51
|
A review of human diseases caused or exacerbated by aberrant complement activation. Neurobiol Aging 2017; 52:12-22. [DOI: 10.1016/j.neurobiolaging.2016.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/15/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022]
|
52
|
Simon DW, McGeachy M, Bayır H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 2017; 13:171-191. [PMID: 28186177 PMCID: PMC5675525 DOI: 10.1038/nrneurol.2017.13] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 'silent epidemic' of traumatic brain injury (TBI) has been placed in the spotlight as a result of clinical investigations and popular press coverage of athletes and veterans with single or repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of targeted immunomodulation after TBI for future exploration. Our framework incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structuring our discussion around the dynamics of the immune response to TBI - from initial triggers to chronic neuroinflammation - we consider the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration. We summarize both animal model and human studies, with clinical data explicitly defined throughout this Review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings that could offer novel therapeutic targets for translational and clinical research, assimilate evidence from other brain injury models, and identify outstanding questions in the field.
Collapse
Affiliation(s)
- Dennis W. Simon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mandy McGeachy
- Department of Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
53
|
De Blasio D, Fumagalli S, Longhi L, Orsini F, Palmioli A, Stravalaci M, Vegliante G, Zanier ER, Bernardi A, Gobbi M, De Simoni MG. Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:938-950. [PMID: 27165013 PMCID: PMC5363468 DOI: 10.1177/0271678x16647397] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mannose-binding lectin is present in the contusion area of traumatic brain-injured patients and in that of traumatic brain-injured mice, where mannose-binding lectin-C exceeds mannose-binding lectin-A. The reduced susceptibility to traumatic brain injury of mannose-binding lectin double knock-out mice (mannose-binding lectin-/-) when compared to wild type mice suggests that mannose-binding lectin may be a therapeutic target following traumatic brain injury. Here, we evaluated the effects of a multivalent glycomimetic mannose-binding lectin ligand, Polyman9, following traumatic brain injury in mice. In vitro surface plasmon resonance assay indicated that Polyman9 dose-dependently inhibits the binding to immobilized mannose residues of plasma mannose-binding lectin-C selectively over that of mannose-binding lectin-A. Male C57Bl/6 mice underwent sham/controlled cortical impact traumatic brain injury and intravenous treatment with Polyman9/saline. Ex-vivo surface plasmon resonance studies confirmed that Polyman9 effectively reduces the binding of plasma mannose-binding lectin-C to immobilized mannose residues. In vivo studies up to four weeks post injury, showed that Polyman9 induces significant improvement in sensorimotor deficits (by neuroscore and beam walk), promotes neurogenesis (73% increase in doublecortin immunoreactivity), and astrogliosis (28% increase in glial fibrillary acid protein). Polyman9 administration in brain-injured mannose-binding lectin-/- mice had no effect on post-traumatic brain-injured functional deficits, suggestive of the specificity of its neuroprotective effects. The neurobehavioral efficacy of Polyman9 implicates mannose-binding lectin-C as a novel therapeutic target for traumatic brain injury.
Collapse
Affiliation(s)
- Daiana De Blasio
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.,2 Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca'Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Stefano Fumagalli
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.,2 Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca'Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Luca Longhi
- 3 Department of Anesthesia and Critical Care Medicine, Neurosurgical Intensive Care Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Franca Orsini
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | - Matteo Stravalaci
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Gloria Vegliante
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Elisa R Zanier
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Anna Bernardi
- 4 Department of Chemistry, Università degli Studi di Milano, Milano, Italy
| | - Marco Gobbi
- 1 IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | |
Collapse
|
54
|
Hellström M, Bandstein S, Brännström M. Uterine Tissue Engineering and the Future of Uterus Transplantation. Ann Biomed Eng 2016; 45:1718-1730. [PMID: 27995397 PMCID: PMC5489617 DOI: 10.1007/s10439-016-1776-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
The recent successful births following live donor uterus transplantation are proof-of-concept that absolute uterine factor infertility is a treatable condition which affects several hundred thousand infertile women world-wide due to a dysfunctional uterus. This strategy also provides an alternative to gestational surrogate motherhood which is not practiced in most countries due to ethical, religious or legal reasons. The live donor surgery involved in uterus transplantation takes more than 10 h and is then followed by years of immunosuppressive medication to prevent uterine rejection. Immunosuppression is associated with significant adverse side effects, including nephrotoxicity, increased risk of serious infections, and diabetes. Thus, the development of alternative approaches to treat absolute uterine factor infertility would be desirable. This review discusses tissue engineering principles in general, but also details strategies on how to create a bioengineered uterus that could be used for transplantation, without risky donor surgery and any need for immunosuppression. We discuss scaffolds derived from decellularized organs/tissues which may be recellularized using various types of autologous somatic/stem cells, in particular for uterine tissue engineering. It further highlights the hurdles that lay ahead in developing an alternative to an allogeneic source for uterus transplantation.
Collapse
Affiliation(s)
- Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden.
| | - Sara Bandstein
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden
| |
Collapse
|
55
|
Hawksworth OA, Coulthard LG, Woodruff TM. Complement in the fundamental processes of the cell. Mol Immunol 2016; 84:17-25. [PMID: 27894513 DOI: 10.1016/j.molimm.2016.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
Abstract
Once regarded solely as an activator of innate immunity, it is now clear that the complement system acts in an assortment of cells and tissues, with immunity only one facet of a diverse array of functions under the influence of the complement proteins. Throughout development, complement activity has now been demonstrated from early sperm-egg interactions in fertilisation, to regulation of epiboly and organogenesis, and later in refinement of cerebral synapses. Complement has also been shown to regulate homeostasis of adult tissues, controlling cell processes such as migration, survival, repair, and regeneration. Given the continuing emergence of such novel actions of complement, the existing research likely represents only a fraction of the myriad of functions of this complex family of proteins. This review is focussed on outlining the current knowledge of complement family members in the regulation of cell processes in non-immune systems. It is hoped this will spur research directed towards revealing more about the role of complement in these fundamental cell processes.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Liam G Coulthard
- School of Medicine, University of Queensland, Herston, Australia; Royal Brisbane and Women's Hospital, Herston, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
56
|
C5a/C5aR Pathway Plays a Vital Role in Brain Inflammatory Injury via Initiating Fgl-2 in Intracerebral Hemorrhage. Mol Neurobiol 2016; 54:6187-6197. [PMID: 27709492 DOI: 10.1007/s12035-016-0141-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is a serious emergency with high mortality and morbidity. Up to date, a limited understanding of ICH pathogenesis is difficult to implement effective therapeutic strategy. Much evidence demonstrates that the complement cascade is activated after experimental ICH. However, the exact mechanism has not been well studied in ICH. In the current study, C57BL/6J mice were injected with autologous whole blood. C5a/C5aR levels, microglia infiltration, inflammatory cytokine, and fibrinogen-like protein 2 (Fgl-2) expression in the perihematomal region were analyzed following ICH. In addition, brain water content and neurological dysfunction were detected following ICH. Our data demonstrated that ICH induced complement activation, along with an increase of C5a/C5aR levels, microglia infiltration, and inflammatory cytokine levels. However, C5aR-/- mice exhibited significant attenuation of inflammatory reaction, accompanied by a remarkable reduction of Fgl-2, brain water content, and neurological dysfunction. Furthermore, inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 efficiently inhibited C5a-mediated Fgl-2 production following ICH. Taken together, these data suggest that C5a/C5aR plays a vital role in the ICH-induced inflammatory damage via Fgl-2, and ERK1/2 and p38 pathways also are involved in the pathogenesis of ICH. Therefore, inhibition of C5a/C5aR activation might enlarge our insights in ICH therapy.
