51
|
Zhu Y, Wang L, Nong Y, Liang Y, Huang Z, Zhu P, Zhang Q. Serum Untargeted UHPLC-HRMS-Based Lipidomics to Discover the Potential Biomarker of Colorectal Advanced Adenoma. Cancer Manag Res 2021; 13:8865-8878. [PMID: 34858060 PMCID: PMC8632617 DOI: 10.2147/cmar.s336322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background As a key precancerous lesion, colorectal advanced adenoma (CAA) is closely related to the occurrence and development of colorectal cancer (CRC). Effective identification of CAA-related biomarkers can prevent CRC morbidity and mortality. Lipids, as an important endogenous substance, have been proved to be involved in the occurrence and development of CRC. Lipidomics is an advanced technique that studies lipid metabolism and biomarkers of diseases. However, there are no lipidomics studies based on large serum samples to explore diagnostic biomarkers for CAA. Methods An integrated serum lipid profile from 50 normal (NR) and 46 CAA subjects was performed using ultra-high performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS). Lipidomic data were acquired for negative and positive ionization modes, respectively. Differential lipids were selected by univariate and multivariate statistics analyses. A receiver operator characteristic curve (ROC) analysis was conducted to evaluate the diagnostic performance of differential lipids. Results A total of 53 differential lipids were obtained by combining univariate and multivariate statistical analyses (P < 0.05 and VIP > 1). In addition, 12 differential lipids showed good diagnostic performance (AUC > 0.90) for the discrimination of NR and CAA by receiver operating characteristic curve (ROC) analysis. Of them, the performance of PC 44:5 and PC 35:6e presented the outstanding performance (AUC = 1.00, (95% CI, 1.00–1.00)). Moreover, triglyceride (TAG) had the highest proportion (37.74%) as the major dysregulated lipids in the CAA. Conclusion This is the first study that profiled serum lipidomics and explored lipid biomarkers with good diagnostic ability of CAA to contribute to the early prevention of CRC. Twelve differential lipids that effectively discriminate between NR and CAA serve as the potential diagnostic markers of CAA. An obvious perturbation of TAG metabolism could be involved in the CAA formation.
Collapse
Affiliation(s)
- Yifan Zhu
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Lisheng Wang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Yanying Nong
- Department of Gastroenterology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, People's Republic of China
| | - Yunxiao Liang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Zongsheng Huang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Qisong Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| |
Collapse
|
52
|
Ishikawa R, Saito K, Matsumura T, Arai K, Yamauchi S, Goda R, Tachiki H, Kawabata M, Nitta SI, Nagao A, Suga T, Uchiyama H, Nakai K, Asahina K, Yamaoka M, Saito Y. A multilaboratory validation study of LC/MS biomarker assays for three lysophosphatidylcholines. Bioanalysis 2021; 13:1533-1546. [PMID: 34696608 DOI: 10.4155/bio-2021-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Aim: Although the fit-for-purpose approach has been proposed for validation procedures and acceptance criteria for biomarker assays, practical biomarker assays to facilitate clinical application and regulatory documents on biomarker assays remain limited. Materials & methods: We assigned six independent laboratories and selected three lysophosphatidylcholines (LPCs): LPC(16:0), LPC(18:0) and LPC(18:1) as model biomarkers. Using LC-MS, the following key validation parameters were evaluated: calibration curve, carryover, parallelism, precision and relative accuracy and these values were similar among all laboratories. Further, we determined LPC levels in six lots of rat plasma at unknown concentrations and compared them among the laboratories. Conclusion: Our multilaboratory validation and reproducibility data are useful for the development of future biomarker assay validation procedures, as well as regulatory documents.
Collapse
Affiliation(s)
- Rika Ishikawa
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | | | - Koji Arai
- LSI Medience Corporation, Tokyo, 101-8517, Japan
| | | | - Ryoya Goda
- Daiichi Sankyo Company, Ltd, Tokyo, 140-8710, Japan
| | | | | | | | | | | | | | - Keiko Nakai
- LSI Medience Corporation, Tokyo, 101-8517, Japan
| | | | | | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| |
Collapse
|
53
|
Qiu CJ, Wang XB, Zheng ZR, Yang CZ, Lin K, Zhang K, Tu M, Jiang KR, Gao WT. Development and validation of a ferroptosis-related prognostic model in pancreatic cancer. Invest New Drugs 2021; 39:1507-1522. [PMID: 34195903 DOI: 10.1007/s10637-021-01114-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The purpose of this study was to identify ferroptosis-related genes (FRGs) associated with the prognosis of pancreatic cancer and to construct a prognostic model based on FRGs. METHODS Based on pancreatic cancer data obtained from The Cancer Genome Atlas database, we established a prognostic model from 232 FRGs. A nomogram was constructed by combining the prognostic model and clinicopathological features. Gene Expression Omnibus datasets and tissue samples obtained from our center were utilized to validate the model. The relationship between risk score and immune cell infiltration was explored by CIBERSORT and TIMER. RESULTS The prognostic model was established based on four FRGs (ENPP2, ATG4D, SLC2A1 and MAP3K5), and the risk score was demonstrated to be an independent risk factor in pancreatic cancer (HR 1.648, 95% CI 1.335-2.035, p < 0.001). Based on the median risk score, patients were divided into a high-risk group and a low-risk group. The low-risk group had a better prognosis than the high-risk group. In the high-risk group, patients treated with chemotherapy had a better prognosis. The nomogram showed that the model was the most important element. Gene set enrichment analysis identified three key pathways, namely, TGFβ signaling, HIF signaling pathway and the adherens junction. The prognostic model may be associated with infiltration of immune cells such as M0 macrophages, M1 macrophages, CD4 + T cells and CD8 + T cells. CONCLUSION The ferroptosis-related prognostic model can be employed to predict the prognosis of pancreatic cancer. Ferroptosis is an important marker, and immunotherapy may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Chen-Jie Qiu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-Bing Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-Ruo Zheng
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao-Zhi Yang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Lin
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen-Tao Gao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
54
|
Fatty Acid Unsaturation Degree of Plasma Exosomes in Colorectal Cancer Patients: A Promising Biomarker. Int J Mol Sci 2021; 22:ijms22105060. [PMID: 34064646 PMCID: PMC8151919 DOI: 10.3390/ijms22105060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023] Open
Abstract
Even though colorectal cancer (CRC) is one of the most preventable cancers, it is currently one of the deadliest. Worryingly, incidence in people <50 years has increased unexpectedly, and for unknown causes, despite the successful implementation of screening programs in the population aged >50 years. Thus, there is a need to improve early diagnosis detection strategies by identifying more precise biomarkers. In this scenario, the analysis of exosomes is given considerable attention. Previously, we demonstrated the exosome lipidome was able to classify CRC cell lines according to their malignancy. Herein, we investigated the use of the lipidome of plasma extracellular vesicles as a potential source of non-invasive biomarkers for CRC. A plasma exosome-enriched fraction was analyzed from patients undergoing colonoscopic procedure. Patients were divided into a healthy group and four pathological groups (patients with hyperplastic polyps; adenomatous polyps; invasive neoplasia (CRC patients); or hereditary non-polyposis CRC. The results showed a shift from 34:1- to 38:4-containing species in the pathological groups. We demonstrate that the ratio Σ34:1-containing species/Σ38:4-containing species has the potential to discriminate between healthy and pathological patients. Altogether, the results reinforce the utility of plasma exosome lipid fingerprint to provide new non-invasive biomarkers in a clinical context.
Collapse
|
55
|
Kliemann N, Viallon V, Murphy N, Beeken RJ, Rothwell JA, Rinaldi S, Assi N, van Roekel EH, Schmidt JA, Borch KB, Agnoli C, Rosendahl AH, Sartor H, Huerta JM, Tjønneland A, Halkjær J, Bueno-de-Mesquita B, Gicquiau A, Achaintre D, Aleksandrova K, Schulze MB, Heath AK, Tsilidis KK, Masala G, Panico S, Kaaks R, Fortner RT, Van Guelpen B, Dossus L, Scalbert A, Keun HC, Travis RC, Jenab M, Johansson M, Ferrari P, Gunter MJ. Metabolic signatures of greater body size and their associations with risk of colorectal and endometrial cancers in the European Prospective Investigation into Cancer and Nutrition. BMC Med 2021; 19:101. [PMID: 33926456 PMCID: PMC8086283 DOI: 10.1186/s12916-021-01970-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The mechanisms underlying the obesity-cancer relationship are incompletely understood. This study aimed to characterise metabolic signatures of greater body size and to investigate their association with two obesity-related malignancies, endometrial and colorectal cancers, and with weight loss within the context of an intervention study. METHODS Targeted mass spectrometry metabolomics data from 4326 participants enrolled in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and 17 individuals from a single-arm pilot weight loss intervention (Intercept) were used in this analysis. Metabolic signatures of body size were first determined in discovery (N = 3029) and replication (N = 1297) sets among EPIC participants by testing the associations between 129 metabolites and body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR) using linear regression models followed by partial least squares analyses. Conditional logistic regression models assessed the associations between the metabolic signatures with endometrial (N = 635 cases and 648 controls) and colorectal (N = 423 cases and 423 controls) cancer risk using nested case-control studies in EPIC. Pearson correlation between changes in the metabolic signatures and weight loss was tested among Intercept participants. RESULTS After adjustment for multiple comparisons, greater BMI, WC, and WHR were associated with higher levels of valine, isoleucine, glutamate, PC aa C38:3, and PC aa C38:4 and with lower levels of asparagine, glutamine, glycine, serine, lysoPC C17:0, lysoPC C18:1, lysoPC C18:2, PC aa C42:0, PC ae C34:3, PC ae C40:5, and PC ae C42:5. The metabolic signature of BMI (OR1-sd 1.50, 95% CI 1.30-1.74), WC (OR1-sd 1.46, 95% CI 1.27-1.69), and WHR (OR1-sd 1.54, 95% CI 1.33-1.79) were each associated with endometrial cancer risk. Risk of colorectal cancer was positively associated with the metabolic signature of WHR (OR1-sd: 1.26, 95% CI 1.07-1.49). In the Intercept study, a positive correlation was observed between weight loss and changes in the metabolic signatures of BMI (r = 0.5, 95% CI 0.06-0.94, p = 0.03), WC (r = 0.5, 95% CI 0.05-0.94, p = 0.03), and WHR (r = 0.6, 95% CI 0.32-0.87, p = 0.01). CONCLUSIONS Obesity is associated with a distinct metabolic signature comprising changes in levels of specific amino acids and lipids which is positively associated with both colorectal and endometrial cancer and is potentially reversible following weight loss.
