51
|
Tauber Z, Cizkova K. The anti-inflammatory role of placental Hofbauer cells is altered in patients with chorioamnionitis: Are CYP2C8 and soluble epoxide hydrolase involved in immunomodulation? BIOMEDICAL PAPERS OF THE MEDICAL FACULTY OF THE UNIVERSITY PALACKY, OLOMOUC, CZECHOSLOVAKIA 2021; 166:267-273. [PMID: 33976432 DOI: 10.5507/bp.2021.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
AIMS Hofbauer cells (HBCs) are placental macrophages playing various roles during normal and complicated pregnancies, and of the latter, chorioamnionitis is the most frequent. METHODS In placenta with chorioamnionitis, we examined immunohistochemical expression profiles of IL-1β, IL-10, and their potential regulators, CYP2C8 and soluble epoxide hydrolase (sEH), in Hofbauer cells and compared the results with our previously published data for normal placenta. RESULTS We found that the expression profiles of the studied proteins in Hofbauer cells in chorioamnionitis differs from normal placenta. In chorioamnionitis, HBCs showed a moderate expression of IL-1β together with a weak expression of IL-10 and CYP2C8. Contrary to normal placenta, HBCs in chorioamnionitis express sEH. We demonstrated a moderate positive correlation between the expression of CYP2C8 and sEH in chorioamnionitis (Spearman r = 0.5654), suggesting enhanced degradation of anti-inflammatory epoxyeicosatrienoic acids. Moreover, the relations of IL-1β and IL-10 to CYP2C8, previously described in normal placenta, disappeared. Furthermore, a weak expression of anti-inflammatory IL-10 in chorioamnionitis was accompanied by change in circularity of HBCs (Spearman r = 0.8193). CONCLUSION Taken together, these findings suggest a possible alteration of the anti-inflammatory role of HBCs and its regulation in chorioamnionitis.
Collapse
Affiliation(s)
- Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
52
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
53
|
Placental pathology and intraventricular hemorrhage in preterm and small for gestational age infants. J Perinatol 2021; 41:843-849. [PMID: 33649433 DOI: 10.1038/s41372-021-00954-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/04/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The aim of this study was to examine the relationship between chorioamnionitis and vascular malperfusion on placental pathology and intraventricular hemorrhage (IVH) in premature and small for gestational age (SGA) infants. STUDY DESIGN A retrospective analysis of 263 infants ≤34 weeks gestation or ≤1800 g and their mothers was conducted by chart review for placental pathology and clinical data from 2014 to 2018. Unadjusted and adjusted odds ratios (OR) for the association of placental pathology with IVH were calculated. RESULT Unadjusted OR showed an association between acute chorioamnionitis and IVH, but logistic regression analysis showed a non-significant adjusted OR between acute or chronic chorioamnionitis with IVH. Maternal vascular malperfusion was significantly associated with increased IVH when controlling for confounders. CONCLUSION Placental maternal vascular malperfusion is associated with the development of IVH in premature and SGA infants when controlling for other confounders.
Collapse
|
54
|
Walsh BH, Paul RA, Inder TE, Shimony JS, Smyser CD, Rogers CE. Surgery requiring general anesthesia in preterm infants is associated with altered brain volumes at term equivalent age and neurodevelopmental impairment. Pediatr Res 2021; 89:1200-1207. [PMID: 32575110 PMCID: PMC7755708 DOI: 10.1038/s41390-020-1030-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 06/11/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND The aim of the study was to describe and contrast the brain development and outcome among very preterm infants that were and were not exposed to surgery requiring general anesthesia prior to term equivalent age (TEA). METHODS Preterm infants born ≤30 weeks' gestation who did (n = 25) and did not (n = 59) have surgery requiring general anesthesia during the preterm period were studied. At TEA, infants had MRI scans performed with measures of brain tissue volumes, cortical surface area, Gyrification Index, and white matter microstructure. Neurodevelopmental follow-up with the Bayley Scales of Infant and Toddler Development, Third Edition was undertaken at 2 years of corrected age. Multivariate models, adjusted for clinical and social risk factors, were used to compare the groups. RESULTS After controlling for clinical and social variables, preterm infants exposed to surgical anesthesia demonstrated decreased relative white matter volumes at TEA and lower cognitive and motor composite scores at 2-year follow-up. Those with longer surgical exposure demonstrated the greatest decrease in white matter volumes and lower cognitive and motor outcomes at age 2 years. CONCLUSIONS Very preterm infants who required surgery during the preterm period had lower white mater volumes at TEA and worse neurodevelopmental outcome at age 2 years. IMPACT In very preterm infants, there is an association between surgery requiring general anesthesia during the preterm period and reduced white mater volume on MRI at TEA and lower cognitive and motor composite scores at age 2 years. It is known that the very preterm infant's brain undergoes rapid growth during the period corresponding to the third trimester. The current study suggests an association between surgery requiring general anesthesia during this period and worse outcomes.
Collapse
Affiliation(s)
- Brian H Walsh
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland.
| | - Rachel A Paul
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher D Smyser
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
55
|
Danladi J, Sabir H. Perinatal Infection: A Major Contributor to Efficacy of Cooling in Newborns Following Birth Asphyxia. Int J Mol Sci 2021; 22:ijms22020707. [PMID: 33445791 PMCID: PMC7828225 DOI: 10.3390/ijms22020707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates. The heat shock and cold shock protein responses are essential for survival against a wide range of stressors during which organisms raise their core body temperature and temporarily subject themselves to thermal and cold stress in the face of infection. The characteristic increase and decrease in core body temperature activates and utilizes elements of the heat shock and cold shock response pathways to modify cytokine and chemokine gene expression, cellular signaling, and immune cell mobilization to sites of inflammation, infection, and injury. Hypothermia stimulates microglia to secret cold-inducible RNA-binding protein (CIRP), which triggers NF-κB, controlling multiple inflammatory pathways, including nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and cyclooxygenase-2 (COX-2) signaling. Brain responses through changes in heat shock protein and cold shock protein transcription and gene-expression following fever range and hyperthermia may be new promising potential therapeutic targets.
Collapse
Affiliation(s)
- Jibrin Danladi
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence:
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
56
|
Mynarek M, Bjellmo S, Lydersen S, Afset JE, Andersen GL, Vik T. Incidence of invasive Group B Streptococcal infection and the risk of infant death and cerebral palsy: a Norwegian Cohort Study. Pediatr Res 2021; 89:1541-1548. [PMID: 32726797 PMCID: PMC8660635 DOI: 10.1038/s41390-020-1092-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Group B Streptococcus (GBS) is the leading cause of invasive neonatal infection worldwide. In high-income countries mortality rates are 4-10%, and among survivors of GBS meningitis 30-50% have neurodevelopmental impairments. We hypothesized that invasive GBS infection was associated with increased risk of infant mortality and cerebral palsy (CP). METHODS All children born alive in Norway during 1996-2012 were included. Data were collected from three national registers. Invasive GBS infection during infancy was categorized into early-onset disease (EOD), late-onset disease (LOD), and very late-onset disease (VLOD). Primary outcomes were infant mortality and CP. RESULTS Invasive GBS infection was diagnosed in 625 children (incidence: 0.62 per 1000 live births; 95% confidence interval (CI): 0.57-0.67). The incidence of EOD was 0.41 (0.37-0.45), of LOD 0.20 (0.17-0.23), and of VLOD 0.012 (0.007-0.021). The annual incidence of LOD increased slightly. Among infected infants, 44 (7%) died (odds ratio (OR): 24.5; 95% CI: 18.0-33.3 compared with the background population). Among survivors, 24 (4.1%) children were later diagnosed with CP, compared with 1887 (0.19%) in the background population (OR: 22.9; 95% CI: 15.1-34.5). CONCLUSION Despite a relatively low incidence of invasive GBS infection in Norway, the risk of death and CP remains high. Improvements in prevention strategies are needed. IMPACT During the first decade of the twenty-first century, invasive GBS disease in infancy is still associated with high mortality. Despite the overall low incidence of invasive GBS disease, the incidence of LOD increased during the study period. The finding that invasive GBS infection in the neonatal period or during infancy is associated with an excess risk of CP, comparable to the risk following moderate preterm birth and moderate low Apgar scores, adds to the existing literature. The results of this study emphasize the importance of adhering to guidelines and the need for better prevention strategies.
