51
|
Wu NQ, Shi HW, Li JJ. Proprotein Convertase Subtilisin/Kexin Type 9 and Inflammation: An Updated Review. Front Cardiovasc Med 2022; 9:763516. [PMID: 35252378 PMCID: PMC8894439 DOI: 10.3389/fcvm.2022.763516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The function of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), a novel plasma protein, has mainly been involved in cholesterol metabolism in the liver, while, more interestingly, recent data have shown that PCSK9 also took part in the modulation of inflammation, which appeared to be another explanation for the reduction of cardiovascular risk by PCSK9 inhibition besides its significant effect on lowering lower-density lipoprotein cholesterol (LDL-C) concentration. Overall, a series of previous studies suggested an association of PCSK9 with inflammation. Firstly, PCSK9 is able to induce the secretion of proinflammatory cytokines in macrophages and in other various tissues and elevated serum PCSK9 levels could be observed in pro-inflammatory conditions, such as sepsis, acute coronary syndrome (ACS). Secondly, detailed signaling pathway studies indicated that PCSK9 positively regulated toll-like receptor 4 expression and inflammatory cytokines expression followed by nuclear factor-kappa B (NF-kB) activation, together with apoptosis and autophagy progression. Besides, PCSK9 enhanced and interacted with scavenger receptors (SRs) of inflammatory mediators like lectin-like oxidized-LDL receptor-1 (LOX-1) to promote inflammatory response. Additionally, several studies also suggested that the role of PCSK9 in atherogenesis was intertwined with inflammation and the interacting effect shown between PCSK9 and LOX-1 was involved in the inflammatory response of atherosclerosis. Finally, emerging clinical trials indicated that PCSK9 inhibitors could reduce more events in patients with ACS accompanied by increased inflammatory status, which might be involved in its attenuating impact on arterial plaque. Hence, further understanding of the relationship between PCSK9 and inflammation would be necessary to help prevent and manage the atherosclerotic cardiovascular disease (ASCVD) clinically. This review article will update the recent advances in the link of PCSK9 with inflammation.
Collapse
Affiliation(s)
| | | | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Cardiometabolic Center, National Center for Cardiovascular Diseases, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
52
|
Lebeau PF, Byun JH, Platko K, Saliba P, Sguazzin M, MacDonald ME, Paré G, Steinberg GR, Janssen LJ, Igdoura SA, Tarnopolsky MA, Wayne Chen SR, Seidah NG, Magolan J, Austin RC. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun 2022; 13:770. [PMID: 35140212 PMCID: PMC8828868 DOI: 10.1038/s41467-022-28240-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/05/2022] [Indexed: 01/06/2023] Open
Abstract
Evidence suggests that caffeine (CF) reduces cardiovascular disease (CVD) risk. However, the mechanism by which this occurs has not yet been uncovered. Here, we investigated the effect of CF on the expression of two bona fide regulators of circulating low-density lipoprotein cholesterol (LDLc) levels; the proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR). Following the observation that CF reduced circulating PCSK9 levels and increased hepatic LDLR expression, additional CF-derived analogs with increased potency for PCSK9 inhibition compared to CF itself were developed. The PCSK9-lowering effect of CF was subsequently confirmed in a cohort of healthy volunteers. Mechanistically, we demonstrate that CF increases hepatic endoplasmic reticulum (ER) Ca2+ levels to block transcriptional activation of the sterol regulatory element-binding protein 2 (SREBP2) responsible for the regulation of PCSK9, thereby increasing the expression of the LDLR and clearance of LDLc. Our findings highlight ER Ca2+ as a master regulator of cholesterol metabolism and identify a mechanism by which CF may protect against CVD.
Collapse
Affiliation(s)
- Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Paul Saliba
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Matthew Sguazzin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, ON, L8L 2X2, Canada.,The Departments of Medicine, Epidemiology and Pathology, McMaster University, Hamilton, ON, L8L 2X2, Canada.,The Thrombosis and Atherosclerosis Research Institute (TaARI), Department of Medicine, David Braley Research Institute, McMaster University, Hamilton, L8L 2X2, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.,Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Hamilton, ON, L8S 4K1, Canada
| | - Suleiman A Igdoura
- Department of Biology and Pathology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mark A Tarnopolsky
- Department of Medicine/Neurology, McMaster University, Hamilton, ON, L8N 3Z5, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 2T9, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, QC, H2W 1R7, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, L8N 4A6, Canada. .,The Thrombosis and Atherosclerosis Research Institute (TaARI), Department of Medicine, David Braley Research Institute, McMaster University, Hamilton, L8L 2X2, Canada.
| |
Collapse
|
53
|
Agnello F, Capodanno D. Anti-inflammatory strategies for atherosclerotic artery disease. Expert Opin Drug Saf 2022; 21:661-672. [DOI: 10.1080/14740338.2022.2036717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Federica Agnello
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Davide Capodanno
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
54
|
Punch E, Klein J, Diaba-Nuhoho P, Morawietz H, Garelnabi M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J Am Heart Assoc 2022; 11:e023328. [PMID: 35048716 PMCID: PMC9238481 DOI: 10.1161/jaha.121.023328] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Characterized as a chronic inflammatory disease of the large arteries, atherosclerosis is the primary cause of cardiovascular disease, the leading contributor of morbidity and mortality worldwide. Elevated plasma cholesterol levels and chronic inflammation within the arterial plaque are major mediators of plaque initiation, progression, and instability. In 2003, the protein PCSK9 (proprotein convertase subtilisin/kexin 9) was discovered to play a critical role in cholesterol regulation, thus becoming a key player in the mechanisms behind atherosclerotic plaque development. Emerging evidence suggests that PCSK9 could potentially have effects on atherosclerosis that are independent of cholesterol levels. The objective of this review was to discuss the role on PCSK9 in oxidation, inflammation, and atherosclerosis. This function activates proinflammatory cytokine production and affects oxidative modifications within atherosclerotic lesions, revealing its more significant role in atherosclerosis. Although a variety of evidence demonstrates that PCSK9 plays a role in atherosclerotic inflammation, the direct mechanism of involvement is still unknown, driving a gap in knowledge to such a predominant player in cardiovascular disease. Investigation of proteins structurally related to PCSK9 may interestingly be the link in unveiling the mechanistic role of this protein’s involvement in oxidation and inflammation. Importantly, the unique structure of PCSK9 bears structural homology to a one‐of‐a‐kind domain found in the metabolic protein resistin, which is responsible for many of the same inflammatory outcomes as PCSK9. Closing this gap in knowledge of PCSK9`s role in atherosclerotic oxidation and inflammation will provide fundamental information for understanding, preventing, and treating cardiovascular disease.
Collapse
Affiliation(s)
- Emily Punch
- Department of Chemistry University of Massachusetts Lowell MA
| | - Justus Klein
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Mahdi Garelnabi
- Biomedical and Nutritional Sciences University of Massachusetts Lowell MA
| |
Collapse
|
55
|
Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review. Cardiovasc Drugs Ther 2022; 37:585-598. [PMID: 35022949 DOI: 10.1007/s10557-021-07293-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.
Collapse
|
56
|
Marques P, Domingo E, Rubio A, Martinez-Hervás S, Ascaso JF, Piqueras L, Real JT, Sanz MJ. Beneficial effects of PCSK9 inhibition with alirocumab in familial hypercholesterolemia involve modulation of new immune players. Biomed Pharmacother 2021; 145:112460. [PMID: 34864314 DOI: 10.1016/j.biopha.2021.112460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Familial hypercholesterolemia (FH) is associated with low-grade systemic inflammation, a key driver of premature atherosclerosis. We investigated the effects of inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) function on inflammatory state, endothelial dysfunction and cardiovascular outcomes in patients with FH. Fourteen patients with FH were evaluated before and 8 weeks after administration of a PCSK9 blocking monoclonal antibody (alirocumab, 150 mg/subcutaneous/14 days). In vivo and ex vivo analysis revealed that alirocumab blunted the attachment of leukocytes to TNFα-stimulated human umbilical arterial endothelial cells (HUAEC) and suppressed the activation of platelets and most leukocyte subsets, which was accompanied by the diminished expression of CX3CR1, CXCR6 and CCR2 on several leukocyte subpopulations. By contrast, T-regulatory cell activation was enhanced by alirocumab treatment, which also elevated anti-inflammatory IL-10 plasma levels and lowered circulating pro-inflammatory cytokines. Plasma levels of IFNγ positively correlated with levels of total and LDL-cholesterol, whereas circulating IL-10 levels negatively correlated with these key lipid parameters. In vitro analysis revealed that TNFα stimulation of HUAEC increased the expression of PCSK9, whereas endothelial PCSK9 silencing reduced TNFα-induced mononuclear cell adhesion mediated by Nox5 up-regulation and p38-MAPK/NFκB activation, concomitant with reduced SREBP2 expression. PCSK9 silencing also decreased endothelial CX3CL1 and CXCL16 expression and chemokine generation. In conclusion, PCSK9 inhibition impairs systemic inflammation and endothelial dysfunction by constraining leukocyte-endothelium interactions. PCSK9 blockade may constitute a new therapeutic approach to control the inflammatory state associated with FH, preventing further cardiovascular events in this cardiometabolic disorder.
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Elena Domingo
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Arantxa Rubio
- Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain
| | - Sergio Martinez-Hervás
- Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juan F Ascaso
- Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Piqueras
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - José T Real
- Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
57
|
PCSK9 Imperceptibly Affects Chemokine Receptor Expression In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222313026. [PMID: 34884827 PMCID: PMC8657700 DOI: 10.3390/ijms222313026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Proprotein convertase subtilin/kexin type 9 (PCSK9) is a protease secreted mainly by hepatocytes and in lesser quantities by intestines, pancreas, and vascular cells. Over the years, this protease has gained importance in the field of cardiovascular biology due to its regulatory action on the low-density lipoprotein receptor (LDLR). However, recently, it has also been shown that PCSK9 acts independent of LDLR to cause vascular inflammation and increase the severity of several cardiovascular disorders. We hypothesized that PCSK9 affects the expression of chemokine receptors, major mediators of inflammation, to influence cardiovascular health. However, using overexpression of PCSK9 in murine models in vivo and PCSK9 stimulation of myeloid and vascular cells in vitro did not reveal influences of PCSK9 on the expression of certain chemokine receptors that are known to be involved in the development and progression of atherosclerosis and vascular inflammation. Hence, we conclude that the inflammatory effects of PCSK9 are not associated with the here investigated chemokine receptors and additional research is required to elucidate which mechanisms mediate PCSK9 effects independent of LDLR.
