51
|
Development and validation of an indirect competitive enzyme-linked immunosorbent assay for monitoring organoarsenic compounds in edible chicken and pork and feed. Food Chem 2016; 197:821-8. [DOI: 10.1016/j.foodchem.2015.11.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/03/2015] [Accepted: 11/12/2015] [Indexed: 11/18/2022]
|
52
|
Shahdan IA, Regenstein JM, Shahabuddin ASM, Rahman MT. Developing control points for halal slaughtering of poultry. Poult Sci 2016; 95:1680-1692. [PMID: 26994198 DOI: 10.3382/ps/pew092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
Halal (permissible or lawful) poultry meat production must meet industry, economic, and production needs, and government health requirements without compromising the Islamic religious requirements derived from the Qur'an and the Hadiths (the actions and sayings of the Prophet Muhammad, peace and blessings be upon him). Halal certification authorities may vary in their interpretation of these teachings, which leads to differences in halal slaughter requirements. The current study proposes 6 control points (CP) for halal poultry meat production based on the most commonly used halal production systems. CP 1 describes what is allowed and prohibited, such as blood and animal manure, and feed ingredients for halal poultry meat production. CP 2 describes the requirements for humane handling during lairage. CP 3 describes different methods for immobilizing poultry, when immobilization is used, such as water bath stunning. CP 4 describes the importance of intention, details of the halal slaughter, and the equipment permitted. CP 5 and CP 6 describe the requirements after the neck cut has been made such as the time needed before the carcasses can enter the scalding tank, and the potential for meat adulteration with fecal residues and blood. It is important to note that the proposed halal CP program is presented as a starting point for any individual halal certifying body to improve its practices.
Collapse
Affiliation(s)
- I A Shahdan
- Department of Biomedical Sciences, Faculty of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200 Kuantan, Malaysia
| | - J M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201
| | - A S M Shahabuddin
- Department of Business Administration, Faculty of Management, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - M T Rahman
- Faculty of Dentistry, University Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
53
|
Waris M, Baig JA, Sirajuddin, Kazi TG, Solangi IB, Siddiqui S, Afridi HI. Selective Electroanalytical Method for the Determination of Roxarsone in Poultry Feed and Litter. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-015-0385-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
54
|
Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics (Basel) 2015; 4:567-604. [PMID: 27025641 PMCID: PMC4790313 DOI: 10.3390/antibiotics4040567] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 02/07/2023] Open
Abstract
Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations.
Collapse
|
55
|
Mafla S, Moraga R, León CG, Guzmán-Fierro VG, Yañez J, Smith CT, Mondaca MA, Campos VL. Biodegradation of roxarsone by a bacterial community of underground water and its toxic impact. World J Microbiol Biotechnol 2015; 31:1267-77. [PMID: 26063647 DOI: 10.1007/s11274-015-1886-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023]
Abstract
Roxarsone is included in chicken food as anticoccidial and mainly excreted unchanged in faeces. Microorganisms biotransform roxarsone into toxic compounds that leach and contaminate underground waters used for human consumption. This study evaluated roxarsone biotransformation by underground water microorganisms and the toxicity of the resulting compounds. Underground water from an agricultural field was used to prepare microcosms, containing 0.05 mM roxarsone, and cultured under aerobic or anaerobic conditions. Bacterial communities of microcosms were characterized by PCR-DGGE. Roxarsone degradation was measured by HPLC/HG/AAS. Toxicity was evaluated using HUVEC cells and the Toxi-ChromoTest kit. Roxarsone degradation analysis, after 15 days, showed that microcosms of underground water with nutrients degraded 90 and 83.3% of roxarsone under anaerobic and aerobic conditions, respectively. Microcosms without nutrients degraded 50 and 33.1% under anaerobic and aerobic conditions, respectively. Microcosms including nutrients showed more roxarsone conversion into toxic inorganic arsenic species. DGGE analyses showed the presence of Proteobacteria, Firmicutes, Actinobacteria, Planctomycetes and Spirochaetes. Toxicity assays showed that roxarsone biotransformation by underground water microorganisms in all microcosms generated degradation products toxic for eukaryotic and prokaryotic cells. Furthermore, toxicity increased when roxarsone leached though a soil column and was further transformed by the bacterial community present in underground water. Therefore, using underground water from areas where roxarsone containing manure is used as fertilizer might be a health risk.
