51
|
Chen CY, Wang YF, Lei L, Zhang Y. Impacts of microbiota and its metabolites through gut-brain axis on pathophysiology of major depressive disorder. Life Sci 2024; 351:122815. [PMID: 38866215 DOI: 10.1016/j.lfs.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Major depressive disorder (MDD) is characterized by a high rate of recurrence and disability, which seriously affects the quality of life of patients. That's why a deeper understanding of the mechanisms of MDD pathology is an urgent task, and some studies have found that intestinal symptoms accompany people with MDD. The microbiota-gut-brain axis is the bidirectional communication between the gut microbiota and the central nervous system, which was found to have a strong association with the pathogenesis of MDD. Previous studies have focused more on the communication between the gut and the brain through neuroendocrine, neuroimmune and autonomic pathways, and the role of gut microbes and their metabolites in depression is unclear. Metabolites of intestinal microorganisms (e.g., tryptophan, kynurenic acid, indole, and lipopolysaccharide) can participate in the pathogenesis of MDD through immune and inflammatory pathways or by altering the permeability of the gut and blood-brain barrier. In addition, intestinal microbes can communicate with intestinal neurons and glial cells to affect the integrity and function of intestinal nerves. However, the specific role of gut microbes and their metabolites in the pathogenesis of MDD is not well understood. Hence, the present review summarizes how gut microbes and their metabolites are directly or indirectly involved in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
52
|
Almeida PP, Brito ML, Thomasi B, Mafra D, Fouque D, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. Is the enteric nervous system a lost piece of the gut-kidney axis puzzle linked to chronic kidney disease? Life Sci 2024; 351:122793. [PMID: 38848938 DOI: 10.1016/j.lfs.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The enteric nervous system (ENS) regulates numerous functional and immunological attributes of the gastrointestinal tract. Alterations in ENS cell function have been linked to intestinal outcomes in various metabolic, intestinal, and neurological disorders. Chronic kidney disease (CKD) is associated with a challenging intestinal environment due to gut dysbiosis, which further affects patient quality of life. Although the gut-related repercussions of CKD have been thoroughly investigated, the involvement of the ENS in this puzzle remains unclear. ENS cell dysfunction, such as glial reactivity and alterations in cholinergic signaling in the small intestine and colon, in CKD are associated with a wide range of intestinal pathways and responses in affected patients. This review discusses how the ENS is affected in CKD and how it is involved in gut-related outcomes, including intestinal permeability, inflammation, oxidative stress, and dysmotility.
Collapse
Affiliation(s)
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, MI, USA
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| |
Collapse
|
53
|
Xia B, Lin T, Li Z, Wang J, Sun Y, Wang D, Ye J, Zhang Y, Kou R, Zhao B, Yi J, Bai G, Liu X. Lactiplantibacillus plantarum Regulates Intestinal Physiology and Enteric Neurons in IBS through Microbial Tryptophan Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17989-18002. [PMID: 39082086 DOI: 10.1021/acs.jafc.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.
Collapse
Affiliation(s)
- Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tongkui Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhiqing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jialin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuwei Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yajuan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Rongwei Kou
- School of Science, Xi'an University of Technology, Xi'an, 710048 Shaanxi, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 Yunnan, China
| | - Gaiyan Bai
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, 710068 Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
54
|
Cingolani F, Balasubramaniam A, Srinivasan S. Molecular mechanisms of enteric neuropathies in high-fat diet feeding and diabetes. Neurogastroenterol Motil 2024:e14897. [PMID: 39119749 PMCID: PMC11807233 DOI: 10.1111/nmo.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Obesity and diabetes are associated with altered gastrointestinal function and with the development of abdominal pain, nausea, diarrhea, and constipation among other symptoms. The enteric nervous system (ENS) regulates gastrointestinal motility. Enteric neuropathies defined as damage or loss of enteric neurons can lead to motility disorders. PURPOSE Here, we review the molecular mechanisms that drive enteric neurodegeneration in diabetes and obesity, including signaling pathways leading to neuronal cell death, oxidative stress, and microbiota alteration. We also highlight potential approaches to treat enteric neuropathies including antioxidant therapy to prevent oxidative stress-induced damage and the use of stem cells.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Arun Balasubramaniam
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
55
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
56
|
Wang Y, Zhang Y, Wang Q, Fan Y, Li W, Liu M, Zhang X, Zhou W, Wang M, Jiang S, Shang E, Duan J. Multi-omics combined to explore the purging mechanism of Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124218. [PMID: 38959707 DOI: 10.1016/j.jchromb.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Meijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Xiaoxiao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Wenwen Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Mingyang Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
57
|
Zhang X, Chen J, He F, Du W, Yu X. Assessing the causal effects of Eubacterium and Rumphococcus on constipation: a Mendelian randomized study. Front Microbiol 2024; 15:1376232. [PMID: 39144218 PMCID: PMC11324052 DOI: 10.3389/fmicb.2024.1376232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Background Constipation is affected by a number of risk variables, including cardiovascular disease and growth factors. However, the impacts of gut flora on constipation incidence has not been shown. This work, Single-Variable Mendelian Randomization (SVMR) was utilized to estimate the causal relationship between the Eubacterium genus or Rumphococcus, and constipation. Methods Data for constipation, Eubacterium genus and Rumphococcus were taken from the Integrated Epidemiology Unit (IEU) open GWAS database. Including 218,792 constipation samples, and there were 16,380,466 Single Nucleotide Polymorphisms (SNPs) for constipation. The ids of Eubacterium genus and Rumphococcus were sourced from MiBioGen database. The sample count for the Eubacterium genus was 17,380, with 656 SNPs. In addition, the sample size for Rumphococcus was 15,339, with 545 SNPs. The SVMR was performed to assess the risk of Eubacterium genus and Rumphococcus in constipation using weighted median, MR Egger, simple mode, inverse variance weighted (IVW), and weighted mode. Finally, we did a sensitivity analysis that included a heterogeneity, horizontal pleiotropy, and Leave-One-Out (LOO) test to examine the viability of the MR data. Results The SVMR revealed that the Eubacterium genus and Rumphococcus were causally connected to constipation, with Rumphococcus (P = 0.042, OR = 1.074) as a hazardous factor and Eubacterium genus (P = 0.004, OR = 0.909) as a safety factor. Sensitivity tests then revealed the absence of variability between the constipation and the exposure factors (Eubacterium genus and Rumphococcus). Additionally, there were no other confounding factors and the examined SNPs could only influence constipation through the aforementioned exposure factors, respectively. As a result, the MR results were fairly robust. Conclusion Our investigation verified the causal links between the Eubacterium genus or Rumphococcus, and constipation, with greater Rumphococcus expression increasing the likelihood of constipation and the opposite being true for the Eubacterium genus.