Collapse
|
58
|
Aghamajidi A, Gorgani M, Shahba F, Shafaghat Z, Mojtabavi N. The potential targets in immunotherapy of atherosclerosis. Int Rev Immunol 2021; 42:199-216. [PMID: 34779341 DOI: 10.1080/08830185.2021.1988591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cardiovascular disease is the most common cause of death, which has the highest mortality rate worldwide. Although a diverse range of inflammatory diseases can affect the cardiovascular system, however, heart failure and stroke occur due to atherosclerosis. Atherosclerosis is a chronic autoinflammatory disease of small to large vessels in which different immune mediators are involved in lipid plaque formation and inflammatory vascular remodeling process. A better understanding of the pathophysiology of atherosclerosis may lead to uncovering immunomodulatory therapies. Despite present diagnostic and therapeutic methods, the lack of immunotherapy in the prevention and treatment of atherosclerosis is perceptible. In this review, we will discuss the promising immunological-based therapeutics and novel preventive approaches for atherosclerosis. This study could provide new insights into a better perception of targeted therapeutic pathways and biological therapies.
Collapse
Affiliation(s)
- Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Chen W, Xing J, Liu X, Wang S, Xing D. The role and transformative potential of IL-19 in atherosclerosis. Cytokine Growth Factor Rev 2021; 62:70-82. [PMID: 34600839 DOI: 10.1016/j.cytogfr.2021.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Traditionally, IL-19 was thought to be expressed in only immune cells, but studies revealed that IL-19 is also expressed in multiple atherosclerotic plaque cell types, but not normal arteries, in humans and mice. IL-19 reduces the development of atherosclerosis via multiple mechanisms, including balancing cholesterol metabolism; enhancing Th2 immune cell polarization; reducing the inflammatory response; and reducing the proliferation, migration and chemotaxis of vascular smooth muscle cells (VSMCs). Clinical and/or animal studies have primarily aimed to achieve regression and/or stabilization of atherosclerotic plaques, with regression in particular indicating a very good drug response. Most antiatherosclerotic drugs in current clinical use, including atorvastatin and alirocumab, target hyperlipidemia. Several other drugs have also been investigated in clinical trials as anti-inflammatory agents; the development of some of these agents has been terminated (canakinumab, darapladib, varespladib, losmapimod, atreleuton, setileuton, PF-04191834, veliflapon, and methotrexate), but others remain in development (ziltivekimab, tocilizumab, Somalix, IFM-2427, anakinra, mesenchymal stem cells (MSCs), colchicine, everolimus, allopurinol, and montelukast). Most of the tested drugs have shown a limited ability to reverse atherosclerosis in animal studies. Interestingly, recombinant IL-19 (rIL-19) was shown to reduce atherosclerosis development in a time- and dose-dependent manner. A low dose of rIL-19 (1 ng/g/day) reduced aortic arch and root plaque areas by 70.1% and 32.1%, respectively, in LDLR-/- mice. At 10 ng/g/day, rIL-19 completely eliminated atherosclerotic plaques. There were no sex differences in the effects of rIL-19 on atherosclerotic mice. Thus, low-dose rIL-19 is an effective antiatherosclerotic agent, in addition to its efficacy in intimal hyperplasia, spinal cord injury, stroke, and multiple sclerosis. We propose that IL-19 is a promising biomarker and target for the diagnosis and treatment of atherosclerosis. This review considers the role and mechanism of action of IL-19 in atherosclerosis and discusses whether IL-19 is a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jiyao Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
60
|
van Gemert Y, Kozijn AE, Pouwer MG, Kruisbergen NNL, van den Bosch MHJ, Blom AB, Pieterman EJ, Weinans H, Stoop R, Princen HMG, van Lent PLEM. Novel high-intensive cholesterol-lowering therapies do not ameliorate knee OA development in humanized dyslipidemic mice. Osteoarthritis Cartilage 2021; 29:1314-1323. [PMID: 33722697 DOI: 10.1016/j.joca.2021.02.570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE High systemic cholesterol levels have been associated with osteoarthritis (OA) development. Therefore, cholesterol lowering by statins has been suggested as a potential treatment for OA. We investigated whether therapeutic high-intensive cholesterol-lowering attenuated OA development in dyslipidemic APOE∗3Leiden.CETP mice. METHODS Female mice (n = 13-16 per group) were fed a Western-type diet (WTD) for 38 weeks. After 13 weeks, mice were divided into a baseline group and five groups receiving WTD alone or with treatment: atorvastatin alone, combined with PCSK9 inhibitor alirocumab and/or ANGPTL3 inhibitor evinacumab. Knee joints were analysed for cartilage degradation, synovial inflammation and ectopic bone formation using histology. Aggrecanase activity in articular cartilage and synovial S100A8 expression were determined as markers of cartilage degradation/regeneration and inflammation. RESULTS Cartilage degradation and active repair were significantly increased in WTD-fed mice, but cholesterol-lowering strategies did not ameliorate cartilage destruction. This was supported by comparable aggrecanase activity and S100A8 expression in all treatment groups. Ectopic bone formation was comparable between groups and independent of cholesterol levels. CONCLUSIONS Intensive therapeutic cholesterol lowering per se did not attenuate progression of cartilage degradation in dyslipidemic APOE∗3Leiden.CETP mice, with minor joint inflammation. We propose that inflammation is a key feature in the disease and therapeutic cholesterol-lowering strategies may still be promising for OA patients presenting both dyslipidemia and inflammation.
Collapse
Affiliation(s)
- Y van Gemert
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A E Kozijn
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Orthopaedics, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M G Pouwer
- Metabolic Health Research, TNO, Leiden, the Netherlands; Department of Cardiology, Leiden UMC, Leiden, the Netherlands
| | - N N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M H J van den Bosch
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - E J Pieterman
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H Weinans
- Department of Orthopaedics, UMC Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - R Stoop
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - H M G Princen
- Metabolic Health Research, TNO, Leiden, the Netherlands
| | - P L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
61
|
Arya P, Nabi S, Bhandari U. Modulatory role of atorvastatin against high-fat diet and zymosan-induced activation of TLR2/NF-ƙB signaling pathway in C57BL/6 mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1023-1032. [PMID: 34804419 PMCID: PMC8591763 DOI: 10.22038/ijbms.2021.55460.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/11/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Accumulated evidence provides a strong connection between the immune system and vascular inflammation. The innate immune system's main sensors are toll-like receptors (TLRs). Zymosan (Zym), a fungal product, induces an inflammatory response via activating TLR2 of the immune system. Atorvastatin, a potent statin, possesses pleiotropic effects including immunomodulatory, lipid-lowering, and anti-inflammatory. Therefore, the current study aimed to evaluate the protective role of atorvastatin against a high-fat diet (HFD) and Zym-induced vascular inflammation in C57BL/6 mice via modulation of TLR2/NF-ƙB signaling pathway. MATERIALS AND METHODS In silico study was conducted to confirm the binding affinity of atorvastatin against TLR2. Under in vivo study, mice were divided into four groups: Normal control: normal standard chow-diet fed for 30 days + Zym vehicle (sterile PBS, 5 mg/ml on 8th day); HFD (30 days) + Zym (80 mg/kg, IP, on 8th day); HFD/Zym + atorvastatin vehicle (0.5% CMC, p.o., from 10th to 30th day); HFD/Zym + atorvastatin (3.6 mg/kg, p.o., from 10th to 30th day). RESULTS Atorvastatin treatment along with HFD and Zym inhibited vascular inflammation by suppressing the levels of aortic TLR2, cardiac NF-ƙB and decrease in serum TNF-α and IL-6. Further, there was an increase in hepatic LDLR levels, resulting in a decrease in serum LDL-C and an increase in HDL-C levels. Histopathological examination of the aorta showed a reduction in plaque accumulation with the atorvastatin-treated group as compared with HFD and Zym-treated group. CONCLUSION Atorvastatin attenuates vascular inflammation mediated by HFD and Zym through suppression of TLR2, NF-ƙB, TNF-α, IL-6, and upregulation of LDLR levels.
Collapse
Affiliation(s)
- Priyanka Arya
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard (UGC approved deemed to be University, Govt. of India), New Delhi- 110062, India
| | - Sayima Nabi
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard (UGC approved deemed to be University, Govt. of India), New Delhi- 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard (UGC approved deemed to be University, Govt. of India), New Delhi- 110062, India
| |
Collapse
|
62
|
Association between PCSK9 Levels and Markers of Inflammation, Oxidative Stress, and Endothelial Dysfunction in a Population of Nondialysis Chronic Kidney Disease Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6677012. [PMID: 34336112 PMCID: PMC8318757 DOI: 10.1155/2021/6677012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/16/2021] [Indexed: 12/25/2022]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) plays an important role in lipid metabolism while available literature regarding its involvement in the pathogenesis of atherosclerosis and in the expression of genes associated with apoptosis and inflammation is constantly increasing. Patients with chronic kidney disease (CKD) experience disproportionately increased cardiovascular morbidity and mortality due to dyslipidemia, accelerated atherosclerosis, inflammation, oxidative stress, and other risk factors. In the present cross-sectional study, we investigated the possible association of serum PCSK9 levels with markers of inflammation, oxidative stress, and endothelial damage in patients with CKD. Patients and Methods. Ninety-two patients with CKD stages II-ΙV (eGFR CKD-EPI 47.3 ± 25.7 ml/min/1.73 m2, mean age 66 years, 51 men) were included in the study. Plasma PCSK9 levels were correlated with comorbidities (arterial hypertension, diabetes mellitus, and history of cardiovascular disease), renal function indices (eGFR, proteinuria–UPR/24 h), lipid parameters (LDL-cholesterol, HDL-cholesterol, triglycerides, Lp(a), APO-A1, and APO-B), and soluble biomarkers of inflammation, oxidative stress, and endothelial damage (hs-CRP, fibrinogen, 8-epiPGF2a, ox-LDL, IL-6, TNF-α, sICAM-1, and sVCAM-1). Results. The mean plasma value of PCSK9 was 278.1 ng/ml. PCSK9 levels showed direct correlation with serum triglycerides (p = 0.03), Lp(a) (p = 0.01), and sICAM-1 levels (p = 0.03). There was no significant correlation between PCSK9 levels and indices of the renal function, other lipid profile parameters, inflammatory markers, or comorbidities. Multiple regression analysis showed a significant effect of Lp(a) on PCSK9 levels, and for each unit of higher Lp(a), an increase by 3.082 is expected (95% CI: 0.935-5.228, p = 0.006). At the same time, patients receiving statins are expected to have on average 63.8 ng/ml higher PCSK9 values compared to patients not receiving statins (95% CI: 14.6-113.5, p = 0.012). Conclusion. Plasma levels of PCSK9 in nondialysis CKD patients are correlated with endothelial dysfunction and lipid metabolism parameters. Statin intake increases PCSK9 levels significantly in this patient population. PCSK9 levels are not correlated with the severity of kidney disease. Major prospective studies are necessary to investigate the role of PCSK9 in the atherosclerotic cardiovascular outcome in CKD.
