51
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The key microRNA on lipid droplet formation during adipogenesis from human mesenchymal stem cells. J Cell Physiol 2019; 235:328-338. [PMID: 31210354 DOI: 10.1002/jcp.28972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
52
|
Pereira-Dutra FS, Teixeira L, de Souza Costa MF, Bozza PT. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. J Leukoc Biol 2019; 106:563-580. [PMID: 31121077 DOI: 10.1002/jlb.4mr0119-035r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Increased accumulation of cytoplasmic lipid droplets (LDs) in host nonadipose cells is commonly observed in response to numerous infectious diseases, including bacterial, parasite, and fungal infections. LDs are lipid-enriched, dynamic organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell and stimulus regulated. Far beyond being simply a deposit of neutral lipids, LDs have come to be seen as an essential platform for various cellular processes, including metabolic regulation, cell signaling, and the immune response. LD participation in the immune response occurs as sites for compartmentalization of several immunometabolic signaling pathways, production of inflammatory lipid mediators, and regulation of antigen presentation. Infection-driven LD biogenesis is a complexly regulated process that involves innate immune receptors, transcriptional and posttranscriptional regulation, increased lipid uptake, and new lipid synthesis. Accumulating evidence demonstrates that intracellular pathogens are able to exploit LDs as an energy source, a replication site, and/or a mechanism of immune response evasion. Nevertheless, LDs can also act in favor of the host as part of the immune and inflammatory response to pathogens. Here, we review recent findings that explored the new roles of LDs in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Livia Teixeira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
53
|
Neutral Lipid Storage Diseases as Cellular Model to Study Lipid Droplet Function. Cells 2019; 8:cells8020187. [PMID: 30795549 PMCID: PMC6406896 DOI: 10.3390/cells8020187] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023] Open
Abstract
Neutral lipid storage disease with myopathy (NLSDM) and with ichthyosis (NLSDI) are rare autosomal recessive disorders caused by mutations in the PNPLA2 and in the ABHD5/CGI58 genes, respectively. These genes encode the adipose triglyceride lipase (ATGL) and α-β hydrolase domain 5 (ABHD5) proteins, which play key roles in the function of lipid droplets (LDs). LDs, the main cellular storage sites of triacylglycerols and sterol esters, are highly dynamic organelles. Indeed, LDs are critical for both lipid metabolism and energy homeostasis. Partial or total PNPLA2 or ABHD5/CGI58 knockdown is characteristic of the cells of NLSD patients; thus, these cells are natural models with which one can unravel LD function. In this review we firstly summarize genetic and clinical data collected from NLSD patients, focusing particularly on muscle, skin, heart, and liver damage due to impaired LD function. Then, we discuss how NLSD cells were used to investigate and expand the current structural and functional knowledge of LDs.
Collapse
|
54
|
Cayer LGJ, Mendonça AM, Pauls SD, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Adipose tissue oxylipin profiles vary by anatomical site and are altered by dietary linoleic acid in rats. Prostaglandins Leukot Essent Fatty Acids 2019; 141:24-32. [PMID: 30661602 DOI: 10.1016/j.plefa.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022]
Abstract
Dietary PUFA and their effects on adipose tissue have been well studied, but oxylipins, the oxygenated metabolites of PUFA, have been sparsely studied in adipose tissue. To determine the oxylipin profile and to examine their potential importance in various adipose sites, female and male rats were provided control, high linoleic acid (LA), or high LA and high α-linolenic acid (LA + ALA) diets for six weeks. Analysis of gonadal (GAT), mesenteric (MAT), perirenal (PAT), and subcutaneous adipose tissues (SAT) revealed higher numbers of oxylipins in MAT and SAT, primarily due to 20-22 carbon cytochrome P450 oxylipins, as well as metabolites of cyclooxygenase derived oxylipins. LA oxylipins made up 75-96% of the total oxylipin mass and largely determined the total relative amounts between depots (GAT > MAT > PAT > SAT). However, when the two most abundant LA oxylipins (TriHOMEs) were excluded, MAT had the highest mass of oxylipins and exhibited the most sex differences. These differences existed despite comparable PUFA composition between depots. Dietary LA increased oxylipins derived from n-6 PUFA, and the addition of ALA generally returned n-6 PUFA oxylipins to levels similar to control and elevated some n-3 oxylipins. These data on oxylipin profiles in adipose depots from different anatomical sites and the effects of diet and sex provide fundamental knowledge that will aid future studies investigating the physiological effects of adipose tissue.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Anne M Mendonça
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; School of Medicine, Federal University of Uberlândia, Brazil
| | - Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|
55
|
Ferdouse A, Leng S, Winter T, Aukema HM. The Brain Oxylipin Profile Is Resistant to Modulation by Dietary n-6 and n-3 Polyunsaturated Fatty Acids in Male and Female Rats. Lipids 2019; 54:67-80. [DOI: 10.1002/lipd.12122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Afroza Ferdouse
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Shan Leng
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| | - Harold M. Aukema
- Department of Food and Human Nutritional Sciences; 190 Dysart Road, University of Manitoba Winnipeg; Canada R3T 2N2
- Canadian Centre for Agri-Food Research in Health and Medicine; 351 Tache Ave, Winnipeg Canada R2H 2A6
| |
Collapse
|
56
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
57
|
Maurer SF, Dieckmann S, Kleigrewe K, Colson C, Amri EZ, Klingenspor M. Fatty Acid Metabolites as Novel Regulators of Non-shivering Thermogenesis. Handb Exp Pharmacol 2019; 251:183-214. [PMID: 30141101 DOI: 10.1007/164_2018_150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fatty acids are essential contributors to adipocyte-based non-shivering thermogenesis by acting as activators of uncoupling protein 1 and serving as fuel for mitochondrial heat production. Novel evidence suggests a contribution to this thermogenic mechanism by their conversion to bioactive compounds. Mammalian cells produce a plethora of oxylipins and endocannabinoids, some of which have been identified to affect the abundance or thermogenic activity of brown and brite adipocytes. These effectors are produced locally or at distant sites and signal toward thermogenic adipocytes via a direct interaction with these cells or indirectly via secondary mechanisms. These interactions are evoked by the activation of receptor-mediated pathways. The endogenous production of these compounds is prone to modulation by the dietary intake of the respective precursor fatty acids. The effect of nutritional interventions on uncoupling protein 1-derived thermogenesis may thus at least in part be conferred by the production of a supportive oxylipin and endocannabinoid profile. The manipulation of this system in future studies will help to elucidate the physiological potential of these compounds as novel, endogenous regulators of non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Sebastian Dieckmann