Collapse
Affiliation(s)
- Maren Mynarek
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | - Solveig Bjellmo
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway ,grid.458114.d0000 0004 0627 2795Department of Obstetrics and Gynecology, Helse More og Romsdal HF, Aalesund, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Health and Child Welfare, Department of Mental Health, PB 8905, MTFS, 7491 Trondheim, Norway
| | - Jan E. Afset
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Guro L. Andersen
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway ,grid.417292.b0000 0004 0627 3659Vestfold Hospital Trust, The Cerebral Palsy Registry of Norway, PB 2168, 3103 Tønsberg, Norway
| | - Torstein Vik
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
57
|
Usuda H, Watanabe S, Saito M, Ikeda H, Koshinami S, Sato S, Musk GC, Fee E, Carter S, Kumagai Y, Takahashi T, Takahashi Y, Kawamura S, Hanita T, Kure S, Yaegashi N, Newnham JP, Kemp MW. Successful use of an artificial placenta-based life support system to treat extremely preterm ovine fetuses compromised by intrauterine inflammation. Am J Obstet Gynecol 2020; 223:755.e1-755.e20. [PMID: 32380175 DOI: 10.1016/j.ajog.2020.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ex vivo uterine environment therapy is an experimental intensive care strategy for extremely preterm infants born between 21 and 24 weeks of gestation. Gas exchange is performed by membranous oxygenators connected by catheters to the umbilical vessels. The fetus is submerged in a bath of synthetic amniotic fluid. The lungs remain fluid filled, and pulmonary respiration does not occur. Intrauterine inflammation is strongly associated with extremely preterm birth and fetal injury. At present, there are no data that we are aware of to show that artificial placenta-based systems can be used to support extremely preterm fetuses compromised by exposure to intrauterine inflammation. OBJECTIVE To evaluate the ability of our ex vivo uterine environment therapy platform to support extremely preterm ovine fetuses (95-day gestational age; approximately equivalent to 24 weeks of human gestation) exposed to intrauterine inflammation for a period of 120 hours, the following primary endpoints were chosen: (1) maintenance of key physiological variables within normal ranges, (2) absence of infection and inflammation, (3) absence of brain injury, and (4) gross fetal growth and cardiovascular function matching that of age-matched in utero controls. STUDY DESIGN Ten ewes with singleton pregnancies were each given a single intraamniotic injection of 10-mg Escherichia coli lipopolysaccharides under ultrasound guidance 48 hours before undergoing surgical delivery for adaptation to ex vivo uterine environment therapy at 95-day gestation (term=150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with constant monitoring of key vital parameters (ex vivo uterine environment group) before being killed at 100-day equivalent gestational age. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, biochemical parameters, inflammatory markers, and microbial load to exclude infection. Ultrasound was conducted at 48 hours after intraamniotic lipopolysaccharides (before surgery) to confirm fetal viability and at the conclusion of the experiments (before euthanasia) to evaluate cardiac function. Brain injury was evaluated by gross anatomic and histopathologic investigations. Eight singleton pregnant control animals were similarly exposed to intraamniotic lipopolysaccharides at 93-day gestation and were killed at 100-day gestation to allow comparative postmortem analyses (control group). Biobanked samples from age-matched saline-treated animals served as an additional comparison group. Successful instillation of lipopolysaccharides into the amniotic fluid exposure was confirmed by amniotic fluid analysis at the time of administration and by analyzing cytokine levels in fetal plasma and amniotic fluid. Data were tested for mean differences using analysis of variance. RESULTS Six of 8 lipopolysaccharide control group (75%) and 8 of 10 ex vivo uterine environment group fetuses (80%) successfully completed their protocols. Six of 8 ex vivo uterine environment group fetuses required dexamethasone phosphate treatment to manage profound refractory hypotension. Weight and crown-rump length were reduced in ex vivo uterine environment group fetuses at euthanasia than those in lipopolysaccharide control group fetuses (P<.05). There were no biologically significant differences in cardiac ultrasound measurement, differential leukocyte counts (P>.05), plasma tumor necrosis factor α, monocyte chemoattractant protein-1 concentrations (P>.05), or liver function tests between groups. Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment group animals. No cases of intraventricular hemorrhage were observed. White matter injury was identified in 3 of 6 lipopolysaccharide control group fetuses and 3 of 8 vivo uterine environment group fetuses. CONCLUSION We report the use of an artificial placenta-based system to support extremely preterm lambs compromised by exposure to intrauterine inflammation. Our data highlight key challenges (refractory hypotension, growth restriction, and white matter injury) to be overcome in the development and use of artificial placenta technology for extremely preterm infants. As such challenges seem largely absent from studies based on healthy pregnancies, additional experiments of this nature using clinically relevant model systems are essential for further development of this technology and its eventual clinical application.
Collapse
Affiliation(s)
- Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Ikeda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shota Koshinami
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Gabrielle C Musk
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Animal Care Services, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erin Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sean Carter
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yusaku Kumagai
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | | | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shigeo Kure
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - John P Newnham
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, The University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| |
Collapse
|
58
|
Du W, Ke L, Wang Y, Hua J, Duan W, Barnett AL. The prenatal, postnatal, neonatal, and family environmental risk factors for Developmental Coordination Disorder: A study with a national representative sample. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 104:103699. [PMID: 32623045 DOI: 10.1016/j.ridd.2020.103699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of obstetric and environmental influences on Developmental Coordination Disorder (DCD) helps provide increased understanding of the mechanisms underlying the disorder. However, the literature to date has not adequately examined the obstetric and environmental risk factors for DCD in a population-based sample. The current study was therefore conducted to explore the prenatal, perinatal, neonatal, and family environmental risk factors for DCD. A total of 2185 children aged 3-10 years from a national representative sample in China were included; the Movement Assessment Battery for Children-2 was used to assess motor function, and a questionnaire was completed by parents. DCD was identified in 156 children according to the DSM-5 criteria. Multilevel logistic regression was used, and comparisons were made between the DCD and non-DCD group. The results confirmed that male sex, BMI score, preterm birth, and some prenatal conditions are significant risk factors for DCD. Parents' education level and one-child status as two significant environmental risk factors for DCD appear largely independent of other risk factors in the Chinese population. This study provides an opportunity to explore the etiology of DCD and suggest potential assessment, monitoring and intervention programs for DCD that could be examined in the future.
Collapse
Affiliation(s)
- Wenchong Du
- Department of Psychology, Nottingham Trent University, Burton Street, Nottingham, NG1 1BU, UK.
| | - Li Ke
- Collaborative Innovation Centre of Assessment for Basic Education Quality, Beijing Normal University, China
| | - Yun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijng Normal University, China
| | - Jing Hua
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, China
| | - Wen Duan
- Collaborative Innovation Centre of Assessment for Basic Education Quality, Beijing Normal University, China
| | - Anna L Barnett
- Department of Psychology, Health and Professional Development, Oxford Brookes University, UK
| |
Collapse
|
59
|
Huang Q, Yu F, Liao D, Xia J. Microbiota-Immune System Interactions in Human Neurological Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:509-526. [PMID: 32713337 DOI: 10.2174/1871527319666200726222138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China,Hunan Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
60
|
Gomez-Lopez N, Romero R, Garcia-Flores V, Leng Y, Miller D, Hassan SS, Hsu CD, Panaitescu B. Inhibition of the NLRP3 inflammasome can prevent sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes†. Biol Reprod 2020; 100:1306-1318. [PMID: 30596885 DOI: 10.1093/biolre/ioy264] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 01/20/2023] Open
Abstract
Sterile intra-amniotic inflammation is commonly observed in patients with spontaneous preterm labor, a syndrome that commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. However, the mechanisms leading to sterile intra-amniotic inflammation are poorly understood and no treatment exists for this clinical condition. Herein, we investigated whether the alarmin S100B could induce sterile intra-amniotic inflammation by activating the NLRP3 inflammasome, and whether the inhibition of this pathway could prevent preterm labor/birth and adverse neonatal outcomes. We found that the ultrasound-guided intra-amniotic administration of S100B induced a 50% rate of preterm labor/birth and a high rate of neonatal mortality (59.7%) without altering the fetal and placental weights. Using a multiplex cytokine array and immunoblotting, we reported that S100B caused a proinflammatory response in the amniotic cavity and induced the activation of the NLRP3 inflammasome in the fetal membranes, indicated by the upregulation of the NLRP3 protein and increased release of active caspase-1 and mature IL-1β. Inhibition of the NLRP3 inflammasome via the specific inhibitor MCC950 prevented preterm labor/birth by 35.7% and reduced neonatal mortality by 26.7%. Yet, inhibition of the NLRP3 inflammasome at term did not drastically obstruct the physiological process of parturition. In conclusion, the data presented herein indicate that the alarmin S100B can induce sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes by activating the NLRP3 inflammasome, which can be prevented by inhibiting such a pathway. These findings provide evidence that sterile intra-amniotic inflammation could be treated by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
61
|
Faro J, Romero R, Schwenkel G, Garcia-Flores V, Arenas-Hernandez M, Leng Y, Xu Y, Miller D, Hassan SS, Gomez-Lopez N. Intra-amniotic inflammation induces preterm birth by activating the NLRP3 inflammasome†. Biol Reprod 2020; 100:1290-1305. [PMID: 30590393 DOI: 10.1093/biolre/ioy261] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/12/2018] [Accepted: 12/22/2018] [Indexed: 01/23/2023] Open
Abstract
Intra-amniotic inflammation is strongly associated with spontaneous preterm labor and birth, the leading cause of perinatal mortality and morbidity worldwide. Previous studies have suggested a role for the NLRP3 (NLR family pyrin domain-containing protein 3) inflammasome in the mechanisms that lead to preterm labor and birth. However, a causal link between the NLRP3 inflammasome and preterm labor/birth induced by intra-amniotic inflammation has not been established. Herein, using an animal model of lipopolysaccharide-induced intra-amniotic inflammation (IAI), we demonstrated that there was priming of the NLRP3 inflammasome (1) at the transcriptional level, indicated by enhanced mRNA expression of inflammasome-related genes (Nlrp3, Casp1, Il1b); and (2) at the protein level, indicated by greater protein concentrations of NLRP3, in both the fetal membranes and decidua basalis prior to preterm birth. Additionally, we showed that there was canonical activation of the NLRP3 inflammasome in the fetal membranes, but not in the decidua basalis, prior to IAI-induced preterm birth as evidenced by increased protein levels of active caspase-1. Protein concentrations of released IL1β were also increased in both the fetal membranes and decidua basalis, as well as in the amniotic fluid, prior to IAI-induced preterm birth. Finally, using the specific NLRP3 inhibitor, MCC950, we showed that in vivo inhibition of the NLRP3 inflammasome reduced IAI-induced preterm birth and neonatal mortality. Collectively, these results provide a causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation. We also showed that, by targeting the NLRP3 inflammasome, adverse pregnancy and neonatal outcomes can be significantly reduced.
Collapse
Affiliation(s)
- Jonathan Faro
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
62
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
63
|
Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 2020; 42:451-468. [PMID: 32661735 PMCID: PMC7508934 DOI: 10.1007/s00281-020-00803-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Almost half of all preterm births are caused or triggered by an inflammatory process at the feto-maternal interface resulting in preterm labor or rupture of membranes with or without chorioamnionitis (“first inflammatory hit”). Preterm babies have highly vulnerable body surfaces and immature organ systems. They are postnatally confronted with a drastically altered antigen exposure including hospital-specific microbes, artificial devices, drugs, nutritional antigens, and hypoxia or hyperoxia (“second inflammatory hit”). This is of particular importance to extremely preterm infants born before 28 weeks, as they have not experienced important “third-trimester” adaptation processes to tolerate maternal and self-antigens. Instead of a balanced adaptation to extrauterine life, the delicate co-regulation between immune defense mechanisms and immunosuppression (tolerance) to allow microbiome establishment is therefore often disturbed. Hence, preterm infants are predisposed to sepsis but also to several injurious conditions that can contribute to the onset or perpetuation of sustained inflammation (SI). This is a continuing challenge to clinicians involved in the care of preterm infants, as SI is regarded as a crucial mediator for mortality and the development of morbidities in preterm infants. This review will outline the (i) role of inflammation for short-term consequences of preterm birth and (ii) the effect of SI on organ development and long-term outcome.