Collapse
Affiliation(s)
- Nathalie Kliemann
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Vivian Viallon
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Neil Murphy
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rebecca J Beeken
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
- Department of Behavioural Science and Health, University College London, London, UK
| | - Joseph A Rothwell
- Health Across Generations team, Centre for Research in Epidemiology and Population Health (CESP), INSERM U1018, Villejuif, France
- Gustave Roussy, F-94805, Villejuif, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Nada Assi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kristin Benjaminsen Borch
- Department of Community Medicine, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Claudia Agnoli
- Epidemiology and Prevention Unit. Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ann H Rosendahl
- Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Hanna Sartor
- Diagnostic Radiology, Lund University, Lund, Sweden
| | - José María Huerta
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | | | - Jytte Halkjær
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Audrey Gicquiau
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - David Achaintre
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Matthias B Schulze
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicin Clinica e Chirurgia, Frederico II Univeristy, Naples, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Laure Dossus
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Augustin Scalbert
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hector C Keun
- Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College, London, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mazda Jenab
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Marc J Gunter
- International Agency for Research on Cancer, World Health Organization, Lyon, France.
| |
Collapse
|
56
|
Wei M, Zhou RL, Luo T, Deng ZY, Li J. Trans triacylglycerols from dairy products and industrial hydrogenated oil exhibit different effects on the function of human umbilical vein endothelial cells via modulating phospholipase A2/arachidonic acid metabolism pathways. J Dairy Sci 2021; 104:6399-6414. [PMID: 33773784 DOI: 10.3168/jds.2020-19715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Dairy fat intake has been considered as a risk factor for cardiovascular disease. Rodent models show that trans fatty acids in industrial hydrogenated oil and ruminant milk have different effects on cardiovascular diseases. One of the main reasons is that the distributions of trans fatty acids in triacylglycerols from dairy products and from industrial hydrogenated oil are different, which affects lipid absorption and metabolism. This study investigated the effects of 1,3-olein-2-elaidin (OEO, representing industrial hydrogenated oil triacylglycerols) and 1-vaccenic-2,3-olein (OOV, representing ruminant triacylglycerols in dairy products) on the function of human umbilical vein endothelial cells (HUVEC), including cell viability, lactate dehydrogenase (LDH) exudation rate, and nitric oxide secretory and nitric oxide synthase relative activity. We found that the detrimental effect of OEO on HUVEC was significantly greater than that of OOV. The results also showed that the absorption rate of OEO in HUVEC (78.25%) was significantly greater than that of OOV (63.32%). Mechanistically, based on phospholipidomics analysis, we found that calcium-independent phospholipase A2 (iPLA2) played a key role with regard to the OOV-mediated arachidonic acid (ARA)/COX-2/PG pathway, whereas secretory phospholipase A2 (sPLA2) and cytoplasmic phospholipase A2 (cPLA2) are responsible for the OEO-mediated ARA/COX-2/PG pathway. Moreover, OEO had a greater effect on the protein expression of COX-2 and PG secretion than OOV. In addition, iPLA2, sPLA2, and cPLA2 could mediate the ARA/CYP4A11 pathway in OOV-treated HUVEC, but only iPLA2 could mediate this pathway in HUVEC treated with OEO. We also found that sPLA2 could mediate the ARA/5-LOX pathway in HUVEC treated with OOV, but none of these 3 forms of PLA2 could mediate this pathway in HUVEC treated with OEO. On the other hand, after OOV treatment, trans-11 C18:1 was converted to beneficial forms of fatty acids in HUVEC, including conjugated linoleic acid (CLA) and trans-9 C16:1. In conclusion, we elucidated the potential mechanisms that might account for the diverse effects of triacylglycerols from industrial hydrogenated oil and ruminant milk on the function of HUVEC.
Collapse
Affiliation(s)
- Meng Wei
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ruo-Lin Zhou
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
57
|
Răchieriu C, Eniu DT, Moiş E, Graur F, Socaciu C, Socaciu MA, Hajjar NA. Lipidomic Signatures for Colorectal Cancer Diagnosis and Progression Using UPLC-QTOF-ESI +MS. Biomolecules 2021; 11:biom11030417. [PMID: 33799830 PMCID: PMC8035671 DOI: 10.3390/biom11030417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolomics coupled with bioinformatics may identify relevant biomolecules such as putative biomarkers of specific metabolic pathways related to colorectal diagnosis, classification and prognosis. This study performed an integrated metabolomic profiling of blood serum from 25 colorectal cancer (CRC) cases previously classified (Stage I to IV) compared with 16 controls (disease-free, non-CRC patients), using high-performance liquid chromatography and mass spectrometry (UPLC-QTOF-ESI+ MS). More than 400 metabolites were separated and identified, then all data were processed by the advanced Metaboanalyst 5.0 online software, using multi- and univariate analysis, including specificity/sensitivity relationships (area under the curve (AUC) values), enrichment and pathway analysis, identifying the specific pathways affected by cancer progression in the different stages. Several sub-classes of lipids including phosphatidylglycerols (phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and PAs), fatty acids and sterol esters as well as ceramides confirmed the “lipogenic phenotype” specific to CRC development, namely the upregulated lipogenesis associated with tumor progression. Both multivariate and univariate bioinformatics confirmed the relevance of some putative lipid biomarkers to be responsible for the altered metabolic pathways in colorectal cancer.
Collapse
Affiliation(s)
- Claudiu Răchieriu
- Surgery Department, County Hospital Alba, 510118 Alba Iulia, Romania;
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| | - Dan Tudor Eniu
- Oncology Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Emil Moiş
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| | - Florin Graur
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| | - Carmen Socaciu
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Correspondence: (C.S.); (M.A.S.)
| | - Mihai Adrian Socaciu
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
- Correspondence: (C.S.); (M.A.S.)
| | - Nadim Al Hajjar
- Iuliu Hatieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400015 Cluj-Napoca, Romania; (E.M.); (F.G.); (N.A.H.)
| |
Collapse
|
58
|
Gumpenberger T, Brezina S, Keski-Rahkonen P, Baierl A, Robinot N, Leeb G, Habermann N, Kok DEG, Scalbert A, Ueland PM, Ulrich CM, Gsur A. Untargeted Metabolomics Reveals Major Differences in the Plasma Metabolome between Colorectal Cancer and Colorectal Adenomas. Metabolites 2021; 11:119. [PMID: 33669644 PMCID: PMC7922413 DOI: 10.3390/metabo11020119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sporadic colorectal cancer is characterized by a multistep progression from normal epithelium to precancerous low-risk and high-risk adenomas to invasive cancer. Yet, the underlying molecular mechanisms of colorectal carcinogenesis are not completely understood. Within the "Metabolomic profiles throughout the continuum of colorectal cancer" (MetaboCCC) consortium we analyzed data generated by untargeted, mass spectrometry-based metabolomics using plasma from 88 colorectal cancer patients, 200 patients with high-risk adenomas and 200 patients with low-risk adenomas recruited within the "Colorectal Cancer Study of Austria" (CORSA). Univariate logistic regression models comparing colorectal cancer to adenomas resulted in 442 statistically significant molecular features. Metabolites discriminating colorectal cancer patients from those with adenomas in our dataset included acylcarnitines, caffeine, amino acids, glycerophospholipids, fatty acids, bilirubin, bile acids and bacterial metabolites of tryptophan. The data obtained discovers metabolite profiles reflecting metabolic differences between colorectal cancer and colorectal adenomas and delineates a potentially underlying biological interpretation.
Collapse
Affiliation(s)
- Tanja Gumpenberger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (S.B.)
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (S.B.)
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, 69372 Lyon, France; (P.K.-R.); (N.R.); (A.S.)
| | - Andreas Baierl
- Department of Statistics and Operations Research, University of Vienna, 1090 Vienna, Austria;
| | - Nivonirina Robinot
- International Agency for Research on Cancer, 69372 Lyon, France; (P.K.-R.); (N.R.); (A.S.)
| | - Gernot Leeb
- Department of Internal Medicine, Hospital Oberpullendorf, 7350 Oberpullendorf, Austria;
| | - Nina Habermann
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Genome Biology, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Dieuwertje E G Kok
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 Wageningen, The Netherlands;
| | - Augustin Scalbert
- International Agency for Research on Cancer, 69372 Lyon, France; (P.K.-R.); (N.R.); (A.S.)
| | | | - Cornelia M Ulrich
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA;
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (T.G.); (S.B.)
| |
Collapse
|
59
|
Saito K. Application of comprehensive lipidomics to biomarker research on adverse drug reactions. Drug Metab Pharmacokinet 2021; 37:100377. [PMID: 33454388 DOI: 10.1016/j.dmpk.2020.100377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Lipidomics is a relatively new field of omics that focuses on lipids, one of the major categories of metabolites. Owing to their various functions, lipids are considered suitable targets for biomarker development; in addition, lipidomics analysis of adverse drug reactions (ADRs) has been conducted recently. In this review, I have summarized information on comprehensive lipidomics, which involves the analysis of global lipids in a non-targeted manner. Mass spectrometry-based platforms are currently the dominant lipidomics platform owing to their versatile features. I have also summarized the application of lipidomics in biomarker research on ADRs caused by therapeutic drugs in humans and rodents. Additionally, general concerns in and emerging approaches of lipidomics research on ADR have been highlighted. Although biomarkers identified using the lipidomics analysis of ADRs have not been qualified, reported candidates will be evaluated for clinical application. In addition, novel biomarker candidates will be developed via classical and new approaches exemplified in this review.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan.
| |
Collapse
|
60
|
Palacios-Ferrer JL, García-Ortega MB, Gallardo-Gómez M, García MÁ, Díaz C, Boulaiz H, Valdivia J, Jurado JM, Almazan-Fernandez FM, Arias-Santiago S, Amezcua V, Peinado H, Vicente F, Pérez Del Palacio J, Marchal JA. Metabolomic profile of cancer stem cell-derived exosomes from patients with malignant melanoma. Mol Oncol 2020; 15:407-428. [PMID: 33052601 PMCID: PMC7858120 DOI: 10.1002/1878-0261.12823] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant melanoma (MM) is the most aggressive and life‐threatening form of skin cancer. It is characterized by an extraordinary metastasis capacity and chemotherapy resistance, mainly due to melanoma cancer stem cells (CSCs). To date, there are no suitable clinical diagnostic, prognostic or predictive biomarkers for this neoplasia. Therefore, there is an urgent need for new MM biomarkers that enable early diagnosis and effective disease monitoring. Exosomes represent a novel source of biomarkers since they can be easily isolated from different body fluids. In this work, a primary patient‐derived MM cell line enriched in CSCs was characterized by assessing the expression of specific markers and their stem‐like properties. Exosomes derived from CSCs and serums from patients with MM were characterized, and their metabolomic profile was analysed by high‐resolution mass spectrometry (HRMS) following an untargeted approach and applying univariate and multivariate statistical analyses. The aim of this study was to search potential biomarkers for the diagnosis of this disease. Our results showed significant metabolomic differences in exosomes derived from MM CSCs compared with those from differentiated tumour cells and also in serum‐derived exosomes from patients with MM compared to those from healthy controls. Interestingly, we identified similarities between structural lipids differentially expressed in CSC‐derived exosomes and those derived from patients with MM such as the glycerophosphocholine PC 16:0/0:0. To our knowledge, this is the first metabolomic‐based study aimed at characterizing exosomes derived from melanoma CSCs and patients' serum in order to identify potential biomarkers for MM diagnosis. We conclude that metabolomic characterization of CSC‐derived exosomes sets an open door to the discovery of clinically useful biomarkers in this neoplasia.