Collapse
Affiliation(s)
- S Mafla
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, P.O. Box 160-C, Correo 3, Concepción, Chile
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Subhani M, Mustafa I, Alamdar A, Katsoyiannis IA, Ali N, Huang Q, Peng S, Shen H, Eqani SAMAS. Arsenic levels from different land-use settings in Pakistan: Bio-accumulation and estimation of potential human health risk via dust exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:187-94. [PMID: 25704277 DOI: 10.1016/j.ecoenv.2015.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 05/21/2023]
Abstract
The present study aims at assessing arsenic (As) levels in outdoor dust and human exposure risks at different land use setting (i.e., rural, industrial, urban) from Punjab, Pakistan. The results showed higher As concentrations (mg/kg) in all the sample types ( i.e., dust, hair and nail) collected from industrial sites (9.78, 2.36, 2.5) followed by urban (7.59, 0.38, 0.88) and rural sites (6.95, 0.52, 1.12), respectively. In the current study, we also carried out human risk assessment via contaminated dust exposure, which suggested that dust ingestion is the major route of As contamination for the associated population, followed by the inhalation and dermal contact, at all studied land use settings. Hazard Index (HI) calculated for non-carcinogenic health risks for adults showed higher values at industrial (0.65) and urban (0.53) sites, which reflected that dust exposure is the major contributing source of human arsenic burden and may pose several adverse health effects. Carcinogenic risk values showed that at industrial areas the risk of carcinogenesis to the associated population is mainly due to As contaminated dust exposure. Hair (60%) and nail samples (70%) collected from industrial land use were found above the WHO threshold limit of 1mg/kg, suggested high risks for human health in the studied area. The results of the present study would be useful for assessing the human health risks due to arsenic contamination via dust exposure in different parts of country.
Collapse
Affiliation(s)
- Marghoob Subhani
- Department of Biological Sciences, University of Sargodha, Sargodha, Pakistan
| | - Irfan Mustafa
- Department of Biological Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ambreen Alamdar
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Ioannis A Katsoyiannis
- Aristotle University, Department of Chemistry, Division of Chemical Technology, Box 116, 54124 Thessaloniki, Greece
| | - Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Siyuan Peng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | | |
Collapse
|
57
|
Sánchez-Virosta P, Espín S, García-Fernández AJ, Eeva T. A review on exposure and effects of arsenic in passerine birds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 512-513:506-525. [PMID: 25644847 DOI: 10.1016/j.scitotenv.2015.01.069] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 05/24/2023]
Abstract
UNLABELLED Arsenic (As) is a metalloid of high concern because of its toxic effects for plants and animals. However, it is hard to find information on this metalloid in passerines. This review presents a comprehensive overview of As exposure and effects in birds, and more particularly in passerines, as a result of an extensive search of the literature available. Internal tissues are the most frequently analyzed matrices for As determination in passerines (37.5% of the reviewed studies used internal tissues), followed by feathers and eggs (32.5% each), feces (27.5%), and finally blood (15%). A clear tendency is found in recent years to the use of non-destructive samples. Most studies on As concentrations in passerines have been done in great tit (Parus major; 50%), followed by pied flycatcher (Ficedula hypoleuca; 22.5%). Some factors such as diet and migratory status are crucial on the interspecific differences in As exposure. More studies are needed to elucidate if intraspecific factors like age or gender affect As concentrations in different tissues. The literature review shows that studies on As concentrations in passerines have been done mainly in the United States (30%), followed by Belgium (22.5%), and Finland (20%), making evident the scarce or even lack of information in some countries, so we recommend further research in order to overcome the data gap, particularly in the southern hemisphere. Studies on humans, laboratory animals and birds have found a wide range of effects on different organ systems when they are exposed to different forms of As. This review shows that few field studies on As exposure and effects in passerines have been done, and all of them are correlative so far. Arsenic manipulation experiments on passerines are recommended to explore the adverse effects of As in free-living populations at similar levels to those occurring in the environment. CAPSULE This review summarizes the most interesting published studies on As exposure and effects in passerines.
Collapse
Affiliation(s)
- P Sánchez-Virosta
- Section of Ecology, Department of Biology, University of Turku, 20014 Turku, Finland.