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | | | | | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food and Health, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
58
|
Conte M, Martucci M, Sandri M, Franceschi C, Salvioli S. The Dual Role of the Pervasive "Fattish" Tissue Remodeling With Age. Front Endocrinol (Lausanne) 2019; 10:114. [PMID: 30863366 PMCID: PMC6400104 DOI: 10.3389/fendo.2019.00114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Human aging is characterized by dramatic changes in body mass composition that include a general increase of the total fat mass. Within the fat mass, a change in the proportions of adipose tissues also occurs with aging, affecting body metabolism, and playing a central role in many chronic diseases, including insulin resistance, obesity, cardiovascular diseases, and type II diabetes. In mammals, fat accumulates as white (WAT) and brown (BAT) adipose tissue, which differ both in morphology and function. While WAT is involved in lipid storage and immuno-endocrine responses, BAT is aimed at generating heat. With advancing age BAT declines, while WAT increases reaching the maximum peak by early old age and changes its distribution toward a higher proportion of visceral WAT. However, lipids tend to accumulate also within lipid droplets (LDs) in non-adipose tissues, including muscle, liver, and heart. The excess of such ectopic lipid deposition and the alteration of LD homeostasis contribute to the pathogenesis of the above-mentioned age-related diseases. It is not clear why age-associated tissue remodeling seems to lean toward lipid deposition as a "default program." However, it can be noted that such remodeling is not inevitably detrimental. In fact, such a programmed redistribution of fat throughout life could be considered physiological and even protective, in particular at extreme old age. In this regard, it has to be considered that an excessive decrease of subcutaneous peripheral fat is associated with a pro-inflammatory status, and a decrease of LD is associated with lipotoxicity leading to an increased risk of insulin resistance, type II diabetes and cardiovascular diseases. At variance, a balanced rate of fat content and distribution has beneficial effects for health and metabolic homeostasis, positively affecting longevity. In this review, we will summarize the present knowledge on the mechanisms of the age-related changes in lipid distribution and we will discuss how fat mass negatively or positively impacts on human health and longevity.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
- *Correspondence: Maria Conte
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
59
|
Maric J, Ravindran A, Mazzurana L, Van Acker A, Rao A, Kokkinou E, Ekoff M, Thomas D, Fauland A, Nilsson G, Wheelock CE, Dahlén SE, Ferreirós N, Geisslinger G, Friberg D, Heinemann A, Konya V, Mjösberg J. Cytokine-induced endogenous production of prostaglandin D 2 is essential for human group 2 innate lymphoid cell activation. J Allergy Clin Immunol 2018; 143:2202-2214.e5. [PMID: 30578872 DOI: 10.1016/j.jaci.2018.10.069] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and maintenance of type 2 immune responses. The prostaglandin (PG) D2-chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) receptor axis potently induces cytokine production and ILC2 migration. OBJECTIVE We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. METHODS The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. RESULTS We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. CONCLUSION PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.
Collapse
Affiliation(s)
- Jovana Maric
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Avinash Ravindran
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Mazzurana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project group Translational Medicine & Pharmacology TMP, Frankfurt, Germany
| | - Danielle Friberg
- Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Science, Uppsala University, Uppsala, Sweden
| | - Akos Heinemann
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria
| | - Viktoria Konya
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
60
|
Islam MA, Ravandi A, Aukema HM. Linoleic acid derived oxylipins are elevated in kidney and liver and reduced in serum in rats given a high-protein diet. J Nutr Biochem 2018; 61:40-47. [DOI: 10.1016/j.jnutbio.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
|
61
|
Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:880-899. [PMID: 30367950 PMCID: PMC6439276 DOI: 10.1016/j.bbalip.2018.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) has been discovered 14 years ago and revised our view on intracellular triglyceride (TG) mobilization – a process termed lipolysis. ATGL initiates the hydrolysis of TGs to release fatty acids (FAs) that are crucial energy substrates, precursors for the synthesis of membrane lipids, and ligands of nuclear receptors. Thus, ATGL is a key enzyme in whole-body energy homeostasis. In this review, we give an update on how ATGL is regulated on the transcriptional and post-transcriptional level and how this affects the enzymes' activity in the context of neutral lipid catabolism. In depth, we highlight and discuss the numerous physiological functions of ATGL in lipid and energy metabolism. Over more than a decade, different genetic mouse models lacking or overexpressing ATGL in a cell- or tissue-specific manner have been generated and characterized. Moreover, pharmacological studies became available due to the development of a specific murine ATGL inhibitor (Atglistatin®). The identification of patients with mutations in the human gene encoding ATGL and their disease spectrum has underpinned the importance of ATGL in humans. Together, mouse models and human data have advanced our understanding of the physiological role of ATGL in lipid and energy metabolism in adipose and non-adipose tissues, and of the pathophysiological consequences of ATGL dysfunction in mice and men. Summary of mouse models with genetic or pharmacological manipulation of ATGL. Summary of patients with mutations in the human gene encoding ATGL. In depth discussion of the role of ATGL in numerous physiological processes in mice and men.