Collapse
Affiliation(s)
- José Luis Palacios-Ferrer
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Spain
| | - María Belén García-Ortega
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Spain.,Department of Oncology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María Gallardo-Gómez
- Department of Biochemistry, Genetics and Immunology, Singular Research Centre of Galicia (CINBIO), University of Vigo, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Spain.,Department of Biochemistry 3 and Immunology, Faculty of Medicine, University of Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Spain
| | - Javier Valdivia
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Department of Oncology, Virgen de las Nieves University Hospital, Granada, Spain
| | - José Miguel Jurado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Department of Oncology, San Cecilio University Hospital, Granada, Spain
| | - Francisco M Almazan-Fernandez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Department of Dermatology, San Cecilio University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Medicine, Faculty of Medicine, University of Granada, Spain
| | - Víctor Amezcua
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Department of Oncology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - José Pérez Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Spain.,Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Spain
| |
Collapse
|
61
|
Emerging roles of lysophospholipids in health and disease. Prog Lipid Res 2020; 80:101068. [PMID: 33068601 DOI: 10.1016/j.plipres.2020.101068] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Lipids are abundant and play essential roles in human health and disease. The main functions of lipids are building blocks for membrane biogenesis. However, lipids are also metabolized to produce signaling molecules. Here, we discuss the emerging roles of circulating lysophospholipids. These lysophospholipids consist of lysoglycerophospholipids and lysosphingolipids. They are both present in cells at low concentration, but their concentrations in extracellular fluids are significantly higher. The biological functions of some of these lysophospholipids have been recently revealed. Remarkably, some of the lysophospholipids play pivotal signaling roles as well as being precursors for membrane biogenesis. Revealing how circulating lysophospholipids are produced, released, transported, and utilized in multi-organ systems is critical to understand their functions. The discovery of enzymes, carriers, transporters, and membrane receptors for these lysophospholipids has shed light on their physiological significance. In this review, we summarize the biological roles of these lysophospholipids via discussing about the proteins regulating their functions. We also discuss about their potential impacts to human health and diseases.
Collapse
|
62
|
Sun YL, Zhang Y, Guo YC, Yang ZH, Xu YC. A Prognostic Model Based on Six Metabolism-Related Genes in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5974350. [PMID: 32953885 PMCID: PMC7482003 DOI: 10.1155/2020/5974350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
An increasing number of studies have shown that abnormal metabolism processes are closely correlated with the genesis and progression of colorectal cancer (CRC). In this study, we systematically explored the prognostic value of metabolism-related genes (MRGs) for CRC patients. A total of 289 differentially expressed MRGs were screened based on The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB), and 72 differentially expressed transcription factors (TFs) were obtained from TCGA and the Cistrome Project database. The clinical samples obtained from TCGA were randomly divided at a ratio of 7 : 3 to obtain the training group (n = 306) and the test group (n = 128). After univariate and multivariate Cox regression analyses, we constructed a prognostic model based on 6 MRGs (AOC2, ENPP2, ADA, GPD1L, ACADL, and CPT2). Kaplan-Meier survival analysis of the training group, validation group, and overall samples proved that the model had statistical significance in predicting the outcomes of patients. Independent prognosis analysis suggested that this risk score might serve as an independent prognosis factor for CRC patients. Moreover, we combined the prognostic model and the clinical characteristics in a nomogram to predict the overall survival of CRC patients. Furthermore, gene set enrichment analysis (GSEA) was conducted to identify the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the high- and low-risk groups, which might provide novel therapeutic targets for CRC patients. We discovered through the protein-protein interaction (PPI) network and TF-MRG regulatory network that 7 hub genes were retrieved from the PPI network and 4 kinds of differentially expressed TFs (NR3C1, MYH11, MAF, and CBX7) positively regulated 4 prognosis-associated MRGs (GSTM5, PTGIS, ENPP2, and P4HA3).
Collapse
Affiliation(s)
- Yuan-Lin Sun
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yu-Chen Guo
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Zi-Hao Yang
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Yue-Chao Xu
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| |
Collapse
|
63
|
Schmidt J, Kajtár B, Juhász K, Péter M, Járai T, Burián A, Kereskai L, Gerlinger I, Tornóczki T, Balogh G, Vígh L, Márk L, Balogi Z. Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry. Oncotarget 2020; 11:2702-2717. [PMID: 32733643 PMCID: PMC7367650 DOI: 10.18632/oncotarget.27649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To improve pre- and post-operative diagnosis and prognosis novel molecular markers are desirable. Here we used MALDI imaging mass spectrometry (IMS) and immunohistochemistry (IHC) to seek tumor specific expression of proteins and lipids in HNSCC samples. Among low molecular weight proteins visualized, S100A8 and S100A9 were found to be expressed in the regions of tumor tissue but not in the surrounding healthy stroma of a post-operative microdissected tissue. Marker potential of S100A8 and S100A9 was confirmed by immunohistochemistry of paraffin-embedded pathological samples. Imaging lipids showed a remarkable depletion of lysophosphatidylcholine species LPC[16:0], LPC[18:2] and, in parallel, accumulation of major glycerophospholipid species PE-P[36:4], PC[32:1], PC[34:1] in neoplastic areas. This was confirmed by shotgun lipidomics of dissected healthy and tumor tissue sections. A combination of the negative (LPC[16:0]) and positive (PC[32:1], PC[34:1]) markers was also applicable to uncover tumorous character of a pre-operative biopsy. Furthermore, marker potential of lysophospholipids was supported by elevated expression levels of the lysophospholipid degrading enzyme lysophospholipase A1 (LYPLA1) in the tumor regions of paraffin-embedded HNSCC samples. Finally, experimental evidence of 3D cell spheroid tests showed that LPC[16:0] facilitates HNSCC invasion, implying that HNSCC progression in vivo may be dependent on lysophospholipid supply. Altogether, a series of novel proteins and lipid species were identified by IMS and IHC screening, which may serve as potential molecular markers for tumor diagnosis, prognosis, and may pave the way to better understand HNSCC pathophyisiology.
Collapse
Affiliation(s)
- Janos Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Juhász
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Tamás Járai
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - András Burián
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Imre Gerlinger
- Department of Oto-Rhino-Laryngology, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tornóczki
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Lászó Márk
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Human Reproduction Group, Medical School, University of Pécs, Pécs, Hungary.,Imaging Center for Life and Material Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Balogi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
64
|
Advances in lipidomics. Clin Chim Acta 2020; 510:123-141. [PMID: 32622966 DOI: 10.1016/j.cca.2020.06.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023]
Abstract
The present article examines recently published literature on lipids, mainly focusing on research involving glycero-, glycerophospho- and sphingo-lipids. The primary aim is identification of distinct profiles in biologic lipidomic systems by ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS, tandem MS) with multivariate data analysis. This review specifically targets lipid biomarkers and disease pathway mechanisms in humans and artificial targets. Different specimen matrices such as primary blood derivatives (plasma, serum, erythrocytes, and blood platelets), faecal matter, urine, as well as biologic tissues (liver, lung and kidney) are highlighted.
Collapse
|
65
|
Tian J, Xue W, Yin H, Zhang N, Zhou J, Long Z, Wu C, Liang Z, Xie K, Li S, Li L, Wu Z, Daria V, Zhao Y, Wang F, Wang M. Differential Metabolic Alterations and Biomarkers Between Gastric Cancer and Colorectal Cancer: A Systematic Review and Meta-Analysis. Onco Targets Ther 2020; 13:6093-6108. [PMID: 32612370 PMCID: PMC7323803 DOI: 10.2147/ott.s247393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Numerous metabolomics studies have been conducted to detect the metabolic mechanisms and biomarkers related to gastric cancer and colorectal cancer. Because of the common metabolic features between gastric cancer and colorectal cancer, a differential diagnosis is difficult. Here, we performed a systematic review and meta-analysis to identify differential metabolic biomarkers between these two types of cancers. Materials and Methods PubMed, Embase, and ScienceDirect were searched to identify all metabolomics studies of gastric cancer and colorectal cancer published up to September 2018. Differential metabolites or altered pathways were extracted. The intersections and differences for these metabolites and pathways between gastric cancer and colorectal cancer were compared. Candidate biomarker sets for diagnosis were proposed from biofluid or feces by comparing them with tumor tissues. Results Totally, 24 and 65 studies were included in gastric cancer and colorectal cancer, and 223 and 472 differential metabolites were extracted, respectively. Eight pathways were reproducibly enriched in blood, tissue and urine in gastric cancer, while, 11 pathways were reproducibly enriched in blood, urine, feces and tissue in colorectal cancer. Candidate metabolic biomarker sets in blood, urine, or feces for these two cancers were proposed. We found 27 pathways (categorized into eight classifications) common to both cancers, five pathways involving 35 metabolites enriched only in gastric cancer, and eight pathways involving 54 metabolites enriched only in colorectal cancer. Conclusion The altered metabolic pathways showed signatures of abnormal metabolism in gastric cancer and colorectal cancer; the potential metabolic biomarkers proposed in this study have important implications for the prospective validation of gastric cancer and colorectal cancer.