| | - S Espín
- Section of Ecology, Department of Biology, University of Turku, 20014 Turku, Finland; Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - A J García-Fernández
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - T Eeva
- Section of Ecology, Department of Biology, University of Turku, 20014 Turku, Finland
| |
Collapse
|
58
|
Wang L, Cheng H. Birnessite (δ-MnO2) mediated degradation of organoarsenic feed additive p-arsanilic acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3473-3481. [PMID: 25679412 DOI: 10.1021/es505358c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
p-Arsanilic acid (p-ASA), is a widely used animal feed additive in many developing countries, and is often introduced to agricultural soils with animal wastes. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate its degradation with fast rates under acidic conditions. Experimental results indicate that adsorption and degradation of p-ASA on the surface of δ-MnO2 were highly pH dependent, and the overall kinetics for p-ASA degradation and formation of precursor complex could be described by a retarded first-order rate model. For the reaction occurring between pH 4.0 and 6.2, the initial rate equation was determined to be rinit=2.36×10(-5)[ASA]0.8[MnO2]0.9[H+]0.7. p-ASA first forms a surface precursor complex on δ-MnO2 during degradation, followed by formation of p-ASA radicals through single-electron transfer to δ-MnO2. The p-ASA radicals subsequently undergo cleavage of arsenite group (which is further oxidized to arsenate) or radical-radical self-coupling. Instead of full mineralization (with respect to arsenic only), about one-fifth of the p-ASA "couples" to form an arsenic-bearing azo compound that binds strongly on δ-MnO2. The fast transformation of p-ASA to arsenite and arsenate mediated by δ-MnO2 significantly increases the risk of soil arsenic pollution and deserves significant attention in the animal farming zones still using this feed additive.
Collapse
Affiliation(s)
- Lingling Wang
- †State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hefa Cheng
- †State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- ‡College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
59
|
Yao L, Huang L, He Z, Zhou C, Li G, Deng X. Phosphate enhances uptake of As species in garland chrysanthemum (C. coronarium) applied with chicken manure bearing roxarsone and its metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4654-4659. [PMID: 25328095 DOI: 10.1007/s11356-014-3711-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Roxarsone (ROX), a world widely used feed organoarsenic additive in animal production, can be excreted as itself and its metabolites in animal manure. Animal manure is commonly land applied with phosphorous (P) fertilizer to enhance the P phytoavailability in agriculture. We investigated the accumulation of As species in garland chrysanthemum (C. coronarium) plants fertilized with 1% (w/w, manure/soil) chicken manure bearing ROX and its metabolites, plus 0, 0.05, 0.1, 0.2, 0.4, and 0.8 g P2O5/kg, respectively. The results show that As(III) was the sole As compound in garland chrysanthemum shoots, and As(III) and As(V) were detectable in roots. Elevated phosphate level supplied more As(V) for garland chrysanthemum roots through competitive desorption in rhizosphere, leading to significantly enhanced accumulation of As species in plants. As(III) was the predominant As form in plants (85.0∼90.6%). Phosphate could not change the allocation of As species in plants. Hence, the traditional practice that animal manure is applied with P fertilizer may inadvertently increase the potential risk of As contamination in crop via the way ROX → animal → animal manure → soil → crop.
Collapse
Affiliation(s)
- Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Wushan, Tianhe, Guangzhou, 510642, China,
| | | | | | | | | | | |
Collapse
|
60
|
Singh R, Singh S, Parihar P, Singh VP, Prasad SM. Arsenic contamination, consequences and remediation techniques: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:247-70. [PMID: 25463877 DOI: 10.1016/j.ecoenv.2014.10.009] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
The exposure to low or high concentrations of arsenic (As), either due to the direct consumption of As contaminated drinking water, or indirectly through daily intake of As contaminated food may be fatal to the human health. Arsenic contamination in drinking water threatens more than 150 millions peoples all over the world. Around 110 millions of those peoples live in 10 countries in South and South-East Asia: Bangladesh, Cambodia, China, India, Laos, Myanmar, Nepal, Pakistan, Taiwan and Vietnam. Therefore, treatment of As contaminated water and soil could be the only effective option to minimize the health hazard. Therefore, keeping in view the above facts, an attempt has been made in this paper to review As contamination, its effect on human health and various conventional and advance technologies which are being used for the removal of As from soil and water.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Samiksha Singh
- Department of Environmental Science, University of Lucknow, Lucknow 226025, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Korea 497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
61
|
P Mangalgiri K, Adak A, Blaney L. Organoarsenicals in poultry litter: detection, fate, and toxicity. ENVIRONMENT INTERNATIONAL 2015; 75:68-80. [PMID: 25461415 DOI: 10.1016/j.envint.2014.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste.
Collapse
Affiliation(s)
- Kiranmayi P Mangalgiri
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Asok Adak
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
62
|
Molin M, Ulven SM, Meltzer HM, Alexander J. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic. J Trace Elem Med Biol 2015; 31:249-59. [PMID: 25666158 DOI: 10.1016/j.jtemb.2015.01.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/28/2022]
Abstract
Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals.