Collapse
|
63
|
Beyerle A, Greene B, Dietrich B, Kingwell BA, Panjwani P, Wright SD, Herzog E. Co-administration of CSL112 (apolipoprotein A-I [human]) with atorvastatin and alirocumab is not associated with increased hepatotoxic or toxicokinetic effects in rats. Toxicol Appl Pharmacol 2021; 422:115557. [PMID: 33932462 DOI: 10.1016/j.taap.2021.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
CSL112 (apolipoprotein A-I, apo AI [human]) is an investigational drug in Phase 3 development for risk reduction of early recurrent cardiovascular events following an acute myocardial infarction (AMI). Although CSL112 is known to be well tolerated with a regimen of four weekly 6 g intravenous infusions after AMI, high doses of reconstituted apo AI preparations can transiently elevate liver enzymes in rats, raising the possibility of additive liver toxicity and toxicokinetic (TK) effects upon co-administration with cholesterol-lowering drugs, i.e., HMG-CoA reductase and proprotein convertase subtilisin/kexin type 9 inhibitors. We performed a toxicity and TK study in CD rats assigned to eleven treatment groups, including two dose levels of intravenous (IV) CSL112 (140 mg/kg, low-dose; 600 mg/kg, high-dose) administered as a single dose, alone or with intravenous alirocumab 50 mg/kg/week and/or oral atorvastatin 10 mg/kg/day. In addition, control groups of atorvastatin and alirocumab alone and in combination were investigated. Results showed some liver enzyme elevations (remaining <2-fold of baseline) related to administration of CSL112 alone. There was limited evidence of an additive effect of CSL112 on liver enzymes when combined, at either dose level, with alirocumab and/or atorvastatin, and histology revealed no evidence of an increased incidence or severity of hepatocyte vacuolation compared to the control treatments. Co-administration of the study drugs had minimal effect on their respective exposure levels, and on levels of total cholesterol and high-density lipoprotein cholesterol. These data support concomitant use of CSL112 with alirocumab and/or atorvastatin with no anticipated negative impact on liver safety and TK.
Collapse
Affiliation(s)
- Andrea Beyerle
- CSL Behring GmbH, Marburg, Emil-von-Behring-Str. 76, 35041 Marburg, Germany.
| | - Brandon Greene
- CSL Behring GmbH, Marburg, Emil-von-Behring-Str. 76, 35041 Marburg, Germany.
| | - Barbara Dietrich
- CSL Behring GmbH, Walcherstraße 1A/Stiege 1, 1020 Vienna, Austria.
| | | | - Priya Panjwani
- CSL Behring GmbH, Marburg, Emil-von-Behring-Str. 76, 35041 Marburg, Germany.
| | - Samuel D Wright
- CSL Behring LLC, 1020 1st Ave, King of Prussia, PA 19406, USA
| | - Eva Herzog
- CSL Behring LLC, 1020 1st Ave, King of Prussia, PA 19406, USA.
| |
Collapse
|
64
|
Scicali R, Di Pino A, Ferrara V, Rabuazzo AM, Purrello F, Piro S. Effect of PCSK9 inhibitors on pulse wave velocity and monocyte-to-HDL-cholesterol ratio in familial hypercholesterolemia subjects: results from a single-lipid-unit real-life setting. Acta Diabetol 2021; 58:949-957. [PMID: 33745063 PMCID: PMC8187232 DOI: 10.1007/s00592-021-01703-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
AIMS Subjects with familial hypercholesterolemia (FH) are characterized by an increased amount of low-density lipoprotein cholesterol (LDL-C) that promotes a continuous inflammatory stimulus. Our aim was to evaluate the effect of PCSK9-i on inflammatory biomarkers, neutrophil-to-lymphocyte ratio, monocyte-to-high-density lipoprotein ratio (MHR), and on early atherosclerosis damage analyzed by pulse wave velocity (PWV) in a cohort of FH subjects. METHODS In this prospective observational study, we evaluated 56 FH subjects on high-intensity statins plus ezetimibe and with an off-target LDL-C. All subjects were placed on PCSK9-i therapy and obtained biochemical analysis as well as PWV evaluation at baseline and after six months of PCSK9-i therapy. RESULTS After six months of add-on PCSK9-i therapy, only 42.9% of FH subjects attained LDL-C targets. As expected, a significant reduction of LDL-C (- 49.61%, p < 0.001) was observed after PCSK9-i therapy. Neutrophil count (NC) and MHR were reduced by PCSK9-i (-13.82% and -10.47%, respectively, p value for both < 0.05) and PWV significantly decreased after PCSK9-i therapy (- 20.4%, p < 0.05). Finally, simple regression analyses showed that ∆ PWV was significantly associated with ∆ LDL-C (p < 0.01), ∆ NC and ∆ MHR (p value for both < 0.05). CONCLUSIONS In conclusion, PCSK9-i therapy significantly improved lipid and inflammatory profiles and PWV values in FH subjects; our results support the positive effect of PCSK9-i in clinical practice.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy.
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| |
Collapse
|
65
|
Tombling BJ, Zhang Y, Huang YH, Craik DJ, Wang CK. The emerging landscape of peptide-based inhibitors of PCSK9. Atherosclerosis 2021; 330:52-60. [PMID: 34246818 DOI: 10.1016/j.atherosclerosis.2021.06.903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a clinically validated target for treating cardiovascular disease (CVD) due to its involvement in cholesterol metabolism. Although approved monoclonal antibodies (alirocumab and evolocumab) that inhibit PCSK9 function are very effective in lowering cholesterol, their limitations, including high treatment costs, have so far prohibited widespread use. Accordingly, there is great interest in alternative drug modalities to antibodies. Like antibodies, peptides are valuable therapeutics due to their high target potency and specificity. Furthermore, being smaller than antibodies means they have access to more drug administration options, are less likely to induce adverse immunogenic responses, and are better suited to affordable production. This review surveys the current peptide-based landscape aimed towards PCSK9 inhibition, covering pre-clinical to patented drug candidates and comparing them to current cholesterol lowering therapeutics. Classes of peptides reported to be inhibitors include nature-inspired disulfide-rich peptides, combinatorially derived cyclic peptides, and peptidomimetics. Their functional activities have been validated in biophysical and cellular assays, and in some cases pre-clinical mouse models. Recent efforts report peptides with potent sub-nanomolar binding affinities to PCSK9, which highlights their potential to achieve antibody-like potency. Studies are beginning to address pharmacokinetic properties of PCSK9-targeting peptides in more detail. We conclude by highlighting opportunities to investigate their biological effects in pre-clinical models of cardiovascular disease. The anticipation concerning the PCSK9-targeting peptide landscape is accelerating and it seems likely that a peptide-based therapeutic for treating PCSK9-mediated hypercholesterolemia may be clinically available in the near future.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yuhui Zhang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
66
|
Maligłówka M, Bułdak Ł, Okopień B, Bołdys A. The consequences of PCSK9 inhibition in selected tissues. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of nine members of the proprotein
convertase family. These serine proteases play a pivotal role in the post-translational
modification of proteins and the activation of hormones, enzymes, transcription factors and
growth factors. As a result, they participate in many physiological processes like embryogenesis,
activity of central nervous system and lipid metabolism. Scientific studies show
that the family of convertases is also involved in the pathogenesis of viral and bacterial
infections, osteoporosis, hyperglycaemia, cardiovascular diseases, neurodegenerative disorders
and cancer. The inhibition of PCSK9 by two currently approved for use monoclonal
antibodies (alirocumab, evolocumab) slows down the degradation of low-density lipoprotein
cholesterol receptors (LDLRs). This leads to increased density of LDLRs on the surface
of hepatocytes, resulting in decreased level of low-density lipoprotein cholesterol (LDL-C)
in the bloodstream, which is connected with the reduction of cardiovascular risk. PCSK9 inhibitors (PCSK9i) were created for the patients who could not achieve appropriate level
of LDL-C using current statin and ezetimibe therapy. It seems that high therapeutic efficacy
of PCSK9i will make them more common in the clinical use. The pleiotropic effects
of previously mentioned lipid-lowering therapies were the reasons for literature review of
possible positive and negative effects of PCSK9 inhibition beyond cholesterol metabolism.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Łukasz Bułdak
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Bogusław Okopień
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Aleksandra Bołdys
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| |
Collapse
|
67
|
Barale C, Melchionda E, Morotti A, Russo I. PCSK9 Biology and Its Role in Atherothrombosis. Int J Mol Sci 2021; 22:ijms22115880. [PMID: 34070931 PMCID: PMC8198903 DOI: 10.3390/ijms22115880] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
It is now about 20 years since the first case of a gain-of-function mutation involving the as-yet-unknown actor in cholesterol homeostasis, proprotein convertase subtilisin/kexin type 9 (PCSK9), was described. It was soon clear that this protein would have been of huge scientific and clinical value as a therapeutic strategy for dyslipidemia and atherosclerosis-associated cardiovascular disease (CVD) management. Indeed, PCSK9 is a serine protease belonging to the proprotein convertase family, mainly produced by the liver, and essential for metabolism of LDL particles by inhibiting LDL receptor (LDLR) recirculation to the cell surface with the consequent upregulation of LDLR-dependent LDL-C levels. Beyond its effects on LDL metabolism, several studies revealed the existence of additional roles of PCSK9 in different stages of atherosclerosis, also for its ability to target other members of the LDLR family. PCSK9 from plasma and vascular cells can contribute to the development of atherosclerotic plaque and thrombosis by promoting platelet activation, leukocyte recruitment and clot formation, also through mechanisms not related to systemic lipid changes. These results further supported the value for the potential cardiovascular benefits of therapies based on PCSK9 inhibition. Actually, the passive immunization with anti-PCSK9 antibodies, evolocumab and alirocumab, is shown to be effective in dramatically reducing the LDL-C levels and attenuating CVD. While monoclonal antibodies sequester circulating PCSK9, inclisiran, a small interfering RNA, is a new drug that inhibits PCSK9 synthesis with the important advantage, compared with PCSK9 mAbs, to preserve its pharmacodynamic effects when administrated every 6 months. Here, we will focus on the major understandings related to PCSK9, from its discovery to its role in lipoprotein metabolism, involvement in atherothrombosis and a brief excursus on approved current therapies used to inhibit its action.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Blood Platelets/drug effects
- Blood Platelets/enzymology
- Blood Platelets/pathology
- Cholesterol, LDL/antagonists & inhibitors
- Cholesterol, LDL/metabolism
- Dyslipidemias/drug therapy
- Dyslipidemias/enzymology
- Dyslipidemias/genetics
- Dyslipidemias/pathology
- Fibrinolytic Agents/therapeutic use
- Gene Expression Regulation
- Humans
- Hypolipidemic Agents/therapeutic use
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- PCSK9 Inhibitors
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/enzymology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Platelet Activation/drug effects
- Proprotein Convertase 9/biosynthesis
- Proprotein Convertase 9/genetics
- RNA, Small Interfering/therapeutic use
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Thrombosis/enzymology
- Thrombosis/genetics
- Thrombosis/pathology
- Thrombosis/prevention & control
Collapse
|
68
|
Macchi C, Ferri N, Sirtori CR, Corsini A, Banach M, Ruscica M. Proprotein Convertase Subtilisin/Kexin Type 9: A View beyond the Canonical Cholesterol-Lowering Impact. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1385-1397. [PMID: 34019847 DOI: 10.1016/j.ajpath.2021.04.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), mainly synthetized and released by the liver, represents one of the key regulators of low-density lipoprotein cholesterol. Although genetic and interventional studies have demonstrated that lowering PCSK9 levels corresponds to a cardiovascular benefit, identification of non-cholesterol-related processes has emerged since its discovery. Besides liver, PCSK9 is also expressed in many tissues (eg, intestine, endocrine pancreas, and brain). The aim of the present review is to describe and discuss PCSK9 pathophysiology and possible non-lipid-lowering effects whether already extensively characterized (eg, inflammatory burden of atherosclerosis, triglyceride-rich lipoprotein metabolism, and platelet activation), or to be unraveled (eg, in adipose tissue). The identification of novel transcriptional factors in the promoter region of human PCSK9 (eg, ChREBP) characterizes new mechanisms explaining how controlling intrahepatic glucose may be a therapeutic strategy to reduce cardiovascular risk in type 2 diabetes. Finally, the evidence describing PCSK9 as involved in cell proliferation and apoptosis raises the possibility of this protein being involved in cancer risk.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy.