Collapse
Affiliation(s)
- Xiao Zhang
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Jiang Chen
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Feng He
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Wenchun Du
- Guizhou University of Traditional Chinese Medicine, Department of Colorectal Medicine, Guiyang, Guizhou, China
| | - Xianhao Yu
- Guizhou University of Commerce, Computer and Information Engineering College, Guiyang, China
| |
Collapse
|
58
|
Zheng D, Ke X, Cai H, Yan C, Chen Y, Sun J, Chen G. Oral administration of RDP58 ameliorated DSS-induced colitis in intestinal microbiota dependent manner. Int Immunopharmacol 2024; 136:112325. [PMID: 38820960 DOI: 10.1016/j.intimp.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Although the pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), has not been fully elucidated, accumulating researches suggest that intestinal microbiota imbalance contributes to the development of IBD in patients and animal models. RDP58, a peptide-based computer-assisted rational design, has been demonstrated to be effective in protecting against a wide range of autoimmune and inflammatory diseases. However, the underlying mechanism by which RDP58 protects against IBD mediated by intestinal microbiota has yet to be elucidated. METHODS The colitis model was induced by continuously administering 2.5 % (wt/vol) dextran sodium sulfate (DSS) solution for 7 days. The manifestations of colon inflammation were assessed via daily weight changes, colon length, tumor necrosis factor-alpha (TNF-α) level, disease activity index (DAI) score, pathology score, and intestinal barrier permeability. Intestinal microbiota analysis was carried out by 16S-rRNA sequencing. Colonic short chain fatty acids (SCFAs) and regulatory T cells (Tregs) were also detected. To further confirm the protective effect of RDP58 on intestinal microbiota, broad-spectrum antibiotic cocktail (ABX) treatment and fecal microbial transplantation (FMT) experiment were performed. RESULTS Oral administration of RDP58 ameliorated DSS-induced mice colitis by altering the diversity and composition of intestinal microbiota. Notably, RDP58 significantly upregulated SCFAs-producing microbiota, thereby promoting the generation of Tregs. ABX and FMT were performed to verify the above mechanism. CONCLUSIONS RDP58 ameliorated DSS-induced colitis through altering intestinal microbiota and enhancing SCFAs and Tregs production in intestinal microbiota dependent manner, potentially provide a novel therapy for IBD.
Collapse
Affiliation(s)
- Du Zheng
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chao Yan
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
59
|
Shen X, Mu X. Systematic Insights into the Relationship between the Microbiota-Gut-Brain Axis and Stroke with the Focus on Tryptophan Metabolism. Metabolites 2024; 14:399. [PMID: 39195495 DOI: 10.3390/metabo14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke, as a serious cerebral vascular disease with high incidence and high rates of disability and mortality, has limited therapeutic options due to the narrow time window. Compelling evidence has highlighted the significance of the gut microbiota and gut-brain axis as critical regulatory factors affecting stroke. Along the microbiota-gut-brain axis, tryptophan metabolism further acquires increasing attention for its intimate association with central nervous system diseases. For the purpose of exploring the potential role of tryptophan metabolism in stroke and providing systematic insights into the intricate connection of the microbiota-gut-brain axis with the pathological procedure of stroke, this review first summarized the practical relationship between microbiota and stroke by compiling the latest case-control research. Then, the microbiota-gut-brain axis, as well as its interaction with stroke, were comprehensively elucidated on the basis of the basic anatomical structure and physiological function. Based on the crosstalk of microbiota-gut-brain, we further focused on the tryptophan metabolism from the three major metabolic pathways, namely, the kynurenine pathway, serotonin pathway, and microbial pathway, within the axis. Moreover, the effects of tryptophan metabolism on stroke were appreciated and elaborated here, which is scarcely found in other reviews. Hopefully, the systematic illustration of the mechanisms and pathways along the microbiota-gut-brain axis will inspire more translational research from metabolic perspectives, along with more attention paid to tryptophan metabolism as a promising pharmaceutical target in order to reduce the risk of stroke, mitigate the stroke progression, and ameliorate the stroke prognosis.
Collapse
Affiliation(s)
- Xinyu Shen
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Xiaoqin Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
60
|
Voss U. Enteric neuroprotection-A matter of balancing redox potentials, limiting inflammation, and boosting resilience. Neurogastroenterol Motil 2024:e14871. [PMID: 39038122 DOI: 10.1111/nmo.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) orchestrates intricate and autonomous functions throughout the gastrointestinal (GI) tract. Disruptions in ENS function are associated GI disorders. This mini review focuses on the past decade's research, utilizing rodent models, with an emphasis on protecting enteric neurons from loss. The review specifically looks at efforts to reduce oxidative stress, limit inflammation, and enhance neuronal resilience. Protective interventions including administration of antioxidants and compounds targeting cellular redox buffer systems, are evaluated for their effectiveness in preventing loss of enteric neurons in the ischemia-reperfusion model and streptozotocin-induced diabetes model. Interventions such as engrafting mesenchymal stem cells and targeting inflammatory signaling pathways in enteric neurons and glial cells are evaluated in inflammatory bowel disease models including the Winnie mouse, DSS-, and DNBS/TNBS-induced colitis models. The review also touches upon neuronal resilience, particularly in the context of Parkinson's disease models. Including estrogen's neuroprotective role, and the influence of metal ions on enteric neuronal protection. Understanding the dynamic interplay within the ENS and its role in disease pathogenesis holds promise for developing targeted therapies to effectively manage and treat various GI ailments.
Collapse
Affiliation(s)
- Ulrikke Voss
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| |
Collapse
|
61
|
Jamka JR, Gulbransen BD. Mechanisms of enteric neuropathy in diverse contexts of gastrointestinal dysfunction. Neurogastroenterol Motil 2024:e14870. [PMID: 39038157 DOI: 10.1111/nmo.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) commands moment-to-moment gut functions through integrative neurocircuitry housed in the gut wall. The functional continuity of ENS networks is disrupted in enteric neuropathies and contributes to major disturbances in normal gut activities including abnormal gut motility, secretions, pain, immune dysregulation, and disrupted signaling along the gut-brain axis. The conditions under which enteric neuropathy occurs are diverse and the mechanistic underpinnings are incompletely understood. The purpose of this brief review is to summarize the current understanding of the cell types involved, the conditions in which neuropathy occurs, and the mechanisms implicated in enteric neuropathy such as oxidative stress, toll like receptor signaling, purines, and pre-programmed cell death.
Collapse
Affiliation(s)
- Julia R Jamka
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
62
|
Morys J, Małecki A, Nowacka-Chmielewska M. Stress and the gut-brain axis: an inflammatory perspective. Front Mol Neurosci 2024; 17:1415567. [PMID: 39092201 PMCID: PMC11292226 DOI: 10.3389/fnmol.2024.1415567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut-brain axis (GBA) plays a dominant role in maintaining homeostasis as well as contributes to mental health maintenance. The pathways that underpin the axis expand from macroscopic interactions with the nervous system, to the molecular signals that include microbial metabolites, tight junction protein expression, or cytokines released during inflammation. The dysfunctional GBA has been repeatedly linked to the occurrence of anxiety- and depressive-like behaviors development. The importance of the inflammatory aspects of the altered GBA has recently been highlighted in the literature. Here we summarize current reports on GBA signaling which involves the immune response within the intestinal and blood-brain barrier (BBB). We also emphasize the effect of stress response on altering barriers' permeability, and the therapeutic potential of microbiota restoration by probiotic administration or microbiota transplantation, based on the latest animal studies. Most research performed on various stress models showed an association between anxiety- and depressive-like behaviors, dysbiosis of gut microbiota, and disruption of intestinal permeability with simultaneous changes in BBB integrity. It could be postulated that under stress conditions impaired communication across BBB may therefore represent a significant mechanism allowing the gut microbiota to affect brain functions.