Collapse
Affiliation(s)
- Marianne Molin
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs Plass, NO-0130 Oslo, Norway.
| | - Stine Marie Ulven
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs Plass, NO-0130 Oslo, Norway
| | | | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway
| |
Collapse
|
63
|
Abstract
How sublethal levels of antibiotics and heavy metals select for clinically important multidrug resistance plasmids is largely unknown. Carriage of plasmids generally confers substantial fitness costs, implying that for the plasmid-carrying bacteria to be maintained in the population, the plasmid cost needs to be balanced by a selective pressure conferred by, for example, antibiotics or heavy metals. We studied the effects of low levels of antibiotics and heavy metals on the selective maintenance of a 220-kbp extended-spectrum β-lactamase (ESBL) plasmid identified in a hospital outbreak of Klebsiella pneumoniae and Escherichia coli. The concentrations of antibiotics and heavy metals required to maintain plasmid-carrying bacteria, the minimal selective concentrations (MSCs), were in all cases below (almost up to 140-fold) the MIC of the plasmid-free susceptible bacteria. This finding indicates that the very low antibiotic and heavy metal levels found in polluted environments and in treated humans and animals might be sufficiently high to maintain multiresistance plasmids. When resistance genes were moved from the plasmid to the chromosome, the MSC decreased, showing that MSC for a specific resistance conditionally depends on genetic context. This finding suggests that a cost-free resistance could be maintained in a population by an infinitesimally low concentration of antibiotic. By studying the effect of combinations of several compounds, it was observed that for certain combinations of drugs each new compound added lowered the minimal selective concentration of the others. This combination effect could be a significant factor in the selection of multidrug resistance plasmids/bacterial clones in complex multidrug environments. Antibiotic resistance is in many pathogenic bacteria caused by genes that are carried on large conjugative plasmids. These plasmids typically contain multiple antibiotic resistance genes as well as genes that confer resistance to biocides and heavy metals. In this report, we show that very low concentrations of single antibiotics and heavy metals or combinations of compounds can select for a large plasmid that carries resistance to aminoglycosides, β-lactams, tetracycline, macrolides, trimethoprim, sulfonamide, silver, copper, and arsenic. Our findings suggest that the low levels of antibiotics and heavy metals present in polluted external environments and in treated animals and humans could allow for selection and enrichment of bacteria with multiresistance plasmids and thereby contribute to the emergence, maintenance, and transmission of antibiotic-resistant disease-causing bacteria.
Collapse
|
64
|
Graham B, Stevens J, Wells P, Sims J, Rogers C, Leggett SS, Ekunwe S, Ndebele K. Enhancement of arsenic trioxide-mediated changes in human induced pluripotent stem cells (IPS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7524-36. [PMID: 25054231 PMCID: PMC4113892 DOI: 10.3390/ijerph110707524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 01/08/2023]
Abstract
Induced pluripotent stem cells (IPS) are an artificially derived type of pluripotent stem cell, showing many of the same characteristics as natural pluripotent stem cells. IPS are a hopeful therapeutic model; however there is a critical need to determine their response to environmental toxins. Effects of arsenic on cells have been studied extensively; however, its effect on IPS is yet to be elucidated. Arsenic trioxide (ATO) has been shown to inhibit cell proliferation, induce apoptosis and genotoxicity in many cells. Based on ATOs action in other cells, we hypothesize that it will induce alterations in morphology, inhibit cell viability and induce a genotoxic effect on IPS. Cells were treated for 24 hours with ATO (0-9 µg/mL). Cell morphology, viability and DNA damage were documented. Results indicated sufficient changes in morphology of cell colonies mainly in cell ability to maintain grouping and ability to remain adherent. Cell viability decreased in a dose dependent manner. There were significant increases in tail length and moment as well as destruction of intact DNA as concentration increased. Exposure to ATO resulted in a reproducible dose dependent sequence of events marked by changes in morphology, decrease of cell viability, and induction of genotoxicity in IPS.
Collapse
Affiliation(s)
- Barbara Graham
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Jacqueline Stevens
- RCMI Molecular Core Lab, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Phatia Wells
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Jennifer Sims
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Christian Rogers
- Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Sophia S Leggett
- Department of Behavioral and Environmental Health, Jackson State University, Jackson, MS 39217, USA.
| | - Stephen Ekunwe
- Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Kenneth Ndebele
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
65
|
Thomas JA, Chovanec P, Stolz JF, Basu P. Mapping the protein profile involved in the biotransformation of organoarsenicals using an arsenic metabolizing bacterium. Metallomics 2014; 6:1958-69. [DOI: 10.1039/c4mt00185k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Insight into the organoarsenic metabolism of Alkaliphilus oremlandii OhILAs by comprehensive proteomic analysis.