Collapse
Affiliation(s)
- Jingshen Tian
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Weinan Xue
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Huihui Yin
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Nannan Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Junde Zhou
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chengwei Wu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhengzi Liang
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China
| | - Kun Xie
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuo Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Liangliang Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhen Wu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Volontovich Daria
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
66
|
Plasma Lipid Profile Reveals Plasmalogens as Potential Biomarkers for Colon Cancer Screening. Metabolites 2020; 10:metabo10060262. [PMID: 32630389 PMCID: PMC7345851 DOI: 10.3390/metabo10060262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
In this era of precision medicine, there is an increasingly urgent need for highly sensitive tests for detecting tumors such as colon cancer (CC), a silent disease where the first symptoms may take 10–15 years to appear. Mass spectrometry-based lipidomics is an emerging tool for such clinical diagnosis. We used ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry operating in high energy collision spectral acquisition mode (MSE) mode (UPLC-QTOF-MSE) and gas chromatography (GC) to investigate differences between the plasmatic lipidic composition of CC patients and control (CTR) subjects. Key enzymes in lipidic metabolism were investigated using immuno-based detection assays. Our partial least squares discriminant analysis (PLS-DA) resulted in a suitable discrimination between CTR and CC plasma samples. Forty-two statistically significant discriminating lipids were putatively identified. Ether lipids showed a prominent presence and accordingly, a decrease in glyceronephosphate O-acyltransferase (GNPAT) enzyme activity was found. A receiver operating characteristic (ROC) curve built for three plasmalogens of phosphatidylserine (PS), named PS(P-36:1), PS(P-38:3) and PS(P-40:5), presented an area under the curve (AUC) of 0.998, and sensitivity and specificity of 100 and 85.7% respectively. These results show significant differences in CC patients’ plasma lipid composition that may be useful in discriminating them from CTR individuals with a special role for plasmalogens.
Collapse
|
67
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
68
|
Ulmer CZ, Koelmel JP, Jones CM, Garrett TJ, Aristizabal-Henao JJ, Vesper HW, Bowden JA. A Review of Efforts to Improve Lipid Stability during Sample Preparation and Standardization Efforts to Ensure Accuracy in the Reporting of Lipid Measurements. Lipids 2020; 56:3-16. [PMID: 32519378 DOI: 10.1002/lipd.12263] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 11/07/2022]
Abstract
Lipidomics is a rapidly growing field, fueled by developments in analytical instrumentation and bioinformatics. To date, most researchers and industries have employed their own lipidomics workflows without a consensus on best practices. Without a community-wide consensus on best practices for the prevention of lipid degradation and transformations through sample collection and analysis, it is difficult to assess the quality of lipidomics data and hence trust results. Clinical studies often rely on samples being stored for weeks or months until they are analyzed, but inappropriate sampling techniques, storage temperatures, and analytical protocols can result in the degradation of complex lipids and the generation of oxidized or hydrolyzed metabolite artifacts. While best practices for lipid stability are sample dependent, it is generally recommended that strategies during sample preparation capable of quenching enzymatic activity and preventing oxidation should be considered. In addition, after sample preparation, lipid extracts should be stored in organic solvents with antioxidants at -20 °C or lower in an airtight container without exposure to light or oxygen. This will reduce or eliminate sublimation, and chemically and physically induced molecular transformations such as oxidation, enzymatic transformation, and photon/heat-induced degradation. This review explores the available literature on lipid stability, with a particular focus on human health and/or clinical lipidomic applications. Specifically, this includes a description of known mechanisms of lipid degradation, strategies, and considerations for lipid storage, as well as current efforts for standardization and quality insurance of protocols.
Collapse
Affiliation(s)
- Candice Z Ulmer
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS F25, Atlanta, GA, 30341, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Medicine, Yale University, 60 College Street, Room 510, New Haven, CT, 06520, USA
| | - Christina M Jones
- Chemical Sciences Division, Organic Chemical Metrology Group, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Juan J Aristizabal-Henao
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Hubert W Vesper
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, MS F25, Atlanta, GA, 30341, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
69
|
Liu T, Tan Z, Yu J, Peng F, Guo J, Meng W, Chen Y, Rao T, Liu Z, Peng J. A conjunctive lipidomic approach reveals plasma ethanolamine plasmalogens and fatty acids as early diagnostic biomarkers for colorectal cancer patients. Expert Rev Proteomics 2020; 17:233-242. [PMID: 32306783 DOI: 10.1080/14789450.2020.1757443] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Colorectal cancer (CRC) represents a third leading cause of cancer-related death worldwide. The reliable diagnostic biomarkers for detecting CRC at early stage is critical for decreasing the mortality.Method: A conjunctive lipidomic approach was employed to investigate the differences in plasma lipid profiles of CRC patients (n = 101) and healthy volunteers (n = 52). Based on UHPLC-Q-TOF MS and UHPLC-QQQ MS platforms, a total of 236 lipids were structurally detected. Multivariate data analysis was conducted for biomarkers discovery.Results: A total of 11 lipid species, including 1 Glycerophosphoethanolamine (PE), 3 ethanolamine plasmalogens (PlsEtn), 1 plasmanyl glycerophosphatidylethanolamine (PE-O), 3 fatty acids (FFA), 1 Fatty acid ester of hydroxyl fatty acid (FAHFA) and 2 Diacylglycerophosphates (PA) were identified to distinguish the CRC patients at early stage from healthy controls. In addition, these potential lipid biomarkers achieved an estimated AUC=0.981 in a validation set for univariate ROC analysis.Conclusion: By combining Q-TOF MS and QQQ MS analysis, the 11 lipids exhibited good performance in differentiating early-stage CRC and healthy control. This study also demonstrated that lipidomics is a powerful tool in discovering new potential biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Tong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Feng Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jiwei Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Wenhui Meng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, P. R. China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, P.R. China
| |
Collapse
|
70
|
Zhou Z, Chen Y, Gao Y, Bi N, Yue X, He J, Zhang R, Wang L, Abliz Z. Development of a high-coverage metabolome relative quantitative method for large-scale sample analysis. Anal Chim Acta 2020; 1109:44-52. [DOI: 10.1016/j.aca.2020.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/23/2022]
|
71
|
Huang J, Wang Q, Qi Z, Zhou S, Zhou M, Wang Z. Lipidomic Profiling for Serum Biomarkers in Mice Exposed to Ionizing Radiation. Dose Response 2020; 18:1559325820914209. [PMID: 32362795 PMCID: PMC7180312 DOI: 10.1177/1559325820914209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Radiation biodosimeters are required urgently for fast and accurate evaluation of
absorbed dose for irradiated individuals. Lipidomics has appeared as a credible
technique for identification and quantification of lipid for researching
biomarker of diseases. We performed a lipidomic profile on mice serum at time
points of 6, 24, and 72 hours after 0, 2, 5.5, 7, and 8 Gy irradiation to select
radiation-responsive lipids and conducted Kyoto Encyclopedia of Genes and Genome
pathway enrichment analysis to recognize the pathways and network changes. Then,
Pearson correlation analysis was performed to evaluate the feasibility of
radiation-responsive lipids to estimate radiation dose. Seven
radiation-responsive lipids including PC (18:2/18:2), PC (18:0/18:2), Lyso PC
18:1, PC (18:0/20:4), SM (D18:0/24:1), PC (16:0/18:1), and Lyso PC 18:2 were
identified in which glycerophospholipid metabolism presented as the most
significant pathway, and they all presented good linear correlation with the
irradiated dose. This study identified 7 radiation-responsive lipids in mice
serum and certificate their feasibility of dose estimation as biodosimeters.
Collapse
Affiliation(s)
- Jinfeng Huang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Shixiang Zhou
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
72
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
73
|
Park JM, Kim MJ, Noh JY, Yun TG, Kang MJ, Lee SG, Yoo BC, Pyun JC. Simultaneous Analysis of Multiple Cancer Biomarkers Using MALDI-TOF Mass Spectrometry Based on a Parylene-Matrix Chip. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:917-926. [PMID: 32154716 DOI: 10.1021/jasms.9b00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, the parylene-matrix chip was developed for quantitative analysis of small molecules less than 1 kDa. In this study, MALDI-TOF MS based on the parylene-matrix chip was performed to clinically diagnose intrahepatic cholangiocarcinoma (IHCC) and colorectal cancer (CRC). The parylene-matrix chip was applied for the detection of small cancer biomarkers, including N-methyl-2-pyridone-5-carboxamide (2PY), glutamine, lysophosphatidylcholine (LPC) 16:0, and LPC 18:0. The feasibility of MALDI-TOF MS based on the parylene-matrix chip was confirmed via analysis of spot-to-spot and shot-to-shot reproducibility. Serum metabolite markers of IHCC, N-methyl-2-pyridone-5-carboxamide (2PY), and glutamine were quantified using MALDI-TOF MS based on the parylene-matrix chip. For clinical diagnosis of CRC, two water-insoluble (barely soluble) biomarkers, lysophosphatidylcholine (LPC) 16:0 and LPC 18:0, were quantified. Finally, glutamine and LPC 16:0 were simultaneously detected at a range of concentrations in sera from colon cancer patients using the parylene-matrix chip. Thus, this method yielded high-throughput detection of cancer biomarkers for the mixture samples of water-soluble analytes (2PY and glutamine) and water-insoluble analytes (LPC 16:0 and LPC 18:0).
Collapse
Affiliation(s)
- Jong-Min Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Moon-Ju Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Joo-Yoon Noh
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
74
|
Amir Hashim NA, Ab-Rahim S, Wan Ngah WZ, Nathan S, Ab Mutalib NS, Sagap I, A Jamal AR, Mazlan M. Global metabolomics profiling of colorectal cancer in Malaysian patients. ACTA ACUST UNITED AC 2020; 11:33-43. [PMID: 33469506 PMCID: PMC7803921 DOI: 10.34172/bi.2021.05] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/24/2022]
Abstract
Introduction: The serum metabolomics approach has been used to identify metabolite biomarkers that can diagnose colorectal cancer (CRC) accurately and specifically. However, the biomarkers identified differ between studies suggesting that more studies need to be performed to understand the influence of genetic and environmental factors. Therefore, this study aimed to identify biomarkers and affected metabolic pathways in Malaysian CRC patients. Methods: Serum from 50 healthy controls and 50 CRC patients were collected at UKM Medical Centre. The samples were deproteinized with acetonitrile and untargeted metabolomics profile determined using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOFMS, Agilent USA). The data were analysed using Mass Profiler Professional (Agilent, USA) software. The panel of biomarkers determined were then used to identify CRC from a new set of 20 matched samples. Results: Eleven differential metabolites were identified whose levels were significantly different between CRC patients compared to normal controls. Based on the analysis of the area under the curve, 7 of these metabolites showed high sensitivity and specificity as biomarkers. The use of the 11 metabolites on a new set of samples was able to differentiate CRC from normal samples with 80% accuracy. These metabolites were hypoxanthine, acetylcarnitine, xanthine, uric acid, tyrosine, methionine, lysoPC, lysoPE, citric acid, 5-oxoproline, and pipercolic acid. The data also showed that the most perturbed pathways in CRC were purine, catecholamine, and amino acid metabolisms. Conclusion: Serum metabolomics profiling can be used to identify distinguishing biomarkers for CRC as well as to further our knowledge of its pathophysiological mechanisms.