Collapse
|
57
|
Brennan FH, Kurniawan ND, Vukovic J, Bartlett PF, Käsermann F, Arumugam TV, Basta M, Ruitenberg MJ. IVIg attenuates complement and improves spinal cord injury outcomes in mice. Ann Clin Transl Neurol 2016; 3:495-511. [PMID: 27386499 PMCID: PMC4931715 DOI: 10.1002/acn3.318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
Objective Traumatic spinal cord injury (SCI) elicits immediate neural cell death, axonal damage, and disruption of the blood–spinal cord barrier, allowing circulating immune cells and blood proteins into the spinal parenchyma. The inflammatory response to SCI involves robust complement system activation, which contributes to secondary injury and impairs neurological recovery. This study aimed to determine whether intravenous immunoglobulin (IVIg), an FDA‐approved treatment for inflammatory conditions, can scavenge complement activation products and improve recovery from contusive SCI. Methods We used functional testing, noninvasive imaging, and detailed postmortem analysis to assess whether IVIg therapy is effective in a mouse model of severe contusive SCI. Results IVIg therapy at doses of 0.5–2 g/kg improved the functional and histopathological outcomes from SCI, conferring protection against lesion enlargement, demyelination, central canal dilation, and axonal degeneration. The benefits of IVIg were detectable through noninvasive diffusion tensor imaging (DTI), with IVIg treatment counteracting the progressive SCI‐induced increase in radial diffusivity (RD) in white matter. Diffusion indices significantly correlated with the functional performance of individual mice and accurately predicted the degree of myelin preservation. Further experiments revealed that IVIg therapy reduced the presence of complement activation products and phagocytically active macrophages at the lesion site, providing insight as to its mechanisms of action. Interpretation Our findings highlight the potential of using IVIg as an immunomodulatory treatment for SCI, and the value of DTI to assess tissue damage and screen for the efficacy of candidate intervention strategies in preclinical models of SCI, both quantitatively and noninvasively.
Collapse
Affiliation(s)
- Faith H Brennan
- School of Biomedical Sciences The University of Queensland Brisbane 4072 Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Australia
| | - Jana Vukovic
- School of Biomedical Sciences The University of Queensland Brisbane 4072 Australia; Queensland Brain Institute The University of Queensland Brisbane 4072 Australia
| | - Perry F Bartlett
- Queensland Brain Institute The University of Queensland Brisbane 4072 Australia
| | | | - Thiruma V Arumugam
- Department of Physiology Yong Loo Lin School of Medicine National University of Singapore 117597 Singapore
| | - Milan Basta
- BioVisions Inc. 9012 Wandering Trail Dr Potomac Maryland 20854 USA
| | - Marc J Ruitenberg
- School of Biomedical Sciences The University of Queensland Brisbane 4072 Australia; Queensland Brain Institute The University of Queensland Brisbane 4072 Australia; Trauma Critical Care and Recovery Brisbane Diamantina Health Partners The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
58
|
Granados-Durán P, López-Ávalos MD, Hughes TR, Johnson K, Morgan BP, Tamburini PP, Fernández-Llebrez P, Grondona JM. Complement system activation contributes to the ependymal damage induced by microbial neuraminidase. J Neuroinflammation 2016; 13:115. [PMID: 27209022 PMCID: PMC4875702 DOI: 10.1186/s12974-016-0576-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023] Open
Abstract
Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement.
Collapse
Affiliation(s)
- Pablo Granados-Durán
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - María Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Krista Johnson
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT, 06410, USA
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Paul P Tamburini
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, CT, 06410, USA
| | - Pedro Fernández-Llebrez
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain
| | - Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, 29071, Spain.
| |
Collapse
|
59
|
Eriksson CE, Studahl M, Bergström T. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis. J Neuroimmunol 2016; 295-296:130-8. [PMID: 27235358 DOI: 10.1016/j.jneuroim.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation.
Collapse
Affiliation(s)
- Charlotta E Eriksson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Östra, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
60
|
Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci 2016; 10:98. [PMID: 27147970 PMCID: PMC4829593 DOI: 10.3389/fncel.2016.00098] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | | | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
61
|
Brennan FH, Lee JD, Ruitenberg MJ, Woodruff TM. Therapeutic targeting of complement to modify disease course and improve outcomes in neurological conditions. Semin Immunol 2016; 28:292-308. [PMID: 27049459 DOI: 10.1016/j.smim.2016.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022]
Abstract
The recognition that complement proteins are abundantly present and can have pathological roles in neurological conditions offers broad scope for therapeutic intervention. Accordingly, an increasing number of experimental investigations have explored the potential of harnessing the unique activation pathways, proteases, receptors, complexes, and natural inhibitors of complement, to mitigate pathology in acute neurotrauma and chronic neurodegenerative diseases. Here, we review mechanisms of complement activation in the central nervous system (CNS), and explore the effects of complement inhibition in cerebral ischemic-reperfusion injury, traumatic brain injury, spinal cord injury, Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. We consider the challenges and opportunities arising from these studies. As complement therapies approach clinical translation, we provide perspectives on how promising complement-targeted therapeutics could become part of novel and effective future treatment options to improve outcomes in the initiation and progression stages of these debilitating CNS disorders.
Collapse
Affiliation(s)
- Faith H Brennan
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia; Trauma, Critical Care and Recovery, Brisbane Diamantina Health Partners, The University of Queensland, Brisbane 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
62
|
Rich MC, Keene CN, Neher MD, Johnson K, Yu ZX, Ganivet A, Holers VM, Stahel PF. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci Lett 2016; 617:188-94. [PMID: 26892188 DOI: 10.1016/j.neulet.2016.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/26/2022]
Abstract
Intracerebral complement activation after severe traumatic brain injury (TBI) leads to a cascade of neuroinflammatory pathological sequelae that propagate host-mediated secondary brain injury and adverse outcomes. There are currently no specific pharmacological agents on the market to prevent or mitigate the development of secondary cerebral insults after TBI. A novel chimeric CR2-fH compound (mTT30) provides targeted inhibition of the alternative complement pathway at the site of tissue injury. This experimental study was designed to test the neuroprotective effects of mTT30 in a mouse model of closed head injury. The administration of 500 μg mTT30 i.v. at 1 h, 4 h and 24 h after head injury attenuated complement C3 deposition in injured brains, reduced the extent of neuronal cell death, and decreased post-injury microglial activation, compared to vehicle-injected placebo controls. These data imply that site-targeted alternative pathway complement inhibition may represent a new promising therapeutic avenue for the future management of severe TBI.
Collapse
Affiliation(s)
- Megan C Rich
- Department of Orthopaedic Surgery, Denver Health Medical Center and University of Colorado School of Medicine, Denver, CO 80204, USA
| | - Chesleigh N Keene
- Department of Orthopaedic Surgery, Denver Health Medical Center and University of Colorado School of Medicine, Denver, CO 80204, USA
| | - Miriam D Neher
- Department of Orthopaedic Surgery, Denver Health Medical Center and University of Colorado School of Medicine, Denver, CO 80204, USA
| | | | - Zhao-Xue Yu
- Alexion Pharmaceuticals, Cheshire, CT 06410, USA
| | - Antoine Ganivet
- Department of Orthopaedic Surgery, Denver Health Medical Center and University of Colorado School of Medicine, Denver, CO 80204, USA
| | - V Michael Holers
- Department of Medicine and Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Philip F Stahel
- Department of Orthopaedic Surgery, Denver Health Medical Center and University of Colorado School of Medicine, Denver, CO 80204, USA; Department of Neurosurgery, University of Colorado School of Medicine, Denver, CO 80204, USA.
| |
Collapse
|
63
|
Wu F, Zou Q, Ding X, Shi D, Zhu X, Hu W, Liu L, Zhou H. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. J Neuroinflammation 2016; 13:23. [PMID: 26822321 PMCID: PMC4731990 DOI: 10.1186/s12974-016-0485-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complement system is becoming increasingly recognized as a key participant in many neurodegenerative diseases of the brain. Complement-deficient animals exhibit reduced neuroinflammation. METHODS In the present study, we administered intracerebroventricularly lipopolysaccharide (LPS) to mimic local infection of the brain and investigated the role of key complement component C3 in brain vasculature endothelial activation and leukocyte recruitment. The degree of neutrophil infiltration was determined by esterase staining. Leukocyte-endothelial interactions were measured using intravital microscopy. Cerebral endothelial activation was evaluated using real-time PCR and Western blotting. RESULTS Neutrophil infiltration into the brain cortex and hippocampus was significantly reduced in C3(-/-) mice and C3aR(-/-) mice but not in C6(-/-) mice. We detected markedly attenuated leukocyte-endothelial interactions in the brain microvasculature of C3(-/-) mice. Accordingly, in response to LPS administration, the brain microvasculature in these mice had decreased expression of P-selectin, E-selectin, intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1). Depletion of C3 from the circulation also caused reduction in VCAM-1 and E-selectin expression and leukocyte recruitment, suggesting that C3 in the circulation contributed to brain endothelial activation. Furthermore, C3(-/-) mice exhibited decreased leukocyte recruitment into the brain upon tumor necrosis factor-α (TNF-α) stimulation. C3a activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) and induced the upregulation of VCAM-1 and ICAM-1 expression in murine primary cerebral endothelial cells in vitro. CONCLUSIONS Our study provides the first evidence that C3a plays a critical role in cerebral endothelial activation and leukocyte recruitment during inflammation in the brain.