Collapse
|
64
|
Disdier C, Awa F, Chen X, Dhillon SK, Galinsky R, Davidson JO, Lear CA, Bennet L, Gunn AJ, Stonestreet BS. Lipopolysaccharide-induced changes in the neurovascular unit in the preterm fetal sheep brain. J Neuroinflammation 2020; 17:167. [PMID: 32466771 PMCID: PMC7257152 DOI: 10.1186/s12974-020-01852-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Exposure to inflammation during pregnancy can predispose to brain injury in premature infants. In the present study, we investigated the effects of prolonged exposure to inflammation on the cerebrovasculature of preterm fetal sheep. Methods Chronically instrumented fetal sheep at 103–104 days of gestation (full term is ~ 147 days) received continuous low-dose lipopolysaccharide (LPS) infusions (100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h plus boluses of 1 μg LPS at 48, 72, and 96 h) or the same volume of normal saline (0.9%, w/v). Ten days after the start of LPS exposure at 113–114 days of gestation, the sheep were killed, and the fetal brain perfused with formalin in situ. Vessel density, pericyte and astrocyte coverage of the blood vessels, and astrogliosis in the cerebral cortex and white matter were determined using immunohistochemistry. Results LPS exposure reduced (P < 0.05) microvascular vessel density and pericyte vascular coverage in the cerebral cortex and white matter of preterm fetal sheep, and increased the activation of perivascular astrocytes, but decreased astrocytic vessel coverage in the white matter. Conclusions Prolonged exposure to LPS in preterm fetal sheep resulted in decreased vessel density and neurovascular remodeling, suggesting that chronic inflammation adversely affects the neurovascular unit and, therefore, could contribute to long-term impairment of brain development.
Collapse
Affiliation(s)
- Clémence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Fares Awa
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | | | - Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA.
| |
Collapse
|
65
|
Chudnovets A, Lei J, Na Q, Dong J, Narasimhan H, Klein SL, Burd I. Dose-dependent structural and immunological changes in the placenta and fetal brain in response to systemic inflammation during pregnancy. Am J Reprod Immunol 2020; 84:e13248. [PMID: 32306461 DOI: 10.1111/aji.13248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Systemic maternal inflammation is associated with adverse neonatal sequelae. We tested the hypothesis that IL-1β is a key inflammatory regulator of adverse pregnancy outcomes. METHOD OF STUDY Pregnant mice were treated with intraperitoneal injections of IL-1β (0, 0.1, 0.5, or 1 μg) from embryonic day (E)14 to E17. Placenta and fetal brains were harvested and analyzed for morphologic changes and IL-1β signaling markers. RESULTS As compared with non-treated dams, maternal injections with IL-1β resulted in increased p-NF-κB and caspase-1 in placentas and fetal brains, but not consistently in spleens, suggesting induction of intrinsic IL-1β production. These findings were confirmed by increased levels of IL-1β in the placentas of the IL-1β-treated dams. Systemic treatment of dams with IL-1β suppressed Stat1 signaling. Maternal inflammation caused by IL-1β treatment reduced fetal viability to 80.6% and 58.9%, in dams treated with either 0.5 or 1 μg of IL-1β, respectively. In the placentas, there was an IL-1β dose-dependent distortion of the labyrinth structure, decreased numbers of mononuclear trophoblast giant cells, and reduced proportions of endothelial cells as compared to placentas from control dams. In fetal brains collected at E17, there was an IL-1β dose-dependent reduction in cortical neuronal morphology. CONCLUSION This work demonstrates that systemic IL-1β injection causes dose-dependent structural and functional changes in the placenta and fetal brain.
Collapse
Affiliation(s)
- Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harish Narasimhan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
66
|
Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front Immunol 2020; 11:588. [PMID: 32328065 PMCID: PMC7160249 DOI: 10.3389/fimmu.2020.00588] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
The developing human fetus generates both tolerogenic and protective immune responses in response to the unique requirements of gestation. Thus, a successful human pregnancy depends on a fine balance between two opposing immunological forces: the semi-allogeneic fetus learns to tolerate both self- and maternal- antigens and, in parallel, develops protective immunity in preparation for birth. This critical window of immune development bridges prenatal immune tolerance with the need for postnatal environmental protection, resulting in a vulnerable neonatal period with heightened risk of infection. The fetal immune system is highly specialized to mediate this transition and thus serves a different function from that of the adult. Adaptive immune memory is already evident in the fetal intestine. Fetal T cells with pro-inflammatory potential are born in a tolerogenic environment and are tightly controlled by both cell-intrinsic and -extrinsic mechanisms, suggesting that compartmentalization and specialization, rather than immaturity, define the fetal immune system. Dysregulation of fetal tolerance generates an inflammatory response with deleterious effects to the pregnancy. This review aims to discuss the recent advances in our understanding of the cellular and molecular composition of fetal adaptive immunity and the mechanisms that govern T cell development and function. We also discuss the tolerance promoting environment that impacts fetal immunity and the consequences of its breakdown. A greater understanding of fetal mechanisms of immune activation and regulation has the potential to uncover novel paradigms of immune balance which may be leveraged to develop therapies for transplantation, autoimmune disease, and birth-associated inflammatory pathologies.
Collapse
Affiliation(s)
- Elze Rackaityte
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Joanna Halkias
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, United States
| |
Collapse
|
67
|
Heimfarth L, Carvalho AMS, Quintans JDSS, Pereira EWM, Lima NT, Bezerra Carvalho MT, Barreto RDSS, Moreira JCF, da Silva-Júnior EF, Schmitt M, Bourguignon JJ, de Aquino TM, Araújo-Júnior JXD, Quintans-Júnior LJ. Indole-3-guanylhydrazone hydrochloride mitigates long-term cognitive impairment in a neonatal sepsis model with involvement of MAPK and NFκB pathways. Neurochem Int 2020; 134:104647. [DOI: 10.1016/j.neuint.2019.104647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
|
68
|
Bodnar TS, Raineki C, Wertelecki W, Yevtushok L, Plotka L, Granovska I, Zymak-Zakutnya N, Pashtepa A, Wells A, Honerkamp-Smith G, Coles CD, Kable JA, Chambers CD, Weinberg J. Immune network dysregulation associated with child neurodevelopmental delay: modulatory role of prenatal alcohol exposure. J Neuroinflammation 2020; 17:39. [PMID: 31992316 PMCID: PMC6988366 DOI: 10.1186/s12974-020-1717-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background Evidence suggests that cytokine imbalances may be at the root of deficits that occur in numerous neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Notably, while clinical studies have demonstrated maternal cytokine imbalances with alcohol consumption during pregnancy—and data from animal models have identified immune disturbances in alcohol-exposed offspring—to date, immune alterations in alcohol-exposed children have not been explored. Thus, here we hypothesized that perturbations in the immune environment as a result of prenatal alcohol exposure will program the developing immune system, and result in immune dysfunction into childhood. Due to the important role of cytokines in brain development/function, we further hypothesized that child immune profiles might be associated with their neurodevelopmental status. Methods As part of a longitudinal study in Ukraine, children of mothers reporting low/no alcohol consumption or moderate-to-heavy alcohol consumption during pregnancy were enrolled in the study and received neurodevelopmental assessments. Group stratification was based on maternal alcohol consumption and child neurodevelopmental status resulting in the following groups: A/TD, alcohol-consuming mother, typically developing child; A/ND, alcohol-consuming mother, neurodevelopmental delay in the child; C/TD, control mother (low/no alcohol consumption), typically development child; and C/ND, control mother, neurodevelopmental delay in the child. Forty cytokines/chemokines were measured in plasma and data were analyzed using regression and constrained principle component analysis. Results Analyses revealed differential cytokine network activity associated with both prenatal alcohol exposure and neurodevelopmental status. Specifically, alcohol-exposed children showed activation of a cytokine network including eotaxin-3, eotaxin, and bFGF, irrespective of neurodevelopmental status. However, another cytokine network was differentially activated based on neurodevelopmental outcome: A/TD showed activation of MIP-1β, MDC, and MCP-4, and inhibition of CRP and PlGF, with opposing pattern of activation/inhibition detected in the A/ND group. By contrast, in the absence of alcohol-exposure, activation of a network including IL-2, TNF-β, IL-10, and IL-15 was associated with neurodevelopmental delay. Conclusions Taken together, this comprehensive assessment of immune markers allowed for the identification of unique immune milieus that are associated with alcohol exposure as well as both alcohol-related and alcohol-independent neurodevelopmental delay. These findings are a critical step towards establishing unique immune biomarkers for alcohol-related and alcohol-independent neurodevelopmental delay.