Collapse
Affiliation(s)
- John A. Thomas
- Department of Chemistry and Biochemistry
- Duquesne University
- Pittsburgh, USA
| | - Peter Chovanec
- Department of Chemistry and Biochemistry
- Duquesne University
- Pittsburgh, USA
- Biological Sciences
- Duquesne University
| | - John F. Stolz
- Biological Sciences
- Duquesne University
- Pittsburgh, USA
| | - Partha Basu
- Department of Chemistry and Biochemistry
- Duquesne University
- Pittsburgh, USA
| |
Collapse
|
66
|
Nachman KE, Baron PA, Raber G, Francesconi KA, Love DC. Arsenic levels in chicken: Nachman et al. respond. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:A267-A268. [PMID: 24004507 PMCID: PMC3764093 DOI: 10.1289/ehp.1307083r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Keeve E. Nachman
- Johns Hopkins Center for a Livable Future
- Department of Environmental Health Sciences, and
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patrick A. Baron
- Johns Hopkins Center for a Livable Future
- Department of Environmental Health Sciences, and
| | - Georg Raber
- Institute of Chemistry, Karl-Franzens University, Graz, Austria, E-mail:
| | | | - David C. Love
- Johns Hopkins Center for a Livable Future
- Department of Environmental Health Sciences, and
| |
Collapse
|
67
|
Liu L, He B, Yun Z, Sun J, Jiang G. Speciation analysis of arsenic compounds by capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry using a novel interface. J Chromatogr A 2013; 1304:227-33. [DOI: 10.1016/j.chroma.2013.07.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
|
68
|
Lu Y, Yuan H, Deng S, Wei Q, Guo C, Yi J, Wu J, Li R, Wen L, He Z, Yuan L. Arsanilic acid causes apoptosis and oxidative stress in rat kidney epithelial cells (NRK-52e cells) by the activation of the caspase-9 and -3 signaling pathway. Drug Chem Toxicol 2013; 37:55-62. [DOI: 10.3109/01480545.2013.806532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
69
|
Nachman KE, Baron PA, Raber G, Francesconi KA, Navas-Acien A, Love DC. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:818-24. [PMID: 23694900 PMCID: PMC3701911 DOI: 10.1289/ehp.1206245] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/16/2013] [Indexed: 05/16/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. OBJECTIVES We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. METHODS Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. RESULTS The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. CONCLUSIONS Conventional chicken meat had higher iAs concentrations than did conventional antibiotic-free and organic chicken meat samples. Cessation of arsenical drug use could reduce exposure and the burden of arsenic-related disease in chicken consumers.
Collapse
Affiliation(s)
- Keeve E Nachman
- Johns Hopkins Center for a Livable Future, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. knachman@ jhsph.edu
| | | | | | | | | | | |
Collapse
|
70
|
Yao L, Huang L, He Z, Zhou C, Li G, Yang B, Deng X. External inorganic N source enhances the uptake of As species in garland chrysanthemum (C. coronarium) amended with chicken manure bearing roxarsone and its metabolites. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:270-276. [PMID: 23632040 DOI: 10.1016/j.jhazmat.2013.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/25/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Roxarsone (ROX), a widely used feed organoarsenic additive, is excreted as itself and its metabolites in animal manure. Animal manure is commonly applied with N fertilizer to meet the N demand of crop. We investigated the accumulation of As species in garland chrysanthemum plants fertilized with chicken manure (CM) bearing ROX and its metabolites, combined with different inorganic N sources (NH₄(+), NO₃(-) and urea), respectively. The change of pH, N forms and As species in soils was examined as well. The results show that As(V), As(III) and dimethylarsinic acid (DMA) were detectable in soils, and conversions between As species were affected by three inorganic N sources, irrespective of N form and soil pH. As(III) was the sole As species in garland chrysanthemum shoots, and As(III) and As(V) could be detected in roots. Urea, superior to NH₄(+), significantly enhanced the uptake of As species in plants by promoting plant growth, while NO₃(-) slightly reduced the As accumulation due to decreased biomass. As(III) was the dominant As compound (86.9-89.7%) in plants. Therefore, inorganic N fertilizers may inadvertently increase the risk of As contamination in plant from ROX via the way ROX→chicken→CM→soil→crop.