Collapse
Affiliation(s)
- Fengjiao Wu
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Qiang Zou
- Department of Immunology, Chengdu Medical College, Chengdu, 610083, Sichuan, China.
| | - Xiaodan Ding
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Xingxing Zhu
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Weiguo Hu
- Shanghai Cancer Center and Institute of Biomedical Science, Shanghai Medical College, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| |
Collapse
|
64
|
Alawieh A, Elvington A, Zhu H, Yu J, Kindy MS, Atkinson C, Tomlinson S. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. J Neuroinflammation 2015; 12:247. [PMID: 26714866 PMCID: PMC4696299 DOI: 10.1186/s12974-015-0464-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/20/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Complement promotes neuroinflammation and injury in models of stroke. However, complement is also being increasingly implicated in repair and regeneration after central nervous system (CNS) injury, and some complement deficiencies have been shown to provide acute, but not subacute, protection after murine stroke. Here, we investigate the dual role of complement in injury and repair after cerebral ischemia and reperfusion. METHODS We used complement-deficient mice and different complement inhibitors in a model of transient middle cerebral artery occlusion to investigate complement-dependent cellular and molecular changes that occur through the subacute phase after stroke. RESULTS C3 deficiency and site-targeted complement inhibition with either CR2-Crry (inhibits all pathways) or CR2-fH (inhibits alternative pathway) significantly reduced infarct size, reduced apoptotic cell death, and improved neurological deficit score in the acute phase after stroke. However, only in CR2-fH-treated mice was there sustained protection with no evolution of injury in the subacute phase. Whereas both inhibitors significantly reduced microglia/macrophage activation and astrogliosis in the subacute phase, only CR2-fH improved neurological deficit and locomotor function, maintained neurogenesis markers, enhanced neuronal migration, and increased VEGF expression. These findings in CR2-fH-treated mice correlated with improved performance in spatial learning and passive avoidance tasks. The complement anaphylatoxins have been implicated in repair and regenerative mechanisms after CNS injury, and in this context CR2-fH significantly reduced, but did not eliminate the generation of C5a within the brain, unlike CR2-Crry that completely blocked C5a generation. Gene expression profiling revealed that CR2-fH treatment downregulated genes associated with apoptosis, TGFβ signaling, and neutrophil activation, and decreased neutrophil infiltration was confirmed by immunohistochemistry. CR2-fH upregulated genes for neural growth factor and mediators of neurogenesis and neuronal migration. Live animal imaging demonstrated that following intravenous injection, CR2-fH targeted specifically to the post-ischemic brain, with a tissue half-life of 48.5 h. Finally, unlike C3 deficiency, targeted complement inhibition did not increase susceptibility to lethal post-stroke infection, an important consideration for stroke patients. CONCLUSIONS Ischemic brain tissue-targeted and selective inhibition of alternative complement pathway provide self-limiting inhibition of complement activation and reduces acute injury while maintaining complement-dependent recovery mechanisms into the subacute phase after stroke.
Collapse
Affiliation(s)
- Ali Alawieh
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue BSB 201, Charleston, SC, 29425, USA.
| | - Andrew Elvington
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue BSB 201, Charleston, SC, 29425, USA.
| | - Hong Zhu
- Department of Neuroscience, Neuroscience Institute, Medical University of South Carolina, Charleston, SC, USA.
| | - Jin Yu
- Department of Neuroscience, Neuroscience Institute, Medical University of South Carolina, Charleston, SC, USA.
| | - Mark S Kindy
- Department of Neuroscience, Neuroscience Institute, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC, USA.
| | - Carl Atkinson
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue BSB 201, Charleston, SC, 29425, USA.
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue BSB 201, Charleston, SC, 29425, USA. .,Ralph H. Johnson Veteran Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
65
|
Pan JW, Gao XW, Jiang H, Li YF, Xiao F, Zhan RY. Low serum ficolin-3 levels are associated with severity and poor outcome in traumatic brain injury. J Neuroinflammation 2015; 12:226. [PMID: 26627059 PMCID: PMC4666053 DOI: 10.1186/s12974-015-0444-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Ficolin-mediated activation of the lectin pathway of complement contributes to the complement-independent inflammatory processes of traumatic brain injury. Lower serum ficolin-3 levels have been demonstrated to be highly associated with unfavorable outcome after ischemic stroke. This prospective observatory study was designed to investigate the relationships between serum ficolin-3 levels and injury severity and clinical outcomes after severe traumatic brain injury. Methods Serum ficolin-3 levels of 128 patients and 128 healthy controls were measured by sandwich immunoassays. An unfavorable outcome was defined as Glasgow Outcome Scale score of 1–3. Study endpoints included mortality at 1 week and 6 months and unfavorable outcome at 6 months after head trauma. Injury severity was assessed by Glasgow Coma Scale score. Multivariate logistic models were structured to evaluate the relationships between serum ficolin-3 levels and study endpoints and injury severity. Results Compared with the healthy controls, serum ficolin-3 levels on admission were statistically decreased in patients with severe traumatic brain injury. Serum ficolin-3 levels were independently correlated with Glasgow Coma Scale scores. Ficolin-3 was also identified as an independent prognostic predictor for 1-week mortality, 6-month mortality, and 6-month unfavorable outcome. Under receiver operating characteristics curves, ficolin-3 has similar prognostic predictive values for all study endpoints compared with Glasgow Coma Scale scores. Conclusions It was proposed that lower serum ficolin-3 levels, correlated with injury severity, had the potential to be the useful, complementary tool to predict short- or long-term clinical outcomes after severe traumatic brain injury.
Collapse
Affiliation(s)
- Jian-Wei Pan
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Xiong-Wei Gao
- Department of Neurosurgery, Sanmen People's Hospital, 171 Renmin Road, Sanmen, 317100, People's Republic of China.
| | - Hao Jiang
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Ya-Feng Li
- Department of Neurosurgery, Sanmen People's Hospital, 171 Renmin Road, Sanmen, 317100, People's Republic of China.
| | - Feng Xiao
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Ren-Ya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
66
|
Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology 2015; 40:2774-87. [PMID: 25948102 PMCID: PMC4864653 DOI: 10.1038/npp.2015.127] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/07/2015] [Accepted: 04/24/2015] [Indexed: 11/08/2022]
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFAs) are critical components of inflammatory response and memory impairment. However, the mechanisms underlying the sensitizing effects of low n-3 PUFAs in the brain for the development of memory impairment following inflammation are still poorly understood. In this study, we examined how a 2-month n-3 PUFAs deficiency from pre-puberty to adulthood could increase vulnerability to the effect of inflammatory event on spatial memory in mice. Mice were given diets balanced or deficient in n-3 PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS), a bacterial endotoxin, at adulthood. We first showed that spatial memory performance was altered after LPS challenge only in n-3 PUFA-deficient mice that displayed lower n-3/n-6 PUFA ratio in the hippocampus. Importantly, long-term depression (LTD), but not long-term potentiation (LTP) was impaired in the hippocampus of LPS-treated n-3 PUFA-deficient mice. Proinflammatory cytokine levels were increased in the plasma of both n-3 PUFA-deficient and n-3 PUFA-balanced mice. However, only n-3 PUFA-balanced mice showed an increase in cytokine expression in the hippocampus in response to LPS. In addition, n-3 PUFA-deficient mice displayed higher glucocorticoid levels in response to LPS as compared with n-3 PUFA-balanced mice. These results indicate a role for n-3 PUFA imbalance in the sensitization of the hippocampal synaptic plasticity to inflammatory stimuli, which is likely to contribute to spatial memory impairment.
