of slow type anion channels and ABA-induced stomatal closure, while the CPK33 overexpression lines showed opposite phenotypes. CPK33 kinase activity was essential for ABA-induced stomatal closure. Consistent with their contrasting regulatory role over stomatal closure, THI1 suppressed CPK33 kinase activity in vitro. Together, our data reveal a novel regulatory role of thiamine thiazole synthase to kinase activity in guard cell signaling.
Collapse
Affiliation(s)
- Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiao-Meng Wu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Dong-Hua Chen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Hong-Jun Lv
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jian-Lin Shen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
93
|
Gong F, Yang L, Tai F, Hu X, Wang W. "Omics" of maize stress response for sustainable food production: opportunities and challenges. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 18:714-32. [PMID: 25401749 DOI: 10.1089/omi.2014.0125] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.
Collapse
Affiliation(s)
- Fangping Gong
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University , Zhengzhou, China
| | | | | | | | | |
Collapse
|
94
|
Gardin JAC, Gouzy J, Carrère S, Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics 2015; 16:590. [PMID: 26265378 PMCID: PMC4534104 DOI: 10.1186/s12864-015-1804-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022] Open
Abstract
Background Herbicide resistance in agrestal weeds is a global problem threatening food security. Non-target-site resistance (NTSR) endowed by mechanisms neutralising the herbicide or compensating for its action is considered the most agronomically noxious type of resistance. Contrary to target-site resistance, NTSR mechanisms are far from being fully elucidated. A part of weed response to herbicide stress, NTSR is considered to be largely driven by gene regulation. Our purpose was to establish a transcriptome resource allowing investigation of the transcriptomic bases of NTSR in the major grass weed Alopecurus myosuroides L. (Poaceae) for which almost no genomic or transcriptomic data was available. Results RNA-Seq was performed from plants in one F2 population that were sensitive or expressing NTSR to herbicides inhibiting acetolactate-synthase. Cloned plants were sampled over seven time-points ranging from before until 73 h after herbicide application. Assembly of over 159M high-quality Illumina reads generated a transcriptomic resource (ALOMYbase) containing 65,558 potentially active contigs (N50 = 1240 nucleotides) predicted to encode 32,138 peptides with 74 % GO annotation, of which 2017 were assigned to protein families presumably involved in NTSR. Comparison with the fully sequenced grass genomes indicated good coverage and correct representation of A. myosuroides transcriptome in ALOMYbase. The part of the herbicide transcriptomic response common to the resistant and the sensitive plants was consistent with the expected effects of acetolactate-synthase inhibition, with striking similarities observed with published Arabidopsis thaliana data. A. myosuroides plants with NTSR were first affected by herbicide action like sensitive plants, but ultimately overcame it. Analysis of differences in transcriptomic herbicide response between resistant and sensitive plants did not allow identification of processes directly explaining NTSR. Five contigs associated to NTSR in the F2 population studied were tentatively identified. They were predicted to encode three cytochromes P450 (CYP71A, CYP71B and CYP81D), one peroxidase and one disease resistance protein. Conclusions Our data confirmed that gene regulation is at the root of herbicide response and of NTSR. ALOMYbase proved to be a relevant resource to support NTSR transcriptomic studies, and constitutes a valuable tool for future research aiming at elucidating gene regulations involved in NTSR in A. myosuroides. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1804-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jérôme Gouzy
- INRA, UMR441 LIPM, F-31326, Castanet-Tolosan, France.
| | | | - Christophe Délye
- INRA, UMR1347 Agroécologie, 17 rue de Sully, F-21000, Dijon, France.
| |
Collapse
|
95
|
Jeffery Daim LD, Ooi TEK, Ithnin N, Mohd Yusof H, Kulaveerasingam H, Abdul Majid N, Karsani SA. Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense. Electrophoresis 2015; 36:1699-710. [PMID: 25930948 DOI: 10.1002/elps.201400608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.