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy; Istituti di Ricovero e Cura a Carattere Scientifico MultiMedica, Sesto San Giovanni/Milan, Italy
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute, Lodz, Poland; Cardiovascular Research Centre, University of Zielona Góra, Zielona Góra, Poland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Italy.
| |
Collapse
|
69
|
Kowara M, Cudnoch-Jedrzejewska A. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque. Int J Mol Sci 2021; 22:ijms22094354. [PMID: 33919446 PMCID: PMC8122261 DOI: 10.3390/ijms22094354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque vulnerability is a vital clinical problem as vulnerable plaques tend to rupture, which results in atherosclerosis complications—myocardial infarctions and subsequent cardiovascular deaths. Therefore, methods aiming to stabilize such plaques are in great demand. In this brief review, the idea of atherosclerotic plaque stabilization and five main approaches—towards the regulation of metabolism, macrophages and cellular death, inflammation, reactive oxygen species, and extracellular matrix remodeling have been presented. Moreover, apart from classical approaches (targeted at the general mechanisms of plaque destabilization), there are also alternative approaches targeted either at certain plaques which have just become vulnerable or targeted at the minimization of the consequences of atherosclerotic plaque erosion or rupture. These alternative approaches have also been briefly mentioned in this review.
Collapse
|
70
|
Luquero A, Badimon L, Borrell-Pages M. PCSK9 Functions in Atherosclerosis Are Not Limited to Plasmatic LDL-Cholesterol Regulation. Front Cardiovasc Med 2021; 8:639727. [PMID: 33834043 PMCID: PMC8021767 DOI: 10.3389/fcvm.2021.639727] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
The relevance of PCSK9 in atherosclerosis progression is demonstrated by the benefits observed in patients that have followed PCSK9-targeted therapies. The impact of these therapies is attributed to the plasma lipid-lowering effect induced when LDLR hepatic expression levels are recovered after the suppression of soluble PCSK9. Different studies show that PCSK9 is involved in other mechanisms that take place at different stages during atherosclerosis development. Indeed, PCSK9 regulates the expression of key receptors expressed in macrophages that contribute to lipid-loading, foam cell formation and atherosclerotic plaque formation. PCSK9 is also a regulator of vascular inflammation and its expression correlates with pro-inflammatory cytokines release, inflammatory cell recruitment and plaque destabilization. Furthermore, anti-PCSK9 approaches have demonstrated that by inhibiting PCSK9 activity, the progression of atherosclerotic disease is diminished. PCSK9 also modulates thrombosis by modifying platelets steady-state, leukocyte recruitment and clot formation. In this review we evaluate recent findings on PCSK9 functions in cardiovascular diseases beyond LDL-cholesterol plasma levels regulation.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red- Área Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, IR-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,Centro de Investigación en Red- Área Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
71
|
Krychtiuk KA, Lenz M, Hohensinner P, Distelmaier K, Schrutka L, Kastl SP, Huber K, Dostal E, Oravec S, Hengstenberg C, Wojta J, Speidl WS. Circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with monocyte subsets in patients with stable coronary artery disease. J Clin Lipidol 2021; 15:512-521. [PMID: 33789832 DOI: 10.1016/j.jacl.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type-9 (PCSK9) is an enzyme promoting the degradation of low-density lipoprotein receptors (LDL-R) in hepatocytes. Inhibition of PCSK9 has emerged as a novel target for lipid-lowering therapy. Monocytes are crucially involved in the pathogenesis of atherosclerosis and can be divided into three subsets. OBJECTIVE The aim of this study was to examine whether circulating levels of PCSK9 are associated with monocyte subsets. METHODS We included 69 patients with stable coronary artery disease. PCSK9 levels were measured and monocyte subsets were assessed by flow cytometry and divided into classical monocytes (CD14++CD16-; CM), intermediate monocytes (CD14++CD16+; IM) and non-classical monocytes (CD14+CD16++; NCM). RESULTS Mean age was 64 years and 80% of patients were male. Patients on statin treatment (n = 55) showed higher PCSK9-levels (245.4 (206.0-305.5) ng/mL) as opposed to those without statin treatment (186.1 (162.3-275.4) ng/mL; p = 0.05). In patients on statin treatment, CM correlated with circulating PCSK9 levels (R = 0.29; p = 0.04), while NCM showed an inverse correlation with PCSK9 levels (R = -0.33; p = 0.02). Patients with PCSK9 levels above the median showed a significantly higher proportion of CM as compared to patients with PCSK9 below the median (83.5 IQR 79.2-86.7 vs. 80.4, IQR 76.5-85.2%; p = 0.05). Conversely, PCSK9 levels >median were associated with a significantly lower proportion of NCM as compared to those with PCSK9 <median (10.2, IQR 7.3-14.6 vs. 14.3, IQR 10.9-18.7%; p = 0.02). In contrast, IM showed no association with PCSK9 levels. CONCLUSIONS We hereby provide a novel link between PCSK9 regulation, innate immunity and atherosclerotic disease in statin-treated patients.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Klaus Distelmaier
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Lore Schrutka
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Stefan P Kastl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; 3rd Medical Department, Wilhelminenhospital, Vienna, Austria
| | | | - Stanislav Oravec
- 1st Medical Clinic; Medical Faculty of Comenius University Bratislava, Bratislava, Slovakia
| | - Christian Hengstenberg
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Walter S Speidl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
72
|
van den Hoek AM, Verschuren L, Caspers MPM, Worms N, Menke AL, Princen HMG. Beneficial effects of elafibranor on NASH in E3L.CETP mice and differences between mice and men. Sci Rep 2021; 11:5050. [PMID: 33658534 PMCID: PMC7930243 DOI: 10.1038/s41598-021-83974-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is the most rapidly growing liver disease that is nevertheless without approved pharmacological treatment. Despite great effort in developing novel NASH therapeutics, many have failed in clinical trials. This has raised questions on the adequacy of preclinical models. Elafibranor is one of the drugs currently in late stage development which had mixed results for phase 2/interim phase 3 trials. In the current study we investigated the response of elafibranor in APOE*3Leiden.CETP mice, a translational animal model that displays histopathological characteristics of NASH in the context of obesity, insulin resistance and hyperlipidemia. To induce NASH, mice were fed a high fat and cholesterol (HFC) diet for 15 weeks (HFC reference group) or 25 weeks (HFC control group) or the HFC diet supplemented with elafibranor (15 mg/kg/d) from week 15–25 (elafibranor group). The effects on plasma parameters and NASH histopathology were assessed and hepatic transcriptome analysis was used to investigate the underlying pathways affected by elafibranor. Elafibranor treatment significantly reduced steatosis and hepatic inflammation and precluded the progression of fibrosis. The underlying disease pathways of the model were compared with those of NASH patients and illustrated substantial similarity with molecular pathways involved, with 87% recapitulation of human pathways in mice. We compared the response of elafibranor in the mice to the response in human patients and discuss potential pitfalls when translating preclinical results of novel NASH therapeutics to human patients. When taking into account that due to species differences the response to some targets, like PPAR-α, may be overrepresented in animal models, we conclude that elafibranor may be particularly useful to reduce hepatic inflammation and could be a pharmacologically useful agent for human NASH, but probably in combination with other agents.
Collapse
Affiliation(s)
- Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands.