Collapse
Affiliation(s)
- Lixian Yao
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, PR China.
| | - Lianxi Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, PR China
| | - Zhaohuan He
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, PR China
| | - Changmin Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, PR China
| | - Guoliang Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, PR China
| | - Baomei Yang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, PR China
| | - Xiancai Deng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, PR China
| |
Collapse
|
71
|
Arts D, Abdus Sabur M, Al-Abadleh HA. Surface Interactions of Aromatic Organoarsenical Compounds with Hematite Nanoparticles Using ATR-FTIR: Kinetic Studies. J Phys Chem A 2013; 117:2195-204. [DOI: 10.1021/jp311569m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Derek Arts
- Chemistry Department, Wilfrid Laurier University, Waterloo, ON N2L 3C5 Canada
| | - Md Abdus Sabur
- Chemistry Department, Wilfrid Laurier University, Waterloo, ON N2L 3C5 Canada
| | - Hind A. Al-Abadleh
- Chemistry Department, Wilfrid Laurier University, Waterloo, ON N2L 3C5 Canada
| |
Collapse
|
72
|
Yao L, Huang L, He Z, Zhou C, Li G. Occurrence of arsenic impurities in organoarsenics and animal feeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:320-324. [PMID: 23259671 DOI: 10.1021/jf3045022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organoarsenics are widely used as excellent feed additives in animal production in the world. Roxarsone (ROX) and arsanilic acid (ASA) are two organoarsenics permitted to be used in China. We collected 146 animal feed samples to investigate the appearance of ROX, ASA, and potential metabolites, including 3-amino-4-hydroxyphenylarsonic acid (3-A-HPA), 4-hydroxyphenylarsonic acid (4-HPA), As(V), As(III), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in feeds. The stability of ROX in both ROX additives and animal feeds was also examined. The results show that 25.4% of the 146 animal feeds contained organoarsenics, with average contents of ROX and ASA as 7.0 and 21.2 mg of As/kg, respectively. Unexpectedly, As(III) and MMA frequently occurred as As impurities in feeds bearing organoarsenics, with higher contents than organoarsenics in some samples. 3-A-HPA, 4-HPA, and DMA were not detected in all samples. ROX and As impurities in both ROX additives and feeds stayed unchanged in the shelf life. It suggests that As impurities in animal feeds bearing organoarsenics should generate from the use of organoarsenics containing As impurities. This constitutes the first report of As impurities in organoarsenics.
Collapse
Affiliation(s)
- Lixian Yao
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China.
| | | | | | | | | |
Collapse
|
73
|
Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng CH, Thayer KA, Loomis D. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1658-70. [PMID: 22889723 PMCID: PMC3548281 DOI: 10.1289/ehp.1104579] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 08/10/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Diabetes affects an estimated 346 million persons globally, and total deaths from diabetes are projected to increase > 50% in the next decade. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. In 2011, the National Toxicology Program (NTP) organized a workshop to assess the literature for evidence of associations between certain chemicals, including inorganic arsenic, and diabetes and/or obesity to help develop a focused research agenda. This review is derived from discussions at that workshop. OBJECTIVES Our objectives were to assess the consistency, strength/weaknesses, and biological plausibility of findings in the scientific literature regarding arsenic and diabetes and to identify data gaps and areas for future evaluation or research. The extent of the existing literature was insufficient to consider obesity as an outcome. DATA SOURCES, EXTRACTION, AND SYNTHESIS Studies related to arsenic and diabetes or obesity were identified through PubMed and supplemented with relevant studies identified by reviewing the reference lists in the primary literature or review articles. CONCLUSIONS Existing human data provide limited to sufficient support for an association between arsenic and diabetes in populations with relatively high exposure levels (≥ 150 µg arsenic/L in drinking water). The evidence is insufficient to conclude that arsenic is associated with diabetes in lower exposure (< 150 µg arsenic/L drinking water), although recent studies with better measures of outcome and exposure support an association. The animal literature as a whole was inconclusive; however, studies using better measures of diabetes-relevant end points support a link between arsenic and diabetes.