Collapse
Affiliation(s)
| | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
63
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Aberrant bowel movement frequencies coincide with increased microbe-derived blood metabolites associated with reduced organ function. Cell Rep Med 2024; 5:101646. [PMID: 39019013 PMCID: PMC11293344 DOI: 10.1016/j.xcrm.2024.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
Bowel movement frequency (BMF) directly impacts the gut microbiota and is linked to diseases like chronic kidney disease or dementia. In particular, prior work has shown that constipation is associated with an ecosystem-wide switch from fiber fermentation and short-chain fatty acid production to more detrimental protein fermentation and toxin production. Here, we analyze multi-omic data from generally healthy adults to see how BMF affects their molecular phenotypes, in a pre-disease context. Results show differential abundances of gut microbial genera, blood metabolites, and variation in lifestyle factors across BMF categories. These differences relate to inflammation, heart health, liver function, and kidney function. Causal mediation analysis indicates that the association between lower BMF and reduced kidney function is partially mediated by the microbially derived toxin 3-indoxyl sulfate (3-IS). This result, in a generally healthy context, suggests that the accumulation of microbiota-derived toxins associated with abnormal BMF precede organ damage and may be drivers of chronic, aging-related diseases.
Collapse
Affiliation(s)
- Johannes P Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA 98109, USA; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Anne E Levine
- Institute for Systems Biology, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | | | - Jennifer Hadlock
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Biomedical Informatics, University of Washington, Seattle, WA 98104 USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Phenome Health, Seattle, WA 98109, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA; Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA; Phenome Health, Seattle, WA 98109, USA; Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
64
|
Biskou O, Walter S, Israelsen H, Winberg ME, Bednarska O, Keita ÅV. ReFerm ®: a postbiotic fermented oat gruel composition is reducing mast cell degranulation in the colon of patients with irritable bowel syndrome. Front Med (Lausanne) 2024; 11:1408623. [PMID: 39026547 PMCID: PMC11255971 DOI: 10.3389/fmed.2024.1408623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder that affects ~4% of the global population. ReFerm® is a postbiotic product derived from oat gruel fermented with Lactobacillus plantarum 299v, and it has been shown to have beneficial effects on intestinal permeability in patients with IBS. In this study, we investigated the effects of ReFerm® on regulators of intestinal permeability, namely mast cells and enteric glial cells. MATERIALS AND METHODS A total of 30 patients with moderate to severe IBS were treated with an enema containing ReFerm® or a placebo twice daily. The patients underwent sigmoidoscopy with biopsies obtained from the distal colon at baseline and after 14 days of treatment. These biopsies were processed in two ways: some were fixed, embedded in paraffin, sectioned, and stained for mast cells and enteric glial cells; others were cryopreserved, lysed, and subjected to Western blotting to analyze the same markers. RESULTS Treatment with ReFerm®, but not the placebo, significantly reduced mast cell tryptase protein levels in the biopsy lysates. Although the number of mast cells remained unchanged in colonic biopsies, ReFerm® treatment significantly reduced mast cell degranulation, a result not observed in the placebo group. Neither ReFerm® or placebo treatment had an impact on total protein levels or the number of enteric glial cells in the biopsies. CONCLUSION ReFerm® treatment significantly reduced both total mast cell tryptase levels and the degranulation of mast cells in colonic biopsies from patients with IBS, suggesting a decrease in mast cell activity as a potential mechanism underlying the beneficial effects of ReFerm®. However, further research is required to assess the molecular mechanisms through which ReFerm® operates in the colons of patients with IBS. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov, identifier: NCT05475314.
Collapse
Affiliation(s)
- Olga Biskou
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Susanna Walter
- Department of Gastroenterology, Linköping University Hospital, Linköping, Sweden
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Martin E. Winberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olga Bednarska
- Department of Gastroenterology, Linköping University Hospital, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
65
|
Rajeev S, Li S, Leon-Coria A, Wang A, Kraemer L, Wang SJ, Boim A, Flannigan K, Shute A, Baggio CH, Callejas BE, MacNaughton WK, Finney CAM, McKay DM. Enteric tuft cells coordinate timely expulsion of the tapeworm Hymenolepis diminuta from the murine host by coordinating local but not systemic immunity. PLoS Pathog 2024; 20:e1012381. [PMID: 39083533 PMCID: PMC11290655 DOI: 10.1371/journal.ppat.1012381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.
Collapse
Affiliation(s)
- Sruthi Rajeev
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - ShuHua Li
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Aralia Leon-Coria
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Kraemer
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Susan Joanne Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Annaliese Boim
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Kyle Flannigan
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Shute
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane H. Baggio
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blanca E. Callejas
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Constance A. M. Finney
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
66
|
Passaglia P, Kanashiro A, Batista Silva H, Carlos Carvalho Navegantes L, Lacchini R, Capellari Cárnio E, Branco LGS. Diminazene aceturate attenuates systemic inflammation via microbiota gut-5-HT brain-spleen sympathetic axis in male mice. Brain Behav Immun 2024; 119:105-119. [PMID: 38548186 DOI: 10.1016/j.bbi.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre Kanashiro
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
67
|
Florkowski M, Abiona E, Frank KM, Brichacek AL. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front Nutr 2024; 11:1392666. [PMID: 38978699 PMCID: PMC11229823 DOI: 10.3389/fnut.2024.1392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.
Collapse
Affiliation(s)
- Melanie Florkowski
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Esther Abiona
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Allison L Brichacek
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
68
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
69
|
Zhang P, Zheng Z, Sun H, Gao T, Xiao X. A review of common influencing factors and possible mechanisms associated with allergic diseases complicating tic disorders in children. Front Pediatr 2024; 12:1360420. [PMID: 38957776 PMCID: PMC11218626 DOI: 10.3389/fped.2024.1360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past few decades, the incidence of childhood allergic diseases has increased globally, and their impact on the affected child extends beyond the allergy itself. There is evidence of an association between childhood allergic diseases and the development of neurological disorders. Several studies have shown a correlation between allergic diseases and tic disorders (TD), and allergic diseases may be an important risk factor for TD. Possible factors influencing the development of these disorders include neurotransmitter imbalance, maternal anxiety or depression, gut microbial disorders, sleep disturbances, maternal allergic status, exposure to tobacco, and environmental factors. Moreover, gut microbial disturbances, altered immunological profiles, and DNA methylation in patients with allergic diseases may be potential mechanisms contributing to the development of TD. An in-depth investigation of the relationship between allergic diseases and TD in children will be important for preventing and treating TD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Zhimin Zheng
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Hao Sun
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Tieying Gao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
70
|
Bonaz B. Enteric neuropathy and the vagus nerve: Therapeutic implications. Neurogastroenterol Motil 2024:e14842. [PMID: 38873822 DOI: 10.1111/nmo.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Enteric neuropathies are characterized by abnormalities of gut innervation, which includes the enteric nervous system, inducing severe gut dysmotility among other dysfunctions. Most of the gastrointestinal tract is innervated by the vagus nerve, the efferent branches of which have close interconnections with the enteric nervous system and whose afferents are distributed throughout the different layers of the digestive wall. The vagus nerve is a key element of the autonomic nervous system, involved in the stress response, at the interface of the microbiota-gut-brain axis, has anti-inflammatory and prokinetic properties, modulates intestinal permeability, and has a significant capacity of plasticity and regeneration. Targeting these properties of the vagus nerve, with vagus nerve stimulation (or non-stimulation/ pharmacological methods), could be of interest in the therapeutic management of enteric neuropathies.