Collapse
Affiliation(s)
- Nurul Azmir Amir Hashim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia.,Institute of Medical and Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab-Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
| | - Wan Zurinah Wan Ngah
- Universiti Kebangsaaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Batu 9 Cheras, Wilayah Persekututan Kuala Lumpur, Malaysia
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nurul Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ismail Sagap
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - A Rahman A Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Musalmah Mazlan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
75
|
Loktionov A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J Gastrointest Oncol 2020; 12:124-148. [PMID: 32104546 PMCID: PMC7031146 DOI: 10.4251/wjgo.v12.i2.124] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global problem affecting millions of people worldwide. This disease is unique because of its slow progress that makes it preventable and often curable. CRC symptoms usually emerge only at advanced stages of the disease, consequently its early detection can be achieved only through active population screening, which markedly reduces mortality due to this cancer. CRC screening tests that employ non-invasively detectable biomarkers are currently being actively developed and, in most cases, samples of either stool or blood are used. However, alternative biological substances that can be collected non-invasively (colorectal mucus, urine, saliva, exhaled air) have now emerged as new sources of diagnostic biomarkers. The main categories of currently explored CRC biomarkers are: (1) Proteins (comprising widely used haemoglobin); (2) DNA (including mutations and methylation markers); (3) RNA (in particular microRNAs); (4) Low molecular weight metabolites (comprising volatile organic compounds) detectable by metabolomic techniques; and (5) Shifts in gut microbiome composition. Numerous tests for early CRC detection employing such non-invasive biomarkers have been proposed and clinically studied. While some of these studies generated promising early results, very few of the proposed tests have been transformed into clinically validated diagnostic/screening techniques. Such DNA-based tests as Food and Drug Administration-approved multitarget stool test (marketed as Cologuard®) or blood test for methylated septin 9 (marketed as Epi proColon® 2.0 CE) show good diagnostic performance but remain too expensive and technically complex to become effective CRC screening tools. It can be concluded that, despite its deficiencies, the protein (haemoglobin) detection-based faecal immunochemical test (FIT) today presents the most cost-effective option for non-invasive CRC screening. The combination of non-invasive FIT and confirmatory invasive colonoscopy is the current strategy of choice for CRC screening. However, continuing intense research in the area promises the emergence of new superior non-invasive CRC screening tests that will allow the development of improved disease prevention strategies.
Collapse
|
76
|
Serafim PVP, Figueiredo AGD, Felipe AV, Turco EGL, Silva IDCGD, Forones NM. STUDY OF LIPID BIOMARKERS OF PATIENTS WITH POLYPS AND COLORECTAL CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2020; 56:399-404. [PMID: 31800736 DOI: 10.1590/s0004-2803.201900000-80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/27/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of cancer worldwide. Early diagnostic methods using serum biomarkers are required. The study of omics, most recently lipidomics, has the purpose of analyzing lipids for a better understanding of human lipidoma. The evolution of mass spectrometry methods, such as MALDI-MS technology, has enabled the detection and identification of a wide variety of lipids with great potential to open new avenues for predictive and preventive medicine. OBJECTIVE To determine the lipid profile of patients with colorectal cancer and polyps. METHODS Patients with stage I-III CRC, adenomatous polyps and individuals with normal colonoscopy were selected. All patients underwent peripheral blood collection for lipid extraction. The samples were analyzed by MALDI-MS technique for lipid identification. STATISTICAL ANALYSIS Univariate and multivariate (principal component analysis [PCA] and discriminant analysis by partial least squares [PLS-DA]) analyses workflows were applied to the dataset, using MetaboAnalyst 3.0 software. The ions were identified according to the class of lipids using the online database Lipid Maps (http://www.lipidmaps.org). RESULTS We included 88 individuals, 40 with CRC, 12 with polyps and 32 controls. Boxplot analysis showed eight VIP ions in the three groups. Differences were observed between the cancer and control groups, as well as between cancer and polyp, but not between polyps and control. The polyketide (810.1) was the lipid represented in cancer and overrepresented in polyp and control. Among the patients with CRC we observed differences between lipids with lymph node invasion (N1-2) compared to those without lymph node invasion (N). CONCLUSION Possible lipid biomarkers were identified among cancer patients compared to control and polyp groups. The polyketide lipid (810.1) was the best biomarker to differentiate the cancer group from control and polyp. We found no difference between the biomarkers in the polyp group in relation to the control.
Collapse
Affiliation(s)
| | - Adiel Goes de Figueiredo
- Universidade Federal de São Paulo, Disciplina de Gastroenterologia, Departamento de Medicina, São Paulo, SP, Brasil
| | - Aledson Vitor Felipe
- Universidade Federal de São Paulo, Disciplina de Gastroenterologia, Departamento de Medicina, São Paulo, SP, Brasil
| | - Edson Guimaraes Lo Turco
- Universidade Federal de São Paulo, Disciplina de Urologia, Departamento de Cirurgia, São Paulo, SP, Brasil
| | | | - Nora Manoukian Forones
- Universidade Federal de São Paulo, Disciplina de Gastroenterologia, Departamento de Medicina, São Paulo, SP, Brasil
| |
Collapse
|
77
|
Martín-Blázquez A, Díaz C, González-Flores E, Franco-Rivas D, Jiménez-Luna C, Melguizo C, Prados J, Genilloud O, Vicente F, Caba O, Pérez Del Palacio J. Untargeted LC-HRMS-based metabolomics to identify novel biomarkers of metastatic colorectal cancer. Sci Rep 2019; 9:20198. [PMID: 31882610 PMCID: PMC6934557 DOI: 10.1038/s41598-019-55952-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is one of the main causes of cancer death worldwide, and novel biomarkers are urgently needed for its early diagnosis and treatment. The utilization of metabolomics to identify and quantify metabolites in body fluids may allow the detection of changes in their concentrations that could serve as diagnostic markers for colorectal cancer and may also represent new therapeutic targets. Metabolomics generates a pathophysiological 'fingerprint' that is unique to each individual. The purpose of our study was to identify a differential metabolomic signature for metastatic colorectal cancer. Serum samples from 60 healthy controls and 65 patients with metastatic colorectal cancer were studied by liquid chromatography coupled to high-resolution mass spectrometry in an untargeted metabolomic approach. Multivariate analysis revealed a separation between patients with metastatic colorectal cancer and healthy controls, who significantly differed in serum concentrations of one endocannabinoid, two glycerophospholipids, and two sphingolipids. These findings demonstrate that metabolomics using liquid-chromatography coupled to high-resolution mass spectrometry offers a potent diagnostic tool for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Ariadna Martín-Blázquez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | | | - Daniel Franco-Rivas
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain.
- Department of Anatomy and Embryology, University of Granada, Granada, Spain.
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - José Pérez Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| |
Collapse
|
78
|
Wolrab D, Jirásko R, Chocholoušková M, Peterka O, Holčapek M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
79
|
Geijsen AJ, Brezina S, Keski‐Rahkonen P, Baierl A, Bachleitner‐Hofmann T, Bergmann MM, Boehm J, Brenner H, Chang‐Claude J, van Duijnhoven FJ, Gigic B, Gumpenberger T, Hofer P, Hoffmeister M, Holowatyj AN, Karner‐Hanusch J, Kok DE, Leeb G, Ulvik A, Robinot N, Ose J, Stift A, Schrotz‐King P, Ulrich AB, Ueland PM, Kampman E, Scalbert A, Habermann N, Gsur A, Ulrich CM. Plasma metabolites associated with colorectal cancer: A discovery-replication strategy. Int J Cancer 2019; 145:1221-1231. [PMID: 30665271 PMCID: PMC6614008 DOI: 10.1002/ijc.32146] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is known to arise from multiple tumorigenic pathways; however, the underlying mechanisms remain not completely understood. Metabolomics is becoming an increasingly popular tool in assessing biological processes. Previous metabolomics research focusing on colorectal cancer is limited by sample size and did not replicate findings in independent study populations to verify robustness of reported findings. Here, we performed a ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) screening on EDTA plasma from 268 colorectal cancer patients and 353 controls using independent discovery and replication sets from two European cohorts (ColoCare Study: n = 180 patients/n = 153 controls; the Colorectal Cancer Study of Austria (CORSA) n = 88 patients/n = 200 controls), aiming to identify circulating plasma metabolites associated with colorectal cancer and to improve knowledge regarding colorectal cancer etiology. Multiple logistic regression models were used to test the association between disease state and metabolic features. Statistically significant associated features in the discovery set were taken forward and tested in the replication set to assure robustness of our findings. All models were adjusted for sex, age, BMI and smoking status and corrected for multiple testing using False Discovery Rate. Demographic and clinical data were abstracted from questionnaires and medical records.