Collapse
Affiliation(s)
- Leona Daniela Jeffery Daim
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Tony Eng Keong Ooi
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Nalisha Ithnin
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Hirzun Mohd Yusof
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Harikrishna Kulaveerasingam
- Integrative and Applied Biology Department, Sime Darby Technology Centre Sdn Bhd, UPM-MTDC Technology Centre III, University Putra Malaysia, Selangor, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
96
|
Lupien A, Gingras H, Bergeron MG, Leprohon P, Ouellette M. Multiple mutations and increased RNA expression in tetracycline-resistant Streptococcus pneumoniae as determined by genome-wide DNA and mRNA sequencing. J Antimicrob Chemother 2015; 70:1946-59. [PMID: 25862682 DOI: 10.1093/jac/dkv060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/13/2015] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES The objective of this study was to characterize chromosomal mutations associated with resistance to tetracycline in Streptococcus pneumoniae. METHODS Chronological appearance of mutations in two S. pneumoniae R6 mutants (R6M1TC-5 and R6M2TC-4) selected for resistance to tetracycline was determined by next-generation sequencing. A role for the mutations identified was confirmed by reconstructing resistance to tetracycline in a S. pneumoniae R6 WT background. RNA sequencing was performed on R6M1TC-5 and R6M2TC-4 and the relative expression of genes was reported according to R6. Differentially expressed genes were classified according to their ontology. RESULTS WGS of R6M1TC-5 and R6M2TC-4 revealed mutations in the gene rpsJ coding for the ribosomal protein S10 and in the promoter region and coding sequences of the ABC genes patA and patB. These cells were cross-resistant to ciprofloxacin. Resistance reconstruction confirmed a role in resistance for the mutations in rpsJ and patA. Overexpression of the ABC transporter PatA/PatB or mutations in the coding sequence of patA contributed to resistance to tetracycline, ciprofloxacin and ethidium bromide, and was associated with a decreased accumulation of [(3)H]tetracycline. Comparative transcriptome profiling of the resistant mutants further revealed that, in addition to the overexpression of patA and patB, several genes of the thiamine biosynthesis and salvage pathway were increased in the two mutants, but also in clinical isolates resistant to tetracycline. This overexpression most likely contributes to the tetracycline resistance phenotype. CONCLUSIONS The combination of genomic and transcriptomic analysis coupled to functional studies has allowed the discovery of novel tetracycline resistance mutations in S. pneumoniae.
Collapse
Affiliation(s)
- Andréanne Lupien
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Hélène Gingras
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Michel G Bergeron
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Philippe Leprohon
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marc Ouellette
- Centre de recherche en Infectiologie du Centre de recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
97
|
Wang L, Pan D, Li J, Tan F, Hoffmann-Benning S, Liang W, Chen W. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:159-72. [PMID: 25576001 DOI: 10.1016/j.plantsci.2014.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 05/07/2023]
Abstract
The plant chloroplast is one of the most sensitive organelles in response to salt stress. Chloroplast proteins extracted from seedling leaves were separated by two-dimensional gel electrophoresis (2-DE). More than 600 protein spots could be distinguished on each gel. Fifty-eight differentially expressed protein spots were detected, of which 46 could be identified through matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). These proteins were found to be involved in multiple aspects of chloroplast metabolism pathways such as photosynthesis, ATP synthesis, detoxification and antioxidation processes, nitrogen assimilation and fixation, protein metabolism, and tetrapyrrole biosynthesis. The results indicated that K. candel could withstand up to 500 mM NaCl stress for a measured period of 3 days, by maintaining normal or high photosynthetic electron transfer efficiency and an only slightly stimulated Calvin cycle. Meanwhile, we found that ROS scavenging, nitrogen assimilation, protein degradation and chaperone function in chloroplasts were also of importance for salt tolerance of K. candel. The ultrastructural and physiological data agree with chloroplast proteome results. These findings allow further exploration of our knowledge on salt adaptation in woody halophytes and may contribute to the development of more salt-tolerant plants in the future.