Collapse
Affiliation(s)
- Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, 3307 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, 3307 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | - Lyubov Yevtushok
- OMNI-Net for Children International Charitable Fund, Rivne Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Larisa Plotka
- OMNI-Net for Children International Charitable Fund, Rivne Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Irina Granovska
- OMNI-Net for Children International Charitable Fund, Rivne Oblast Medical Diagnostic Center, Rivne, Ukraine
| | - Natalya Zymak-Zakutnya
- OMNI-Net for Children International Charitable Fund, Khmelnytsky Perinatal Center, Khmelnytsky, Ukraine
| | - Alla Pashtepa
- OMNI-Net for Children International Charitable Fund, Khmelnytsky Perinatal Center, Khmelnytsky, Ukraine
| | - Alan Wells
- Department of Pediatrics, University of California San Diego, La Jolla, USA
| | | | - Claire D Coles
- Department of Psychiatry and Behavioral Sciences; Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Julie A Kable
- Department of Psychiatry and Behavioral Sciences; Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Christina D Chambers
- Department of Pediatrics, University of California San Diego, La Jolla, USA.,Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, 3307 - 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
69
|
Increased Soluble Epoxide Hydrolase in Human Gestational Tissues from Pregnancies Complicated by Acute Chorioamnionitis. Mediators Inflamm 2019; 2019:8687120. [PMID: 31885501 PMCID: PMC6915158 DOI: 10.1155/2019/8687120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chorioamnionitis (CAM) is primarily a polymicrobial bacterial infection involving chorionic and amniotic membranes that is associated with increased risk of preterm delivery. Epoxyeicosatrienoic acids (EETs) are eicosanoids generated from arachidonic acid by cytochrome P450 enzymes and further metabolized mainly by soluble epoxide hydrolase (sEH) to produce dihydroxyeicosatrienoic acids (DHETs). As a consequence of this metabolism of EETs, sEH reportedly exacerbates several disease states; however, its role in CAM remains unclear. The objectives of this study were to (1) determine the localization of sEH and compare the changes it undergoes in the gestational tissues (placentas and fetal membranes) of women with normal-term pregnancies and those with pregnancies complicated by acute CAM; (2) study the effects of lipopolysaccharide (LPS) on the expression of sEH in the human gestational tissues; and (3) investigate the effect of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a specific sEH inhibitor, on LPS-induced changes in 14,15-DHET and cytokines such as interleukin- (IL-) 1β and IL-6 in human gestational tissues in vitro and in pregnant mice. We found that women with pregnancies complicated by acute CAM had higher levels of sEH mRNA and protein in fetal membranes and villous tissues compared to those in women with normal-term pregnancies without CAM. Furthermore, fetal membrane and villous explants treated with LPS had higher tissue levels of sEH mRNA and protein and 14,15-DHET than those present in the vehicle controls, while the administration of AUDA in the media attenuated the LPS-induced production of 14,15-DHET in tissue homogenates and IL-1β and IL-6 in the media of explant cultures. Administration of AUDA also reduced the LPS-induced changes of 14,15-DHET, IL-1β, and IL-6 in the placentas of pregnant mice. Together, these results suggest that sEH participates in the inflammatory changes in human gestational tissues in pregnancies complicated by acute CAM.
Collapse
|
70
|
Therapeutic Potential of Human Amniotic Epithelial Cells on Injuries and Disorders in the Central Nervous System. Stem Cells Int 2019; 2019:5432301. [PMID: 31827529 PMCID: PMC6886344 DOI: 10.1155/2019/5432301] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in neurosurgery and pharmaceuticals, contemporary treatments are ineffective in restoring lost neurological functions in patients with injuries and disorders of the central nervous system (CNS). Therefore, novel and effective therapies are urgently needed. Recent studies have indicated that stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), could repair/replace damaged or degenerative neurons and improve functional recovery in both preclinical and clinical trials. However, there are many unanswered questions and unsolved issues regarding stem cell therapy in terms of potency, stability, oncogenicity, immune response, cell sources, and ethics. Currently, human amniotic epithelial cells (hAECs) derived from the amnion exhibit considerable advantages over other stem cells and have drawn much attention from researchers. hAECs are readily available, pose no ethical concerns, and have little risk of tumorigenicity and immunogenicity. Mounting evidence has shown that hAECs can promote neural cell survival and regeneration, repair affected neurons, and reestablish damaged neural connections. It is suggested that hAECs may be the most promising candidate for cell-based therapy of neurological diseases. In this review, we mainly focus on recent advances and potential applications of hAECs for treating various CNS injuries and neurodegenerative disorders. We also discuss current hurdles and challenges regarding hAEC therapies.
Collapse
|
71
|
Brodowski L, Büter W, Kohls F, Hillemanns P, von Kaisenberg C, Dammann O. Maternal Overweight, Inflammation and Neurological Consequences for the Preterm Child: Results of the ELGAN Study. Geburtshilfe Frauenheilkd 2019; 79:1176-1182. [PMID: 31736506 PMCID: PMC6846733 DOI: 10.1055/a-0960-0939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Maternal overweight and obesity are prenatal risk factors for obstetrical complications, preterm birth, neonatal morbidity as well as cognitive and behavioural developmental disorders in children. Paediatric morbidity and mortality as well as child development disorders are significantly associated with maternal obesity. Particularly in the neurodevelopmental and psychiatric area, it is becoming increasingly clear that, in children of mothers with an increased body mass index (BMI), there is a high correlation with childhood cognitive disabilities, attention disorders, and diseases on the autistic spectrum. The ELGAN (Extremely Low Gestational Age Newborn) study is a multicentre study which has been supported since 2000 by the National Institutes of Health (NIH) and whose objective is to research predictors for neonatal brain damage and neurological-cognitive sequelae in premature infants. The areas of focus are the connection between maternal overweight and obesity and pregnancy complications, APGAR scores and systemic inflammatory markers. In this overview, our aim is to summarise the work in this area and discuss it critically on the basis of current literature. We will examine the hypothesis whether maternal overweight and obesity in terms of a chronic inflammatory state is associated with neonatal inflammation which in turn is associated with an unfavourable development prognosis.
Collapse
Affiliation(s)
- Lars Brodowski
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Wolfgang Büter
- Kinderklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Fabian Kohls
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Peter Hillemanns
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Olaf Dammann
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
- Public Health & Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
72
|
Reuschel E, Toelge M, Entleutner K, Deml L, Seelbach-Goebel B. Cytokine profiles of umbilical cord blood mononuclear cells upon in vitro stimulation with lipopolysaccharides of different vaginal gram-negative bacteria. PLoS One 2019; 14:e0222465. [PMID: 31536529 PMCID: PMC6752847 DOI: 10.1371/journal.pone.0222465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Inflammatory immune responses induced by lipopolysaccharides (LPS) of gram-negative bacteria play an important role in the pathogenesis of preterm labor and delivery, and in neonatal disorders. To better characterize LPS-induced inflammatory response, we determined the cytokine profile of umbilical cord blood mononuclear cells (UBMC) stimulated with LPS of seven vaginal gram-negative bacteria commonly found in pregnant women with preterm labor and preterm rupture of membrane. UBMC from ten newborns of healthy volunteer mothers were stimulated with purified LPS of Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus mirabilis, Acinetobacter calcoaceticus, Citrobacter freundii, and Pseudomonas aeruginosa. UBMC supernatants were tested for the presence of secreted pro-inflammatory cytokines (IL-6, IL-1β, TNF), anti-inflammatory cytokine (IL-10), TH1-type cytokines (IL-12, IFN-γ), and chemokines (IL-8, MIP-1α, MIP-1β, MCP-1) by Luminex technology. The ten cytokines were differentially induced by the LPS variants. LPS of E. coli and E. aerogenes showed the strongest stimulatory activity and P. aeruginosa the lowest. Interestingly, the ability of UBMC to respond to LPS varied greatly among donors, suggesting a strong individual heterogeneity in LPS-triggered inflammatory response.
Collapse
Affiliation(s)
- Edith Reuschel
- Department of Obstetrics and Gynecology, University of Regensburg, Hospital of the Barmherzige Brueder, Clinic St Hedwig, Regensburg, Germany
- * E-mail:
| | - Martina Toelge
- Institute of Medical Microbiology, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Entleutner
- Department of Obstetrics and Gynecology, University of Regensburg, Hospital of the Barmherzige Brueder, Clinic St Hedwig, Regensburg, Germany
| | - Ludwig Deml
- Institute of Medical Microbiology, University Hospital Regensburg, Regensburg, Germany
| | - Birgit Seelbach-Goebel
- Department of Obstetrics and Gynecology, University of Regensburg, Hospital of the Barmherzige Brueder, Clinic St Hedwig, Regensburg, Germany
| |
Collapse
|
73
|
Weckman AM, Ngai M, Wright J, McDonald CR, Kain KC. The Impact of Infection in Pregnancy on Placental Vascular Development and Adverse Birth Outcomes. Front Microbiol 2019; 10:1924. [PMID: 31507551 PMCID: PMC6713994 DOI: 10.3389/fmicb.2019.01924] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Healthy fetal development is dependent on nutrient and oxygen transfer via the placenta. Optimal growth and function of placental vasculature is therefore essential to support in utero development. Vasculogenesis, the de novo formation of blood vessels, and angiogenesis, the branching and remodeling of existing vasculature, mediate the development and maturation of placental villi, which form the materno-fetal interface. Several lines of evidence indicate that systemic maternal infection and consequent inflammation can disrupt placental vasculogenesis and angiogenesis. The resulting alterations in placental hemodynamics impact fetal growth and contribute to poor birth outcomes including preterm delivery, small-for-gestational age (SGA), stillbirth, and low birth weight (LBW). Furthermore, pathways involved in maternal immune activation and placental vascularization parallel those involved in normal fetal development, notably neurovascular development. Therefore, immune-mediated disruption of angiogenic pathways at the materno-fetal interface may also have long-term neurological consequences for offspring. Here, we review current literature evaluating the influence of maternal infection and immune activation at the materno-fetal interface and the subsequent impact on placental vascular function and birth outcome. Immunomodulatory pathways, including chemokines and cytokines released in response to maternal infection, interact closely with the principal pathways regulating placental vascular development, including the angiopoietin-Tie-2, vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) pathways. A detailed mechanistic understanding of how maternal infections impact placental and fetal development is critical to the design of effective interventions to promote placental growth and function and thereby reduce adverse birth outcomes.
Collapse
Affiliation(s)
- Andrea M Weckman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michelle Ngai
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Julie Wright
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Chloe R McDonald
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
74
|
Irwin JL, McSorley EM, Yeates AJ, Mulhern MS, Strain JJ, Watson GE, Grzesik K, Thurston SW, Love TM, Smith TH, Broberg K, Shamlaye CF, Myers GJ, Davidson PW, van Wijngaarden E. Maternal immune markers during pregnancy and child neurodevelopmental outcomes at age 20 months in the Seychelles Child Development Study. J Neuroimmunol 2019; 335:577023. [PMID: 31445378 DOI: 10.1016/j.jneuroim.2019.577023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Immune dysregulation during pregnancy may influence behavior and neurodevelopment in offspring, but few human studies have tested this hypothesis. Using structural equation modeling, we examined associations between maternal inflammatory markers at 28 weeks gestation and child neurodevelopmental outcomes at 20 months of age in a sample of 1453 mother-child pairs. We observed several associations between maternal inflammatory markers measured in the late second or early third trimester and child neurodevelopmental outcomes. The direction of association for some markers was unexpected. Further research is warranted to confirm and elucidate the exact nature of these findings.