Collapse
|
67
|
Yu W, Le HW, Lu YG, Hu JA, Yu JB, Wang M, Shen W. High levels of serum mannose-binding lectins are associated with the severity and clinical outcomes of severe traumatic brain injury. Clin Chim Acta 2015; 451:111-6. [PMID: 26525964 DOI: 10.1016/j.cca.2015.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mannose-binding lectin (MBL) is a key component of innate immunity. The expression of cortical MBL is up-regulated after clinical and experimental head trauma. This study aimed to assess the association of serum MBL levels with injury severity and long-term clinical outcomes after severe traumatic brain injury (STBI). METHODS Serum MBL levels were measured in 122 patients and 100 healthy controls. Multivariate analyses were used to analyze the relationship between serum MBL levels and trauma severity reflected by Glasgow Coma Scale scores as well as between serum MBL levels and 6-month mortality and unfavorable outcome (Glasgow Outcome Scale score: 1-3). A receiver operating characteristic (ROC) curve was structured to evaluate the prognostic predictive performance of serum MBL levels. RESULTS Compared with healthy controls, serum MBL levels of patients were markedly elevated. Using multivariate analyses, serum MBL levels were found to be associated closely with Glasgow Coma Scale (GCS) scores and MBL emerged as an independent predictor for 6-month mortality and unfavorable outcome. Under ROC curve, serum MBL levels and GCS scores possessed similar prognostic predictive values. CONCLUSION Increased serum level of MBL was independently associated with head trauma severity and long-term clinical outcomes of STBI.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neurosurgery, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo 315800, China
| | - Hai-Wei Le
- Department of Neurosurgery, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo 315800, China
| | - Yi-Gao Lu
- Department of Neurosurgery, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo 315800, China
| | - Jun-An Hu
- Department of Neurosurgery, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo 315800, China
| | - Jian-Bo Yu
- Department o f Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Ming Wang
- Department o f Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Wei Shen
- Department of Neurosurgery, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School of Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo 315800, China.
| |
Collapse
|
68
|
Active immunization against complement factor C5a: a new therapeutic approach for Alzheimer's disease. J Neuroinflammation 2015; 12:150. [PMID: 26275910 PMCID: PMC4537556 DOI: 10.1186/s12974-015-0369-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/27/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by neuronal loss due to amyloid beta aggregations, neurofibrillary tangles, and prominent neuroinflammation. Recently, interference with neuroinflammation as a new therapeutic approach for AD treatment gained great interest. Microglia cells, one of the major contributors in neuroinflammation, are activated in response to misfolded proteins such as amyloid β and cell debris leading to a sustained release of pro-inflammatory mediators. Especially, complement factor C5a and its receptor have been found to be up-regulated in microglia in the immediate surroundings of cerebral amyloid plaques and blocking of C5aR resulted in a reduction of pathological markers in a model of AD. Here, we investigate the effect of active vaccination against the complement factor C5a to interfere with neuroinflammation and neuropathologic alterations in a mouse model of AD. METHODS Short antigenic peptides AFF1 and AFF2, which mimic a C-terminal epitope of C5a, were selected and formulated to vaccines. These vaccines are able to induce a highly specific antibody response to the target protein C5a. Tg2576 mice, a common model of AD, were immunized with these two C5a-peptide vaccines and the induced immune response toward C5a was analyzed by ELISA and Western blot analysis. The influence on memory retention was assessed by a contextual fear conditioning test. Microglia activation and amyloid plaque deposition in the brain was visualized by immunohistochemistry. RESULTS Both C5a-targeting vaccines were highly immunogenic and induced sustained antibody titers against C5a. Tg2576 mice vaccinated at early stages of the disease showed significantly improved contextual memory accompanied by the reduction of microglia activation in the hippocampus and cerebral amyloid plaque load compared to control mice. Late-stage immunization also showed a decrease in the number of activated microglia, and improved memory function, however, had no influence on the amyloid β load. CONCLUSION C5a-peptide vaccines represent a safe and well-tolerated immunotherapy, which is able to induce a strong and specific immune response against the pro-inflammatory molecule C5a. In a mouse model of AD, C5a-peptide vaccines reduce microglia activation and thus neuroinflammation, which is supposed to lead to reduced neuronal dysfunction and AD symptomatic decline.
Collapse
|
69
|
Mild hypothermia inhibits systemic and cerebral complement activation in a swine model of cardiac arrest. J Cereb Blood Flow Metab 2015; 35:1289-95. [PMID: 25757755 PMCID: PMC4528002 DOI: 10.1038/jcbfm.2015.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/16/2015] [Indexed: 01/13/2023]
Abstract
Complement activation has been implicated in ischemia/reperfusion injury. This study aimed to determine whether mild hypothermia (HT) inhibits systemic and cerebral complement activation after resuscitation from cardiac arrest. Sixteen minipigs resuscitated from 8 minutes of untreated ventricular fibrillation were randomized into two groups: HT group (n=8), treated with HT (33°C) for 12 hours; and normothermia group (n=8), treated similarly as HT group except for cooling. Blood samples were collected at baseline and 0.5, 6, 12, and 24 hours after return of spontaneous circulation (ROSC). The brain cortex was harvested 24 hours after ROSC. Complement and pro-inflammatory markers were detected using enzyme-linked immunosorbent assay. Neurologic deficit scores were evaluated 24 hours after ROSC. C1q, Bb, mannose-binding lectin (MBL), C3b, C3a, C5a, interleukin-6, and tumor necrosis factor-α levels were significantly increased under normothermia within 24 hours after ROSC. However, these increases were significantly reduced by HT. Hypothermia decreased brain C1q, MBL, C3b, and C5a contents 24 hours after ROSC. Hypothermic pigs had a better neurologic outcome than normothermic pigs. In conclusion, complement is activated through classic, alternative, and MBL pathways after ROSC. Hypothermia inhibits systemic and cerebral complement activation, which may provide an additional mechanism of cerebral protection.
Collapse
|
70
|
Scranton RA, Baskin DS. Impaired Pituitary Axes Following Traumatic Brain Injury. J Clin Med 2015; 4:1463-79. [PMID: 26239686 PMCID: PMC4519800 DOI: 10.3390/jcm4071463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Abstract
Pituitary dysfunction following traumatic brain injury (TBI) is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%-40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed.
Collapse
Affiliation(s)
- Robert A Scranton
- Department of Neurosurgery and the Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 944, Houston, TX 77030, USA.
| | - David S Baskin
- Department of Neurosurgery and the Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist Neurological Institute, 6560 Fannin St. Suite 944, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res 2015; 141:42-56. [PMID: 26116903 DOI: 10.1016/j.exer.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.
Collapse
|
72
|
Lee M, Wathier M, Love JA, McGeer E, McGeer PL. Inhibition of aberrant complement activation by a dimer of acetylsalicylic acid. Neurobiol Aging 2015; 36:2748-56. [PMID: 26248865 DOI: 10.1016/j.neurobiolaging.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023]
Abstract
We here report synthesis for the first time of the acetyl salicylic acid dimer 5,5'-methylenebis(2-acetoxybenzoic acid) (DAS). DAS inhibits aberrant complement activation by selectively blocking factor D of the alternative complement pathway and C9 of the membrane attack complex. We have previously identified aurin tricarboxylic and its oligomers as promising agents in this regard. DAS is much more potent, inhibiting erythrocyte hemolysis by complement-activated serum with an IC50 in the 100-170 nanomolar range. There are numerous conditions where self-damage from the complement system has been implicated in the pathology, including such chronic degenerative diseases of aging as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and age-related macular degeneration. Consequently, there is a high priority for the discovery and development of agents that can successfully treat such conditions. DAS holds considerable promise for being such an agent.