Collapse
Affiliation(s)
- Elizabeth A Maull
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
|
75
|
Batista B, Nacano L, De Souza S, Barbosa F. Rapid sample preparation procedure for As speciation in food samples by LC-ICP-MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:780-8. [DOI: 10.1080/19440049.2011.645218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
76
|
Rivera-Núñez Z, Meliker JR, Meeker JD, Slotnick MJ, Nriagu JO. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:182-90. [PMID: 21878987 PMCID: PMC10037220 DOI: 10.1038/jes.2011.27] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/14/2011] [Indexed: 05/21/2023]
Abstract
The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | |
Collapse
|
77
|
Nachman KE, Raber G, Francesconi KA, Navas-Acien A, Love DC. Arsenic species in poultry feather meal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 417-418:183-188. [PMID: 22244353 DOI: 10.1016/j.scitotenv.2011.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Organoarsenical drugs are widely used in the production of broiler chickens in the United States. Feathers from these chickens are processed into a meal product that is used as an animal feed additive and as an organic fertilizer. Research conducted to date suggests that arsenical drugs, specifically roxarsone, used in poultry production result in the accumulation of arsenic in the keratinous material of poultry feathers. The use of feather meal product in the human food system and in other settings may result in human exposures to arsenic. Consequently, the presence and nature of arsenic in twelve samples of feather meal product from six US states and China were examined. Since arsenic toxicity is highly species-dependent, speciation analysis using HPLC/ICPMS was performed to determine the biological relevance of detected arsenic. Arsenic was detected in all samples (44-4100 μg kg(-1)) and speciation analyses revealed that inorganic forms of arsenic dominated, representing 37 - 83% of total arsenic. Roxarsone was not detected in the samples (<20 μg As kg(-1)). Feather meal products represent a previously unrecognized source of arsenic in the food system, and may pose additional risks to humans as a result of its use as an organic fertilizer and when animal waste is managed.
Collapse
Affiliation(s)
- K E Nachman
- Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
78
|
Sutton P, Wallinga D, Perron J, Gottlieb M, Sayre L, Woodruff T. Reproductive health and the industrialized food system: a point of intervention for health policy. Health Aff (Millwood) 2011; 30:888-97. [PMID: 21555472 PMCID: PMC6693635 DOI: 10.1377/hlthaff.2010.1255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
What food is produced, and how, can have a critical impact on human nutrition and the environment, which in turn are key drivers of healthy human reproduction and development. The US food production system yields a large volume of food that is relatively low in cost for consumers but is often high in calories and low in nutritional value. In this article we examine the evidence that intensive use of pesticides, chemical fertilizers, hormones, antibiotics, and fossil fuel in food production, as well as chemicals in food packaging, are potentially harmful to human reproductive and developmental health. We conclude that policies to advance a healthy food system are necessary to prevent adverse reproductive health effects and avoid associated health costs among current and future generations. These policies include changes to the Farm Bill and the Toxic Substances Control Act, and greater involvement by the health care sector in supporting and sourcing food from urban agriculture programs, farmers' markets, and local food outlets, as well as increasing understanding by clinicians of the links between reproductive health and industrialized food production.
Collapse
|
79
|
Piao F, Li S, Li Q, Ye J, Liu S. Abnormal expression of 8-nitroguanine in the brain of mice exposed to arsenic subchronically. INDUSTRIAL HEALTH 2010; 49:151-157. [PMID: 21173536 DOI: 10.2486/indhealth.ms1058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To provide molecular toxicological evidences for exploring the mechanism of arsenic-induced neurotoxicity the accumulation of arsenic (As), the formation of 8-nitroguanine (8-NO(2)-G) were examined in brain tissue of mice exposed to arsenic. And the gene expressions of inducible NOS (iNOS), superoxide dismutase 1 (SOD1) and peroxiredoxin 2 (Prdx2) were also analyzed by GeneChip. In the result, the concentration of As in the brain tissue of mice was 4.00, 13.70, 21.48 and 29.88 ng/g in the controls and experimental groups exposed to 1, 2 and 4 mg/l As(2)O(3), respectively and increased in dose-response manner. Nervous cells in the brain of mice exposed to As showed disappearances of axons, vacuolar degeneration in cytoplasm and karyolysis, whereas no such pathological changes were observed in the control group. Weak immunoreactivity against 8-NO(2)-G was observed in the brain tissue of mice given 1 or 2 ppm arsenic trioxide. More intensive immunoreactivity was found in cells at 4 ppm and it was mainly distributed in cytoplasm. The expressions of SOD1 and Prdx2 were down-regulated in the brain of mice exposed to As, but iNOS expression was not disturbed by As exposure. No the 8-NO(2)-G immunoreactivity or abnormal expressions of these genes in brain tissue were observed in controls. These results indicate that As induces high expression of 8-NO(2)-G in brain tissues of mice and that RNA in the cells may be modified by overproduced reactive nitrogen species.