Collapse
Affiliation(s)
- Jessica L Irwin
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Road, Coleraine, BT52 1SA Co. Londonderry, UK
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Road, Coleraine, BT52 1SA Co. Londonderry, UK
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Road, Coleraine, BT52 1SA Co. Londonderry, UK
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Cromore Road, Coleraine, BT52 1SA Co. Londonderry, UK
| | - Gene E Watson
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Katherine Grzesik
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Sally W Thurston
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Tanzy M Love
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Tristram H Smith
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-17177, Solna, Stockholm, Sweden
| | | | - Gary J Myers
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Philip W Davidson
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America
| | - Edwin van Wijngaarden
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, United States of America.
| |
Collapse
|
75
|
Abstract
Cerebral palsy occurs more often in preterm than in term deliveries and is one of the major neurologic injuries seen in preterm infants. Magnesium sulfate has been found to reduce the risk of cerebral palsy in patients at risk of delivery before 32 weeks' gestational age. Multiple large clinical trials have shown this effect. The authors recommend magnesium sulfate bolus followed by continuous dosing of magnesium sulfate in those at risk of delivery before 32 weeks' gestation until delivery occurs or is no longer imminent. This article also discusses novel and emerging therapies for the prevention of cerebral palsy.
Collapse
Affiliation(s)
- Rebecca A Jameson
- Department of Obstetrics and Gynecology, The State University of New York Upstate Medical University, 750 East Adams Street, 2204 Weiskotten Hall, Syracuse, NY 13210, USA
| | - Helene B Bernstein
- Department of Obstetrics and Gynecology, The State University of New York Upstate Medical University, 750 East Adams Street, 2204 Weiskotten Hall, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, The State University of New York Upstate Medical University, 750 East Adams Street, 2204 Weiskotten Hall, Syracuse, NY 13210, USA.
| |
Collapse
|
76
|
Microorganisms in the Placenta: Links to Early-Life Inflammation and Neurodevelopment in Children. Clin Microbiol Rev 2019; 32:32/3/e00103-18. [PMID: 31043389 DOI: 10.1128/cmr.00103-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Prenatal exposure to various stressors can influence both early and later life childhood health. Microbial infection of the intrauterine environment, specifically within the placenta, has been associated with deleterious birth outcomes, such as preterm birth, as well as adverse neurological outcomes later in life. The relationships among microorganisms in the placenta, placental function, and fetal development are not well understood. Microorganisms have been associated with perinatal inflammatory responses that have the potential for disrupting fetal brain development. Microbial presence has also been associated with epigenetic modifications in the placenta, as well other tissues. Here we review research detailing the presence of microorganisms in the placenta and associations among such microorganisms, placental DNA methylation, perinatal inflammation, and neurodevelopmental outcomes.
Collapse
|
77
|
Yellowhair TR, Newville JC, Noor S, Maxwell JR, Milligan ED, Robinson S, Jantzie LL. CXCR2 Blockade Mitigates Neural Cell Injury Following Preclinical Chorioamnionitis. Front Physiol 2019; 10:324. [PMID: 31001130 PMCID: PMC6454349 DOI: 10.3389/fphys.2019.00324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
Minimizing central nervous system (CNS) injury from preterm birth depends upon identification of the critical pathways that underlie essential neurodevelopmental and CNS pathophysiology. While chorioamnionitis (CHORIO), is a leading cause of preterm birth, the precise mechanism linking prenatal brain injury and long-term CNS injury is unknown. The chemokine (C-X-C motif) ligand 1 (CXCL1) and its cognate receptor, CXCR2, are implicated in a variety of uterine and neuropathologies, however, their role in CNS injury associated with preterm birth is poorly defined. To evaluate the putative efficacy of CXCR2 blockade in neural repair secondary to CHORIO, we tested the hypothesis that transient postnatal CXCR2 antagonism would reduce neutrophil activation and mitigate cerebral microstructural injury in rats. To this end, a laparotomy was performed on embryonic day 18 (E18) in Sprague Dawley rats, with uterine arteries transiently occluded for 60 min, and lipopolysaccharide (LPS, 4 μg/sac) injected into each amniotic sac. SB225002, a CXCR2 antagonist (3 mg/kg), was administered intraperitoneally from postnatal day 1 (P1)-P5. Brains were collected on P7 and P21 and analyzed with western blot, immunohistochemistry and ex vivo diffusion tensor imaging (DTI). Results demonstrate that transient CXCR2 blockade reduced cerebral neutrophil activation (myeloperoxidase expression/MPO) and mitigated connexin43 expression, indicative of reduced neuroinflammation at P7 (p < 0.05 for all). CXCR2 blockade also reduced alpha II-spectrin calpain-mediated cleavage, improved pNF/NF ratio, and minimized Iba1 and GFAP expression consistent with improved neuronal and axonal health and reduced gliosis at P21. Importantly, DTI revealed diffuse white matter injury and decreased microstructural integrity following CHORIO as indicated by lower fractional anisotropy (FA) and elevated radial diffusivity (RD) in major white matter tracts (p < 0.05). Early postnatal CXCR2 blockade also reduced microstructural abnormalities in white matter and hippocampus at P21 (p < 0.05). Together, these data indicate that transient postnatal blockade of CXCR2 ameliorates perinatal abnormalities in inflammatory signaling, and facilitates neural repair following CHORIO. Further characterization of neuroinflammatory signaling, specifically via CXCL1/CXCR2 through the placental-fetal-brain axis, may clarify stratification of brain injury following preterm birth, and improve use of targeted interventions in this highly vulnerable patient population.
Collapse
Affiliation(s)
- Tracylyn R. Yellowhair
- Department of Pediatrics, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Jessie C. Newville
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Shahani Noor
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Jessie R. Maxwell
- Department of Pediatrics, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Erin D. Milligan
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Department of Pediatrics, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, School of Medicine, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
78
|
Yellowhair TR, Noor S, Mares B, Jose C, Newville JC, Maxwell JR, Northington FJ, Milligan ED, Robinson S, Jantzie LL. Chorioamnionitis in Rats Precipitates Extended Postnatal Inflammatory Lymphocyte Hyperreactivity. Dev Neurosci 2019; 40:1-11. [PMID: 30921800 PMCID: PMC6765467 DOI: 10.1159/000497273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Preterm birth is an important cause of perinatal brain injury (PBI). Neurological injury in extremely preterm infants often begins in utero with chorioamnionitis (CHORIO) or inflammation/infection of the placenta and concomitant placental insufficiency. Studies in humans have shown dysregulated inflammatory signaling throughout the placental-fetal brain axis and altered peripheral immune responses in children born preterm with cerebral palsy (CP). We hypothesized that peripheral immune responses would be altered in our well-established rat model of CP. Specifically, we proposed that isolated peripheral blood mononuclear cells (PBMCs) would be hyperresponsive to a second hit of inflammation throughout an extended postnatal time course. Pregnant Sprague-Dawley dams underwent a laparotomy on embryonic day 18 (E18) with occlusion of the uterine arteries (for 60 min) followed by intra-amniotic injection of lipopolysaccharide (LPS, 4 μg/sac) to induce injury in utero. Shams underwent laparotomy only, with equivalent duration of anesthesia. Laparotomies were then closed, and the rat pups were born at E22. PBMCs were isolated from pups on postnatal day 7 (P7) and P21, and subsequently stimulated in vitro with LPS for 3 or 24 h. A secreted inflammatory profile analysis of conditioned media was performed using multiplex electrochemiluminescent immunoassays, and the composition of inflammatory cells was assayed with flow cytometry (FC). Results indicate that CHORIO PBMCs challenged with LPS are hyperreactive and secrete significantly more tumor necrosis factor α (TNFα) and C-X-C chemokine ligand 1 at P7. FC confirmed increased intracellular TNFα in CHORIO pups at P7 following LPS stimulation, in addition to increased numbers of CD11b/c immunopositive myeloid cells. Notably, TNFα secretion was sustained until P21, with increased interleukin 6, concomitant with increased expression of integrin β1, suggesting both sustained peripheral immune hyperreactivity and a heightened activation state. Taken together, these data indicate that in utero injury primes the immune system and augments enhanced inflammatory signaling. The insidious effects of primed peripheral immune cells may compound PBI secondary to CHORIO and/or placental insufficiency, and thereby render the brain susceptible to future chronic neurological disease. Further understanding of inflammatory mechanisms in PBI may yield clinically important biomarkers and facilitate individualized repair strategies and treatments.
Collapse
Affiliation(s)
- Tracylyn R Yellowhair
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Brittney Mares
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Clement Jose
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jessie C Newville
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Frances J Northington
- Division of Newborn Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren L Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA,
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA,
- Division of Newborn Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
79
|
Cho KHT, Xu B, Blenkiron C, Fraser M. Emerging Roles of miRNAs in Brain Development and Perinatal Brain Injury. Front Physiol 2019; 10:227. [PMID: 30984006 PMCID: PMC6447777 DOI: 10.3389/fphys.2019.00227] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
In human beings the immature brain is highly plastic and depending on the stage of gestation is particularly vulnerable to a range of insults that if sufficiently severe, can result in long-term motor, cognitive and behavioral impairment. With improved neonatal care, the incidence of major motor deficits such as cerebral palsy has declined with prematurity. Unfortunately, however, milder forms of injury characterized by diffuse non-cystic white matter lesions within the periventricular region and surrounding white matter, involving loss of oligodendrocyte progenitors and subsequent axonal hypomyelination as the brain matures have not. Existing therapeutic options for treatment of preterm infants have proved inadequate, partly owing to an incomplete understanding of underlying post-injury cellular and molecular changes that lead to poor neurodevelopmental outcomes. This has reinforced the need to improve our understanding of brain plasticity, explore novel solutions for the development of protective strategies, and identify biomarkers. Compelling evidence exists supporting the involvement of microRNAs (miRNAs), a class of small non-coding RNAs, as important post-transcriptional regulators of gene expression with functions including cell fate specification and plasticity of synaptic connections. Importantly, miRNAs are differentially expressed following brain injury, and can be packaged within exosomes/extracellular vesicles, which play a pivotal role in assuring their intercellular communication and passage across the blood-brain barrier. Indeed, an increasing number of investigations have examined the roles of specific miRNAs following injury and regeneration and it is apparent that this field of research could potentially identify protective therapeutic strategies to ameliorate perinatal brain injury. In this review, we discuss the most recent findings of some important miRNAs in relation to the development of the brain, their dysregulation, functions and regulatory roles following brain injury, and discuss how these can be targeted either as biomarkers of injury or neuroprotective agents.