Collapse
Affiliation(s)
- Moonhee Lee
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Wathier
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer A Love
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edith McGeer
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
73
|
Brennan FH, Gordon R, Lao HW, Biggins PJ, Taylor SM, Franklin RJM, Woodruff TM, Ruitenberg MJ. The Complement Receptor C5aR Controls Acute Inflammation and Astrogliosis following Spinal Cord Injury. J Neurosci 2015; 35:6517-31. [PMID: 25904802 PMCID: PMC6605214 DOI: 10.1523/jneurosci.5218-14.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/26/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022] Open
Abstract
This study investigated the role of the complement activation fragment C5a in secondary pathology following contusive spinal cord injury (SCI). C5ar(-/-) mice, which lack the signaling receptor for C5a, displayed signs of improved locomotor recovery and reduced inflammation during the first week of SCI compared with wild-type mice. Intriguingly, the early signs of improved recovery in C5ar(-/-) mice deteriorated from day 14 onward, with absence of C5aR ultimately leading to poorer functional outcomes, larger lesion volumes, reduced myelin content, and more widespread inflammation at 35 d SCI. Pharmacological blockade of C5aR with a selective antagonist (C5aR-A) during the first 7 d after SCI improved recovery compared with vehicle-treated mice, and this phenotype was sustained up to 35 d after injury. Consistent with observations made in C5ar(-/-) mice, these improvements were, however, lost if C5aR-A administration was continued into the more chronic phase of SCI. Signaling through the C5a-C5aR axis thus appears injurious in the acute period but serves a protective and/or reparative role in the post-acute phase of SCI. Further experiments in bone marrow chimeric mice suggested that the dual and opposing roles of C5aR on SCI outcomes primarily relate to its expression on CNS-resident cells and not infiltrating leukocytes. Additional in vivo and in vitro studies provided direct evidence that C5aR signaling is required during the postacute phase for astrocyte hyperplasia, hypertrophy, and glial scar formation. Collectively, these findings highlight the complexity of the inflammatory response to SCI and emphasize the importance of optimizing the timing of therapeutic interventions.
Collapse
Affiliation(s)
- Faith H Brennan
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Richard Gordon
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Hong W Lao
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Patrick J Biggins
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Stephen M Taylor
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Robin J M Franklin
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute & Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, United Kingdom
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia, Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia, and Trauma, Critical Care and Recovery, Brisbane Diamantina Health Partners, Brisbane, 4072, Australia
| |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW Much research in transplantation focuses on treatments for rejection and induction of tolerance. Recent evidence has shown that initial inflammation induced by innate immune effectors after transplantation has a key role in modulating adaptive immune responses that cause organ rejection. Here, we describe the role of the innate immune system, particularly the complement activation pathways, and how they influence adaptive immune responses post-transplantation and current strategies, which are under development to block these innate pathways. RECENT FINDINGS Anaphylatoxins and their respective receptors are proving to be important in T-cell-mediated immunity and make attractive targets for therapies designed to promote tolerance in solid organ transplantation. Additionally, regulators of complement activation are currently being tested in clinical trials, with improvements in drug delivery. SUMMARY Preventing ischaemia-reperfusion injury in transplanted organs significantly reduces immune activation and promotes graft survival. Research into the mechanisms of complement activation in both native organ ischaemia and transplantation models detail emerging roles for complement intermediates that can serve as targets for intervention, with the aim of reducing early post-transplant inflammation, reducing the intensity of immunosuppressive regimens, leading to prolonged graft survival.
Collapse
|
75
|
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 2014; 8:380. [PMID: 25426028 PMCID: PMC4224073 DOI: 10.3389/fncel.2014.00380] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 01/30/2023] Open
Abstract
The immune response after brain injury is highly complex and involves both local and systemic events at the cellular and molecular level. It is associated to a dramatic over-activation of enzyme systems, the expression of proinflammatory genes and the activation/recruitment of immune cells. The complement system represents a powerful component of the innate immunity and is highly involved in the inflammatory response. Complement components are synthesized predominantly by the liver and circulate in the bloodstream primed for activation. Moreover, brain cells can produce complement proteins and receptors. After acute brain injury, the rapid and uncontrolled activation of the complement leads to massive release of inflammatory anaphylatoxins, recruitment of cells to the injury site, phagocytosis and induction of blood brain barrier (BBB) damage. Brain endothelial cells are particularly susceptible to complement-mediated effects, since they are exposed to both circulating and locally synthesized complement proteins. Conversely, during neurodegenerative disorders, complement factors play distinct roles depending on the stage and degree of neuropathology. In addition to the deleterious role of the complement, increasing evidence suggest that it may also play a role in normal nervous system development (wiring the brain) and adulthood (either maintaining brain homeostasis or supporting regeneration after brain injury). This article represents a compendium of the current knowledge on the complement role in the brain, prompting a novel view that complement activation can result in either protective or detrimental effects in brain conditions that depend exquisitely on the nature, the timing and the degree of the stimuli that induce its activation. A deeper understanding of the acute, subacute and chronic consequences of complement activation is needed and may lead to new therapeutic strategies, including the ability of targeting selective step in the complement cascade.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Experimental and Clinical Sciences, University of Chieti Pescara, Italy
| | - Rosalia Zangari
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy ; Department of Anesthesia and Critical Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri Milan, Italy
| |
Collapse
|
76
|
Mastellos DC. Complement emerges as a masterful regulator of CNS homeostasis, neural synaptic plasticity and cognitive function. Exp Neurol 2014; 261:469-74. [DOI: 10.1016/j.expneurol.2014.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/09/2023]
|
77
|
Famakin BM. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. Aging Dis 2014; 5:307-26. [PMID: 25276490 DOI: 10.14336/ad.2014.0500307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, Stroke Branch, Branch, Bethesda, MD, 20892, USA
| |
Collapse
|
78
|
Wysoczynski M, Solanki M, Borkowska S, van Hoose P, Brittian KR, Prabhu SD, Ratajczak MZ, Rokosh G. Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction. Stem Cells 2014; 32:2502-15. [PMID: 24806427 PMCID: PMC4394869 DOI: 10.1002/stem.1743] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/30/2014] [Accepted: 04/04/2014] [Indexed: 12/16/2022]
Abstract
Activation of the complement cascade (CC) with myocardial infarction (MI) acutely initiates immune cell infiltration, membrane attack complex formation on injured myocytes, and exacerbates myocardial injury. Recent studies implicate the CC in mobilization of stem/progenitor cells and tissue regeneration. Its role in chronic MI is unknown. Here, we consider complement component C3, in the chronic response to MI. C3 knockout (KO) mice were studied after permanent coronary artery ligation. C3 deficiency exacerbated myocardial dysfunction 28 days after MI compared to WT with further impaired systolic function and LV dilation despite similar infarct size 24 hours post-MI. Morphometric analysis 28 days post-MI showed C3 KO mice had more scar tissue with less viable myocardium within the infarct zone which correlated with decreased c-kit(pos) cardiac stem/progenitor cells (CPSC), decreased proliferating Ki67(pos) CSPCs and decreased formation of new BrdU(pos) /α-sarcomeric actin(pos) myocytes, and increased apoptosis compared to WT. Decreased CSPCs and increased apoptosis were evident 7 days post-MI in C3 KO hearts. The inflammatory response with MI was attenuated in the C3 KO and was accompanied by attenuated hematopoietic, pluripotent, and cardiac stem/progenitor cell mobilization into the peripheral blood 72 hours post-MI. These results are the first to demonstrate that CC, through C3, contributes to myocardial preservation and regeneration in response to chronic MI. Responses in the C3 KO infer that C3 activation in response to MI expands the resident CSPC population, increases new myocyte formation, increases and preserves myocardium, inflammatory response, and bone marrow stem/progenitor cell mobilization to preserve myocardial function.
Collapse
Affiliation(s)
| | - Mitesh Solanki
- Institute of Molecular Cardiology, University of Louisville, USA
| | - Sylwia Borkowska
- James Graham Brown Cancer Center, University of Louisville, Louisville, USA
| | | | | | - Sumanth D. Prabhu
- Institute of Molecular Cardiology, University of Louisville, USA
- Division of Cardiovascular Disease, University of Alabama-Birmingham, Birmingham, USA
| | | | - Gregg Rokosh
- Institute of Molecular Cardiology, University of Louisville, USA
| |
Collapse
|
79
|
Amor S, Peferoen LAN, Vogel DYS, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases--an update. Immunology 2014; 142:151-66. [PMID: 24329535 DOI: 10.1111/imm.12233] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, the Netherlands; Neuroimmunology Unit, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|
80
|
Deficiency of complement receptors CR2/CR1 in Cr2⁻/⁻ mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation 2014; 11:95. [PMID: 24885042 PMCID: PMC4050415 DOI: 10.1186/1742-2094-11-95] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022] Open
Abstract
Complement activation at the C3 convertase level has been associated with acute neuroinflammation and secondary brain injury after severe head trauma. The present study was designed to test the hypothesis that Cr2-/- mice, which lack the receptors CR2/CD21 and CR1/CD35 for complement C3-derived activation fragments, are protected from adverse sequelae of experimental closed head injury. Adult wild-type mice and Cr2-/- mice on a C57BL/6 genetic background were subjected to focal closed head injury using a standardized weight-drop device. Head-injured Cr2-/- mice showed significantly improved neurological outcomes for up to 72 hours after trauma and a significantly decreased post-injury mortality when compared to wild-type mice. In addition, the Cr2-/- genotype was associated with a decreased extent of neuronal cell death at seven days post-injury. Western blot analysis revealed that complement C3 levels were reduced in the injured brain hemispheres of Cr2-/- mice, whereas plasma C3 levels remained unchanged, compared to wild-type mice. Finally, head-injured Cr2-/- had an attenuated extent of post-injury C3 tissue deposition, decreased astrocytosis and microglial activation, and attenuated immunoglobulin M deposition in injured brains compared to wild-type mice. Targeting of these receptors for complement C3 fragments (CR2/CR1) may represent a promising future approach for therapeutic immunomodulation after traumatic brain injury.