Collapse
Affiliation(s)
- Bruno Bonaz
- Grenoble Institut des Neurosciences, Université Grenoble Alpes-Faculté de Médecine, Grenoble, France
| |
Collapse
|
71
|
Hamilton AM, Blackmer-Raynolds L, Li Y, Kelly S, Kebede N, Williams A, Chang J, Garraway SM, Srinivasan S, Sampson TR. Diet-microbiome interactions promote enteric nervous system resilience following spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597793. [PMID: 38895207 PMCID: PMC11185755 DOI: 10.1101/2024.06.06.597793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Spinal cord injury (SCI) results in a plethora of physiological dysfunctions across all body systems, including intestinal dysmotility and atrophy of the enteric nervous system (ENS). Typically, the ENS has capacity to recover from perturbation, so it is unclear why intestinal pathophysiologies persist after traumatic spinal injury. With emerging evidence demonstrating SCI-induced alterations to the gut microbiome composition, we hypothesized that modulation of the gut microbiome could contribute to enteric nervous system recovery after injury. Here, we show that intervention with the dietary fiber, inulin prevents ENS atrophy and limits SCI-induced intestinal dysmotility in mice. However, SCI-associated microbiomes and exposure to specific SCI-sensitive gut microbes are not sufficient to modulate injury-induced intestinal dysmotility. Intervention with microbially-derived short-chain fatty acid (SCFA) metabolites prevents ENS dysfunctions and phenocopies inulin treatment in injured mice, implicating these microbiome metabolites in protection of the ENS. Notably, inulin-mediated resilience is dependent on signaling by the cytokine IL-10, highlighting a critical diet-microbiome-immune axis that promotes ENS resilience following SCI. Overall, we demonstrate that diet and microbially-derived signals distinctly impact recovery of the ENS after traumatic spinal injury. This protective diet-microbiome-immune axis may represent a foundation to uncover etiological mechanisms and future therapeutics for SCI-induced neurogenic bowel.
Collapse
Affiliation(s)
- Adam M. Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | | | - Yaqing Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sean Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Nardos Kebede
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Anna Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Jianjun Chang
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta GA 30329
| | - Timothy R. Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329
| |
Collapse
|
72
|
Costa DVS, Pham N, Loureiro AV, Yang SE, Behm BW, Warren CA. Clostridioides difficile infection promotes gastrointestinal dysfunction in human and mice post-acute phase of the disease. Anaerobe 2024; 87:102837. [PMID: 38527650 PMCID: PMC11180562 DOI: 10.1016/j.anaerobe.2024.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES In the US, Clostridioides difficile (C. difficile) infection (CDI) is the 8th leading cause of hospital readmission and 7th for mortality among all gastrointestinal (GI) disorders. Here, we investigated GI dysfunction post-CDI in humans and mice post-acute infection. MATERIALS AND METHODS From March 2020 to July 2021, we reviewed the clinical records of 67 patients referred to the UVA Complicated C. difficile clinic for fecal microbiota transplantation (FMT) eligibility. C57BL/6 mice were infected with C. difficile and clinical scores were determined daily. Stool samples from mice were collected to measure the shedding of C. difficile and myeloperoxidase (MPO) levels. On day 21 post-infection, Evans's blue and FITC-70kDa methods were performed to evaluate GI motility in mice. RESULTS Of the 67 patients evaluated at the C. difficile clinic, 40 patients (59.7%) were confirmed to have CDI, and 22 patients (32.8%) with post-CDI IBS (diarrhea-type, constipation-type, and mixed-type). In infected mice, levels of MPO in stools and clinical score were higher on day 3. On day 21, mice recovered from body weight loss induced by CDI, and fecal MPO was undetectable. The total GI transit time (TGITT) and FITC-70kDa levels on the proximal colon were increased in infected mice (p = 0.002), suggesting a constipation phenotype post-acute phase of CDI. A positive correlation intestinal inflammation on day 3 and TGITT on day 21 was observed. CONCLUSION In conclusion, post-infection intestinal dysfunction occurs in humans and mice post-CDI. Importantly, we have validated in the mouse model that CDI causes abnormal GI transit in the recovery phase of the disease, indicating the potential utility of the model in exploring the underlying mechanisms of post-infectious IBS in humans.
Collapse
Affiliation(s)
- Deiziane V S Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Natalie Pham
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Andrea V Loureiro
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Suemin E Yang
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Brian W Behm
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA, USA
| | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
73
|
Li HY, Yan WX, Li J, Ye J, Wu ZG, Hou ZK, Chen B. Global research status and trends of enteric glia: a bibliometric analysis. Front Pharmacol 2024; 15:1403767. [PMID: 38855748 PMCID: PMC11157232 DOI: 10.3389/fphar.2024.1403767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Enteric glia are essential components of the enteric nervous system. Previously believed to have a passive structural function, mounting evidence now suggests that these cells are indispensable for maintaining gastrointestinal homeostasis and exert pivotal influences on both wellbeing and pathological conditions. This study aimed to investigate the global status, research hotspots, and future directions of enteric glia. Methods The literature on enteric glia research was acquired from the Web of Science Core Collection. VOSviewer software (v1.6.19) was employed to visually represent co-operation networks among countries, institutions, and authors. The co-occurrence analysis of keywords and co-citation analysis of references were conducted using CiteSpace (v6.1.R6). Simultaneously, cluster analysis and burst detection of keywords and references were performed. Results A total of 514 publications from 36 countries were reviewed. The United States was identified as the most influential country. The top-ranked institutions were University of Nantes and Michigan State University. Michel Neunlist was the most cited author. "Purinergic signaling" was the largest co-cited reference cluster, while "enteric glial cells (EGCs)" was the cluster with the highest number of co-occurring keywords. As the keyword with the highest burst strength, Crohns disease was a hot topic in the early research on enteric glia. The burst detection of keywords revealed that inflammation, intestinal motility, and gut microbiota may be the research frontiers. Conclusion This study provides a comprehensive bibliometric analysis of enteric glia research. EGCs have emerged as a crucial link between neurons and immune cells, attracting significant research attention in neurogastroenterology. Their fundamental and translational studies on inflammation, intestinal motility, and gut microbiota may promote the treatment of some gastrointestinal and parenteral disorders.
Collapse
Affiliation(s)
- Huai-Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wei-Xin Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jia Li
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Ye
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhi-Guo Wu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng-Kun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
74
|
Khan AA, Langston HC, Walsh L, Roscoe R, Jayawardhana S, Francisco AF, Taylor MC, McCann CJ, Kelly JM, Lewis MD. Enteric nervous system regeneration and functional cure of experimental digestive Chagas disease with trypanocidal chemotherapy. Nat Commun 2024; 15:4400. [PMID: 38782898 PMCID: PMC11116530 DOI: 10.1038/s41467-024-48749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. There is a lack of evidence on the mechanism of pathogenesis and rationales for treatment. We used a female C3H/HeN mouse model that recapitulates key clinical manifestations to study how infection dynamics shape DCD pathology and the impact of treatment with the front-line, anti-parasitic drug benznidazole. Curative treatment 6 weeks post-infection resulted in sustained recovery of gastrointestinal transit function, whereas treatment failure led to infection relapse and gradual return of DCD symptoms. Neuro/immune gene expression patterns shifted from chronic inflammation to a tissue repair profile after cure, accompanied by increased cellular proliferation, glial cell marker expression and recovery of neuronal density in the myenteric plexus. Delaying treatment until 24 weeks post-infection led to partial reversal of DCD, suggesting the accumulation of permanent tissue damage over the course of chronic infection. Our study shows that murine DCD pathogenesis is sustained by chronic T. cruzi infection and is not an inevitable consequence of acute stage denervation. The risk of irreversible enteric neuromuscular tissue damage and dysfunction developing highlights the importance of prompt diagnosis and treatment. These findings support the concept of treating asymptomatic, T. cruzi-infected individuals with benznidazole to prevent DCD development.