Collapse
Affiliation(s)
- Kenta Hyeon Tae Cho
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Bing Xu
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Departments of Molecular Medicine and Pathology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Department of Physiology, Faculty of Medical Health and Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
80
|
Oh KJ, Hong JS, Romero R, Yoon BH. The frequency and clinical significance of intra-amniotic inflammation in twin pregnancies with preterm labor and intact membranes. J Matern Fetal Neonatal Med 2019; 32:527-541. [PMID: 29020827 PMCID: PMC5899042 DOI: 10.1080/14767058.2017.1384460] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The objective of this study is to evaluate the frequency and clinical significance of intra-amniotic inflammation in twin pregnancies with preterm labor and intact membranes. STUDY DESIGN Amniotic fluid (AF) was retrieved from both sacs in 90 twin gestations with preterm labor and intact membranes (gestational age between 20 and 34 6/7 weeks). Preterm labor was defined as the presence of painful regular uterine contractions, with a frequency of at least 2 every 10 min, requiring hospitalization. Fluid was cultured and assayed for matrix metalloproteinase-8. Intra-amniotic inflammation was defined as an AF matrix metalloproteinase-8 concentration >23 ng/mL. RESULTS The prevalence of intra-amniotic inflammation for at least 1 amniotic sac was 39% (35/90), while that of proven intra-amniotic infection for at least one amniotic sac was 10% (9/90). Intra-amniotic inflammation without proven microbial invasion of the amniotic cavity was found in 29% (26/90) of the cases. Intra-amniotic inflammation was present in both amniotic sacs for 22 cases, in the presenting amniotic sac for 12 cases, and in the non-presenting amniotic sac for one case. Women with intra-amniotic inflammation observed in at least one amniotic sac and a negative AF culture for microorganisms had a significantly higher rate of adverse pregnancy outcome than those with a negative AF culture and without intra-amniotic inflammation (lower gestational age at birth, shorter amniocentesis-to-delivery interval, and significant neonatal morbidity). Importantly, there was no significant difference in pregnancy outcome between women with intra-amniotic inflammation and a negative AF culture and those with a positive AF culture. CONCLUSION Intra-amniotic inflammation is present in 39% of twin pregnancies with preterm labor and intact membranes and is a risk factor for impending preterm delivery and adverse outcome, regardless of the presence or absence of bacteria detected using cultivation techniques.
Collapse
Affiliation(s)
- Kyung Joon Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Joon-Seok Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
81
|
Abstract
Despite notable advances in the care and survival of preterm infants, a significant proportion of preterm neonates will have life-long cognitive, behavioral, and motor deficits, and robustly effective neuroprotective strategies are still missing. These therapies must target the pathophysiologic mechanisms observed in contemporaneous infants and rely on modern epidemiology, imaging, and experimental models and assessment techniques. Two drugs, magnesium sulfate and caffeine, are already in use in several units, and although their targets are apnea of prematurity and myometrial contractility (respectively), they do offer improved odds of positive outcomes. Nevertheless, these drugs have limited efficacy, and NICU-to-NICU administration varies greatly. As such, there is an obvious need for additional specific neurotherapeutic strategies to further enhance the outcome of this very fragile population of neonates. The chapter reviews these issues, highlights bottlenecks that need to be solved for meaningful progress in the field, and proposes future innovative avenues for intervention, including delayed interventions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom.
| |
Collapse
|
82
|
Glass R, Norton S, Fox N, Kusnecov AW. Maternal immune activation with staphylococcal enterotoxin A produces unique behavioral changes in C57BL/6 mouse offspring. Brain Behav Immun 2019; 75:12-25. [PMID: 29772261 DOI: 10.1016/j.bbi.2018.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/25/2022] Open
Abstract
Stimulation of the immune system during pregnancy, known as maternal immune activation (MIA), can cause long-lasting neurobiological and behavioral changes in the offspring. This phenomenon has been implicated in the etiology of developmental psychiatric disorders, such as autism and schizophrenia. Much of this evidence is predicated on animal models using bacterial agents such as LPS and/or viral mimics such as Poly I:C, both of which act through toll-like receptors. However, fewer studies have examined the role of direct activation of maternal T-cells during pregnancy using microbial agents. Bacterial superantigens, such as Staphylococcal Enterotoxin A and B (SEA; SEB), are microbial proteins that activate CD4+ T-cells and cause prominent T-cell proliferation and cytokine production. We injected pregnant and non-pregnant adult female C57BL/6 mice with 200 μg/Kg of SEA, SEB, or 0.9% saline, and measured splenic T-cell-derived cytokine concentrations (viz., IL-2, IFN-γ, IL-6, and IL-4) 2 h later; animals injected with SEA were also measured for splenic concentrations of TNF-α and IL-17A. Half of the injected pregnant animals were brought to term, and their offspring were tested on a series of behavioral tasks starting at six weeks of age (postnatal day 42 [P42]). These tasks included social interaction, the elevated plus maze (EPM), an open field and object recognition (OR) task, prepulse inhibition (PPI) of sensorimotor gating, and the Morris water maze (MWM). Results showed that SEA and SEB induced significant concentrations of all measured cytokines, and in particular IFN-γ, although cytokine responses were greater following SEA exposure. In addition, pregnancy induced an inhibitory effect on cytokine production. Behavioral results showed distinct phenotypes among offspring from SEA- or SEB-injected mothers, very likely due to differences in the magnitude of cytokines generated in response to each toxin. Offspring from SEA-injected mothers displayed modest decreases in social behavior, but increased anxiety, locomotion, interest in a novel object, and short-term spatial memory, while offspring of SEB-injected mothers only exhibited increased anxiety and locomotion. There were no deficits in PPI, which was actually pronounced in SEA and SEB offspring. Overall, the novel use of SEA and SEB as prenatal immune challenges elicited distinct behavioral profiles in the offspring that both mirrors and diverges from previous models of maternal immune activation in important ways. We conclude that superantigen-induced T-cell-mediated maternal immune activation is a valid and valuable model for studying and expanding our understanding of the effects of prenatal immune challenge on neurodevelopmental and behavioral alterations in offspring.
Collapse
Affiliation(s)
- Ruthy Glass
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| | - Sara Norton
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Nicholas Fox
- Rutgers University, 152 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | | |
Collapse
|
83
|
Zonnenberg IA, van Dijk-Lokkart EM, van den Dungen FAM, Vermeulen RJ, van Weissenbruch MM. Neurodevelopmental outcome at 2 years of age in preterm infants with late-onset sepsis. Eur J Pediatr 2019; 178:673-680. [PMID: 30778747 PMCID: PMC6459788 DOI: 10.1007/s00431-019-03339-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/11/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Late-onset sepsis is associated with impaired neurodevelopmental outcome in preterm infants. This prospective cohort study aims to establish the effect of sepsis after 72 h of life on cognitive, psychomotor, and language development of preterm infants (below 32 weeks gestational age and/or below 1500 g). At 2 years corrected age, neurodevelopmental outcome was tested using Bayley's Scales of Infant Development-II, Lexilijst (lexical development questionnaire), and behavior checklists. Of 117 patients included, 85 experienced blood culture-proven infection. Coagulase-negative staphylococci were responsible for 55% of the episodes. No significant differences were found in cognitive, motor, and behavioral scores or lexiquotient comparing patients with versus no proven infection. When comparing three groups (coagulase-negative staphylococci, other, and negative blood culture), a significant difference was found in composite cognitive scores (p = 0.016), in favor of the coagulase-negative staphylococci group versus other causal agent group (p = 0.007). No significant differences were found in other subscales.Conclusion: In this cohort, no differences were found in neurodevelopmental outcome at 2 years corrected age between proven and no proven infection groups; confirmation in larger cohorts with a control group is needed. Patients encountering coagulase-negative staphylococci sepsis showed a significant better cognitive outcome compared to other causal agents. What is Known: • Late-onset sepsis is associated with impaired neurodevelopmental outcome in preterm infants. What is New: • Preterm infants encountering late-onset sepsis by coagulase-negative staphylococci show a better cognitive outcome in comparison to other causal infectious agents in this cohort. • No differences were found in neurodevelopment at 2 years of age in preterm infants with suspected lateonset sepsis, between proven and no proven infection groups. Confirmation is needed in larger cohorts with a substantial control group.
Collapse
Affiliation(s)
- I. A. Zonnenberg
- Department of Neonatology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - E. M. van Dijk-Lokkart
- Department of Medical Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - F. A. M. van den Dungen
- Department of Neonatology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - R. J. Vermeulen
- Department of Child Neurology, Neuroscience Campus Amsterdam, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands ,Present Address: Child Neurology, Department of Neurology, MUMC+, Maastricht, The Netherlands
| | - M. M. van Weissenbruch
- Department of Neonatology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
84
|
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019; 44:59-70. [PMID: 30030541 PMCID: PMC6235859 DOI: 10.1038/s41386-018-0146-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Major depressive disorder topped ischemic heart disease as the number one cause of disability worldwide in 2012, and women have twice the risk of men. Further, the comorbidity of depression and cardiometabolic disorders will be one of the primary causes of disability worldwide by 2020, with women at twice the risk. Thus, understanding the sex-dependent comorbidities has public health consequences worldwide. We propose here that sex differences in MDD-cardiometabolic comorbidity originate, in part, from pathogenic processes initiated in fetal development that involve sex differences in shared pathophysiology between the brain, the vascular system, the CNS control of the heart and associated hormonal, immune, and metabolic physiology. Pathways implicate neurotrophic and angiogenic growth factors, gonadal hormone receptors, and neurotransmitters such as gamma amino butyric acid (GABA) on neuronal and vascular development of HPA axis regions, such as the paraventricular nucleus (PVN), in addition to blood pressure, in part through the renin-angiotensin system, and insulin and glucose metabolism. We show that the same prenatal exposures have consequences for sex differences across multiple organ systems that, in part, share common pathophysiology. Thus, we believe that applying a sex differences lens to understanding shared biologic substrates underlying these comorbidities will provide novel insights into the development of sex-dependent therapeutics. Further, taking a lifespan perspective beginning in fetal development provides the opportunity to target abnormalities early in the natural history of these disorders in a sex-dependent way.