Collapse
|
62
|
Kyle JE, Clair G, Bandyopadhyay G, Misra RS, Zink EM, Bloodsworth KJ, Shukla AK, Du Y, Lillis J, Myers JR, Ashton J, Bushnell T, Cochran M, Deutsch G, Baker ES, Carson JP, Mariani TJ, Xu Y, Whitsett JA, Pryhuber G, Ansong C. Cell type-resolved human lung lipidome reveals cellular cooperation in lung function. Sci Rep 2018; 8:13455. [PMID: 30194354 PMCID: PMC6128932 DOI: 10.1038/s41598-018-31640-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cell type-resolved proteome analyses of the brain, heart and liver have been reported, however a similar effort on the lipidome is currently lacking. Here we applied liquid chromatography-tandem mass spectrometry to characterize the lipidome of major lung cell types isolated from human donors, representing the first lipidome map of any organ. We coupled this with cell type-resolved proteomics of the same samples (available at Lungmap.net). Complementary proteomics analyses substantiated the functional identity of the isolated cells. Lipidomics analyses showed significant variations in the lipidome across major human lung cell types, with differences most evident at the subclass and intra-subclass (i.e. total carbon length of the fatty acid chains) level. Further, lipidomic signatures revealed an overarching posture of high cellular cooperation within the human lung to support critical functions. Our complementary cell type-resolved lipid and protein datasets serve as a rich resource for analyses of human lung function.
Collapse
Affiliation(s)
- Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yina Du
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jacquelyn Lillis
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - John Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Timothy Bushnell
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Matthew Cochran
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
63
|
Petan T, Jarc E, Jusović M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules 2018; 23:molecules23081941. [PMID: 30081476 PMCID: PMC6222695 DOI: 10.3390/molecules23081941] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess remarkable abilities to adapt to adverse environmental conditions. Their survival during severe nutrient and oxidative stress depends on their capacity to acquire extracellular lipids and the plasticity of their mechanisms for intracellular lipid synthesis, mobilisation, and recycling. Lipid droplets, cytosolic fat storage organelles present in most cells from yeast to men, are emerging as major regulators of lipid metabolism, trafficking, and signalling in various cells and tissues exposed to stress. Their biogenesis is induced by nutrient and oxidative stress and they accumulate in various cancers. Lipid droplets act as switches that coordinate lipid trafficking and consumption for different purposes in the cell, such as energy production, protection against oxidative stress or membrane biogenesis during rapid cell growth. They sequester toxic lipids, such as fatty acids, cholesterol and ceramides, thereby preventing lipotoxic cell damage and engage in a complex relationship with autophagy. Here, we focus on the emerging mechanisms of stress-induced lipid droplet biogenesis; their roles during nutrient, lipotoxic, and oxidative stress; and the relationship between lipid droplets and autophagy. The recently discovered principles of lipid droplet biology can improve our understanding of the mechanisms that govern cancer cell adaptability and resilience to stress.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| | - Maida Jusović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW We review the underlying mechanisms and potential benefits of intermittent fasting (IF) from animal models and recent clinical trials. RECENT FINDINGS Numerous variations of IF exist, and study protocols vary greatly in their interpretations of this weight loss trend. Most human IF studies result in minimal weight loss and marginal improvements in metabolic biomarkers, though outcomes vary. Some animal models have found that IF reduces oxidative stress, improves cognition, and delays aging. Additionally, IF has anti-inflammatory effects, promotes autophagy, and benefits the gut microbiome. The benefit-to-harm ratio varies by model, IF protocol, age at initiation, and duration. We provide an integrated perspective on potential benefits of IF as well as key areas for future investigation. In clinical trials, caloric restriction and IF result in similar degrees of weight loss and improvement in insulin sensitivity. Although these data suggest that IF may be a promising weight loss method, IF trials have been of moderate sample size and limited duration. More rigorous research is needed.
Collapse
Affiliation(s)
- Mary-Catherine Stockman
- Section of Endocrinology, Diabetes and Nutrition, Boston Medical Center, 720 Harrison Avenue, 8th Floor, Boston, MA, 02118, USA.