Collapse
Affiliation(s)
- Archie A Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Harry C Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Louis Walsh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Rebecca Roscoe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Michael D Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CV4 7AJ, Coventry, UK.
| |
Collapse
|
75
|
Warren A, Nyavor Y, Zarabian N, Mahoney A, Frame LA. The microbiota-gut-brain-immune interface in the pathogenesis of neuroinflammatory diseases: a narrative review of the emerging literature. Front Immunol 2024; 15:1365673. [PMID: 38817603 PMCID: PMC11137262 DOI: 10.3389/fimmu.2024.1365673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Importance Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.
Collapse
Affiliation(s)
- Alison Warren
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Yvonne Nyavor
- Department of Biotechnology, Harrisburg University of Science and Technology, Harrisburg, PA, United States
| | - Nikkia Zarabian
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aidan Mahoney
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Undergraduate College, Princeton University, Princeton, NJ, United States
| | - Leigh A. Frame
- The Frame-Corr Laboratory, Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
76
|
Llorente C. The Imperative for Innovative Enteric Nervous System-Intestinal Organoid Co-Culture Models: Transforming GI Disease Modeling and Treatment. Cells 2024; 13:820. [PMID: 38786042 PMCID: PMC11119846 DOI: 10.3390/cells13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Collapse
Affiliation(s)
- Cristina Llorente
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
77
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
78
|
Gurung M, Schlegel BT, Rajasundaram D, Fox R, Bode L, Yao T, Lindemann SR, LeRoith T, Read QD, Simecka C, Carroll L, Andres A, Yeruva L. Microbiota from human infants consuming secretors or non-secretors mothers' milk impacts the gut and immune system in mice. mSystems 2024; 9:e0029424. [PMID: 38530054 PMCID: PMC11019842 DOI: 10.1128/msystems.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.
Collapse
Affiliation(s)
- Manoj Gurung
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
| | - Brent Thomas Schlegel
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- University of Pittsburgh Medical Center (UPMC), Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renee Fox
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Tianming Yao
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Stephen R. Lindemann
- Department of Food Science, Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Christy Simecka
- Division of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laura Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit (MMRU), USDA-ARS, SEA, Arkansas Children’s Nutrition Center, Little Rock, Arkansas, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
79
|
Pristner M, Wasinger D, Seki D, Klebermaß-Schrehof K, Berger A, Berry D, Wisgrill L, Warth B. Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury. Cell Rep Med 2024; 5:101480. [PMID: 38518769 PMCID: PMC11031385 DOI: 10.1016/j.xcrm.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
The gut microbiome is associated with pathological neurophysiological evolvement in extremely premature infants suffering from brain injury. The exact underlying mechanism and its associated metabolic signatures in infants are not fully understood. To decipher metabolite profiles linked to neonatal brain injury, we investigate the fecal and plasma metabolome of samples obtained from a cohort of 51 extremely premature infants at several time points, using liquid chromatography (LC)-high-resolution mass spectrometry (MS)-based untargeted metabolomics and LC-MS/MS-based targeted analysis for investigating bile acids and amidated bile acid conjugates. The data are integrated with 16S rRNA gene amplicon gut microbiome profiles as well as patient cytokine, growth factor, and T cell profiles. We find an early onset of differentiation in neuroactive metabolites between infants with and without brain injury. We detect several bacterially derived bile acid amino acid conjugates in plasma and feces. These results provide insights into the early-life metabolome of extremely premature infants.
Collapse
Affiliation(s)
- Manuel Pristner
- Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - Daniel Wasinger
- Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - David Seki
- Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria
| | - Katrin Klebermaß-Schrehof
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - David Berry
- Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
80
|
Díaz Cárdenas B, Salazar Llorente E, Gu G, Nou X, Ortiz J, Maldonado P, Cevallos-Cevallos JM. Microbial Composition and Diversity of High-demand Street-vended Foods in Ecuador. J Food Prot 2024; 87:100247. [PMID: 38369192 DOI: 10.1016/j.jfp.2024.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Developing countries such as Ecuador carry a heavy food safety burden but reports on the microbiological quality of their foods are scarce. In this investigation, the microbial diversity of 10 high-risk and mass-consumption street-vended foods including bolones, encebollado, food dressings, ceviche, chopped fruits, fruit juices, fruit salads, cheese, raw chicken, and ground beef in Quito, Guayaquil, and Cuenca, three major population centers in Ecuador, were evaluated using 16S rRNA gene High Throughput Sequencing. In total, 1,840 amplicon sequence variants (ASVs) were classified into 23 phyla, 253 families, 645 genera, and 829 species. In the tested food samples, Proteobacteria and Firmicutes were the most abundant phyla accounting for 97.41% of relative abundance (RA). At genus level, 10 dominant genera were identified: Acinetobacter (12.61% RA), Lactococcus (12.08% RA), Vibrio (8.23% RA), Weissella (7.43% RA), Aeromonas (6.18% RA), Photobacterium (6.32% RA), Pseudomonas (3.92% RA), Leuconostoc (3.51% RA), Klebsiella (3.49% RA), and Cupriavidus (2.86% RA). The highest microbial diversity indices were found in raw chicken, encebollados, fruit salads, and fruit juices from Guayaquil and Cuenca. From sampled foods, 29 species were classified as food spoilage bacteria and 24 as opportunistic pathogenic bacteria. Two groups associated with human diseases were identified, including 11 enteric species and 26 species of fecal bacteria. The occurrence of recognized and opportunistic pathogenic bacteria, as well as enteric and fecal microorganisms, in the street-vended foods indicated extensive risks for the consumers' health. This study demonstrated the application of culture-independent amplicon sequencing in providing a more comprehensive view of microbial safety for street-vended food, which could be a useful tool to facilitate the control of foodborne diseases.