Collapse
Affiliation(s)
- Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, No 9 Western Section of Lvshun South Road, Dalian, Liaoning 116044, P.R. China.
| | | | | | | | | |
Collapse
|
80
|
Joerger RD, Hanning IB, Ricke SC. Presence of Arsenic Resistance in Salmonella enterica Serovar Kentucky and Other Serovars Isolated from Poultry. Avian Dis 2010; 54:1178-82. [DOI: 10.1637/9285-022210-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
81
|
Jin H, Chang Z. Distribution of heavy metal contents and chemical fractions in anaerobically digested manure slurry. Appl Biochem Biotechnol 2010; 164:268-82. [PMID: 21116733 DOI: 10.1007/s12010-010-9133-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/19/2010] [Indexed: 11/29/2022]
Abstract
Digested slurry samples from twenty-one large-scale anaerobic digestion plants together with intensive pig and dairy farms in Jiangsu Province of China were collected and analyzed for total and dissolved concentrations of Zn, Cu and As, as well as chemical characteristics. The results showed that total concentrations of Zn, Cu and As in digested pig slurries were concentrated to <10, <5 and 0.02-0.1 mg/l, respectively; while <2 and 10-30, <1, and 0.02-0.1 mg/l, respectively, in digested dairy slurries. Lowering the dietary supply of these elements to pig and dairy would be the most effective way to control heavy metal contents in digested manure slurries. Dissolved fractions of Zn, Cu and As accounted for 1-74%, 1-33% and 2-53% of the total concentrations, respectively, in digested pig slurries; and 18-65%, 12-58% and 3-68% in digested dairy slurries. The chemical fractions of heavy metals in digested slurries were not only dependent on the total concentrations of heavy metals in raw manures but also on conditions of digestion and storage. Oxidation pond systems could significantly cripple the total contents of heavy metals in digested slurries, and the removal effect was better in multi-oxidation-pond systems than that in primary-oxidation-pond systems. However, the chemical fractions of heavy metals in digested slurries changed in a complicated manner when stored in oxidation ponds, due to the suspended solid deposition, elements reduction, as well as variations of pH values and oxidation-reduction potential.
Collapse
Affiliation(s)
- Hongmei Jin
- Laboratory for Agricultural Wastes Treatment and Recycling, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, China
| | | |
Collapse
|
82
|
Andra SS, Makris KC, Quazi S, Sarkar D, Datta R, Bach SBH. Organocopper complexes during roxarsone degradation in wastewater lagoons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1167-1173. [PMID: 20099042 DOI: 10.1007/s11356-009-0281-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 12/13/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance. Earlier batch experiments in our laboratory suggested the presence of organometallic (Cu) complexes during relevant roxarsone degradation experiments. We hypothesized that organocopper compounds were complexed to roxarsone, mediating its degradation in field-collected swine wastewater samples from storage lagoons. The objective of this study was to investigate the role of organometallic (Cu) complexes during roxarsone degradation under aerobic conditions in swine wastewater suspensions, using electrospray ionization mass spectrometry (ES-MS). MATERIALS AND METHODS Two swine wastewater samples differing in % solids content and total recoverable Cu concentrations were reacted with 500 ppb of roxarsone under aerobic conditions for 16 days. LC/ICP-MS and ES-MS were used for As speciation analyses, and characterization of metal-organoarsenical complexes in swine wastewater subsamples, respectively. RESULTS AND DISCUSSION An organocopper roxarsone metabolite was found only in the high-Cu wastewater sample, suggesting the role of Cu in roxarsone degradation under aerobic conditions. The organocopper metabolite was not found in the low-Cu wastewater sample, because roxarsone did not undergo degradation under aerobic conditions even after 16 days. CONCLUSIONS Aerobic degradation of organoarsenicals (roxarsone) has not been documented before. Preliminary dataset from this study illustrates the direct and/or indirect association of particulate Cu in catalyzing roxarsone degradation under aerobic conditions in samples with high % solids content. RECOMMENDATIONS AND PERSPECTIVES Concerns regarding the degradation of roxarsone in wastewater to the more toxic inorganic As may be partially linked to the presence of particulate Cu. The presence of Cu in wastewater-suspended particle surfaces has never been coupled before to organoarsenicals degradation reactions, thus, further studies are needed to elucidate the related reaction mechanisms and pathways. Water depth-dependent solid particle distribution profiles in wastewater storage lagoons could provide empirical evidence towards the design of effective degradation practices for nitrophenol-containing compounds, such as, organoarsenical-containing antibiotics, or explosive munitions compounds.
Collapse
Affiliation(s)
- Syam S Andra
- Environmental Geochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
83
|
Chovanec P, Stolz JF, Basu P. A proteome investigation of roxarsone degradation by Alkaliphilus oremlandii strain OhILAs. Metallomics 2010; 2:133-9. [DOI: 10.1039/b915479e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|