| | - Dylan Thomas
- Section of Endocrinology, Diabetes and Nutrition, Boston Medical Center, 720 Harrison Avenue, 8th Floor, Boston, MA, 02118, USA
| | - Jacquelyn Burke
- College of Health and Rehabilitation Sciences, Boston University Sargent College, 635 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Caroline M Apovian
- Section of Endocrinology, Diabetes and Nutrition, Boston Medical Center, 720 Harrison Avenue, 8th Floor, Boston, MA, 02118, USA
| |
Collapse
|
65
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
66
|
Henne WM, Reese ML, Goodman JM. The assembly of lipid droplets and their roles in challenged cells. EMBO J 2018; 37:embj.201898947. [PMID: 29789390 DOI: 10.15252/embj.201898947] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic lipid droplets are important organelles in nearly every eukaryotic and some prokaryotic cells. Storing and providing energy is their main function, but they do not work in isolation. They respond to stimuli initiated either on the cell surface or in the cytoplasm as conditions change. Cellular stresses such as starvation and invasion are internal insults that evoke changes in droplet metabolism and dynamics. This review will first outline lipid droplet assembly and then discuss how droplets respond to stress and in particular nutrient starvation. Finally, the role of droplets in viral and microbial invasion will be presented, where an unresolved issue is whether changes in droplet abundance promote the invader, defend the host, to try to do both. The challenges of stress and infection are often accompanied by changes in physical contacts between droplets and other organelles. How these changes may result in improving cellular physiology, an ongoing focus in the field, is discussed.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Michael L Reese
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
67
|
Hints on ATGL implications in cancer: beyond bioenergetic clues. Cell Death Dis 2018; 9:316. [PMID: 29472527 PMCID: PMC5833653 DOI: 10.1038/s41419-018-0345-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Among metabolic rearrangements occurring in cancer cells, lipid metabolism alteration has become a hallmark, aimed at sustaining accelerated proliferation. In particular, fatty acids (FAs) are dramatically required by cancer cells as signalling molecules and membrane building blocks, beyond bioenergetics. Along with de novo biosynthesis, free FAs derive from dietary sources or from intracellular lipid droplets, which represent the storage of triacylglycerols (TAGs). Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis, catalysing the first step of intracellular TAGs hydrolysis in several tissues. However, the roles of ATGL in cancer are still neglected though a putative tumour suppressor function of ATGL has been envisaged, as its expression is frequently reduced in different human cancers (e.g., lung, muscle, and pancreas). In this review, we will introduce lipid metabolism focusing on ATGL functions and regulation in normal cell physiology providing also speculative perspectives on potential non-energetic functions of ATGL in cancer. In particular, we will discuss how ATGL is implicated, mainly through the peroxisome proliferator-activated receptor-α (PPAR-α) signalling, in inflammation, redox homoeostasis and autophagy, which are well-known processes deregulated during cancer formation and/or progression.
Collapse
|
68
|
McHale C, Mohammed Z, Deppen J, Gomez G. Interleukin-6 potentiates FcεRI-induced PGD 2 biosynthesis and induces VEGF from human in situ-matured skin mast cells. Biochim Biophys Acta Gen Subj 2018; 1862:1069-1078. [PMID: 29410184 DOI: 10.1016/j.bbagen.2018.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Interleukin-6 is a gp130 utilizing cytokine that is consistently associated with allergic diseases like asthma and urticaria in humans where mast cells are known to play a critical role. However, the role of IL-6 in allergic disease in not known. IL-6 was reported to enhance degranulation of in vitro-derived mast cells, but the effect of IL-6 on mediator release from human in situ-matured tissue-isolated mast cells had not been reported. METHODS Human mature mast cells were isolated and purified from normal skin tissue from different donors. The expression of surface-expressed IL-6 receptors was demonstrated by flow cytometry. The effect of IL-6 on FcεRI-induced degranulation, PGD2 biosynthesis, and cytokine production was determined with β‑hexosaminidase release assay, Western blotting, quantitative real-time PCR, and ELISA. The small molecule inhibitor of STAT-3, C188-9, was used to demonstrate STAT3 dependency. RESULTS IL-6 significantly potentiated FcεRI-induced PGD2 biosynthesis, but had no effect on degranulation. IL-6 also induced VEGF gene expression and protein secretion, and enhanced FcεRI-induced IL-8 production. Mechanistically, IL-6 enhanced FcεRI-induced COX‑2 expression, PGD2 biosynthesis, and VEGF production in a STAT3 dependent manner. CONCLUSION Here, we demonstrate that IL-6 is a potentiator of FcεRI-induced PGD2 biosynthesis, and can induce or enhance production of pro-angiogenesis factors VEGF and IL-8 from human in situ-matured skin mast cells. GENERAL SIGNIFICANCE These findings from this study indicate that IL-6 contributes to human allergic disease by enhancing the production of inflammatory PGD2 from tissue-resident mast cells. Moreover, the data suggest a novel role for IL-6 in mast cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Zahraa Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Juline Deppen
- Department of Biomedical Engineering, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
69
|
Mendonça AM, Cayer LGJ, Pauls SD, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Distinct effects of dietary ALA, EPA and DHA on rat adipose oxylipins vary by depot location and sex. Prostaglandins Leukot Essent Fatty Acids 2018; 129:13-24. [PMID: 29482766 DOI: 10.1016/j.plefa.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied. For example: in perirenal and subcutaneous depots, more DHA oxylipins were higher with dietary ALA than with EPA; dietary EPA uniquely decreased 14-hydroxy-docosahexaenoic acid, in contrast to increasing many other DHA oxylipins. The n-3 PUFAs also reduced oxylipins from n-6 PUFAs in order of effectiveness: DHA > EPA > ALA. Diet by sex interactions in all depots except the perirenal depot resulted in higher oxylipins in males given DHA, and higher oxylipins in females given the other diets. Diet and sex effects on oxylipins did not necessarily reflect effects on either their tissue phospholipid or neutral lipid PUFA precursors. These varying diet and sex effects on oxylipins in the different adipose sites indicate that they may have distinct effects on adipose function.
Collapse
Affiliation(s)
- Anne M Mendonça
- School of Medicine, Federal University of Uberlândia, Brazil; Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Lucien G J Cayer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|
70
|
Wilson SK, Knoll LJ. Patatin-like phospholipases in microbial infections with emerging roles in fatty acid metabolism and immune regulation by Apicomplexa. Mol Microbiol 2017; 107:34-46. [PMID: 29090840 DOI: 10.1111/mmi.13871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022]
Abstract
Emerging lipidomic technologies have enabled researchers to dissect the complex roles of phospholipases in lipid metabolism, cellular signaling and immune regulation. Host phospholipase products are involved in stimulating and resolving the inflammatory response to pathogens. While many pathogen-derived phospholipases also manipulate the immune response, they have recently been shown to be involved in lipid remodeling and scavenging during replication. Animal and plant hosts as well as many pathogens contain a family of patatin-like phospholipases, which have been shown to have phospholipase A2 activity. Proteins containing patatin-like phospholipase domains have been identified in protozoan parasites within the Apicomplexa phylum. These parasites are the causative agents of some of the most widespread human diseases. Malaria, caused by Plasmodium spp., kills nearly half a million people worldwide each year. Toxoplasma and Cryptosporidium infect millions of people each year with lethal consequences in immunocompromised populations. Parasite-derived patatin-like phospholipases are likely effective drug targets and progress in the tools available to the Apicomplexan field will allow for a closer look at the interplay of lipid metabolism and immune regulation during host infection.