Collapse
Affiliation(s)
- Byron Díaz Cárdenas
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Enrique Salazar Llorente
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ganyu Gu
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, Maryland, United States
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA ARS, Beltsville, Maryland, United States
| | - Johana Ortiz
- Department of Biosciences, Food Nutrition and Health Research Unit. Faculty of Chemical Sciences, Cuenca University. Cuenca, Ecuador
| | - Pedro Maldonado
- Escuela Politécnica Nacional. Departamento de Alimentos y Biotecnología (DECAB). P.O. Box 17-01-2759, Quito, Ecuador
| | - Juan Manuel Cevallos-Cevallos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador; Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| |
Collapse
|
81
|
Zhang Y, Huang K, Duan J, Zhao R, Yang L. Gut microbiota connects the brain and the heart: potential mechanisms and clinical implications. Psychopharmacology (Berl) 2024; 241:637-651. [PMID: 38407637 DOI: 10.1007/s00213-024-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Nowadays, high morbidity and mortality of cardiovascular diseases (CVDs) and high comorbidity rate of neuropsychiatric disorders contribute to global burden of health and economics. Consequently, a discipline concerning abnormal connections between the brain and the heart and the resulting disease states, known as psychocardiology, has garnered interest among researchers. However, identifying a common pathway that physicians can modulate remains a challenge. Gut microbiota, a constituent part of the human intestinal ecosystem, is likely involved in mutual mechanism CVDs and neuropsychiatric disorder share, which could be a potential target of interventions in psychocardiology. This review aimed to discuss complex interactions from the perspectives of microbial and intestinal dysfunction, behavioral factors, and pathophysiological changes and to present possible approaches to regulating gut microbiota, both of which are future directions in psychocardiology.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Zhao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
82
|
Deng W, Yi P, Xiong Y, Ying J, Lin Y, Dong Y, Wei G, Wang X, Hua F. Gut Metabolites Acting on the Gut-Brain Axis: Regulating the Functional State of Microglia. Aging Dis 2024; 15:480-502. [PMID: 37548933 PMCID: PMC10917527 DOI: 10.14336/ad.2023.0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
The gut-brain axis is a communication channel that mediates a complex interplay of intestinal flora with the neural, endocrine, and immune systems, linking gut and brain functions. Gut metabolites, a group of small molecules produced or consumed by biochemical processes in the gut, are involved in central nervous system regulation via the highly interconnected gut-brain axis affecting microglia indirectly by influencing the structure of the gut-brain axis or directly affecting microglia function and activity. Accordingly, pathological changes in the central nervous system are connected with changes in intestinal metabolite levels as well as altered microglia function and activity, which may contribute to the pathological process of each neuroinflammatory condition. Here, we discuss the mechanisms by which gut metabolites, for instance, the bile acids, short-chain fatty acids, and tryptophan metabolites, regulate the structure of each component of the gut-brain axis, and explore the important roles of gut metabolites in the central nervous system from the perspective of microglia. At the same time, we highlight the roles of gut metabolites affecting microglia in the pathogenesis of neurodegenerative diseases and neurodevelopmental disorders. Understanding the relationship between microglia, gut microbiota, neuroinflammation, and neurodevelopmental disorders will help us identify new strategies for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wenze Deng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yanhong Xiong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Yao Dong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi, China.
| |
Collapse
|
83
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
84
|
Tang X. Probiotic Roles of Clostridium butyricum in Piglets: Considering Aspects of Intestinal Barrier Function. Animals (Basel) 2024; 14:1069. [PMID: 38612308 PMCID: PMC11010893 DOI: 10.3390/ani14071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
China, as the global leader in pork production and consumption, is faced with challenges in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies in guaranteeing piglet health and enhancing overall production performance through nutrition regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function. Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby improving the growth of piglets. This review can provide a reference for the rational utilization and application of C. butyricum in swine production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
85
|
Bi K, Lei Y, Kong D, Li Y, Fan X, Luo X, Yang J, Wang G, Li X, Xu Y, Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024; 10:e27187. [PMID: 38533077 PMCID: PMC10963202 DOI: 10.1016/j.heliyon.2024.e27187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Morphine is a widely used opioid for treatment of pain. The attendant problems including morphine tolerance and morphine dependence pose a major public health challenge. In recent years, there has been increasing interest in the gastrointestinal microbiota in many physiological and pathophysiological processes. The connectivity network between the gut microbiota and the brain is involved in multiple biological systems, and bidirectional communication between them is critical in gastrointestinal tract homeostasis, the central nervous system, and the microbial system. Many research have previously shown that morphine has a variety of effects on the gastrointestinal tract, but none have determined the function of intestinal microbiota in morphine tolerance. This study reviewed the mechanisms of morphine tolerance from the perspective of dysregulation of microbiota-gut-brain axis homeostasis, by summarizing the possible mechanisms originating from the gut that may affect morphine tolerance and the improvement of morphine tolerance through the gut microbiota.
Collapse
Affiliation(s)
- Ke Bi
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xuan Fan
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, 650032, China
| | - Jiqun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, China
| | - Guangqing Wang
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Xuejun Li
- Drug Rehabilitation Administration of Yunnan Province, Kunming, 650032, China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
86
|
Woods C, Flockton AR, Belkind-Gerson J. Phosphatase and Tensin Homolog Inhibition in Proteolipid Protein 1-Expressing Cells Stimulates Neurogenesis and Gliogenesis in the Postnatal Enteric Nervous System. Biomolecules 2024; 14:346. [PMID: 38540765 PMCID: PMC10967813 DOI: 10.3390/biom14030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Phosphatase and tensin homolog (Pten) is a key regulator of cell proliferation and a potential target to stimulate postnatal enteric neuro- and/or gliogenesis. To investigate this, we generated two tamoxifen-inducible Cre recombinase murine models in which Pten was conditionally ablated, (1) in glia (Plp1-expressing cells) and (2) in neurons (Calb2-expressing cells). Tamoxifen-treated adult (7-12 weeks of age; n = 4-15) mice were given DSS to induce colitis, EdU to monitor cell proliferation, and were evaluated at two timepoints: (1) early (3-4 days post-DSS) and (2) late (3-4 weeks post-DSS). We investigated gut motility and evaluated the enteric nervous system. Pten inhibition in Plp1-expressing cells elicited gliogenesis at baseline and post-DSS (early and late) in the colon, and neurogenesis post-DSS late in the proximal colon. They also exhibited an increased frequency of colonic migrating motor complexes (CMMC) and slower whole gut transit times. Pten inhibition in Calb2-expressing cells did not induce enteric neuro- or gliogenesis, and no alterations were detected in CMMC or whole gut transit times when compared to the control at baseline or post-DSS (early and late). Our results merit further research into Pten modulation where increased glia and/or slower intestinal transit times are desired (e.g., short-bowel syndrome and rapid-transit disorders).
Collapse
Affiliation(s)
- Crystal Woods
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045, USA; (C.W.); (A.R.F.)
| | - Amanda R. Flockton
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045, USA; (C.W.); (A.R.F.)
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, University of Colorado, Aurora, CO 80045, USA; (C.W.); (A.R.F.)
- Neurogastroenterology and Motility Program, Digestive Health Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
87
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with reduced kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.04.531100. [PMID: 36945445 PMCID: PMC10028848 DOI: 10.1101/2023.03.04.531100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.
Collapse
Affiliation(s)
- Johannes P. Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Anne E. Levine
- Institute for Systems Biology, Seattle, WA 98109, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Phenome Health, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
88
|
Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, Yang F, Li W, Chen C, Men L, Tian Q, Xie T. The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev 2024; 44:539-567. [PMID: 37661373 DOI: 10.1002/med.21989] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.