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
73
|
Zhou E, Li Z, Nakashima H, Choukoud A, Kooijman S, Berbée JFP, Rensen PCN, Wang Y. Beneficial effects of brown fat activation on top of PCSK9 inhibition with alirocumab on dyslipidemia and atherosclerosis development in APOE*3-Leiden.CETP mice. Pharmacol Res 2021; 167:105524. [PMID: 33667684 DOI: 10.1016/j.phrs.2021.105524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition, by increasing hepatic low density lipoprotein (LDL) receptor (LDLR) levels, has emerged as a strategy to reduce atherosclerosis by lowering circulating very low density lipoprotein (VLDL)-cholesterol. We hypothesized that the therapeutic effectiveness of PCSK9 inhibition can be increased by accelerating the generation of VLDL remnants, which typically have a high affinity for the LDLR. Therefore, we aimed to investigate whether accelerating lipolytic processing of VLDL by brown fat activation can further lower (V)LDL and reduce atherosclerosis on top of PCSK9 inhibition. APOE*3-Leiden.CETP mice were fed a Western-type diet and treated with the anti-PCSK9 antibody alirocumab or saline. After 2 weeks, both groups of mice were randomized to receive either the selective β3-adrenergic receptor (AR) agonist CL316,243 to activate brown fat or saline for 3 additional weeks to evaluate VLDL clearance or 12 additional weeks to analyze atherosclerosis development. β3-AR agonism and alirocumab combined decreased (V)LDL-cholesterol compared to alirocumab alone, which was explained by an accelerated plasma clearance of VLDL-cholesteryl esters that were mainly taken up by the liver. In addition, the combination promoted the transfer of VLDL-phospholipids to HDL to a higher extent than alirocumab alone, accompanied by higher plasma HDL-cholesterol levels and increased cholesterol efflux capacity. Consequently, combination treatment largely reduced atherosclerotic lesion area compared to vehicle. Together, β3-AR agonism enhances the lipoprotein-modulating effects of alirocumab to further improve dyslipidemia and non-significantly further attenuate atherosclerosis development. Our findings demonstrate that brown fat activation may enhance the therapeutic effects of PCSK9 inhibition in dyslipidemia.
Collapse
Affiliation(s)
- Enchen Zhou
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hiroyuki Nakashima
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ahlam Choukoud
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Yanan Wang
- Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
74
|
Valanti EK, Dalakoura-Karagkouni K, Siasos G, Kardassis D, Eliopoulos AG, Sanoudou D. Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism 2021; 116:154461. [PMID: 33290761 DOI: 10.1016/j.metabol.2020.154461] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is a multifactorial disease influenced by genetics, lifestyle and environmental factors. Despite therapeutic advances that reduce the risk of cardiovascular events, atherosclerosis-related diseases remain the leading cause of mortality worldwide. Precise targeting of genes involved in lipoprotein metabolism is an emerging approach for atherosclerosis prevention and treatment. This article focuses on the latest developments, clinical potential and current challenges of monoclonal antibodies, vaccines and genome/transcriptome modification strategies, including antisense oligonucleotides, genome/base editing and gene therapy. Multiple lipid lowering biological therapies have already been approved by the FDA with impressive results to date, while many more promising targets are being pursued in clinical trials or pre-clinical animal models.
Collapse
Affiliation(s)
- Eftaxia-Konstantina Valanti
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Aristides G Eliopoulos
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
75
|
Potentiating CD8 + T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell 2021; 12:240-260. [PMID: 33606190 PMCID: PMC8018994 DOI: 10.1007/s13238-021-00821-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Metabolic regulation has been proven to play a critical role in T cell antitumor immunity. However, cholesterol metabolism as a key component of this regulation remains largely unexplored. Herein, we found that the low-density lipoprotein receptor (LDLR), which has been previously identified as a transporter for cholesterol, plays a pivotal role in regulating CD8+ T cell antitumor activity. Besides the involvement of cholesterol uptake which is mediated by LDLR in T cell priming and clonal expansion, we also found a non-canonical function of LDLR in CD8+ T cells: LDLR interacts with the T-cell receptor (TCR) complex and regulates TCR recycling and signaling, thus facilitating the effector function of cytotoxic T-lymphocytes (CTLs). Furthermore, we found that the tumor microenvironment (TME) downregulates CD8+ T cell LDLR level and TCR signaling via tumor cell-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) which binds to LDLR and prevents the recycling of LDLR and TCR to the plasma membrane thus inhibits the effector function of CTLs. Moreover, genetic deletion or pharmacological inhibition of PCSK9 in tumor cells can enhance the antitumor activity of CD8+ T cells by alleviating the suppressive effect on CD8+ T cells and consequently inhibit tumor progression. While previously established as a hypercholesterolemia target, this study highlights PCSK9/LDLR as a potential target for cancer immunotherapy as well.
Collapse
|
76
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
77
|
Therapies for the Treatment of Cardiovascular Disease Associated with Type 2 Diabetes and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22020660. [PMID: 33440821 PMCID: PMC7826980 DOI: 10.3390/ijms22020660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.
Collapse
|
78
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
79
|
Liu X, Bao X, Hu M, Chang H, Jiao M, Cheng J, Xie L, Huang Q, Li F, Li CY. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020; 588:693-698. [PMID: 33177715 PMCID: PMC7770056 DOI: 10.1038/s41586-020-2911-7] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Despite its success in achieving the long-term survival of 10-30% of treated individuals, immune therapy is still ineffective for most patients with cancer1,2. Many efforts are therefore underway to identify new approaches that enhance such immune 'checkpoint' therapy3-5 (so called because its aim is to block proteins that inhibit checkpoint signalling pathways in T cells, thereby freeing those immune cells to target cancer cells). Here we show that inhibiting PCSK9-a key protein in the regulation of cholesterol metabolism6-8-can boost the response of tumours to immune checkpoint therapy, through a mechanism that is independent of PCSK9's cholesterol-regulating functions. Deleting the PCSK9 gene in mouse cancer cells substantially attenuates or prevents their growth in mice in a manner that depends on cytotoxic T cells. It also enhances the efficacy of immune therapy that is targeted at the checkpoint protein PD1. Furthermore, clinically approved PCSK9-neutralizing antibodies synergize with anti-PD1 therapy in suppressing tumour growth in mouse models of cancer. Inhibiting PCSK9-either through genetic deletion or using PCSK9 antibodies-increases the expression of major histocompatibility protein class I (MHC I) proteins on the tumour cell surface, promoting robust intratumoral infiltration of cytotoxic T cells. Mechanistically, we find that PCSK9 can disrupt the recycling of MHC I to the cell surface by associating with it physically and promoting its relocation and degradation in the lysosome. Together, these results suggest that inhibiting PCSK9 is a promising way to enhance immune checkpoint therapy for cancer.
Collapse
Affiliation(s)
- Xinjian Liu
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xuhui Bao
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Mengjie Hu
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Hanman Chang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Meng Jiao
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Jin Cheng
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qian Huang
- Molecular Diagnostic Laboratory of Cancer Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA. .,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
80
|
Gong J, Wang HX, Lao YH, Hu H, Vatan N, Guo J, Ho TC, Huang D, Li M, Shao D, Leong KW. A Versatile Nonviral Delivery System for Multiplex Gene-Editing in the Liver. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003537. [PMID: 33053221 PMCID: PMC8274731 DOI: 10.1002/adma.202003537] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/25/2020] [Indexed: 05/23/2023]
Abstract
Recent advances in CRISPR present attractive genome-editing toolsets for therapeutic strategies at the genetic level. Here, a liposome-coated mesoporous silica nanoparticle (lipoMSN) is reported as an effective CRISPR delivery system for multiplex gene-editing in the liver. The MSN provides efficient loading of Cas9 plasmid as well as Cas9 protein/guide RNA ribonucleoprotein complex (RNP), while liposome-coating offers improved serum stability and enhanced cell uptake. Hypothesizing that loss-of-function mutation in the lipid-metabolism-related genes pcsk9, apoc3, and angptl3 would improve cardiovascular health by lowering blood cholesterol and triglycerides, the lipoMSN is used to deliver a combination of RNPs targeting these genes. When targeting a single gene, the lipoMSN achieved a 54% gene-editing efficiency, besting the state-of-art Lipofectamine CRISPRMax. For multiplexing, lipoMSN maintained significant gene-editing at each gene target despite reduced dosage of target-specific RNP. By delivering combinations of targeting RNPs in the same nanoparticle, synergistic effects on lipid metabolism are observed in vitro and vivo. These effects, such as a 50% decrease in serum cholesterol after 4 weeks of post-treatment with lipoMSN carrying both pcsk9 and angptl3-targeted RNPs, could not be reached with a single gene-editing approach. Taken together, this lipoMSN represents a versatile platform for the development of efficient, combinatorial gene-editing therapeutics.
Collapse
Affiliation(s)
- Jing Gong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hong-Xia Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Naazanene Vatan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jonathan Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Tzu-Chieh Ho
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Dan Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Institute of Life Sciences, School of Biomedical Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
81
|
Cho KH, Hong YJ. Proprotein convertase subtilisin/kexin type 9 inhibition in cardiovascular disease: current status and future perspectives. Korean J Intern Med 2020; 35:1045-1058. [PMID: 32921006 PMCID: PMC7487297 DOI: 10.3904/kjim.2020.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/20/2020] [Indexed: 01/14/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) targets the degradation of low-density lipoprotein (LDL) receptors; it has been proved that its inhibition improves cardiovascular outcomes in patients with established atherosclerotic cardiovascular disease (ASCVD). Herein, we review the current status of PCSK9 inhibitors in clinical practice and the future scope of PCSK9 inhibition. The results of two recent large clinical trials reveal that two PCSK9 monoclonal antibodies evolocumab and alirocumab reduce the risk of a cardiovascular event on top of background statin therapy in patients with stable ASCVD and those with recent acute coronary syndrome, respectively. However, there are several ongoing concerns regarding the efficacy in reducing mortality, cost-effectiveness, and long-term safety of extremely low LDL cholesterol levels with PCSK9 inhibition. The results of ongoing cardiovascular outcomes trials with PCSK9 monoclonal antibodies for primary prevention and with small interfering RNA to PCSK9 for secondary prevention may help to shape the use of this new therapeutic class.