Collapse
|
81
|
Peruzzotti-Jametti L, Donegá M, Giusto E, Mallucci G, Marchetti B, Pluchino S. The role of the immune system in central nervous system plasticity after acute injury. Neuroscience 2014; 283:210-221. [PMID: 24785677 DOI: 10.1016/j.neuroscience.2014.04.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Abstract
Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization.
Collapse
Affiliation(s)
| | - Matteo Donegá
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Elena Giusto
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences
| | - Giulia Mallucci
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,Department of Brain and Behavioural sciences, National Neurological Institute C. Mondino, 27100 Pavia, Italy
| | - Bianca Marchetti
- Department of Clinical and Molecular Biomedicine, Pharmacology Section, Medical School, University of Catania, 95125 Catania, Italy.,OASI Institute for Research and Care on Mental Retardation and Brain Aging, Neuropharmacology Section, 94018 Troina, Italy
| | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Dept of Clinical Neurosciences.,NIHR Biomedical Research Centre.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, CB2 0PY, UK
| |
Collapse
|
82
|
Tzekou A, Fehlings MG. Treatment of spinal cord injury with intravenous immunoglobulin G: preliminary evidence and future perspectives. J Clin Immunol 2014; 34 Suppl 1:S132-8. [PMID: 24722853 PMCID: PMC4050295 DOI: 10.1007/s10875-014-0021-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 01/18/2023]
Abstract
Neuroinflammation plays an important role in the secondary pathophysiological mechanisms of spinal cord injury (SCI) and can exacerbate the primary trauma and thus worsen recovery. Although some aspects of the immune response are beneficial, it is thought that leukocyte recruitment and activation in the acute phase of injury results in the production of cytotoxic substances that are harmful to the nervous tissue. Therefore, suppression of excessive inflammation in the spinal cord could serve as a therapeutic strategy to attenuate tissue damage. The immunosuppressant methylprednisolone has been used in the setting of SCI, but there are complications which have attenuated the initial enthusiasm. Hence, there is interest in other immunomodulatory approaches, such as intravenous Immunoglobulin G (IVIg). Importantly, IVIg is used clinically for the treatment of several auto-immune neuropathies, such as Guillain-Barre syndrome, chronic inflammatory demyelinating polyneuropathy (CIPD) and Kawasaki disease, with a good safety profile. Thus, it is a promising treatment candidate for SCI. Indeed, IVIg has been shown by our team to attenuate the immune response and result in improved neurobehavioral recovery following cervical SCI in rats through a mechanism that involves the attenuation of neutrophil recruitment and reduction in the levels of cytokines and cytotoxic enzymes Nguyen et al. (J Neuroinflammation 9:224, 2012). Here we review published data in the context of relevant mechanisms of action that have been proposed for IVIg in other conditions. We hope that this discussion will trigger future research to provide supporting evidence for the efficiency and detailed mechanisms of action of this promising drug in the treatment of SCI, and to facilitate its clinical translation.
Collapse
Affiliation(s)
- Apostolia Tzekou
- Toronto Western Research Institute and Krembil Neuroscience Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Michael G. Fehlings
- Toronto Western Research Institute and Krembil Neuroscience Centre, University Health Network, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst St. Suite 4WW-449, Toronto, ON M5T2S8 Canada
| |
Collapse
|
83
|
Rutar M, Valter K, Natoli R, Provis JM. Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina. PLoS One 2014; 9:e93343. [PMID: 24705166 PMCID: PMC3976274 DOI: 10.1371/journal.pone.0093343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. METHODS SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes. RESULTS C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines. CONCLUSIONS Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.
Collapse
Affiliation(s)
- Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Jan M. Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| |
Collapse
|
84
|
Ohmi Y, Ohkawa Y, Tajima O, Sugiura Y, Furukawa K, Furukawa K. Ganglioside deficiency causes inflammation and neurodegeneration via the activation of complement system in the spinal cord. J Neuroinflammation 2014; 11:61. [PMID: 24673754 PMCID: PMC3986855 DOI: 10.1186/1742-2094-11-61] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
Background Gangliosides, sialic acid-containing glycosphingolipids, are highly expressed in nervous systems of vertebrates and have been considered to be involved in the development, differentiation, and function of nervous tissues. Recent studies with gene-engineered animals have revealed that they play roles in the maintenance and repair of nervous tissues. In particular, knockout (KO) mice of various ganglioside synthase genes have exhibited progressive neurodegeneration with aging. However, neurological disorders and pathological changes in the spinal cord of these KO mice have not been reported to date. Therefore, we examined neurodegeneration in double knockout (DKO) mice of ganglioside GM2/GD2 synthase (B4GANLT1) and GD3 synthase (ST8SIA1) genes to clarify roles of gangliosides in the spinal cord. Methods Motor neuron function was examined by gait analysis, and sensory function was analyzed by von Frey test. Pathological changes were analyzed by staining tissue sections with Klüver-Barrera staining and by immunohistochemistry with F4/80 and glial fibrillary acidic protein (GFAP). Gene expression profiles were examined by using DNA micro-array of RNAs from the spinal cord of mice. Triple knockout mice were generated by mating DKO and complement component 3 (C3)-KO mice. Gene expression of the complement system and cytokines was examined by reverse transcription-polymerase chain reaction (RT-PCR) as a function of age. Results DKO mice showed progressive deterioration with aging. Correspondingly, they exhibited shrunk spinal cord, reduced thickness of spinal lamina II and III, and reduced neuronal numbers in spinal lamina IX, spinal lamina II, and spinal lamina I. Complement-related genes were upregulated in DKO spinal cord. Moreover, complement activation and inflammatory reactions were detected by GFAP-active astrocyte, microglial accumulation, and increased inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) and interleukin-1-beta (IL-1β). Triple knockout mice showed restoration of reduced neuron numbers in the spinal cord of DKO mice, getting close to levels of wild-type mice. Conclusions Disruption in the architecture of lipid rafts in the spinal cord was not so prominent, suggesting that mechanisms distinct from those reported might be involved in the complement activation in the spinal cord of DKO mice. Gene profiling revealed that inflammation and neurodegeneration in the spinal cord of DKO mice are, at least partly, dependent on complement activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| |
Collapse
|
85
|
Autoantibodies and depression. Neurosci Biobehav Rev 2014; 40:62-79. [DOI: 10.1016/j.neubiorev.2014.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/10/2013] [Accepted: 01/05/2014] [Indexed: 01/05/2023]
|
86
|
Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, Caballero-López M, Navarro-Ruiz R, Del Águila A, Maza RM. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 2014; 8:53. [PMID: 24701199 PMCID: PMC3934005 DOI: 10.3389/fncel.2014.00053] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI). Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR-486, miR-20) involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.