Collapse
Affiliation(s)
- Anne J.M.R. Geijsen
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine IMedical University of ViennaAustria
| | | | - Andreas Baierl
- Department of Statistics and Operations ResearchUniversity of ViennaAustria
| | | | | | - Juergen Boehm
- Huntsman Cancer InstituteSalt Lake CityUT
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUT
| | - Hermann Brenner
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research CenterHeidelbergGermany
| | | | - Biljana Gigic
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergGermany
| | - Tanja Gumpenberger
- Institute of Cancer Research, Department of Medicine IMedical University of ViennaAustria
| | - Philipp Hofer
- Institute of Cancer Research, Department of Medicine IMedical University of ViennaAustria
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andreana N. Holowatyj
- Huntsman Cancer InstituteSalt Lake CityUT
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUT
| | | | - Dieuwertje E. Kok
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | | | | | | | - Jennifer Ose
- Huntsman Cancer InstituteSalt Lake CityUT
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUT
| | - Anton Stift
- Department of SurgeryMedical University ViennaAustria
| | - Petra Schrotz‐King
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Alexis B. Ulrich
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergGermany
| | | | - Ellen Kampman
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Augustin Scalbert
- Biomarkers GroupInternational Agency for Research on CancerLyonFrance
| | - Nina Habermann
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Genome BiologyEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine IMedical University of ViennaAustria
| | - Cornelia M. Ulrich
- Huntsman Cancer InstituteSalt Lake CityUT
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUT
| |
Collapse
|
80
|
Lee GB, Lee JC, Moon MH. Plasma lipid profile comparison of five different cancers by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2019; 1063:117-126. [DOI: 10.1016/j.aca.2019.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
|
81
|
Li X, Nakayama K, Goto T, Akamatsu S, Shimizu K, Ogawa O, Inoue T. Comparative evaluation of the extraction and analysis of urinary phospholipids and lysophospholipids using MALDI-TOF/MS. Chem Phys Lipids 2019; 223:104787. [PMID: 31255592 DOI: 10.1016/j.chemphyslip.2019.104787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
Lipids, particularly phospholipids (PLs) and lysophospholipids (LPLs), are attracting increasing scientific interest for their biological functions in cells and their potential as disease biomarkers for Alzheimer's disease and several types of cancer. Urinary PLs and LPLs could be ideal clinical biomarkers, because urine can be collected easily and noninvasively. However, due to their very low concentrations in urine compared with the relatively large quantity of contaminants in this matrix, efficient extraction and sensitive detection are required for analyzing urinary PLs and LPLs. In this study, various methods for analyzing PLs and LPLs in urine were compared and optimized from a clinical perspective. An optimized lipid extraction method and a matrix for matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) were established using two external ionization standards and an internal standard mix containing 13 human urinary lipids. 9-Aminoacridine (9-AA) was a useful and effective matrix for the MALDI-TOF/MS analysis of all the internal standard lipids in both positive and negative ion modes. However, it was necessary to determine the proportional lipid concentrations from the balance between the extracted lipid and the matrix. The extraction efficiency and reproducibility of the acidified Bligh and Dyer method were excellent for both positively and negatively charged lipids. Analysis of small volumes of urine was the most efficient with the 9-AA MALDI matrix at concentrations of or below 5 mM. The combined analytical procedures allowed rapid and comprehensive screening of low concentrations of PLs and LPLs in clinical samples.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Support Center for Precision Medicine, Shimadzu Techno-Research, Inc., 1 Nishinokyou-Shimoai-cho, Nakagyou-ku, Kyoto 604-8436, Japan.
| | - Takayuki Goto
- Support Center for Precision Medicine, Shimadzu Techno-Research, Inc., 1 Nishinokyou-Shimoai-cho, Nakagyou-ku, Kyoto 604-8436, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahiro Inoue
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
82
|
LC-MS-based lipid profile in colorectal cancer patients: TAGs are the main disturbed lipid markers of colorectal cancer progression. Anal Bioanal Chem 2019; 411:5079-5088. [DOI: 10.1007/s00216-019-01872-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
|
83
|
Hong JT, Kim ER. Current state and future direction of screening tool for colorectal cancer. World J Meta-Anal 2019; 7:184-208. [DOI: 10.13105/wjma.v7.i5.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
As the second-most-common cause of cancer death, colorectal cancer (CRC) has been recognized as one of the biggest health concerns in advanced countries. The 5-year survival rate for patients with early-stage CRC is significantly better than that for patients with CRC detected at a late stage. The primary target for CRC screening and prevention is advanced neoplasia, which includes both CRC itself, as well as benign but histologically advanced adenomas that are at increased risk for progression to malignancy. Prevention of CRC through detection of advanced adenomas is important. It is, therefore, necessary to develop more efficient detection methods to enable earlier detection and therefore better prognosis. Although a number of CRC diagnostic methods are currently used for early detection, including stool-based tests, traditional colonoscopy, etc., they have not shown optimal results due to several limitations. Hence, development of more reliable screening methods is required in order to detect the disease at an early stage. New screening tools also need to be able to accurately diagnose CRC and advanced adenoma, help guide treatment, and predict the prognosis along with being relatively simple and non-invasive. As part of such efforts, many proposals for the early detection of colorectal neoplasms have been introduced. For example, metabolomics, referring to the scientific study of the metabolism of living organisms, has been shown to be a possible approach for discovering CRC-related biomarkers. In addition, a growing number of high-performance screening methodologies could facilitate biomarker identification. In the present, evidence-based review, the authors summarize the current state as recognized by the recent guideline recommendation from the American Cancer Society, US Preventive Services Task Force and the United States Multi-Society Task Force and discuss future direction of screening tools for colorectal cancer. Further, we highlight the most interesting publications on new screening tools, like molecular biomarkers and metabolomics, and discuss these in detail.
Collapse
Affiliation(s)
- Ji Taek Hong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24253, South Korea
| | - Eun Ran Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| |
Collapse
|
84
|
Cotte AK, Cottet V, Aires V, Mouillot T, Rizk M, Vinault S, Binquet C, de Barros JPP, Hillon P, Delmas D. Phospholipid profiles and hepatocellular carcinoma risk and prognosis in cirrhotic patients. Oncotarget 2019; 10:2161-2172. [PMID: 31040908 PMCID: PMC6481329 DOI: 10.18632/oncotarget.26738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Phospholipids are now well-recognised players in tumour progression. Their metabolic tissue alterations can be associated with plasmatic modifications. The aim of this study was to evaluate the potential of the plasma phospholipid profile as a risk and prognostic biomarker in HCC. Methods Ninety cirrhotic patients with (cases) or without HCC (controls) were studied after matching for inclusion centre, age, gender, virus infection, cirrhosis duration and Child-Pugh grade. High-performance liquid chromatography coupled with tandem-mass spectrometry was used to quantify the main species of seven categories of phospholipids in plasma. Results Elevated concentrations of phosphatidylcholine (PC) 16:0/16:1 (p=0.0180), PC 16:0/16:0 (p=0.0327), PC 16:0/18:1 (p=0.0264) and sphingomyelin (SM) 18:2/24:1 (p=0.0379) and low concentrations of lysophosphatidylcholine 20:4 (0.0093) and plasmalogen-phosphatidylethanolamine (pPE) 16:0/20:4 (p=0.0463), pPE 18:0/20:4 (p=0.0077), pPE 18:0/20:5 (p=0.0163), pPE 18:0/20:3 (p=0.0463) discriminated HCC patients from cirrhotic controls. Two ceramide species were associated with increased HCC risk of death while lysophospholipids, a polyunsaturated phosphatidylinositol, some PC and SM species were associated with low risk of death in HCC patients in 1 and/or 3 years. Conclusion This study identified phospholipid profiles related to HCC risk in liver cirrhotic patients and showed for the first time the potential of some phospholipids in predicting HCC patient mortality.
Collapse
Affiliation(s)
- Alexia Karen Cotte
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| | - Vanessa Cottet
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Inserm, Clinical Investigation Center, Dijon, France
| | - Virginie Aires
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| | - Thomas Mouillot
- Department of Hepatogastroenterology, University Hospital, Dijon, France
| | - Maud Rizk
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France
| | - Sandrine Vinault
- University of Bourgogne, Franche-Comté, Dijon, France.,Inserm, Clinical Investigation Center, Dijon, France
| | - Christine Binquet
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Department of Hepatogastroenterology, University Hospital, Dijon, France
| | | | - Patrick Hillon
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Epidemiology and Clinical Research in Digestive Oncology (EPICAD), Dijon, France.,Department of Hepatogastroenterology, University Hospital, Dijon, France
| | - Dominique Delmas
- University of Bourgogne, Franche-Comté, Dijon, France.,INSERM U1231 "Lipids, Nutrition, Cancer", Research Team Cancer and Adaptive Immune Response (CADIR), Dijon, France
| |
Collapse
|
85
|
Zhang Q, Xu H, Liu R, Gao P, Yang X, Jin W, Zhang Y, Bi K, Li Q. A Novel Strategy for Targeted Lipidomics Based on LC-Tandem-MS Parameters Prediction, Quantification, and Multiple Statistical Data Mining: Evaluation of Lysophosphatidylcholines as Potential Cancer Biomarkers. Anal Chem 2019; 91:3389-3396. [DOI: 10.1021/acs.analchem.8b04715] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qian Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huarong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Gao
- Metabolomics Core Facility of RHLCCC, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Xiao Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wei Jin
- Urumqi Traditional Chinese Medicine Hospital, 590 Youhao South Road, Urumqi 830000, China
| | - Yiwen Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
86
|
Interpretation of Euphorbia Kansui Stir-Fried with Vinegar Treating Malignant Ascites by a UPLC-Q-TOF/MS Based Rat Serum and Urine Metabolomics Strategy Coupled with Network Pharmacology. Molecules 2018; 23:molecules23123246. [PMID: 30544627 PMCID: PMC6322356 DOI: 10.3390/molecules23123246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Euphorbia kansui stir-fried with vinegar (V-kansui) has promising biological activities toward treating malignant ascites with reduced toxicity compared to crude kansui. But the mechanism concerning promoting the excretion of ascites has not been systematically studied. The purpose of this paper was to investigate the possible mechanism of V-kansui in treating malignant ascites, including metabolic pathways and molecular mechanism using an integrated serum and urine metabolomics coupled with network pharmacology. Serum and urine samples of rats were collected and analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A comparison with crude kansui was also made to demonstrate the feasibility of processing. Principle component analysis (PCA) and orthogonal partial least square discriminate analysis (OPLS-DA) were conducted to discriminate the groups, search important variables and reveal the possible pathways. A compound-target-metabolite network was finally constructed to identify the crucial targets to further understand the molecular mechanism. Sixteen significant metabolites contributing to the discrimination of model and control groups were tentatively screened out. They were mainly involved in the arachidonic acid metabolism, steroid hormone biosynthesis and primary bile acid to possibly reduce inflammatory and modulate the renin-angiotensin-aldosterone system to achieve treating malignant ascites. A bio-network starting from the compounds and ending in the metabolites was constructed to elucidate the molecular mechanism. HSP90AA1, ANXA2, PRDX6, PCNA, SOD2 and ALB were identified as the potential key targets that were responsible for the treatment of malignant ascites by the parameter combining the average shortest path length and betweenness centrality. The correlated 17 compounds were considered as the potential active ingredients in V-kansui. In addition, the metabolomics showed that the effect of V-kansui was almost in accordance with crude kansui. These results systematically revealed the mechanism of V-kansui against malignant ascites for the first time using metabolomics coupled with network pharmacology. V-kansui could be a promising safe and therapeutic medicine for the excretion of ascites.