Collapse
Affiliation(s)
- Kyung Hoon Cho
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Young Joon Hong, M.D. Division of Cardiology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-5778 Fax: +82-62-223-3105 E-mail:
| |
Collapse
|
82
|
Guo Y, Yan B, Gui Y, Tang Z, Tai S, Zhou S, Zheng XL. Physiology and role of PCSK9 in vascular disease: Potential impact of localized PCSK9 in vascular wall. J Cell Physiol 2020; 236:2333-2351. [PMID: 32875580 DOI: 10.1002/jcp.30025] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a member of the proprotein convertase family, is an important drug target because of its crucial role in lipid metabolism. Emerging evidence suggests a direct role of localized PCSK9 in the pathogenesis of vascular diseases. With this in our consideration, we reviewed PCSK9 physiology with respect to recent development and major studies (clinical and experimental) on PCSK9 functionality in vascular disease. PCSK9 upregulates low-density lipoprotein (LDL)-cholesterol levels by binding to the LDL-receptor (LDLR) and facilitating its lysosomal degradation. PCSK9 gain-of-function mutations have been confirmed as a novel genetic mechanism for familial hypercholesterolemia. Elevated serum PCSK9 levels in patients with vascular diseases may contribute to coronary artery disease, atherosclerosis, cerebrovascular diseases, vasculitis, aortic diseases, and arterial aging pathogenesis. Experimental models of atherosclerosis, arterial aneurysm, and coronary or carotid artery ligation also support PCSK9 contribution to inflammatory response and disease progression, through LDLR-dependent or -independent mechanisms. More recently, several clinical trials have confirmed that anti-PCSK9 monoclonal antibodies can reduce systemic LDL levels, total nonfatal cardiovascular events, and all-cause mortality. Interaction of PCSK9 with other receptor proteins (LDLR-related proteins, cluster of differentiation family members, epithelial Na+ channels, and sortilin) may underlie its roles in vascular disease. Improved understanding of PCSK9 roles and molecular mechanisms in various vascular diseases will facilitate advances in lipid-lowering therapy and disease prevention.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Binjie Yan
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Yu Gui
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Zhihan Tang
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
83
|
Schlunk F, Fischer P, Princen HMG, Rex A, Prinz V, Foddis M, Lütjohann D, Laufs U, Endres M. No effects of PCSK9-inhibitor treatment on spatial learning, locomotor activity, and novel object recognition in mice. Behav Brain Res 2020; 396:112875. [PMID: 32858115 DOI: 10.1016/j.bbr.2020.112875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Monoclonal anti-proprotein convertase subtilisin/kexin type 9 (PSCK9) neutralizing antibodies effectively lower plasma cholesterol levels and decrease cardiovascular events but also raised some concern that cognitive function could worsen as a side effect. Here, we performed experiments in mice to characterize the effect of anti-PCSK9 antibodies on behavior and cognitive function in detail. APOE*3Leiden.CETP mice and B6129SF1/J wildtype mice were fed a Western type diet and treated with the fully human anti-PCSK9 antibody CmAb1 (PL-45134; 10mg*kg-1 s.c.) or vehicle for 6 weeks. Locomotor activity, anxiety levels, recognition memory, and spatial learning were investigated using the open field, novel object recognition test, and Morris water maze, respectively. Serum cholesterol levels in APOE*3Leiden.CETP mice after treatment with anti-PCSK9 antibody were significantly lower compared to controls whereas cholesterol levels in B6129SF1/J wildtype mice remained unchanged at low levels. No apparent differences were found regarding locomotor activity, anxiety, recognition memory, and spatial learning between animals treated with anti-PCSK9 antibody or vehicle in APOE*3Leiden.CETP and B6129SF1/J wildtype mice. In this study, we found no evidence that treatment with anti-PCSK9 antibodies lead to differences in behavior or changes of cognition in mice.
Collapse
Affiliation(s)
- Frieder Schlunk
- Klinik und Hochschulambulanz für Neurologie mit Abteilung für Experimentelle Neurologie, Center for Stroke Research Berlin (CSB), and NeuroCure, Charité University Medicine Berlin, Germany; Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Paul Fischer
- Klinik und Hochschulambulanz für Neurologie mit Abteilung für Experimentelle Neurologie, Center for Stroke Research Berlin (CSB), and NeuroCure, Charité University Medicine Berlin, Germany
| | - Hans M G Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, the Netherlands
| | - Andre Rex
- Klinik und Hochschulambulanz für Neurologie mit Abteilung für Experimentelle Neurologie, Center for Stroke Research Berlin (CSB), and NeuroCure, Charité University Medicine Berlin, Germany
| | - Vincent Prinz
- Department of Neurosurgery, Charité University Medicine Berlin, Germany
| | - Marco Foddis
- Klinik und Hochschulambulanz für Neurologie mit Abteilung für Experimentelle Neurologie, Center for Stroke Research Berlin (CSB), and NeuroCure, Charité University Medicine Berlin, Germany
| | - Dieter Lütjohann
- Department of Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz für Neurologie mit Abteilung für Experimentelle Neurologie, Center for Stroke Research Berlin (CSB), and NeuroCure, Charité University Medicine Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| |
Collapse
|
84
|
Abstract
Despite progress in both primary and secondary prevention, cardiovascular diseases (CVD) are still the largest group of ailments contributing to morbidity and mortality worldwide. Atherosclerotic changes, the primary pathological substrate for CVD, are closely related to hypercholesterolemia. Therefore, the treatment of hypercholesterolemia is a key therapeutic strategy for CVD management. Statins, as the gold standard in the treatment of hypercholesterolemia, have shown enhanced cardiac outcomes in many randomized clinical trials. However, often despite the maximum allowed and tolerated dosage of statins, we are not able to reach the target cholesterol levels, and thus patients persist at an increased cardiovascular risk. Recently, most of the large clinical studies in the field of preventive cardiology have focused on proprotein convertase subtilisin kexin type 9 (PCSK9) and its activity regulation. PCSK9 plays an essential role in the metabolism of LDL particles by inhibiting LDL receptor recirculation to the cell surface. Recent studies have shown that inhibition of PCSK9 by the administration of monoclonal antibodies is capable of significantly reducing LDL levels (up to an additional 60%) as well as reducing the incidence of CVD. However, this treatment procedure of administering the anti-PCSK9 antibodies, most frequently two times a month, has its limitations in terms of time, patient adherence, and nevertheless cost. Administration of active vaccination instead of passive immunization with anti-PCSK9 antibodies may be an effective way of controlling blood cholesterol levels. However, clinical data, as well as human testing, are still inadequate. This work aims to provide an overview of PCSK9 vaccines and their potential clinical benefit.
Collapse
|
85
|
Amput P, Palee S, Arunsak B, Pratchayasakul W, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. PCSK9 inhibitor effectively attenuates cardiometabolic impairment in obese-insulin resistant rats. Eur J Pharmacol 2020; 883:173347. [PMID: 32650007 DOI: 10.1016/j.ejphar.2020.173347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
Long-term high-fat diet consumption causes obese-insulin resistance and cardiac mitochondrial dysfunction, leading to impaired left ventricular (LV) function. Atorvastatin effectively improved lipid profiles in obese patients. However, inadequate reduction in low density lipoprotein cholesterol (LDL-C) level was found. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor effectively reduced LDL-C levels. We hypothesized that this PCSK9 inhibitor has a greater efficacy in attenuating cardiometabolic impairments than atorvastatin in obese-insulin resistant rats. Female rats were fed with either a high fat or normal diet for 12 weeks. High fat diet fed rats (HFD) were then divided into 3 groups and were given vehicle, atorvastatin (40 mg/kg/day; s.c.), or PCSK9 inhibitor (4 mg/kg/day; s.c.) for additional 3 weeks. The metabolic parameters, cardiac and mitochondrial function and [Ca2+]i transients were determined. HFD rats developed obese-insulin resistance as indicated by increased plasma insulin and HOMA index. Although high-fat diet fed rats treated with vehicle (HFV) rats had markedly impaired LV function as indicated by reduced %LVFS, impaired cardiac mitochondrial function, and [Ca2+]i transient regulation, these impairments were attenuated in high-fat diet fed rats treated with atorvastatin (HFA) and high-fat diet fed rats treated with PCSK9 inhibitor (HFP) rats. However, these improvements were greater in HFP rats than HFA rats. Our findings indicated that the PCSK9 inhibitor exerted greater cardioprotection than atorvastatin through improved mitochondrial function in obese-insulin resistant rats.
Collapse
Affiliation(s)
- Patchareeya Amput
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Physical Therapy, Faculty of Allied Health Science, University of Phayao, Phayao, 56000, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
86
|
Amput P, Palee S, Arunsak B, Pratchayasakul W, Thonusin C, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. PCSK9 inhibitor and atorvastatin reduce cardiac impairment in ovariectomized prediabetic rats via improved mitochondrial function and Ca 2+ regulation. J Cell Mol Med 2020; 24:9189-9203. [PMID: 32628813 PMCID: PMC7417720 DOI: 10.1111/jcmm.15556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Post‐menopausal women have a higher risk of developing cardiometabolic dysfunction. Atorvastatin attenuates dyslipidaemia and cardiac dysfunction but it can have undesirable effects including increased risk of diabetes and myalgia. Currently, the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor efficiently reduces low‐density lipoprotein cholesterol (LDL‐C) levels more effectively than atorvastatin. We have been suggested that PCSK9 inhibitor attenuated cardiometabolic impairment more effectively than atorvastatin in ovariectomized prediabetic rats. Female Wistar rats (n = 48) were fed a normal diet (ND) or high‐fat diet (HFD) for 12 weeks. Then, HFD rats were assigned to a sham‐operated (Sham) or ovariectomized (OVX) group. Six weeks after surgery, the OVX group was subdivided into 4 treatment groups: vehicle (HFOV), atorvastatin (HFOA) (40 mg/kg/day; s.c.), PCSK9 inhibitor (HFOP) (4 mg/kg/day; s.c.) and oestrogen (HFOE2) (50 µg/kg/day; s.c.) for an additional 3 weeks. Metabolic parameters, cardiac and mitochondrial function, and [Ca2+]i transients were evaluated. All HFD rats became obese‐insulin resistant. HFS rats had significantly impaired left ventricular (LV) function, cardiac mitochondrial function and [Ca2+]i transient dysregulation. Oestrogen deprivation (HFOV) aggravated all of these impairments. Our findings indicated that the atorvastatin, PCSK9 inhibitor and oestrogen shared similar efficacy in the attenuation in cardiometabolic impairment in ovariectomized prediabetic rats.