Collapse
Affiliation(s)
- Sarah K Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
71
|
Riederer M, Lechleitner M, Köfeler H, Frank S. Reduced expression of adipose triglyceride lipase decreases arachidonic acid release and prostacyclin secretion in human aortic endothelial cells. Arch Physiol Biochem 2017; 123:249-253. [PMID: 28368219 PMCID: PMC5942144 DOI: 10.1080/13813455.2017.1309052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Vascular endothelial cells represent an important source of arachidonic acid (AA)-derived mediators involved in the generation of anti- or proatherogenic environments. Evidence emerged (in mast cells), that in addition to phospholipases, neutral lipid hydrolases as adipose triglyceride lipase (ATGL) also participate in this process. OBJECTIVE To examine the impact of ATGL on AA-release from cellular phospholipids (PL) and on prostacyclin secretion in human aortic endothelial cells (HAEC). METHODS AND RESULTS siRNA-mediated silencing of ATGL promoted lipid droplet formation and TG accumulation in HAEC (nile red stain). ATGL knockdown decreased the basal and A23187 (calcium ionophore)-induced release of 14C-AA from (14C-AA-labeled) HAEC. In A23187-stimulated ATGL silenced cells, this was accompanied by a decreased content of 14C-AA in cellular PL and a decreased secretion of prostacyclin (determined by 6-keto PGF1α EIA). CONCLUSIONS In vascular endothelial cells, the efficiency of stimulus-induced AA release and prostacyclin secretion is dependent on ATGL.
Collapse
Affiliation(s)
- Monika Riederer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Graz, Austria
- Institute of Biomedical Science, University of Applied Sciences, Graz, Austria
- CONTACT Monika Riederer
| | - Margarete Lechleitner
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Graz, Austria
| | - Harald Köfeler
- Center for Medical Research, Core Facility Mass Spectrometry, Medical University Graz, Graz, Austria
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Graz, Austria
- Saša FrankInstitute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Harrachgasse 21/III, 8010Graz, Austria
| |
Collapse
|
72
|
Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 2017; 313:H903-H918. [PMID: 28801523 DOI: 10.1152/ajpheart.00201.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 01/21/2023]
Abstract
Oxylipins are a group of fatty acid metabolites generated via oxygenation of polyunsaturated fatty acids and are involved in processes such as inflammation, immunity, pain, vascular tone, and coagulation. As a result, oxylipins have been implicated in many conditions characterized by these processes, including cardiovascular disease and aging. The best characterized oxylipins in relation to cardiovascular disease are derived from the ω-6 fatty acid arachidonic acid. These oxylipins generally increase inflammation, hypertension, and platelet aggregation, although not universally. Similarly, oxylipins derived from the ω-6 fatty acid linoleic acid generally have more adverse than beneficial cardiovascular effects. Alternatively, most oxylipins derived from 20- and 22-carbon ω-3 fatty acids have anti-inflammatory, antiaggregatory, and vasodilatory effects that help explain the cardioprotective effects of these fatty acids. Much less is known regarding the oxylipins derived from the 18-carbon ω-3 fatty acid α-linolenic acid, but clinical trials with flaxseed supplementation have indicated that these oxylipins can have positive effects on blood pressure. Normal aging also is associated with changes in oxylipin levels in the brain, vasculature, and other tissues, indicating that oxylipin changes with aging may be involved in age-related changes in these tissues. A small number of trials in humans and animals with interventions that contain either 18-carbon or 20- and 22-carbon ω-3 fatty acids have indicated that dietary-induced changes in oxylipins may be beneficial in slowing the changes associated with normal aging. In summary, oxylipins are an important group of molecules amenable to dietary manipulation to target cardiovascular disease and age-related degeneration.NEW & NOTEWORTHY Oxylipins are an important group of fatty acid metabolites amenable to dietary manipulation. Because of the role they play in cardiovascular disease and in age-related degeneration, oxylipins are gaining recognition as viable targets for specific dietary interventions focused on manipulating oxylipin composition to control these biological processes.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mihir Parikh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aleksandra Stamenkovic
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; and .,Canadian Centre for Agri-food Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| |
Collapse
|
73
|
Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1260-1272. [PMID: 28735096 PMCID: PMC5595650 DOI: 10.1016/j.bbalip.2017.07.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Lipid droplets are cytoplasmic organelles that store neutral lipids and are critically important for energy metabolism. Their function in energy storage is firmly established and increasingly well characterized. However, emerging evidence indicates that lipid droplets also play important and diverse roles in the cellular handling of lipids and proteins that may not be directly related to energy homeostasis. Lipid handling roles of droplets include the storage of hydrophobic vitamin and signaling precursors, and the management of endoplasmic reticulum and oxidative stress. Roles of lipid droplets in protein handling encompass functions in the maturation, storage, and turnover of cellular and viral polypeptides. Other potential roles of lipid droplets may be connected with their intracellular motility and, in some cases, their nuclear localization. This diversity highlights that lipid droplets are very adaptable organelles, performing different functions in different biological contexts. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, United States.