Collapse
Affiliation(s)
- Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuxin Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huijuan Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
89
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
90
|
Yan C, Liu Z, Xie W, Zhang T, Zhang J, Li G, Xu X, Ye L, Gong J. Cornuside protects against ischemic stroke in rats by suppressing the IL-17F/TRAF6/NF-κB pathway via the brain-gut axis. Exp Neurol 2024; 373:114672. [PMID: 38169196 DOI: 10.1016/j.expneurol.2023.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a serious neurological disease with limited therapeutic options; thus, it is particularly important to find effective treatments. Restoration of gut microflora diversity is an important factor in the treatment of ischemic stroke, but the mechanism remains unclear. Cornuside is known for its unique anti-inflammatory and circulation-promoting effects; however, whether it can effectively treat ischemic stroke and its therapeutic mechanisms remain unknown. In this study, we used a rat middle cerebral artery occlusion-reperfusion model (MCAO/R) to mimic ischemic stroke in humans and to assess the cerebral protective effects of cornuside in rats with ischemic stroke. Using 16S rRNA sequencing and RNA sequencing, we explored the cornuside mechanism in the brain-gut axis that confers protection against ischemic stroke. In conclusion, cornuside can inhibit the IL-17F/TRAF6/NF-κB pathway by improving the dysregulation of intestinal microflora, and reduce intestinal inflammation and neuroinflammation, which treated ischemic stroke rats.
Collapse
Affiliation(s)
- Chao Yan
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Zhihao Liu
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Waner Xie
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Ting Zhang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of human anatomy, Binzhou Medical University, Yantai 264003, PR China
| | - Jiyao Zhang
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Guodong Li
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China.
| | - Lei Ye
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 263003, Shandong, PR China.
| | - Jianwei Gong
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
91
|
Carvalho FV, Landis HE, Getachew B, Silva VDA, Ribeiro PR, Aschner M, Tizabi Y. Iron toxicity, ferroptosis and microbiota in Parkinson's disease: Implications for novel targets. ADVANCES IN NEUROTOXICOLOGY 2024; 11:105-132. [PMID: 38770370 PMCID: PMC11105119 DOI: 10.1016/bs.ant.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona, Tucson, AZ, United States
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | | | - Paulo R. Ribeiro
- Metabolomics Research Group, Institute of Chemistry, Federal University of Bahia, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
92
|
Almeida PP, Da Cruz BO, Thomasi B, Menezes ÁC, Brito ML, Costa NDS, Ito RVA, Degani VAN, Daleprane JB, Magliano DC, Tavares-Gomes AL, Stockler-Pinto MB. Brazil Nut-Enriched Diet Modulates Enteric Glial Cells and Gut Microbiota in an Experimental Model of Chronic Kidney Disease. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:201-212. [PMID: 37611162 DOI: 10.1080/27697061.2023.2247057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Introduction: Chronic kidney disease (CKD) promotes gut dysbiosis, and enteric glial reactivity, a feature of intestinal inflammation. Brazil nut modulated enteric glial profile in healthy animals and could modulate these cells in 5/6 nephrectomized rats.Methods: A 5/6 nephrectomy-induced CKD and Sham-operated rats were divided as follows: CKD and Sham received a standard diet and CKD-BN and Sham-BN received a 5% Brazil nut enriched-diet. The protein content of glial fibrillary acid protein (GFAP), enteric glial marker, and GPx protein content and activity were assessed in the colon. The major phyla of gut microbiota were assessed.Results: CKD-BN group presented a decrease in GFAP content (p = 0.0001). The CKD-BN group modulated the abundance of Firmicutes, increasing its proportion compared to the CKD group. The CKD-BN group showed increased GPx activity in the colon (p = 0.0192), despite no significant difference in protein content.Conclusion: Brazil nut-enriched diet consumption decreased enteric glial reactivity and modulated gut microbiota in the CKD experimental model.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, Michigan, USA
| | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Viviane Alexandre Nunes Degani
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
93
|
Elfers K, Watanangura A, Hoffmann P, Suchodolski JS, Khattab MR, Pilla R, Meller S, Volk HA, Mazzuoli-Weber G. Fecal supernatants from dogs with idiopathic epilepsy activate enteric neurons. Front Neurosci 2024; 18:1281840. [PMID: 38356649 PMCID: PMC10864448 DOI: 10.3389/fnins.2024.1281840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Alterations in the composition and function of the gut microbiome have been reported in idiopathic epilepsy (IE), however, interactions of gut microbes with the enteric nervous system (ENS) in this context require further study. This pilot study examined how gastrointestinal microbiota (GIM), their metabolites, and nutrients contained in intestinal contents communicate with the ENS. Methods Fecal supernatants (FS) from healthy dogs and dogs with IE, including drug-naïve, phenobarbital (PB) responsive, and PB non-responsive dogs, were applied to cultured myenteric neurons to test their activation using voltage-sensitive dye neuroimaging. Additionally, the concentrations of short-chain fatty acids (SCFAs) in the FS were quantified. Results Our findings indicate that FS from all examined groups elicited neuronal activation. Notably, FS from PB non-responsive dogs with IE induced action potential discharge in a higher proportion of enteric neurons compared to healthy controls, which exhibited the lowest burst frequency overall. Furthermore, the highest burst frequency in enteric neurons was observed upon exposure to FS from drug-naïve dogs with IE. This frequency was significantly higher compared to that observed in PB non-responsive dogs with IE and showed a tendency to surpass that of healthy controls. Discussion Although observed disparities in SCFA concentrations across the various FS samples might be associated with the induced neuronal activity, a direct correlation remains elusive at this point. The obtained results hint at an involvement of the ENS in canine IE and set the basis for future studies.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Mohammad R. Khattab
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
94
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
95
|
Jin S, Chen P, Yang J, Li D, Liu X, Zhang Y, Xia Q, Li Y, Chen G, Li Y, Tong Y, Yu W, Fan X, Lin H. Phocaeicola vulgatus alleviates diet-induced metabolic dysfunction-associated steatotic liver disease progression by downregulating histone acetylation level via 3-HPAA. Gut Microbes 2024; 16:2309683. [PMID: 38312099 PMCID: PMC10854360 DOI: 10.1080/19490976.2024.2309683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder with limited effective interventions available. A novel approach to address this issue is through gut microbiota-based therapy. In our study, we utilized multi-omics analysis to identify Phocaeicola vulgatus (P. vulgatus) as a potential probiotic for the treatment of MASLD. Our findings from murine models clearly illustrate that the supplementation of P. vulgatus mitigates the development of MASLD. This beneficial effect is partly attributed to the metabolite 3-Hydroxyphenylacetic acid (3-HPAA) produced by P. vulgatus, which reduces the acetylation levels of H3K27 and downregulates the transcription of Squalene Epoxidase (SQLE), a rate-limiting enzyme in steroid biosynthesis that promotes lipid accumulation in liver cells. This study underscores the significant role of P. vulgatus in the development of MASLD and the critical importance of its metabolite 3-HPAA in regulating lipid homeostasis. These findings offer a promising avenue for early intervention therapy in the context of MASLD.