Collapse
Affiliation(s)
- Patchareeya Amput
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Physical Therapy, Faculty of Allied Health Science, University of Phayao, Phayao, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
87
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
88
|
Dozio E, Ruscica M, Vianello E, Macchi C, Sitzia C, Schmitz G, Tacchini L, Corsi Romanelli MM. PCSK9 Expression in Epicardial Adipose Tissue: Molecular Association with Local Tissue Inflammation. Mediators Inflamm 2020; 2020:1348913. [PMID: 32565719 PMCID: PMC7292972 DOI: 10.1155/2020/1348913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
Epicardial adipose tissue (EAT) has the unique property to release mediators that nourish the heart in healthy conditions, an effect that becomes detrimental when volume expands and proinflammatory cytokines start to be produced. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a proinflammatory mediator involved in atherosclerosis, is also produced by visceral fat. Due to the correlation of inflammation with PCSK9 and EAT enlargement, we evaluated whether PCSK9 was expressed in EAT and associated with EAT inflammation and volume. EAT samples were isolated during surgery. EAT thickness was measured by echocardiography. A microarray was used to explore EAT transcriptoma. The PCSK9 protein levels were measured by Western Blot in EAT and ELISA in plasma. PCSK9 was expressed at both the gene and protein levels in EAT. We found a positive association with EAT thickness and local proinflammatory mediators, in particular, chemokines for monocytes and lymphocytes. No association was found with the circulating PCSK9 level. The expression of PCSK9 in EAT argues that PCSK9 is part of the EAT secretome and EAT inflammation is associated with local PCSK9 expression, regardless of circulating PCSK9 levels. Whether reducing EAT inflammation or PCSK9 local levels may have beneficial effects on EAT metabolism and cardiovascular risk needs further investigations.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Elena Vianello
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Clementina Sitzia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93052 Regensburg, Germany
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, Piazza E. Malan 1, 20097 San Donato Milanese, Milan, Italy
| |
Collapse
|
89
|
Khoukaz HB, Ji Y, Braet DJ, Vadali M, Abdelhamid AA, Emal CD, Lawrence DA, Fay WP. Drug Targeting of Plasminogen Activator Inhibitor-1 Inhibits Metabolic Dysfunction and Atherosclerosis in a Murine Model of Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2020; 40:1479-1490. [PMID: 32268785 PMCID: PMC7255962 DOI: 10.1161/atvbaha.119.313775] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Enhanced expression of PAI-1 (plasminogen activator inhibitor-1) has been implicated in atherosclerosis formation in humans with obesity and metabolic syndrome. However, little is known about the effects of pharmacological targeting of PAI-1 on atherogenesis. This study examined the effects of pharmacological PAI-1 inhibition on atherosclerosis formation in a murine model of obesity and metabolic syndrome. Approach and Results: LDL receptor-deficient (ldlr-/-) mice were fed a Western diet high in cholesterol, fat, and sucrose to induce obesity, metabolic dysfunction, and atherosclerosis. Western diet triggered significant upregulation of PAI-1 expression compared with normal diet controls. Addition of a pharmacological PAI-1 inhibitor (either PAI-039 or MDI-2268) to Western diet significantly inhibited obesity and atherosclerosis formation for up to 24 weeks without attenuating food consumption. Pharmacological PAI-1 inhibition significantly decreased macrophage accumulation and cell senescence in atherosclerotic plaques. Recombinant PAI-1 stimulated smooth muscle cell senescence, whereas a PAI-1 mutant defective in LRP1 (LDL receptor-related protein 1) binding did not. The prosenescent effect of PAI-1 was blocked by PAI-039 and R2629, a specific anti-LRP1 antibody. PAI-039 significantly decreased visceral adipose tissue inflammation, hyperglycemia, and hepatic triglyceride content without altering plasma lipid profiles. CONCLUSIONS Pharmacological targeting of PAI-1 inhibits atherosclerosis in mice with obesity and metabolic syndrome, while inhibiting macrophage accumulation and cell senescence in atherosclerotic plaques, as well as obesity-associated metabolic dysfunction. PAI-1 induces senescence of smooth muscle cells in an LRP1-dependent manner. These results help to define the role of PAI-1 in atherosclerosis formation and suggest a new plasma-lipid-independent strategy for inhibiting atherogenesis.
Collapse
Affiliation(s)
- Hekmat B Khoukaz
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Yan Ji
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Drew J Braet
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Manisha Vadali
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Ahmed A Abdelhamid
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti (C.D.E.)
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (D.A.L.)
| | - William P Fay
- From the Department of Medicine (H.B.K, Y.J., D.J.B., M.V., A.A.A., W.P.F.), University of Missouri School of Medicine
- Department of Medical Pharmacology & Physiology (W.P.F.), University of Missouri School of Medicine
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (W.P.F.)
| |
Collapse
|
90
|
Board C, Kelly MS, Shapiro MD, Dixon DL. PCSK9 Inhibitors in Secondary Prevention-An Opportunity for Personalized Therapy. J Cardiovasc Pharmacol 2020; 75:410-420. [PMID: 32379108 DOI: 10.1097/fjc.0000000000000809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death worldwide. Low-density lipoprotein cholesterol (LDL-C) is the primary cause of ASCVD and reducing LDL-C levels with statin therapy significantly reduces ASCVD risk; however, significant residual risk remains. Two monoclonal antibodies (mAbs), alirocumab and evolocumab, that target proprotein convertase subtilisin/kexin-type 9 (PCSK9), reduce LDL-C levels by up to 60% when used in combination with statins and significantly reduce the risk of recurrent ASCVD events in both stable secondary prevention and acute coronary syndrome populations. Prespecified analyses of recent randomized controlled trials have shed light on how best to prioritize these therapies to maximize their value in select high-risk groups. These data have also informed recent clinical practice guidelines and scientific statements resulting in an expanded role for PCSK9-mAbs compared with previous guidelines, albeit there are notable differences between these recommendations. Ongoing research is exploring the long-term safety of PCSK9-mAbs and their role in the acute setting and patients without prior myocardial infarction or stroke. Novel therapies that inhibit PCSK9 synthesis via small interfering RNA, such as inclisiran, are also in development and may reduce LDL-C levels similar to PCSK9-mAbs, but with less frequent administration. Nonetheless, the PCSK9-mAbs are a breakthrough therapy and warrant consideration in very high-risk patients who are most likely to benefit. Such a personalized approach can help to ensure cost-effectiveness and maximize their value.
Collapse
Affiliation(s)
- Chase Board
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA
| | - Michael S Kelly
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA; and
| | - Michael D Shapiro
- Section on Cardiovascular Medicine, Center for the Prevention of Cardiovascular Disease, Wake Forest Baptist Health, Winston-Salem, NC
| | - Dave L Dixon
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA
| |
Collapse
|
91
|
Agarwal N, Golwala H. Lowering inflammation through lipid-lowering therapy: are we there yet? EUROPEAN HEART JOURNAL. QUALITY OF CARE & CLINICAL OUTCOMES 2020; 6:93-94. [PMID: 31913447 DOI: 10.1093/ehjqcco/qcz068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nayan Agarwal
- Department of Medicine, Division of Cardiology, Cardiovascular Institute of the South, 6550 Main Street, Zachary, LA 70791, USA
| | - Harsh Golwala
- Department of Medicine, Knight Cardiovascular Institute, Oregan Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
92
|
Seidah NG, Prat A, Pirillo A, Catapano AL, Norata GD. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res 2020; 115:510-518. [PMID: 30629143 DOI: 10.1093/cvr/cvz003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
Since the discovery of the role of proprotein convertase subtilisin kexin 9 (PCSK9) in the regulation of low-density lipoprotein cholesterol (LDL-C) in 2003, a paradigm shift in the treatment of hypercholesterolaemia has occurred. The PCSK9 secreted into the circulation is a major downregulator of the low-density lipoprotein receptor (LDLR) protein, as it chaperones it to endosomes/lysosomes for degradation. Humans with loss-of-function of PCSK9 exhibit exceedingly low levels of LDL-C and are protected from atherosclerosis. As a consequence, innovative strategies to modulate the levels of PCSK9 have been developed. Since 2015 inhibitory monoclonal antibodies (evolocumab and alirocumab) are commercially available. When subcutaneously injected every 2-4 weeks, they trigger a ∼60% LDL-C lowering and a 15% reduction in the risk of cardiovascular events. Another promising approach consists of a liver-targetable specific PCSK9 siRNA which results in ∼50-60% LDL-C lowering that lasts up to 6 months (Phases II-III clinical trials). Other strategies under consideration include: (i) antibodies targeting the C-terminal domain of PCSK9, thereby inhibiting the trafficking of PCSK9-LDLR to lysosomes; (ii) small molecules that either prevent PCSK9 binding to the LDLR, its trafficking to lysosomes or its secretion from cells; (iii) complete silencing of PCSK9 by CRISPR-Cas9 strategies; (iv) PCSK9 vaccines that inhibit the activity of circulating PCSK9. Time will tell whether other strategies can be as potent and safe as monoclonal antibodies to lower LDL-C levels.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
93
|
Pouwer MG, Pieterman EJ, Chang SC, Olsen GW, Caspers MPM, Verschuren L, Jukema JW, Princen HMG. Dose Effects of Ammonium Perfluorooctanoate on Lipoprotein Metabolism in APOE*3-Leiden.CETP Mice. Toxicol Sci 2020; 168:519-534. [PMID: 30657992 PMCID: PMC6432869 DOI: 10.1093/toxsci/kfz015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies have reported positive associations between serum perfluorooctanoic acid (PFOA) and total and non-high-density lipoprotein cholesterol (non-HDL-C) although the magnitude of effect of PFOA on cholesterol lacks consistency. The objectives of this study were to evaluate the effect of PFOA on plasma cholesterol and triglyceride metabolism at various plasma PFOA concentrations relevant to humans, and to elucidate the mechanisms using APOE*3-Leiden.CETP mice, a model with a human-like lipoprotein metabolism. APOE*3-Leiden.CETP mice were fed a Western-type diet with PFOA (10, 300, 30 000 ng/g/d) for 4-6 weeks. PFOA exposure did not alter plasma lipids in the 10 and 300 ng/g/d dietary PFOA dose groups. At 30 000 ng/g/d, PFOA decreased plasma triglycerides (TG), total cholesterol (TC), and non-HDL-C, whereas HDL-C was increased. The plasma lipid alterations could be explained by decreased very low-density lipoprotein (VLDL) production and increased VLDL clearance by the liver through increased lipoprotein lipase activity. The concomitant increase in HDL-C was mediated by decreased cholesteryl ester transfer activity and changes in gene expression of proteins involved in HDL metabolism. Hepatic gene expression and pathway analysis confirmed the changes in lipoprotein metabolism that were mediated for a major part through activation of the peroxisome proliferator-activated receptor (PPAR)α. Our data confirmed the findings from a phase 1 clinical trial in humans that demonstrated high serum or plasma PFOA levels resulted in lower cholesterol levels. The study findings do not show an increase in cholesterol at environmental or occupational levels of PFOA exposure, thereby indicating these findings are associative rather than causal.