| | | |
Collapse
|
74
|
Leng S, Winter T, Aukema HM. Dietary LA and sex effects on oxylipin profiles in rat kidney, liver, and serum differ from their effects on PUFAs. J Lipid Res 2017; 58:1702-1712. [PMID: 28667077 DOI: 10.1194/jlr.m078097] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
A vast literature on fatty acids in mammals exists, but comparable compositional data on oxylipins is lacking. Weanling Sprague-Dawley rats were therefore provided control diets or diets with higher linoleic acid (LA) or with higher LA and α-linolenic acid (LA+ALA) for 6 weeks. Kidneys, livers, and serum were analyzed for oxylipins and fatty acids. The proportion of tissue oxylipins derived from LA was greater than the relative proportion of LA itself, whereas arachidonic acid (AA) oxylipins were overrepresented in serum. Higher dietary LA increased kidney LA and AA oxylipins, despite not altering LA or AA. In liver, both LA and AA and their oxylipins were higher, whereas in serum only LA oxylipins were higher with higher dietary LA. Higher LA resulted in a higher ratio of n-6/n-3 PUFA-derived oxylipins; adding ALA to the LA diet mitigated this and many, but not all, effects of the LA diet. Approximately 40% of oxylipins detected were influenced by sex and, unlike their PUFA precursors, most (>90%) of these were higher in males. These differences in dietary LA and sex on oxylipin and fatty acid profiles further our understanding of the effects of fatty acids and may have implications for dietary LA recommendations.
Collapse
Affiliation(s)
- Shan Leng
- Department of Human Nutritional Sciences, University of Manitoba and Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Tanja Winter
- Department of Human Nutritional Sciences, University of Manitoba and Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba and Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|
75
|
Schlager S, Vujic N, Korbelius M, Duta-Mare M, Dorow J, Leopold C, Rainer S, Wegscheider M, Reicher H, Ceglarek U, Sattler W, Radovic B, Kratky D. Lysosomal lipid hydrolysis provides substrates for lipid mediator synthesis in murine macrophages. Oncotarget 2017; 8:40037-40051. [PMID: 28402950 PMCID: PMC5522325 DOI: 10.18632/oncotarget.16673] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/19/2017] [Indexed: 11/25/2022] Open
Abstract
Degradation of lysosomal lipids requires lysosomal acid lipase (LAL), the only intracellular lipase known to be active at acidic pH. We found LAL to be expressed in murine immune cells with highest mRNA expression in macrophages and neutrophils. Furthermore, we observed that loss of LAL in mice caused lipid accumulation in white blood cells in the peripheral circulation, which increased in response to an acute inflammatory stimulus. Lal-deficient (-/-) macrophages accumulate neutral lipids, mainly cholesteryl esters, within lysosomes. The cholesteryl ester fraction is particularly enriched in the PUFAs 18:2 and 20:4, important precursor molecules for lipid mediator synthesis. To investigate whether loss of LAL activity affects the generation of lipid mediators and to eliminate potential systemic effects from other cells and tissues involved in the pronounced phenotype of Lal-/- mice, we treated macrophages from Wt mice with the LAL-specific inhibitor LAListat-2. Acute inhibition of LAL resulted in reduced release of 18:2- and 20:4-derived mediators from macrophages, indicating that lipid hydrolysis by LAL is an important source for lipid mediator synthesis in macrophages. We conclude that lysosomes should be considered as organelles that provide precursor molecules for lipid mediators such as eicosanoids.
Collapse
Affiliation(s)
- Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Boehringer Ingelheim, Vienna, Austria
| | - Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melanie Korbelius
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Madalina Duta-Mare
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Juliane Dorow
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Christina Leopold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Martin Wegscheider
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
76
|
Ryan KM, Glaviano A, O'Donovan SM, Kolshus E, Dunne R, Kavanagh A, Jelovac A, Noone M, Tucker GM, Dunn MJ, McLoughlin DM. Electroconvulsive therapy modulates plasma pigment epithelium-derived factor in depression: a proteomics study. Transl Psychiatry 2017; 7:e1073. [PMID: 28350398 PMCID: PMC5404616 DOI: 10.1038/tp.2017.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/15/2017] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe depression, yet its mechanism of action is not fully understood. Peripheral blood proteomic analyses may offer insights into the molecular mechanisms of ECT. Patients with a major depressive episode were recruited as part of the EFFECT-Dep trial (enhancing the effectiveness of electroconvulsive therapy in severe depression; ISRCTN23577151) along with healthy controls. As a discovery-phase study, patient plasma pre-/post-ECT (n=30) was analyzed using 2-dimensional difference in gel electrophoresis and mass spectrometry. Identified proteins were selected for confirmation studies using immunodetection methods. Samples from a separate group of patients (pre-/post-ECT; n=57) and matched healthy controls (n=43) were then used to validate confirmed changes. Target protein mRNA levels were also assessed in rat brain and blood following electroconvulsive stimulation (ECS), the animal model of ECT. We found that ECT significantly altered 121 protein spots with 36 proteins identified by mass spectrometry. Confirmation studies identified a post-ECT increase (P<0.01) in the antiangiogenic and neuroprotective mediator pigment epithelium-derived factor (PEDF). Validation work showed an increase (P<0.001) in plasma PEDF in depressed patients compared with the controls that was further increased post-ECT (P=0.03). PEDF levels were not associated with mood scores. Chronic, but not acute, ECS increased PEDF mRNA in rat hippocampus (P=0.02) and dentate gyrus (P=0.03). This study identified alterations in blood levels of PEDF in depressed patients and further alterations following ECT, as well as in an animal model of ECT. These findings implicate PEDF in the biological response to ECT for depression.