Collapse
|
87
|
Fernández-Ochoa Á, Borrás-Linares I, Baños A, García-López JD, Guillamón E, Nuñez-Lechado C, Quirantes-Piné R, Segura-Carretero A. A fingerprinting metabolomic approach reveals deregulation of endogenous metabolites after the intake of a bioactive garlic supplement. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
88
|
Lee JH, Yu SE, Kim KH, Yu MH, Jeong IH, Cho JY, Park SJ, Lee WJ, Han SS, Kim TH, Hong EK, Woo SM, Yoo BC. Individualized metabolic profiling stratifies pancreatic and biliary tract cancer: a useful tool for innovative screening programs and predictive strategies in healthcare. EPMA J 2018; 9:287-297. [PMID: 30174764 PMCID: PMC6107458 DOI: 10.1007/s13167-018-0147-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) and biliary tract cancer (BTC) are highly aggressive cancers, characterized by their rarity, difficulty in diagnosis, and overall poor prognosis. Diagnosis of PC and BTC is complex and is made using a combination of appropriate clinical suspicion, imaging and endoscopic techniques, and cytopathological examination. However, the late-stage detection and poor prognosis of this tumor have led to an urgent need for biomarkers for early and/or predictive diagnosis and improved personalized treatments. WORKING HYPOTHESIS There are two hypotheses for focusing on low-mass metabolites in the blood. First, valuable information can be obtained from the masses and relative amounts of such metabolites, which present as low-mass ions (LMIs) in mass spectra. Second, metabolic profiling of individuals may provide important information regarding biological changes in disease states that is useful for the early diagnosis of PC and BTC. MATERIALS AND METHODS To assess whether profiling metabolites in serum can serve as a non-invasive screening tool for PC and BTC, 320 serum samples were obtained from patients with PC (n = 51), BTC (n = 39), colorectal cancer (CRC) (n = 100), and ovarian cancer (OVC) (n = 30), and from healthy control subjects (control) (n = 100). We obtained information on the relative amounts of metabolites, as LMIs, via triple time-of-flight mass spectrometry. All data were analyzed according to the peak area ratios of discriminative LMIs. RESULTS AND CONCLUSIONS The levels of the 14 discriminative LMIs were higher in the PC and BTC groups than in the control, CRC and OVC groups, but only two LMIs discriminated between PC and BTC: lysophosphatidylcholine (LysoPC) (16:0) and LysoPC(20:4). The levels of these two LysoPCs were also slightly lower in the PC/BTC/CRC/OVC groups compared with the control group. Taken together, the data showed that metabolic profiling can precisely denote the status of cancer, and, thus, could be useful for screening. This study not only details efficient methods to identify discriminative LMIs for cancer screening but also provides an example of metabolic profiling for distinguishing PC from BTC. Furthermore, the two metabolites [LysoPC(16:0), LysoPC(20:4)] shown to discriminate these diseases are potentially useful when combined with other, previously identified protein or metabolic biomarkers for predictive, preventive and personalized medical approach.
Collapse
Affiliation(s)
- Jun Hwa Lee
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Seung Eun Yu
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Myung Hyun Yu
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - In-Hye Jeong
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Sang-Jae Park
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Woo Jin Lee
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Sung-Sik Han
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Tae Hyun Kim
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Eun Kyung Hong
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Sang Myung Woo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408 Republic of Korea
| |
Collapse
|
89
|
Erben V, Bhardwaj M, Schrotz-King P, Brenner H. Metabolomics Biomarkers for Detection of Colorectal Neoplasms: A Systematic Review. Cancers (Basel) 2018; 10:E246. [PMID: 30060469 PMCID: PMC6116151 DOI: 10.3390/cancers10080246] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several approaches have been suggested to be useful in the early detection of colorectal neoplasms. Since metabolites are closely related to the phenotype and are available from different human bio-fluids, metabolomics are candidates for non-invasive early detection of colorectal neoplasms. OBJECTIVES We aimed to summarize current knowledge on performance characteristics of metabolomics biomarkers that are potentially applicable in a screening setting for the early detection of colorectal neoplasms. DESIGN We conducted a systematic literature search in PubMed and Web of Science and searched for biomarkers for the early detection of colorectal neoplasms in easy-to-collect human bio-fluids. Information on study design and performance characteristics for diagnostic accuracy was extracted. RESULTS Finally, we included 41 studies in our analysis investigating biomarkers in different bio-fluids (blood, urine, and feces). Although single metabolites mostly had limited ability to distinguish people with and without colorectal neoplasms, promising results were reported for metabolite panels, especially amino acid panels in blood samples, as well as nucleosides in urine samples in several studies. However, validation of the results is limited. CONCLUSIONS Panels of metabolites consisting of amino acids in blood and nucleosides in urinary samples might be useful biomarkers for early detection of advanced colorectal neoplasms. However, to make metabolomic biomarkers clinically applicable, future research in larger studies and external validation of the results is required.
Collapse
Affiliation(s)
- Vanessa Erben
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
| | - Megha Bhardwaj
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
| | - Petra Schrotz-King
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
90
|
Yin X, de Carvalho LP, Chan MY, Li SFY. Integrated metabolomics and metallomics analyses in acute coronary syndrome patients. Metallomics 2018; 9:734-743. [PMID: 28518204 DOI: 10.1039/c7mt00071e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acute coronary syndrome (ACS) is the leading cause of morbidity and mortality. Accurate risk prediction in ACS patients is critically important for helping clinicians make therapeutic decisions, such as recommending a more aggressive intervention and intensive follow-up. However, risk stratification in ACS patients remains challenging, and the identification of novel predictors is necessary for improving the prognostic prediction in ACS patients. We employed metallomics and untargeted metabolomics approaches to discover new biomarkers from the plasma samples of 20 ACS patients and 20 non-ACS patients. We identified metabolic changes related to lysophosphatidylcholines, caffeine, glycolysis, tryptophan and sphingomyelin metabolism (p value <0.05) that were perturbed in the ACS patients. Moreover, circulating metal elements, including Mg, Ca, K, Zn, Ni, Ga and In (p value <0.05), were altered in the ACS patients versus the controls. These changes suggest possible changes in cell membrane permeability and rigidity in ACS patients.
Collapse
Affiliation(s)
- Xuejiao Yin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.
| | | | | | | |
Collapse
|
91
|
Hui DY. Group 1B phospholipase A 2 in metabolic and inflammatory disease modulation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:784-788. [PMID: 30003964 DOI: 10.1016/j.bbalip.2018.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
The group 1B phospholipase A2 (PLA2G1B) is a secreted phospholipase that catalyzes the hydrolytic removal of the sn-2 fatty acyl moiety from phospholipids. This enzyme is synthesized most abundantly in the pancreas and is also expressed in the lung. The first part of this review article focuses on the role of pancreatic-derived PLA2G1B in mediating lipid absorption and discusses how the PLA2G1B-derived metabolic product contributes to cardiometabolic diseases, including obesity, hyperinsulinemia, hyperlipidemia, and atherosclerosis. The anti-helminth properties of PLA2G1B will also be discussed. The second part of this review will focus on PLA2G1B expressed in the lung, and in vitro data suggest that how this enzyme may modulate lung inflammation via both hydrolytic activity-dependent and -dependent mechanisms. Finally, recent studies revealing a relationship between PLA2G1B and cancer will also be discussed. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; Department of Pathology, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, 2120 E. Galbraith Road, Cincinnati, OH 45237, United States.
| |
Collapse
|
92
|
Lysophospholipid Signaling in the Epithelial Ovarian Cancer Tumor Microenvironment. Cancers (Basel) 2018; 10:cancers10070227. [PMID: 29987226 PMCID: PMC6071084 DOI: 10.3390/cancers10070227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
As one of the important cancer hallmarks, metabolism reprogramming, including lipid metabolism alterations, occurs in tumor cells and the tumor microenvironment (TME). It plays an important role in tumorigenesis, progression, and metastasis. Lipids, and several lysophospholipids in particular, are elevated in the blood, ascites, and/or epithelial ovarian cancer (EOC) tissues, making them not only useful biomarkers, but also potential therapeutic targets. While the roles and signaling of these lipids in tumor cells are extensively studied, there is a significant gap in our understanding of their regulations and functions in the context of the microenvironment. This review focuses on the recent study development in several oncolipids, including lysophosphatidic acid and sphingosine-1-phosphate, with emphasis on TME in ovarian cancer.
Collapse
|
93
|
de Figueiredo Junior AG, Serafim PVP, de Melo AA, Felipe AV, Lo Turco EG, da Silva IDCG, Forones NM. Analysis of the Lipid Profile in Patients with Colorectal Cancer in Advanced Stages. Asian Pac J Cancer Prev 2018; 19:1287-1293. [PMID: 29802561 PMCID: PMC6031810 DOI: 10.22034/apjcp.2018.19.5.1287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Backgrounds: Colorectal (CRC) is one of the main cause of cancer worldwide. The search for noninvasive markers for diagnosis and monitoring as the use of analytical technologies such as mass spectrometry (MS), which allowed the search for lipid metabolites as candidates for probable biomarkers are needed. Objective and Methods: The objective was to establish the lipid profile of patients with locally advanced, unresectable or metastatic CRC. Peripheral blood was collected from patients with CRC and controls with normal colonoscopy. After lipid extraction, the samples were processed and analyzed in the MALDI TOF / TOF equipment. From the data matrix, the statistical analyzes were performed by the principal component analysis methods and the least squares discriminant analysis. The importance of the variable in the projection was used to identify the ions that had the greatest discriminatory effect between the groups. Results: Eight lipids were identified as potential biomarkers and a multiple logistic regression model was proposed to calculate the performance of the test where we observed values of AUC 0.87, sensitivity 88.33% and specificity 83.78% and for a validation test with 1,000 permutations a p <0.001. The classes of lipids found were sphingolipids, glycerophospholipids and policetidis. The strength of the association between the peak intensities of these lipids and the presence of CRC make these metabolites candidates for possible biomarkers. The sphingolipid (m / z = 742.98869) could be a biomarker in monitoring patients with CRC. In the survival analysis, three lipids showed a prognostic value for colorectal cancer, sphingolipid (m / z = 857.11525) and policetidis (m / z = 876.20796) and glycerophospholipid (m / z = 1031.54773).
Collapse
|
94
|
Lee JC, Park SM, Kim IY, Sung H, Seong JK, Moon MH. High-fat diet-induced lipidome perturbations in the cortex, hippocampus, hypothalamus, and olfactory bulb of mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:980-990. [PMID: 29787912 DOI: 10.1016/j.bbalip.2018.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
Abstract
Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus, and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry in the current study. For 8 weeks, two groups of 5-week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups, respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphatidylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were substantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further, weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid levels upon HF diet analyzed either by lipid class and molecular levels.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Se Mi Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea
| | - Hyerim Sung
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Republic of Korea.