Collapse
Affiliation(s)
- Manuel Nieto-Diaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Francisco J Esteban
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la Salud, Universidad de Jaén Jaén, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Mónica Yunta
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain ; Unidad de Patología Mitocondrial, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III Madrid, Spain
| | - Marcos Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Rosa Navarro-Ruiz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Angela Del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| | - Rodrigo M Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (Servicio de Salud de Castilla-La Mancha) Toledo, Spain
| |
Collapse
|
87
|
Sieber MW, Guenther M, Jaenisch N, Albrecht-Eckardt D, Kohl M, Witte OW, Frahm C. Age-specific transcriptional response to stroke. Neurobiol Aging 2014; 35:1744-54. [PMID: 24529500 DOI: 10.1016/j.neurobiolaging.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Increased age is a major risk factor for stroke incidence and post-ischemic mortality. To develop age-adjusted therapeutic interventions, a clear understanding of the complexity of age-related post-ischemic mechanisms is essential. Transient occlusion of the middle cerebral artery--a model that closely resembles human stroke--was used to induce cerebral infarction in mice of 4 different ages (2, 9, 15, 24 months). By using Illumina cDNA microarrays and quantitative PCR we detected a distinct age-dependent response to stroke involving 350 differentially expressed genes. Our analyses also identified 327 differentially expressed genes that responded to stroke in an age-independent manner. These genes are involved in different aspects of the inflammatory and immune response, oxidative stress, cell cycle activation and/or DNA repair, apoptosis, cytoskeleton reorganization and/or astrogliosis, synaptic plasticity and/or neurotransmission, and depressive disorders and/or dopamine-, serotonin-, GABA-signaling. In agreement with our earlier work, aged brains displayed an attenuated inflammatory and immune response (Sieber et al., 2011) and a reduced impairment of post-stroke synaptic plasticity. Our data also revealed a distinct age-related susceptibility for post-ischemic depression, the most common neuropsychiatric consequence of stroke, which has a major influence on functional outcome.
Collapse
Affiliation(s)
- Matthias W Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Madlen Guenther
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Nadine Jaenisch
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Matthias Kohl
- Department of Mechanical and Process Engineering, Furtwangen University, Villingen-Schwenningen, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; CSCC, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
88
|
Guo Q, Cheng J, Zhang J, Su B, Bian C, Lin S, Zhong C. Delayed post-injury administration of C5a improves regeneration and functional recovery after spinal cord injury in mice. Clin Exp Immunol 2013; 174:318-25. [PMID: 23855891 DOI: 10.1111/cei.12175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 12/13/2022] Open
Abstract
The activation of a complement system can aggravate the secondary injury after spinal cord injury (SCI). However, it was reported recently that the activation of a complement could have both a secondary injury and a neuroprotective effect, in which C5a is the most important factor, but there is no direct evidence for this dual effect of C5a after SCI. In order to investigate the potential neuroprotective effect of C5a after SCI, in this study ectogenic C5a was injected intraperitoneally before/after SCI in vivo, or administrated to mechanically injured neurones in vitro; following this, neurone apoptosis, neurite outgrowth, axonal regeneration and functional recovery were investigated. The in-vivo experiments indicated that, following treatment with C5a 24 h before or immediately after injury, locomotor function was impaired significantly. However, when treatment with C5a took place 24 h after injury, locomotor function improved significantly. In-vitro experiments indicated that a certain concentration of C5a (50-100 nM) could inhibit caspase-3-mediated neurone apoptosis by binding to its receptor CD88, and that it could even promote the neurite outgrowth of uninjured neurones. In conclusion, delayed post-injury administration of C5a within a certain concentration could exert its neuroprotective effect through inhibiting caspase-3-mediated neurone apoptosis and promoting neurite outgrowth of uninjured neurones as well. These data suggest that C5a may have opposite functions in a time- and concentration-dependent manner after SCI. The dual roles of C5a have to be taken into account when measures are taken to inhibit complement activation in order to promote regeneration after SCI.
Collapse
Affiliation(s)
- Q Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
89
|
Nur I, Harada H, Tsujikura M, Somamoto T, Nakao M. Molecular characterization and expression analysis of three membrane-bound complement regulatory protein isoforms in the ginbuna crucian carp Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1333-1337. [PMID: 23954695 DOI: 10.1016/j.fsi.2013.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Regulators of complement activation (RCA) play a role in protecting cells from excessive complement activation in humans. cDNA corresponding to three isoforms of teleost membrane-bound RCA protein (gTecrem) have been identified in the ginbuna crucian carp. gTecrem-1 consists of seven short consensus repeats (SCRs), whereas gTecrem-2 and gTecrem-3 have four SCRs. While gTecrem-1 possesses a tyrosine phosphorylation site in its cytoplasmic region, gTecrem-2 and gTecrem-3 lack the site. Tissue distribution analysis showed that gTecrem-1 and gTecrem-2 mRNAs were expressed in almost all tissues examined, whereas gTecrem-2 expression was not significantly detected in gill, liver, or intestine. Furthermore, analysis showed that gTecrem-1 was expressed in both peripheral blood leukocytes (PBLs) and erythrocytes and was also expressed in T cell subsets such as CD4(+), CD8(+) T cells, and IgM(+) B cells. gTecrem-2 expression was not detected in either PBLs or erythrocytes, whereas gTecrem-3 was expressed only in erythrocytes. These results suggested that gTecrem isoforms may serve different functional roles; gTecrem-1, which is expressed in T cells and possesses a tyrosine phosphorylation site, may act as a complement regulator and a cellular receptor in adaptive immunity.
Collapse
Affiliation(s)
- Indriyani Nur
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
90
|
Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics 2013; 14:583. [PMID: 23984903 PMCID: PMC3846681 DOI: 10.1186/1471-2164-14-583] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/13/2013] [Indexed: 12/23/2022] Open
Abstract
Background The aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord. Results Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase. Conclusions This analysis showed that, surprisingly, the diverse series of molecular events that occur in the acute and subacute stages persist into the chronic stage of SCI. The strong agreement between our results and previous findings suggest that our analytical approach will be useful in revealing other biological processes and genes contributing to SCI pathology.
Collapse
|
91
|
Li Y, Chavko M, Slack JL, Liu B, McCarron RM, Ross JD, Dalle Lucca JJ. Protective effects of decay-accelerating factor on blast-induced neurotrauma in rats. Acta Neuropathol Commun 2013; 1:52. [PMID: 24252631 PMCID: PMC3893442 DOI: 10.1186/2051-5960-1-52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/05/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Blast-induced neurotrauma (BINT) is the signature life threatening injury of current military casualties. Neuroinflammation is a key pathological occurrence of secondary injury contributing to brain damage after blast injury. We have recently demonstrated that blast-triggered complement activation and cytokine release are associated with BINT. Here, we evaluated if administration of the complement inhibitor recombinant human decay-accelerating factor (rhDAF) is beneficial on neuroinflammation and neurodegeneration in a rat model of moderate BINT. Administration of rhDAF after exposure to moderate blast overpressure (BOP, 120 kPa) mitigated brain injury characterized by neuronal degeneration. rhDAF treatment reduced complement hemolytic activity at 3 hours and tissue complement deposition at 3, 24, and 48 hours as well as systemic and local cytokine release at 24 hours post BOP. Furthermore, rhDAF protected blood-brain barrier (BBB) integrity and reduced cytotoxic edema. Interaction between complement cleavage component, C3a and C3a receptor and tau phosphorylation were also attenuated in rhDAF treated animals at 3 and 24 hours after BOP. These novel findings suggest early complement targeted inhibition as a new therapeutic strategy to decrease neuroinflammation and neurodegeneration after blast TBI. RESULT Administration of rhDAF after exposure to moderate blast overpressure (BOP, 120 kPa) mitigated brain injury characterized by neuronal degeneration. rhDAF treatment reduced complement hemolytic activity at 3 hours and tissue complement deposition at 3, 24, and 48 hours as well as systemic and local cytokine release at 24 hours post BOP. Furthermore, rhDAF protected blood-brain barrier (BBB) integrity and reduced cytotoxic edema. Interaction between complement cleavage component, C3a and C3a receptor and tau phosphorylation were also attenuated in rhDAF treated animals at 3 and 24 hours after BOP. CONCLUSION These novel findings suggest early complement targeted inhibition as a new therapeutic strategy to decrease neuroinflammation and neurodegeneration after blast TBI.