Collapse
Affiliation(s)
- K M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - A Glaviano
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - S M O'Donovan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - E Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - R Dunne
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - A Kavanagh
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - A Jelovac
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - M Noone
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland
| | - G M Tucker
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - M J Dunn
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - D M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, Dublin, Ireland,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James's Street, Dublin 8, Ireland. E-mail:
| |
Collapse
|
77
|
The size matters: regulation of lipid storage by lipid droplet dynamics. SCIENCE CHINA-LIFE SCIENCES 2016; 60:46-56. [PMID: 27981432 DOI: 10.1007/s11427-016-0322-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
Adequate energy storage is essential for sustaining healthy life. Lipid droplet (LD) is the subcellular organelle that stores energy in the form of neutral lipids and releases fatty acids under energy deficient conditions. Energy storage capacity of LDs is primarily dependent on the sizes of LDs. Enlargement and growth of LDs is controlled by two molecular pathways: neutral lipid synthesis and atypical LD fusion. Shrinkage of LDs is mediated by the degradation of neutral lipids under energy demanding conditions and is controlled by neutral cytosolic lipases and lysosomal acidic lipases. In this review, we summarize recent progress regarding the regulatory pathways and molecular mechanisms that control the sizes and the energy storage capacity of LDs.
Collapse
|
78
|
Chen HY, Chiang DML, Lin ZJ, Hsieh CC, Yin GC, Weng IC, Guttmann P, Werner S, Henzler K, Schneider G, Lai LJ, Liu FT. Nanoimaging granule dynamics and subcellular structures in activated mast cells using soft X-ray tomography. Sci Rep 2016; 6:34879. [PMID: 27748356 PMCID: PMC5066221 DOI: 10.1038/srep34879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
Mast cells play an important role in allergic responses. During activation, these cells undergo degranulation, a process by which various kinds of mediators stored in the granules are released. Granule homeostasis in mast cells has mainly been studied by electron microscopy (EM), where the fine structures of subcellular organelles are partially destroyed during sample preparation. Migration and fusion of granules have not been studied in detail in three dimensions (3D) in unmodified samples. Here, we utilized soft X-ray tomography (SXT) coupled with fluorescence microscopy to study the detailed structures of organelles during mast cell activation. We observed granule fission, granule fusion to plasma membranes, and small vesicles budding from granules. We also detected lipid droplets, which became larger and more numerous as mast cells were activated. We observed dramatic morphological changes of mitochondria in activated mast cells and 3D-reconstruction revealed the highly folded cristae inner membrane, features of functionally active mitochondria. We also observed giant vesicles containing granules, mitochondria, and lipid droplets, which we designated as granule-containing vesicles (GCVs) and verified their presence by EM in samples prepared by cryo-substitution, albeit with a less clear morphology. Thus, our studies using SXT provide significant insights into mast cell activation at the organelle level.
Collapse
Affiliation(s)
- Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | - Zi-Jing Lin
- National Synchrotron Radiation Research Center, Taiwan, ROC
| | | | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Taiwan, ROC
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | - Peter Guttmann
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Stephan Werner
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Katja Henzler
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Gerd Schneider
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, D-12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| | - Lee-Jene Lai
- National Synchrotron Radiation Research Center, Taiwan, ROC
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC.,Department of Dermatology, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
79
|
Hoffmann HJ. News in Cellular Allergology: A Review of the Human Mast Cell and Basophil Granulocyte Literature from January 2013 to May 2015. Int Arch Allergy Immunol 2016; 168:253-62. [DOI: 10.1159/000443960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
80
|
Shirley D, McHale C, Gomez G. Resveratrol preferentially inhibits IgE-dependent PGD2 biosynthesis but enhances TNF production from human skin mast cells. Biochim Biophys Acta Gen Subj 2016; 1860:678-85. [PMID: 26777630 DOI: 10.1016/j.bbagen.2016.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Resveratrol, a natural polyphenol found in the skin of red grapes, is reported to have anti-inflammatory properties including protective effects against aging. Consequently, Resveratrol is a common nutritional supplement and additive in non-prescription lotions and creams marketed as anti-aging products. Studies in mice and with mouse bone marrow-derived mast cells (BMMCs) have indicated anti-allergic effects of Resveratrol. However, the effects of Resveratrol on human primary mast cells have not been reported. METHODS Human mast cells were isolated and purified from normal skin tissue of different donors. The effect of Resveratrol on IgE-dependent release of allergic inflammatory mediators was determined using various immunoassays, Western blotting, and quantitative real-time PCR. RESULTS Resveratrol at low concentrations (≤10 μM) inhibited PGD2 biosynthesis but not degranulation. Accordingly, COX-2 expression was inhibited but phosphorylation of Syk, Akt, p38, and p42/44 (ERKs) remained intact. Surprisingly, TNF production was significantly enhanced with Resveratrol. At a high concentration (100 μM), Resveratrol significantly inhibited all parameters analyzed except Syk phosphorylation. CONCLUSIONS Here, we show that Resveratrol at low concentrations exerts its anti-inflammatory properties by preferentially targeting the arachidonic acid pathway. We also demonstrate a previously unrecognized pro-inflammatory effect of Resveratrol--the enhancement of TNF production from human mature mast cells following IgE-dependent activation. GENERAL SIGNIFICANCE These findings suggest that Resveratrol as a therapeutic agent could inhibit PGD2-mediated inflammation but would be ineffective against histamine-mediated allergic reactions. However, Resveratrol could potentially exacerbate or promote allergic inflammation by enhancing IgE-dependent TNF production from mast cells in human skin.