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
95
|
Ma W, Wang S, Zhang T, Zhang EY, Zhou L, Hu C, Yu JJ, Xu G. Activation of choline kinase drives aberrant choline metabolism in esophageal squamous cell carcinomas. J Pharm Biomed Anal 2018; 155:148-156. [PMID: 29631075 DOI: 10.1016/j.jpba.2018.03.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/25/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major health threat worldwide. Research focused on molecular events associated with ESCC carcinogenesis for diagnosis, treatment and prevention is needed. Our goal is to discover novel biomarkers and investigate the underlying molecular mechanisms of ESCC progression by employing a global metabolomic approach. Sera from 34 ESCC patients and 32 age and sex matched healthy controls were profiled using two-dimensional liquid chromatography-mass spectrometry (2D LC-MS). We identified 120 differential metabolites in ESCC patient serums compared to healthy controls. Several amino acids, serine, arginine, lysine and histidine were significantly changed in ESCC patients. Most importantly, we found dysregulated lipid metabolism as an important characteristic in ESCC patients. Several free fat acids (FFA) and carnitines were found down-regulated in ESCC patients. Choline was significantly increased and phosphatidylcholines (PC) were significantly decreased in ESCC serum. The high expression of choline and low expression of total PC in patient serum were associated with the high expression of choline kinase (Chok) and activated Kennedy pathway in ESCC cells. Chok expression can serve as a significant biomarker for ESCC prognosis. In conclusion, metabolite profiles in the ESCC patient serum were significantly different from those in the healthy controls. Phosphatidylcholines and Chok, the key enzyme in the PC metabolism pathway, may serve as novel biomarkers for ESCC.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, One Jianshe East Road, Zhengzhou, 450000, China
| | - Shuangyuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, One Jianshe East Road, Zhengzhou, 450000, China
| | - Erik Y Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML-0564, Cincinnati, OH 45267, United States
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jane J Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, One Jianshe East Road, Zhengzhou, 450000, China; Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML-0564, Cincinnati, OH 45267, United States.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
96
|
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. MASS SPECTROMETRY REVIEWS 2018; 37:107-138. [PMID: 27276657 DOI: 10.1002/mas.21510] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/19/2016] [Indexed: 05/02/2023]
Abstract
Lipids, particularly phospholipids (PLs), are key components of cellular membrane. PLs play important and diverse roles in cells such as chemical-energy storage, cellular signaling, cell membranes, and cell-cell interactions in tissues. All these cellular processes are pertinent to cells that undergo transformation, cancer progression, and metastasis. Thus, there is a strong possibility that some classes of PLs are expected to present in cancer cells and tissues in cellular physiology. The mass spectrometric soft-ionization techniques, electrospray ionization (ESI), and matrix-assisted laser desorption/ionization (MALDI) are well-established in the proteomics field, have been used for lipidomic analysis in cancer research. This review focused on the applications of mass spectrometry (MS) mainly on ESI-MS and MALDI-MS in the structural characterization, molecular composition and key roles of various PLs present in cancer cells, tissues, blood, and urine, and on their importance for cancer-related problems as well as challenges for development of novel PL-based biomarkers. The profiling of PLs helps to rationalize their functions in biological systems, and will also provide diagnostic information to elucidate mechanisms behind the control of cancer, diabetes, and neurodegenerative diseases. The investigation of cellular PLs with MS methods suggests new insights on various cancer diseases and clinical applications in the drug discovery and development of biomarkers for various PL-related different cancer diseases. PL profiling in tissues, cells and body fluids also reflect the general condition of the whole organism and can indicate the existence of cancer and other diseases. PL profiling with MS opens new prospects to assess alterations of PLs in cancer, screening specific biomarkers and provide a basis for the development of novel therapeutic strategies. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:107-138, 2018.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| |
Collapse
|
97
|
Zeng FJ, Ji HC, Zhang Z, Luo JK, Lu HM, Wang Y. Metabolic profiling putatively identifies plasma biomarkers of male infertility using UPLC-ESI-IT-TOFMS. RSC Adv 2018; 8:25974-25982. [PMID: 35541937 PMCID: PMC9082778 DOI: 10.1039/c8ra01897a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Male infertility has become a global health problem. Currently, the diagnosis of male infertility depends on the results of semen quality or requires invasive surgical intervention. The process is complex and time-consuming. Metabolomics is an emerging platform with unique advantages in disease diagnosis and pathological mechanism research. In this study, ultra-performance liquid chromatography-electrospray ionization-ion trap-time of flight mass spectrometry (UPLC-ESI-IT-TOFMS) combined with chemometrics methods was used to discover potential biomarkers of male infertility based on non-targeted plasma metabolomics. Plasma samples from healthy controls (HC, n = 43) and various types of infertile patients, i.e., patients having oligozoospermia (OS, n = 36), asthenospermia (AS, n = 56) and erectile dysfunction (ED, n = 45) were analyzed by UPLC-ESI-IT-TOFMS. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed. The results of OPLS-DA showed that HCs could be discriminated from infertile patients including OS (R2 = 0.903, Q2 = 0.617, AUC = 0.992), AS (R2 = 0.985, Q2 = 0.658, AUC = 0.999) or ED (R2 = 0.942, Q2 = 0.500, AUC = 0.998). Some potential biomarkers were successfully discovered by variable selection methods and variable important in the projection (VIP) in combination with the T-test. Statistical significance was set at p < 0.05; the Benjamini–Hochberg false discovery rate was used to reduce type 1 errors resulting from multiple comparisons. The identified biomarkers were associated with energy consumption, hormone regulation and antioxidant defenses in spermatogenesis. To elucidate the pathophysiology of male infertility, relative metabolic pathways were studied. It was found that male infertility is closely related to disturbed phospholipid metabolism, amino acid metabolism, steroid hormone biosynthesis metabolism, metabolism of fatty acids and products of carnitine acylation, and purine and pyrimidine metabolisms. Plasma metabolomics provides a novel strategy for the diagnosis of male infertility and offers a new insight to study pathogenesis mechanism. Ultra-performance liquid chromatography-electrospray ionization-ion trap-time of flight mass spectrometry combined with chemometrics methods was used to discover potential biomarkers of male infertility based on untargeted plasma metabolomics.![]()
Collapse
Affiliation(s)
- F. J. Zeng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - H. C. Ji
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Z. M. Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - J. K. Luo
- Department of Integrated Traditional Chinese and Western Medicine
- Male Department of Integrated Traditional Chinese and Western Medicine
- Xiangya Hospital
- Central South University
- Changsha
| | - H. M. Lu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Y. Wang
- Department of Integrated Traditional Chinese and Western Medicine
- Male Department of Integrated Traditional Chinese and Western Medicine
- Xiangya Hospital
- Central South University
- Changsha
| |
Collapse
|
98
|
Li Z, Guan M, Lin Y, Cui X, Zhang Y, Zhao Z, Zhu J. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics. Int J Mol Sci 2017; 18:ijms18122550. [PMID: 29182572 PMCID: PMC5751153 DOI: 10.3390/ijms18122550] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the disorder of lipid metabolism in hepatocellular carcinoma (HCC). HCC is a worldwide disease. The research into the disorder of lipid metabolism in HCC is very limited. Study of lipid metabolism in liver cancer tissue may have the potential to provide new insight into HCC mechanisms. METHODS A lipidomics study of HCC based on Ultra high performance liquid chromatography-electronic spray ionization-QTOF mass spectrometer (UPLC-ESI-QTOF MS) and Matrix assisted laser desorption ionization-fourier transform ion cyclotron resonance mass spectrometer (MALDI-FTICR MS) was performed. RESULTS Triacylglycerols (TAGs) with the number of double bond (DB) > 2 (except 56:5 and 56:4 TAG) were significantly down-regulated; conversely, others (except 52:2 TAG) were greatly up-regulated in HCC tissues. Moreover, the more serious the disease was, the higher the saturated TAG concentration and the lower the polyunsaturated TAG concentration were in HCC tissues. The phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) were altered in a certain way. Sphingomyelin (SM) was up-regulated and ceramide (Cer) were down-regulated in HCC tissues. CONCLUSIONS To our knowledge, this is the first such report showing a unique trend of TAG, PC, PE and PI. The use of polyunsaturated fatty acids, like eicosapentanoic and docosahexanoic acid, as supplementation, proposed for the treatment of Non-alcoholic steatohepatitis (NASH), may also be effective for the treatment of HCC.
Collapse
Affiliation(s)
- Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Ming Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Xiao Cui
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
99
|
Reduced levels of N'-methyl-2-pyridone-5-carboxamide and lysophosphatidylcholine 16:0 in the serum of patients with intrahepatic cholangiocarcinoma, and the correlation with recurrence-free survival. Oncotarget 2017; 8:112598-112609. [PMID: 29348849 PMCID: PMC5762534 DOI: 10.18632/oncotarget.22607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
We searched for metabolic biomarkers that may predict the prognosis of patients with intrahepatic cholangiocarcinoma (IHCC). To this end, a total of 237 serum samples were obtained from IHCC patients (n = 87) and healthy controls (n = 150), and serum metabolites were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two stratified algorithms were used to select the metabolites, the levels of which predicted the prognosis of IHCC patients. We performed MS/MS and multiple-reaction-monitoring MS analyses to identify and quantify the selected metabolites. Continuous biomarker levels were dichotomized based on cutoffs that maximized between-group differences in recurrence-free survival (RFS) in terms of the log-rank test statistic. These RFS differences were analyzed using the log-rank test, and survival curves were drawn with the aid of the Kaplan–Meier method. Six metabolites (l-glutamine, lysophosphatidylcholine [LPC] 16:0, LPC 18:0, N’-methyl-2-pyridone-5-carboxamide [2PY], fibrinopeptide A [FPA] and uric acid) were identified as candidate metabolic biomarkers for predicting the prognosis of IHCC patients. Of these metabolites, levels of l-glutamine, uric acid, LPC 16:0, and LPC 18:0 were significantly lower in the serum from IHCC patients, whereas levels of 2PY and FPA were significantly higher (p < 0.01). 2PY and LPC 16:0 showed significantly better RFS at low level than high level (2PY, median RFS: 15.16 months vs. 5.90 months, p = 0.037; LPC 16:0, median RFS: 15.62 months vs. 9.83 months, p = 0.035). The findings of this study suggest that 2PY and LPC 16:0 identified by metabolome-based approaches may be useful biomarkers for IHCC patients.
Collapse
|
100
|
Serum lipid profile discriminates patients with early lung cancer from healthy controls. Lung Cancer 2017; 112:69-74. [DOI: 10.1016/j.lungcan.2017.07.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/11/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023]
|