Collapse
|
92
|
Mastellos DC, Deangelis RA, Lambris JD. Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis. Semin Immunol 2013; 25:29-38. [PMID: 23684626 DOI: 10.1016/j.smim.2013.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 12/16/2022]
Abstract
Adult tissue plasticity, cell reprogramming, and organ regeneration are major challenges in the field of modern regenerative medicine. Devising strategies to increase the regenerative capacity of tissues holds great promise for dealing with donor organ shortages and low transplantation outcomes and also provides essential impetus to tissue bioengineering approaches for organ repair and replacement. The inherent ability of cells to reprogram their fate by switching into an embryonic-like, pluripotent progenitor state is an evolutionary vestige that in mammals has been retained mostly in fetal tissues and persists only in a few organs of the adult body. Tissue regeneration reflects the capacity of terminally differentiated cells to re-enter the cell cycle and proliferate in response to acute injury or environmental stress signals. In lower vertebrates, this regenerative capacity extends to several organs and remarkably culminates in precise tissue patterning, through cellular transdifferentiation and complex morphogenetic processes that can faithfully reconstruct entire body parts. Many lessons have been learned from robust regeneration models in amphibians such as the newt and axolotl. However, the dynamic interactions between the regenerating tissue, the surrounding stroma, and the host immune response, as it adapts to the actively proliferating tissue, remain ill-defined. The regenerating zone, through a sequence of distinct molecular events, adopts phenotypic plasticity and undergoes rigorous tissue remodeling that, in turn, evokes a significant inflammatory response. Complement is a primordial sentinel of the innate immune response that engages in multiple inflammatory cascades as it becomes activated during tissue injury and remodeling. In this respect, complement proteins have been implicated in tissue and organ regeneration in both urodeles and mammals. Distinct complement-triggered pathways have been shown to modulate critical responses that promote tissue reprogramming, pattern formation, and regeneration across phylogenesis. This article will discuss the mechanistic insights underlying the crosstalk of complement with cytokine and growth factor signaling pathways that drive tissue regeneration and will provide a unified conceptual framework for considering complement modulation as a novel target for regenerative therapeutics.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- National Center for Scientific Research "Demokritos", Aghia Paraskevi, Athens 15310, Greece
| | | | | |
Collapse
|
93
|
Fonseca MI, McGuire SO, Counts SE, Tenner AJ. Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation 2013; 10:25. [PMID: 23394121 PMCID: PMC3605123 DOI: 10.1186/1742-2094-10-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 12/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative dementia characterized by the decline of cognition and the presence of neuropathological changes including neuronal loss, neurofibrillary pathology and extracellular senile plaques. A neuroinflammatory process is also triggered and complement activation has been hypothesized to have a relevant role in this local inflammatory response. C5a, a proinflammatory anaphylatoxin generated after complement activation, exerts its chemotactic and inflammatory functions through the CD88 receptor while the more recently discovered C5L2 receptor has been postulated to have an anti-inflammatory role. Previously, we reported that a CD88 specific antagonist (PMX205) decreased the pathology and improved cognition in transgenic models of AD suggesting that C5a/C5aR interaction has an important role in the progression of the disease. Methods The present study characterizes the expression of the two receptors for C5a in human brain with confirmed post mortem diagnosis of vascular dementia (VD) or AD as well as age matched controls by immunohistochemistry and Western blot analysis using several antibodies against different epitopes of the human receptors. Results The CD88 and C5L2 antibodies revealed increased expression of both receptors in AD samples as compared to age-matched controls or VD brain tissue by Western blot and immunohistochemistry, using multiple antibodies and distinct cohorts of brain tissue. Immunostaining showed that both the C5L2 and CD88 antibodies similarly labeled abundant neurofibrillary tangles, neuropil threads and dystrophic neurites associated with plaques in the hippocampus and frontal cortex of AD cases. In contrast, little or no neuronal staining, tangles or dystrophic neurites associated with plaques were observed in control or VD brains. CD88 and C5L2 receptors are associated with both early (AT8) and mature (PHF1) neurofibrillary tangles and can be found either independently or colocalized with each other. Conclusions The observed association of CD88 and C5L2 with neurofibrillary pathology suggests a common altered pathway of degradation.
Collapse
Affiliation(s)
- Maria I Fonseca
- Dept of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
94
|
Swardfager W, Winer DA, Herrmann N, Winer S, Lanctôt KL. Interleukin-17 in post-stroke neurodegeneration. Neurosci Biobehav Rev 2013; 37:436-47. [PMID: 23370232 DOI: 10.1016/j.neubiorev.2013.01.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/10/2012] [Accepted: 01/20/2013] [Indexed: 12/15/2022]
Abstract
Stroke is a leading cause of physical disability with neurodegenerative sequelae such as dementia and depression causing significant excess morbidity. Stroke severity can be exacerbated by apoptotic cell death in ischemic tissue, of which inflammatory activity is a key determinant. Studies have identified harmful and beneficial sets of T lymphocytes that infiltrate the brain post-stroke and their activation signals, suggesting that they might be targeted for therapeutic benefit. Animal models and human studies implicate interleukin(IL)-17 and its congeners (e.g. IL-23, IL-21) as mediators of tissue damage in the delayed phase of the inflammatory cascade and the involvement of T lymphocytes in propagating IL-17 release. In this review, we highlight the current understanding of IL-17 secreting cells, including sets of CD4(+) αβ and CD4(-) γδ T lymphocytes, as potentially important mediators of brain pathology post-stroke. Interactions between the IL-17 axis and innate pathways, positive feedback mechanisms that prolong or amplify IL-17, and IL-17 regulatory pathways may offer intervention targets to enhance recovery, prevent long-term decline, and improve quality of life.
Collapse
Affiliation(s)
- Walter Swardfager
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
95
|
Elvington A, Atkinson C, Zhu H, Yu J, Takahashi K, Stahl GL, Kindy MS, Tomlinson S. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. THE JOURNAL OF IMMUNOLOGY 2012; 189:4640-7. [PMID: 23028050 DOI: 10.4049/jimmunol.1201904] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is mounting evidence indicating an important role for complement in the pathogenesis of cerebral ischemia-reperfusion injury, or ischemic stroke. The role of the alternative complement pathway in ischemic stroke has not been investigated, and there is conflicting data on the role of the terminal pathway. In this study, we show that compared with wild-type mice, mice deficient in the alternative pathway protein factor B or mice treated with the alternative pathway inhibitor CR2-fH have improved outcomes after 60-min middle cerebral artery occlusion and 24-h reperfusion. Factor B-deficient or CR2-fH-treated mice were protected in terms of improved neurologic function and reduced cerebral infarct, demyelination, P-selectin expression, neutrophil infiltration, and microthrombi formation. Mice deficient in both the classical and lectin pathways (C1q/MBL deficient) were also protected from cerebral ischemia-reperfusion injury, and there was no detectable C3d deposition in the ipsilateral brain of these mice. These data demonstrate that the alternative pathway is not alone sufficient to initiate complement activation and indicate that the alternative pathway propagates cerebral injury via amplification of the cascade. Deficiency of C6, a component of the terminal cytolytic membrane attack complex, had no effect on outcome after ischemic stroke, indicating that the membrane attack complex is not involved in mediating injury in this model. We additionally show that the protective effect of factor B deficiency and CR2-fH treatment is sustained in the subacute stage of infarct development, adding to the clinical relevance of these findings.
Collapse
Affiliation(s)
- Andrew Elvington
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Geremia NM, Bao F, Rosenzweig TE, Hryciw T, Weaver L, Dekaban GA, Brown A. CD11d Antibody Treatment Improves Recovery in Spinal Cord-Injured Mice. J Neurotrauma 2011; 29:539-50. [PMID: 22044160 DOI: 10.1089/neu.2011.1976] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute administration of a monoclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. This has been chiefly attributed to the reduced infiltration of neutrophils into the injured spinal cord in treated rats. More recently, treating spinal cord-injured mice with a Ly-6G neutrophil-depleting antibody was demonstrated to impair neurological recovery. These disparate results could be due to different mechanisms of action utilized by the two antibodies, or due to differences in the inflammatory responses between mouse and rat that are triggered by SCI. To address whether the anti-CD11d treatment would be effective in mice, a CD11d mAb (205C) or a control mAb (1B7) was administered intravenously at 2, 24, and 48 h after an 8-g clip compression injury at the fourth thoracic spinal segment. The anti-CD11d treatment reduced neutrophil infiltration into the injured mouse spinal cord and was associated with increased white matter sparing and reductions in myeloperoxidase (MPO) activity, reactive oxygen species, lipid peroxidation, and scar formation. These improvements in the injured spinal cord microenvironment were accompanied by increased serotonin (5-HT) immunoreactivity below the level of the lesion and improved locomotor recovery. Our results with the 205C CD11d mAb treatment complement previous work using this anti-integrin treatment in a rat model of SCI.
Collapse
Affiliation(s)
- Nicole M Geremia
- The Spinal Cord Injury Team, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|