Collapse
Affiliation(s)
- Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiling Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixuan Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
96
|
Wang T, Hao L, Yang K, Feng W, Guo Z, Liu M, Xiao R. Fecal microbiota transplantation derived from mild cognitive impairment individuals impairs cerebral glucose uptake and cognitive function in wild-type mice: Bacteroidetes and TXNIP-GLUT signaling pathway. Gut Microbes 2024; 16:2395907. [PMID: 39262376 PMCID: PMC11404573 DOI: 10.1080/19490976.2024.2395907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microbiome dysbiosis has been widely implicated in cognitive impairment, but the identity of the specific bacterial taxa and mechanisms are not fully elucidated. Brain glucose hypometabolism coincides with the cognitive decline. This study explored the link among cognition, gut microbiota and glucose uptake based on the fecal microbiota transplantation from mild cognitive impairment individuals (MCI-FMT) and investigated whether similar mechanisms were involved in 27-hydroxycholesterol (27-OHC)-induced cognitive decline. Our results showed that the MCI-FMT mice exhibited learning and memory decline and morphological lesions in the brain and colon tissues. There were reduced 18F-fluorodeoxyglucose uptake, downregulated expression of glucose transporters (GLUT1,3,4) and upregulated negative regulator of glucose uptake (TXNIP) in the brain. MCI-FMT altered the bacterial composition and diversity of the recipient mice, and the microbial signatures highlighted by the increased abundance of Bacteroides recapitulated the negative effects of MCI bacterial colonization. However, inhibiting Bacteroidetes or TXNIP increased the expression of GLUT1 and GLUT4, significantly improving brain glucose uptake and cognitive performance in 27-OHC-treated mice. Our study verified that cognitive decline and abnormal cerebral glucose uptake were associated with gut microbiota dysbiosis; we also revealed the involvement of Bacteroidetes and molecular mechanisms of TXNIP-related glucose uptake in cognitive deficits caused by 27-OHC.
Collapse
Affiliation(s)
- Tao Wang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ling Hao
- School of Public Health, Capital Medical University, Beijing, China
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Kexin Yang
- School of Public Health, Capital Medical University, Beijing, China
| | - Wenjing Feng
- School of Public Health, Capital Medical University, Beijing, China
| | - Zhiting Guo
- School of Public Health, Capital Medical University, Beijing, China
| | - Miao Liu
- School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
97
|
Li L, Liu T, Shi Y. Treatment of preterm brain injury via gut-microbiota-metabolite-brain axis. CNS Neurosci Ther 2024; 30:e14556. [PMID: 38108213 PMCID: PMC10805406 DOI: 10.1111/cns.14556] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Brain injury in preterm infants potentially disrupts critical structural and functional connective networks in the brain. It is a major cause of neurological sequelae and developmental deficits in preterm infants. Interesting findings suggest that the gut microbiota (GM) and their metabolites contribute to the programming of the central nervous system (CNS) during developmental stages and may exert structural and functional effects throughout the lifespan. AIM To summarize the existing knowledge of the potential mechanisms related to immune, endocrine, neural, and blood-brain barrier (BBB) mediated by GM and its metabolites in neural development and function. METHODS We review the recent literature and included 150 articles to summarize the mechanisms through which GM and their metabolites work on the nervous system. Potential health benefits and challenges of relevant treatments are also discussed. RESULTS This review discusses the direct and indirect ways through which the GM may act on the nervous system. Treatment of preterm brain injury with GM or related derivatives, including probiotics, prebiotics, synbiotics, dietary interventions, and fecal transplants are also included. CONCLUSION This review summarizes mechanisms underlying microbiota-gut-brain axis and novel therapeutic opportunities for neurological sequelae in preterm infants. Optimizing the initial colonization and microbiota development in preterm infants may represent a novel therapy to promote brain development and reduce long-term sequelae.
Collapse
Affiliation(s)
- Ling Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Tianjing Liu
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
| | - Yongyan Shi
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
98
|
He H, He H, Mo L, You Z, Zhang J. Priming of microglia with dysfunctional gut microbiota impairs hippocampal neurogenesis and fosters stress vulnerability of mice. Brain Behav Immun 2024; 115:280-294. [PMID: 37914097 DOI: 10.1016/j.bbi.2023.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Mental disorders may be involved in neuroinflammatory processes that are triggered by gut microbiota. How gut microbiota influence microglia-mediated sensitivity to stress remains unclear. Here we explored in an animal model of depression whether disruption of the gut microbiome primes hippocampal microglia, thereby impairing neurogenesis and sensitizing to stress. METHODS Male C57BL/6J mice were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, and effects on gut microbiota were assessed using 16S rRNA sequencing. Fecal microbiota was transplanted from control or CUMS mice into naïve animals. The depression-like behaviors of recipients were evaluated in a forced swimming test and sucrose preference test. The morphology and phenotype of microglia in the hippocampus of recipients were examined using immunohistochemistry, quantitative PCR, and enzyme-linked immunosorbent assays. The recipients were treated with lipopolysaccharide or chronic stress exposure, and effects were evaluated on behavior, microglial responses and hippocampal neurogenesis. Finally, we explored the ability of minocycline to reverse the effects of CUMS on hippocampal neurogenesis and stress sensitivity in recipients. RESULTS CUMS altered the gut microbiome, leading to higher relative abundance of some bacteria (Helicobacter, Bacteroides, and Desulfovibrio) and lower relative abundance of some bacteria (Lactobacillus, Bifidobacterium, and Akkermansia). Fecal microbiota transplantation from CUMS mice to naïve animals induced microglial priming in the dentate gyrus of recipients. This microglia showed hyper-ramified morphology, and became more sensitive to LPS challenge or chronic stress, which characterized by more significant morphological changes and inflammatory responses, as well as impaired hippocampal neurogenesis and increased depressive-like behaviors. Giving minocycline to recipients reversed these effects of fecal transplantation. CONCLUSIONS These findings suggest that gut microbiota from stressed animals can induce microglial priming in the dentate gyrus, which is associated with a hyper-immune response to stress and impaired hippocampal neurogenesis. Remodeling the gut microbiome or inhibiting microglial priming may be strategies to reduce sensitivity to stress.
Collapse
Affiliation(s)
- Hui He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Mo
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
99
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
100
|
Zhuang M, Zhang X, Cai J. Microbiota-gut-brain axis: interplay between microbiota, barrier function and lymphatic system. Gut Microbes 2024; 16:2387800. [PMID: 39182226 PMCID: PMC11346530 DOI: 10.1080/19490976.2024.2387800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
The human gastrointestinal tract, boasting the most diverse microbial community, harbors approximately 100 trillion microorganisms comprising viruses, bacteria, fungi, and archaea. The profound genetic and metabolic capabilities of the gut microbiome underlie its involvement in nearly every facet of human biology, from health maintenance and development to aging and disease. Recent recognition of microbiota - gut - brain axis, referring to the bidirectional communication network between gut microbes and their host, has led to a surge in interdisciplinary research. This review begins with an overview of the current understandings regarding the influence of gut microbes on intestinal and blood-brain barrier integrity. Subsequently, we discuss the mechanisms of the microbiota - gut - brain axis, examining the role of gut microbiota-related neural transmission, metabolites, gut hormones and immunity. We propose the concept of microbiota-mediated multi-barrier modulation in the potential treatment in gastrointestinal and neurological disorders. Furthermore, the role of lymphatic network in the development and maintenance of barrier function is discussed, providing insights into lesser-known conduits of communication between the microbial ecosystem within the gut and the brain. In the final section, we conclude by describing the ongoing frontiers in understanding of the microbiota - gut - brain axis's impact on human health and disease.
Collapse
Affiliation(s)
- Miaomiao Zhuang
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Zhang
- Institute of Microbiology, Chinese Academy of Sciences, IMCAS, Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|