Collapse
Affiliation(s)
- Lingxia Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dezhuo Pan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jian Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fanglin Tan
- Fujian Academy of Forestry, Fuzhou 350012, PR China
| | - Susanne Hoffmann-Benning
- The Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750000, PR China
| | - Wei Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
98
|
Khozaei M, Fisk S, Lawson T, Gibon Y, Sulpice R, Stitt M, Lefebvre SC, Raines CA. Overexpression of plastid transketolase in tobacco results in a thiamine auxotrophic phenotype. THE PLANT CELL 2015; 27:432-47. [PMID: 25670766 PMCID: PMC4456921 DOI: 10.1105/tpc.114.131011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/11/2015] [Accepted: 01/28/2015] [Indexed: 05/03/2023]
Abstract
To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants.
Collapse
Affiliation(s)
- Mahdi Khozaei
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Stuart Fisk
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Yves Gibon
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 114476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 114476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 114476 Potsdam-Golm, Germany
| | - Stephane C Lefebvre
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Christine A Raines
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
99
|
Wolak N, Kowalska E, Kozik A, Rapala-Kozik M. Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 2014; 14:1249-62. [PMID: 25331172 DOI: 10.1111/1567-1364.12218] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/09/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022] Open
Abstract
Numerous recent studies have established a hypothesis that thiamine (vitamin B1 ) is involved in the responses of different organisms against stress, also suggesting that underlying mechanisms are not limited to the universal role of thiamine diphosphate (TDP) in the central cellular metabolism. The current work aimed at characterising the effect of exogenously added thiamine on the response of baker's yeast Saccharomyces cerevisiae to the oxidative (1 mM H2 O2 ), osmotic (1 M sorbitol) and thermal (42 °C) stress. As compared to the yeast culture in thiamine-free medium, in the presence of 1.4 μM external thiamine, (1) the relative mRNA levels of major TDP-dependent enzymes under stress conditions vs. unstressed control (the 'stress/control ratio') were moderately lower, (2) the stress/control ratio was strongly decreased for the transcript levels of several stress markers localised to the cytoplasm, peroxisomes, the cell wall and (with the strongest effect observed) the mitochondria (e.g. Mn-superoxide dismutase), (3) the production of reactive oxygen and nitrogen species under stress conditions was markedly decreased, with the significant alleviation of concomitant protein oxidation. The results obtained suggest the involvement of thiamine in the maintenance of redox balance in yeast cells under oxidative stress conditions, partly independent of the functions of TDP-dependent enzymes.
Collapse
Affiliation(s)
- Natalia Wolak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | |
Collapse
|
100
|
Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PBK, Nguyen H, Sutton T, Varshney RK. Genotyping-by-sequencing based intra-specific genetic map refines a ''QTL-hotspot" region for drought tolerance in chickpea. Mol Genet Genomics 2014; 290:559-71. [PMID: 25344290 PMCID: PMC4361754 DOI: 10.1007/s00438-014-0932-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/23/2014] [Indexed: 11/27/2022]
Abstract
To enhance the marker density in the “QTL-hotspot” region, harboring several QTLs for drought tolerance-related traits identified on linkage group 04 (CaLG04) in chickpea recombinant inbred line (RIL) mapping population ICC 4958 × ICC 1882, a genotyping-by-sequencing approach was adopted. In total, 6.24 Gb data from ICC 4958, 5.65 Gb data from ICC 1882 and 59.03 Gb data from RILs were generated, which identified 828 novel single-nucleotide polymorphisms (SNPs) for genetic mapping. Together with these new markers, a high-density intra-specific genetic map was developed that comprised 1,007 marker loci spanning a distance of 727.29 cM. QTL analysis using the extended genetic map along with precise phenotyping data for 20 traits collected over one to seven seasons identified 49 SNP markers in the “QTL-hotspot” region. These efforts have refined the “QTL-hotspot” region to 14 cM. In total, 164 main-effect QTLs including 24 novel QTLs were identified. In addition, 49 SNPs integrated in the “QTL-hotspot” region were converted into cleaved amplified polymorphic sequence (CAPS) and derived CAPS (dCAPS) markers which can be used in marker-assisted breeding.
Collapse
Affiliation(s)
- Deepa Jaganathan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|