Collapse
Affiliation(s)
- Devon Shirley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
81
|
Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr 2015; 6:513-40. [PMID: 26374175 PMCID: PMC4561827 DOI: 10.3945/an.114.007732] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n-3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n-3 PUFAs, oxylipins from n-6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites.
Collapse
Affiliation(s)
| | | | | | | | - Harold M Aukema
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; and Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| |
Collapse
|
82
|
Greineisen WE, Maaetoft-Udsen K, Speck M, Balajadia J, Shimoda LMN, Sung C, Turner H. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response. PLoS One 2015; 10:e0130198. [PMID: 26263026 PMCID: PMC4532411 DOI: 10.1371/journal.pone.0130198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 05/17/2015] [Indexed: 12/11/2022] Open
Abstract
Lipid bodies (LB) are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3) and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses.
Collapse
Affiliation(s)
- William E. Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawaii, United States of America
| | - Kristina Maaetoft-Udsen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawaii, United States of America
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawaii, United States of America
| | - Januaria Balajadia
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawaii, United States of America
| | - Lori M. N. Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawaii, United States of America
| | - Carl Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawaii, United States of America
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawaii, United States of America
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
83
|
Dichlberger A, Schlager S, Kovanen PT, Schneider WJ. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol 2015; 785:59-69. [PMID: 26164793 DOI: 10.1016/j.ejphar.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022]
Abstract
Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria.
| | - Stefanie Schlager
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| |
Collapse
|
84
|
Schlager S, Goeritzer M, Jandl K, Frei R, Vujic N, Kolb D, Strohmaier H, Dorow J, Eichmann TO, Rosenberger A, Wölfler A, Lass A, Kershaw EE, Ceglarek U, Dichlberger A, Heinemann A, Kratky D. Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis. J Leukoc Biol 2015; 98:837-50. [PMID: 26109679 PMCID: PMC4594763 DOI: 10.1189/jlb.3a0515-206r] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023] Open
Abstract
Lipid mediator release depends on the hydrolysis of triglyceride-rich lipid droplets mediated by ATGL, a potent regulator of inflammatory diseases. In humans, mutations in ATGL lead to TG accumulation in LDs of most tissues and cells, including peripheral blood leukocytes. This pathologic condition is called Jordans’ anomaly, in which functional consequences have not been investigated. In the present study, we tested the hypothesis that ATGL plays a role in leukocyte LD metabolism and immune cell function. Similar to humans with loss-of-function mutations in ATGL, we found that global and myeloid-specific Atgl−/− mice exhibit Jordans’ anomaly with increased abundance of intracellular TG-rich LDs in neutrophil granulocytes. In a model of inflammatory peritonitis, lipid accumulation was also observed in monocytes and macrophages but not in eosinophils or lymphocytes. Neutrophils from Atgl−/− mice showed enhanced immune responses in vitro, which were more prominent in cells from global compared with myeloid-specific Atgl−/− mice. Mechanistically, ATGL−/− as well as pharmacological inhibition of ATGL led to an impaired release of lipid mediators from neutrophils. These findings demonstrate that the release of lipid mediators is dependent on the liberation of precursor molecules from the TG-rich pool of LDs by ATGL. Our data provide mechanistic insights into Jordans’ anomaly in neutrophils and suggest that ATGL is a potent regulator of immune cell function and inflammatory diseases.
Collapse
Affiliation(s)
- Stefanie Schlager
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Madeleine Goeritzer
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katharina Jandl
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Robert Frei
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nemanja Vujic
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dagmar Kolb
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heimo Strohmaier
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juliane Dorow
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas O Eichmann
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Angelika Rosenberger
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Albert Wölfler
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Achim Lass
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erin E Kershaw
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Uta Ceglarek
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Andrea Dichlberger
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Akos Heinemann
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dagmar Kratky
- Institutes of *Molecular Biology and Biochemistry and Experimental and Clinical Pharmacology, Center for Medical Research, and Division of Hematology, Medical University of Graz, Graz, Austria; Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; Institute of Molecular Biosciences, University of Graz, Graz, Austria; **Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
85
|
Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol Metab 2015; 4:367-77. [PMID: 25973385 PMCID: PMC4421107 DOI: 10.1016/j.molmet.2015.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 02/09/2023] Open
Abstract
Background An acute surplus of carbohydrates, and other substrates, can be converted and safely stored as lipids in adipocytes via de novo lipogenesis (DNL). However, in obesity, a condition characterized by chronic positive energy balance, DNL in non-adipose tissues may lead to ectopic lipid accumulation leading to lipotoxicity and metabolic stress. Indeed, DNL is dynamically recruited in liver during the development of fatty liver disease, where DNL is an important source of lipids. Nonetheless, a number of evidences indicates that DNL is an inefficient road for calorie to lipid conversion and that DNL may play an important role in sustaining metabolic homeostasis. Scope of review In this manuscript, we discuss the role of DNL as source of lipids during obesity, the energetic efficiency of this pathway in converting extra calories to lipids, and the function of DNL as a pathway supporting metabolic homeostasis. Major conclusion We conclude that inhibition of DNL in obese subjects, unless coupled with a correction of the chronic positive energy balance, may further promote lipotoxicity and metabolic stress. On the contrary, strategies aimed at specifically activating DNL in adipose tissue could support metabolic homeostasis in obese subjects by a number of mechanisms, which are discussed in this manuscript.
Collapse
Affiliation(s)
- Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Abdul G Dulloo
- Division of Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
86
|
Schreiber R, Zechner R. Lipolysis meets inflammation: arachidonic acid mobilization from fat. J Lipid Res 2014; 55:2447-9. [PMID: 25332433 DOI: 10.1194/jlr.c055673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Renate Schreiber
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| |
Collapse
|