Collapse
Affiliation(s)
- Jill M Goldstein
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital (MGH), Boston, MA, 02120, USA.
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | - Taben Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School, at Massachusetts General Hospital, Boston, MA, USA
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert J Handa
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
85
|
Arita Y, Jeong Park H, Cantillon A, Verma K, Menon R, Getahun D, Peltier MR. Pro- and anti-inflammatory effects of sulforaphane on placental cytokine production. J Reprod Immunol 2018; 131:44-49. [PMID: 30641297 DOI: 10.1016/j.jri.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
Abstract
Placental inflammation increases the risk of adverse pregnancy outcomes and possibly neurodevelopmental disorders in the offspring. Previous research suggests it may be possible to modulate the placental immune response to bacteria to favor an anti-inflammatory phenotype with dietary factors. Sulforaphane (SFN) is a dietary supplement with known anti-inflammatory activities, however, its effects on placental cytokine production are unclear. Therefore, we evaluated the effects of SFN on biomarkers of inflammation and neurodevelopment under basal conditions and a setting of mild infection. Placental explant cultures were established and treated with up to 10 μM SFN in the presence and absence of 107 CFU/ml heat-killed E. coli. Concentrations of IL-1β, TNF-α, IL-6, sgp130, HO-1 and BDNF in conditioned medium were quantified by immunoassay. SFN increased antioxidant HO-1 expression in the absence, but not the presence, of infection. SFN inhibited IL-1β and IL-10, but tended to promote, TNF-α production by bacteria-stimulated cultures. IL-6 and BDNF were inhibited by SFN irrespective of co-treatment with E.coli. A negative regulator of IL-6 signaling, sgp130, was increased by SFN under basal conditions, but not in E. coli-stimulated cultures. These results suggest that SFN has mixed effects on the placenta inhibiting both pro-inflammatory (IL-1β) and anti-inflammatory factors (IL-10) but promoting regulators of oxidative stress and inflammation (HO-1 and sgp130) in an infection-dependent manner.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Hyeon Jeong Park
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Aisling Cantillon
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Kavita Verma
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, United States
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permenante Southern California, Pasadena, CA, United States
| | - Morgan R Peltier
- Department of Biomedical Research, Winthrop University Hospital, Mineola, NY, United States; Department of Obstetrics and Gynecology, Winthrop University Hospital, Mineola, NY, United States.
| |
Collapse
|
86
|
Tulina NM, Brown AG, Barila GO, Elovitz MA. The Absence of TLR4 Prevents Fetal Brain Injury in the Setting of Intrauterine Inflammation. Reprod Sci 2018; 26:1082-1093. [PMID: 30463495 DOI: 10.1177/1933719118805859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Exposure to intrauterine inflammation during pregnancy is linked to brain injury and neurobehavioral disorders in affected children. Innate immunity, specifically Toll-like receptor (TLR) signaling pathways are present throughout the reproductive tract as well as in the placenta, fetal membranes, and fetus. The TLR pathways are mechanistically involved in host responses to foreign pathogens and may lead to brain injury associated with prenatal inflammation. OBJECTIVE We aimed to determine whether the activation of the TLR4 signaling pathway, in the mother and fetus, is critical to fetal brain injury in the setting of intrauterine inflammation. METHODS A mini-laparotomy was performed on time pregnant C57B6 mice and 2 knockout mouse strains lacking the function of the Tlr4 and Myd88 genes on embryonic day 15. Intrauterine injections of Escherichia coli lipopolysaccharide or saline were administered as described previously. Dams were killed 6 hours postsurgery, and placental, amniotic fluid, and fetal brain tissue were collected. To assess brain injury, quantitative polymerase chain reaction (qPCR) analysis was performed on multiple components of the NOTCH signaling pathway, including Hes genes. Interleukin (IL) IL6, IL1β, and CCL5 expression was assessed using qPCR and enzyme-linked immunosorbent assay. RESULTS Using an established mouse model of intrauterine inflammation, we demonstrate that the abrogation of TLR4 signaling eliminates the cytokine response in mother and fetus and prevents brain injury associated with increased expression of transcriptional effectors of the NOTCH signaling pathway, Hes1 and Hes5. CONCLUSIONS These data show that the activation of the TLR4 signaling pathway is necessary for the development of fetal brain injury in response to intrauterine inflammation.
Collapse
Affiliation(s)
- Natalia M Tulina
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy G Brown
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillermo O Barila
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michal A Elovitz
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
87
|
Labrousse VF, Leyrolle Q, Amadieu C, Aubert A, Sere A, Coutureau E, Grégoire S, Bretillon L, Pallet V, Gressens P, Joffre C, Nadjar A, Layé S. Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation. Brain Behav Immun 2018; 73:427-440. [PMID: 29879442 DOI: 10.1016/j.bbi.2018.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/03/2023] Open
Abstract
Maternal immune activation (MIA) is a common environmental insult on the developing brain and represents a risk factor for neurodevelopmental disorders. Animal models of in utero inflammation further revealed a causal link between maternal inflammatory activation during pregnancy and behavioural impairment relevant to neurodevelopmental disorders in the offspring. Accumulating evidence point out that proinflammatory cytokines produced both in the maternal and fetal compartments are responsible for social, cognitive and emotional behavioral deficits in the offspring. Polyunsaturated fatty acids (PUFAs) are essential fatty acids with potent immunomodulatory activities. PUFAs and their bioactive derivatives can promote or inhibit many aspects of the immune and inflammatory response. PUFAs of the n-3 series ('n-3 PUFAs', also known as omega-3) exhibit anti-inflammatory/pro-resolution properties and promote immune functions, while PUFAs of the n-6 series ('n-6 PUFAs' or omega-6) favor pro-inflammatory responses. The present study aimed at providing insight into the effects of n-3 PUFAs on the consequences of MIA on brain development. We hypothesized that a reduction in n-3 PUFAs exacerbates both maternal and fetal inflammatory responses to MIA and later-life defects in memory in the offspring. Based on a lipopolysaccharide (LPS) model of MIA (LPS injection at embryonic day 17), we showed that n-3 PUFA deficiency 1) alters fatty acid composition of the fetal and adult offspring brain; 2) exacerbates maternal and fetal inflammatory processes with no significant alteration of microglia phenotype, and 3) induces spatial memory deficits in the adult offspring. We also showed a strong negative correlation between brain content in n-3 PUFA and cytokine production in MIA-exposed fetuses. Overall, our study is the first to address the deleterious effects of n-3 PUFA deficiency on brain lipid composition, inflammation and memory performances in MIA-exposed animals and indicates that it should be considered as a potent environmental risk factor for the apparition of neurodevelopmental disorders.
Collapse
Affiliation(s)
- V F Labrousse
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France
| | - C Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Sere
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - E Coutureau
- Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Uité Mixte de Recherche 5287, 33076 Bordeaux, France; Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, 33076 Bordeaux, France
| | - S Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - V Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - P Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
88
|
Han Y, Zhao T, Cheng X, Zhao M, Gong SH, Zhao YQ, Wu HT, Fan M, Zhu LL. Cortical Inflammation is Increased in a DSS-Induced Colitis Mouse Model. Neurosci Bull 2018; 34:1058-1066. [PMID: 30225764 DOI: 10.1007/s12264-018-0288-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
While inflammatory bowel disease (IBD) might be a risk factor in the development of brain dysfunctions, the underlying mechanisms are largely unknown. Here, mice were treated with 5% dextran sodium sulfate (DSS) in drinking water and sacrificed on day 7. The serum level of IL-6 increased, accompanied by elevation of the IL-6 and TNF-α levels in cortical tissue. However, the endotoxin concentration in plasma and brain of mice with DSS-induced colitis showed a rising trend, but with no significant difference. We also found significant activation of microglial cells and reduction in occludin and claudin-5 expression in the brain tissue after DSS-induced colitis. These results suggested that DSS-induced colitis increases systemic inflammation which then results in cortical inflammation via up-regulation of serum cytokines. Here, we provide new information on the impact of colitis on the outcomes of cortical inflammation.
Collapse
Affiliation(s)
- Ying Han
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute of Brain Disorders, Beijing, 100069, China.,Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Tong Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiang Cheng
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ming Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Sheng-Hui Gong
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yong-Qi Zhao
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Hai-Tao Wu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ming Fan
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute of Brain Disorders, Beijing, 100069, China. .,Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Ling-Ling Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
89
|
Preventing childhood and lifelong disability: Maternal dietary supplementation for perinatal brain injury. Pharmacol Res 2018; 139:228-242. [PMID: 30227261 DOI: 10.1016/j.phrs.2018.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/29/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
The majority of brain injuries that lead to cerebral palsy, developmental disability, and mental health disorders have their onset in utero. These lifelong conditions come with great economic and emotional burden as they impact function in nearly all domains of affected individuals' lives. Unfortunately, current therapeutic options are limited. There remains a focus on rescue, rehabilitation, and regeneration after the injury has occurred, rather than aiming to prevent the initial injury. Prevention would imply treating the mother during pregnancy to alter the fetal environment and in turn, treat the fetus. Fear of harming the developing fetus remains as a result of errors of the past such as the release of thalidomide. In this review, we outline evidence from animal studies and clinical trials that have explored maternal dietary supplementation with natural health products (including nutraceuticals and functional foods) for perinatal brain injury prevention. Namely, we discuss magnesium sulphate, creatine, choline, melatonin, resveratrol and broccoli sprouts/sulforaphane. Although clinical trials have only been completed in this realm for magnesium sulphate, results in animal models have been promising, suggesting that this is a productive avenue for further research. Natural health products may provide safe, effective, affordable, and easily accessible prevention of fetal brain injury and resulting lifelong disabilities.