Collapse
Affiliation(s)
- Marianne G Pouwer
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Elsbet J Pieterman
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | | | - Geary W Olsen
- Medical Department, 3M Company, Saint Paul, Minnesota 55144
| | - Martien P M Caspers
- The Netherlands Organization of Applied Scientific Research (TNO) - Microbiology and Systems Biology, 3704 HE Zeist, The Netherlands
| | - Lars Verschuren
- The Netherlands Organization of Applied Scientific Research (TNO) - Microbiology and Systems Biology, 3704 HE Zeist, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| |
Collapse
|
94
|
Shafabakhsh R, Reiner Ž, Hallajzadeh J, Mirsafaei L, Asemi Z. Are anti-inflammatory agents and nutraceuticals - novel inhibitors of PCSK9? Crit Rev Food Sci Nutr 2020; 61:325-336. [PMID: 32090592 DOI: 10.1080/10408398.2020.1731678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease which increases the lysosomal degradation of low density lipoprotein receptor (LDLR) resulting in elevated serum LDL-cholesterol levels. Elevated LDL-cholesterol is the main risk factor for cardiovascular disease (CVD). Antibodies to PCSK9 decrease LDL-cholesterol. Recent studies have suggested a direct relationship between PCSK9 and inflammation and the potential inhibitory effects of anti-inflammatory agents against this enzyme. Nutraceuticals are natural compounds, which have numerous anti-inflammatory and lipid-lowering effects. In this review we focus on anti-inflammatory substances and nutraceuticals, which are beneficial in treatment of dyslipidemia. We also reviewed the recent findings concerning the role of PCSK9 as the main target for molecular mechanisms of these substances.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
95
|
Daghem M, Newby DE. Detecting unstable plaques in humans using cardiac CT: Can it guide treatments? Br J Pharmacol 2020; 178:2204-2217. [PMID: 31596945 DOI: 10.1111/bph.14896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/15/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Advances in imaging technology have driven the rapid expansion in the use of CT in the assessment of coronary atherosclerotic plaque. Based on a rapidly growing evidence base, current guidelines recommend coronary CT angiography as the first-line diagnostic test for patients presenting with stable chest pain. There is a growing need to refine current methods for diagnosis and risk stratification to improve the individualisation of preventative therapies. Imaging assessments of high-risk plaque with CT can be used to differentiate stable from unstable patterns of coronary atherosclerosis and potentially to improve patient risk stratification. This review will focus on coronary imaging with CT with a specific focus on the detection of coronary atherosclerosis, high-risk plaque features, and the implications for patient management.
Collapse
Affiliation(s)
- Marwa Daghem
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
96
|
Pasta A, Cremonini AL, Pisciotta L, Buscaglia A, Porto I, Barra F, Ferrero S, Brunelli C, Rosa GM. PCSK9 inhibitors for treating hypercholesterolemia. Expert Opin Pharmacother 2020; 21:353-363. [DOI: 10.1080/14656566.2019.1702970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrea Pasta
- Department of Internal Medicine (DIMI), University of Genoa, Genova, Italy
| | | | - Livia Pisciotta
- Department of Internal Medicine (DIMI), University of Genoa, Genova, Italy
| | - Angelo Buscaglia
- Department of Internal Medicine (DIMI), University of Genoa, Genova, Italy
| | - Italo Porto
- Department of Internal Medicine (DIMI), University of Genoa, Genova, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genova, Italy
| | - Claudio Brunelli
- Clinic of Cardiovascular Diseases, University of Genoa, Genova, Italy
| | - Gian Marco Rosa
- Clinic of Cardiovascular Diseases, University of Genoa, Genova, Italy
| |
Collapse
|
97
|
Schilperoort M, van den Berg R, Bosmans LA, van Os BW, Dollé MET, Smits NAM, Guichelaar T, van Baarle D, Koemans L, Berbée JFP, Deboer T, Meijer JH, de Vries MR, Vreeken D, van Gils JM, Willems van Dijk K, van Kerkhof LWM, Lutgens E, Biermasz NR, Rensen PCN, Kooijman S. Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE*3-Leiden.CETP mice. J Pineal Res 2020; 68:e12614. [PMID: 31599473 PMCID: PMC6916424 DOI: 10.1111/jpi.12614] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
Disruption of circadian rhythm by means of shift work has been associated with cardiovascular disease in humans. However, causality and underlying mechanisms have not yet been established. In this study, we exposed hyperlipidemic APOE*3-Leiden.CETP mice to either regular light-dark cycles, weekly 6 hours phase advances or delays, or weekly alternating light-dark cycles (12 hours shifts), as a well-established model for shift work. We found that mice exposed to 15 weeks of alternating light-dark cycles displayed a striking increase in atherosclerosis, with an approximately twofold increase in lesion size and severity, while mice exposed to phase advances and delays showed a milder circadian disruption and no significant effect on atherosclerosis development. We observed a higher lesion macrophage content in mice exposed to alternating light-dark cycles without obvious changes in plasma lipids, suggesting involvement of the immune system. Moreover, while no changes in the number or activation status of circulating monocytes and other immune cells were observed, we identified increased markers for inflammation, oxidative stress, and chemoattraction in the vessel wall. Altogether, this is the first study to show that circadian disruption by shifting light-dark cycles directly aggravates atherosclerosis development.
Collapse
Affiliation(s)
- Maaike Schilperoort
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Rosa van den Berg
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Laura A. Bosmans
- Department of Medical BiochemistryAmsterdam Cardiovascular SciencesAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Bram W. van Os
- Department of Medical BiochemistryAmsterdam Cardiovascular SciencesAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn E. T. Dollé
- Centre for Health ProtectionNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
- Department of Molecular MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Noortje A. M. Smits
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Teun Guichelaar
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Lotte Koemans
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Jimmy F. P. Berbée
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Tom Deboer
- Department of Molecular Cell BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Johanna H. Meijer
- Department of Molecular Cell BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Margreet R. de Vries
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Dianne Vreeken
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
- Division of NephrologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Janine M. van Gils
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
- Division of NephrologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Ko Willems van Dijk
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Linda W. M. van Kerkhof
- Centre for Health ProtectionNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Esther Lutgens
- Department of Medical BiochemistryAmsterdam Cardiovascular SciencesAmsterdam University Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands
- Institute for Cardiovascular Prevention (IPEK)Ludwig‐Maximilians‐UniversitätMunichGermany
| | - Nienke R. Biermasz
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Patrick C. N. Rensen
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| | - Sander Kooijman
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeidenThe Netherlands
| |
Collapse
|
98
|
Pouwer MG, Pieterman EJ, Worms N, Keijzer N, Jukema JW, Gromada J, Gusarova V, Princen HMG. Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice. J Lipid Res 2019; 61:365-375. [PMID: 31843957 PMCID: PMC7053846 DOI: 10.1194/jlr.ra119000419] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis.
Collapse
Affiliation(s)
- Marianne G Pouwer
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands.,Department of Cardiology Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Elsbet J Pieterman
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Nicole Worms
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Nanda Keijzer
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Hans M G Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| |
Collapse
|
99
|
Guarnieri F, Kulp JL, Kulp JL, Cloudsdale IS. Fragment-based design of small molecule PCSK9 inhibitors using simulated annealing of chemical potential simulations. PLoS One 2019; 14:e0225780. [PMID: 31805108 PMCID: PMC6894869 DOI: 10.1371/journal.pone.0225780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
PCSK9 is a protein secreted by the liver that binds to the low-density lipoprotein receptor (LDLR), causing LDLR internalization, decreasing the clearance of circulating LDL particles. Mutations in PCSK9 that strengthen its interactions with LDLR result in familial hypercholesterolemia (FH) and early onset atherosclerosis, while nonsense mutations of PCSK9 result in cardio-protective hypocholesterolemia. These observations led to PCSK9 inhibition for cholesterol lowering becoming a high-interest therapeutic target, with antibody drugs reaching the market. An orally-available small molecule drug is highly desirable, but inhibiting the PCSK9/LDLR protein-protein interaction (PPI) has proven challenging. Alternate approaches to finding good lead candidates are needed. Motivated by the FH mutation data on PCSK9, we found that modeling the PCSK9/LDLR interface revealed extensive electron delocalization between and within the protein partners. Based on this, we hypothesized that compounds assembled from chemical fragments could achieve the affinity required to inhibit the PCSK9/LDLR PPI if they were selected to interact with PCSK9 in a way that, like LDLR, also involves significant fractional charge transfer to form partially covalent bonds. To identify such fragments, Simulated Annealing of Chemical Potential (SACP) fragment simulations were run on multiple PCSK9 structures, using optimized partial charges for the protein. We designed a small molecule, composed of several fragments, predicted to interact at two sites on the PCSK9. This compound inhibits the PPI with 1 μM affinity. Further, we designed two similar small molecules where one allows charge delocalization though a linker and the other doesn’t. The first inhibitor with charge delocalization enhances LDLR surface expression by 60% at 10 nM, two orders of magnitude more potent than the EGF domain of LDLR. The other enhances LDLR expression by only 50% at 1 μM. This supports our conjecture that fragments can have surprisingly outsized efficacy in breaking PPI’s by achieving fractional charge transfer leading to partially covalent bonding.
Collapse
Affiliation(s)
- Frank Guarnieri
- Center for Drug Discovery, Northeastern University, Boston, MA, United States of America
- PAKA Pulmonary Pharmaceuticals, Acton, MA, United States of America
- * E-mail:
| | - John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, PA, United States of America
| | - John L. Kulp
- Conifer Point Pharmaceuticals, Doylestown, PA, United States of America
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA, United States of America
| | - Ian S. Cloudsdale
- Conifer Point Pharmaceuticals, Doylestown, PA, United States of America
| |
Collapse
|
100
|
The role of proprotein convertase subtilisin-kexin type 9 (PCSK9) in the vascular aging process - is there a link? POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 16:128-132. [PMID: 31708986 PMCID: PMC6836637 DOI: 10.5114/kitp.2019.88602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Lately there are many new, promising low-density lipoprotein cholesterol reducing therapies with PCSK9 inhibitors. We performed selected sampling of the publications in PubMed and made a review according to selected keywords. It summarizes the effect of PCSK9 on vascular aging, directly associated with lipid and glucose metabolism, chronic inflammation, atherosclerosis and hypertension. Serum level of PCSK9 is different in patients affected by certain illnesses (whose risk increases with age) than in healthy individuals. The same could be observed in the case of chronic inflammation. In this review we summarize what is known about the role PCSK9 in human metabolism and how this could affect the vascular aging process. Based on the available sources, we prove that PCSK9 is involved in many biochemical pathways associated with vascular aging. In the future, treatments using PCSK9 inhibition may not only reduce the cardiovascular risk but also slow down this process.
Collapse
|