Collapse
|
90
|
Ellery SJ, Kelleher M, Grigsby P, Burd I, Derks JB, Hirst J, Miller SL, Sherman LS, Tolcos M, Walker DW. Antenatal prevention of cerebral palsy and childhood disability: is the impossible possible? J Physiol 2018; 596:5593-5609. [PMID: 29928763 DOI: 10.1113/jp275595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Meredith Kelleher
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Peta Grigsby
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jan B Derks
- Department of Perinatal Medicine University Medical Center Utrecht, The Netherlands, Gynaecology, Monash University, Melbourne, Australia
| | - Jon Hirst
- University of Newcastle, Newcastle, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
91
|
Ghassabian A, Sundaram R, Chahal N, McLain AC, Bell EM, Lawrence DA, Gilman SE, Yeung EH. Concentrations of immune marker in newborn dried blood spots and early childhood development: Results from the Upstate KIDS Study. Paediatr Perinat Epidemiol 2018; 32:337-345. [PMID: 29972605 PMCID: PMC6763275 DOI: 10.1111/ppe.12485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence shows cytokine dysregulation in children with developmental disabilities. The association between immune activity during the perinatal period and child development is less clear. METHODS We examined the relationship between newborn concentrations of immune markers and child development. Within Upstate KIDS, a population-based birth cohort (2008-2010, upstate New York), we assayed immune markers, which are postulated to have neuro-modulatory effects, in newborn dried blood spots (NDBS, n = 3038). Mothers completed the Ages & Stages Questionnaire© (ASQ) for their children repeatedly through age 36 months. At 30 and 36 months, mothers also reported whether their children received any developmental services. We used generalised linear mixed models adjusted for maternal and child characteristics to test associations. RESULTS Sixteen immune markers were associated with failing ASQ in unadjusted models. After full adjustment (for gestational age, mode of delivery, parity, pregnancy smoking, etc.), we observed that higher levels of 4 markers, including platelet-derived growth factor-AA (PDGF-AA, OR 0.77, 95% CI 0.67, 0.89), plasminogen activator inhibitor-1 (OR 0.80, 95% CI 0.68, 0.94), stromal cell derived factor-1 (OR 0.85, 95% CI 0.73, 0.98), and macrophage inflammatory protein-1beta (OR 0.87, 95% CI 0.77, 0.98) were associated with lower odds of ASQ failure. The associations did not exist if correction for multiple comparisons was performed, except for PDGF-AA. Analyses with developmental service use revealed similar null findings. CONCLUSIONS Immune marker concentrations in NDBS may not be associated with developmental delay in the general population. Newborn concentrations of growth factor PDGF-AA may be protective of developmental delay in childhood.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics, Environmental Medicine, and
Population Health, New York University School of Medicine, New York, NY,Epidemiology Branch, Division of Intramural Population
Health Research, Eunice Kennedy Shriver National Institute of Child
Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Rajeshwari Sundaram
- Biostatistics and Bioinformatics Branch, Division of
Intramural Population Health Research, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health, Bethesda, MD
| | - Nikhita Chahal
- Epidemiology Branch, Division of Intramural Population
Health Research, Eunice Kennedy Shriver National Institute of Child
Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Alexander C McLain
- Department of Epidemiology and Biostatistics, Arnold
School of Public Health, University of South Carolina, SC
| | - Erin M. Bell
- Department of Environmental Health Sciences,Department of Epidemiology and Biostatistics, University
at Albany School of Public Health, Albany, NY
| | - David A Lawrence
- Department of Environmental Health Sciences,Wadsworth Center, New York State Department of Health,
Albany, NY
| | - Stephen E. Gilman
- Health Behavior Branch, Division of Intramural Population
Health Research, Eunice Kennedy Shriver National Institute of Child
Health and Human Development, National Institutes of Health, Bethesda, MD,Department of Mental Health, The Johns Hopkins Bloomberg
School of Public Health, Baltimore, MD
| | - Edwina H Yeung
- Epidemiology Branch, Division of Intramural Population
Health Research, Eunice Kennedy Shriver National Institute of Child
Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
92
|
Tsimis ME, Lei J, Rosenzweig JM, Arif H, Shabi Y, Alshehri W, Talbot CC, Baig-Ward KM, Segars J, Graham EM, Burd I. P2X7 receptor blockade prevents preterm birth and perinatal brain injury in a mouse model of intrauterine inflammation. Biol Reprod 2018; 97:230-239. [PMID: 29044426 DOI: 10.1093/biolre/iox081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/25/2017] [Indexed: 01/02/2023] Open
Abstract
The P2X7 is an adenosine triphosphate (ATP)-gated ion channel involved in several facets of immune activation and neuronal function through its importance in interleukin (IL)-1β secretion. We hypothesized that blockade of P2X7 would prevent perinatal brain injury associated with exposure to intrauterine (IU) inflammation. Dams received 45 mg/kg of Brilliant Blue G (BBG), a specific P2X7 receptor (P2X7R) antagonist, on gestation day 17 (E17) prior to administration of lipopolysaccharide (LPS) or phosphate-buffered saline (PBS). Furthermore, we utilized embryo transfer experiments to delineate whether the P2X7 was the key mediator of IU inflammation-associated brain injury on maternal or fetal sides. In these experiments, P2X7-/- dams were embryo-transferred wild type embryos and wild type dams were embryo-transferred P2X7-/- embryos. In the mouse model of intrauterine inflammation, pharmacologic blockade of P2X7R reduced preterm birth rate, improved offspring performance on neuromotor tests as well as the dendritic arborization and density of cortical neurons. Embryo transfer experiments demonstrated the importance of maternal P2X7R in IU inflammation-mediated effects on offspring. Both genetic and pharmacologic blockade of IL-1β signaling, by targeting maternal P2X7R, ameliorated perinatal brain injury following exposure to IU inflammation. Specific targeting of maternal P2X7R may provide a clinically useful tool to prevent both preterm birth and prematurity-associated perinatal brain injury, and further studies are urgently needed.
Collapse
Affiliation(s)
- Michael E Tsimis
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason M Rosenzweig
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hattan Arif
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yahya Shabi
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wael Alshehri
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Connie C Talbot
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Maravet Baig-Ward
- Department of Gynecology and Obstetrics, Division of Reproductive Science and Women's Health Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Science and Women's Health Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M Graham
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
93
|
Boskabadi H, Moradi A, Zakerihamidi M. Interleukins in diagnosis of perinatal asphyxia: A systematic review. Int J Reprod Biomed 2018; 17. [PMID: 31435616 PMCID: PMC6653496 DOI: 10.18502/ijrm.v17i5.4598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/25/2018] [Accepted: 09/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Biochemical markers including interleukins (ILs) has been proposed for early diagnosis of asphyxia. Objective This study has aimed to systematically review the significance of IL measurements in the diagnosis of perinatal asphyxia. Materials and Methods PubMed, Cochrane Library, Web of Science, Embase, and Scopus databases before 2017 were searched for the following keywords: asphyxia, neonatal, interleukin, and diagnosis. A total of 13 out of 300 searched papers were finally selected for evaluation. Interleukins under study were IL6 and interleukin 1 β (IL-1 β ). Interleukins had been measured in 10 studies by serum samples, 2 studies by samples of Cerebro Spinal Fluid (CSF), and 1 study by sample of umbilical cord blood. The inclusion criteria were: studies on neonates, with adequate information from the test results and studies using markers other than ILs to detect asphyxia; however, studies with only abstracts available were excluded. Results Research on the issue suggests that IL6 > 41 Pg/dl has the sensitivity of 84.88% and the specificity of 85.43%, whereas IL-1 β > 4.7 Pg/dl has the sensitivity of 78% and specificity of 83% in the diagnosis of neonatal asphyxia. Among diagnostic ILs for neonatal asphyxia, combination of IL6 and IL-1 β had the highest sensitivity, that is, 92.9%. Conclusion IL6 and IL-1 β of serum samples were used in the early diagnosis of perinatal asphyxia and are useful predictors for the outcomes of perinatal asphyxia and its intensity. In addition, simultaneous evaluation of IL-1 β and IL6 can improve the sensitivity of the early diagnosis of perinatal asphyxia.
Collapse
Affiliation(s)
- Hassan Boskabadi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Zakerihamidi
- Department of Midwifery, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| |
Collapse
|
94
|
Disdier C, Chen X, Kim JE, Threlkeld SW, Stonestreet BS. Anti-Cytokine Therapy to Attenuate Ischemic-Reperfusion Associated Brain Injury in the Perinatal Period. Brain Sci 2018; 8:E101. [PMID: 29875342 PMCID: PMC6025309 DOI: 10.3390/brainsci8060101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022] Open
Abstract
Perinatal brain injury is a major cause of morbidity and long-standing disability in newborns. Hypothermia is the only therapy approved to attenuate brain injury in the newborn. However, this treatment is unfortunately only partially neuroprotective and can only be used to treat hypoxic-ischemic encephalopathy in full term infants. Therefore, there is an urgent need for adjunctive therapeutic strategies. Post-ischemic neuro-inflammation is a crucial contributor to the evolution of brain injury in neonates and constitutes a promising therapeutic target. Recently, we demonstrated encouraging neuroprotective capacities of anti-cytokine monoclonal antibodies (mAbs) in an ischemic-reperfusion (I/R) model of brain injury in the ovine fetus. The purpose of this review is to summarize the current knowledge regarding the inflammatory response in the perinatal sheep brain after I/R injury and to review our recent findings regarding the beneficial effects of treatment with anti-cytokine mAbs.
Collapse
Affiliation(s)
- Clémence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| | - Jeong-Eun Kim
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| | | | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| |
Collapse
|
95
|
Mandelbaum DE, Arsenault A, Stonestreet BS, Kostadinov S, de la Monte SM. Neuroinflammation-Related Encephalopathy in an Infant Born Preterm Following Exposure to Maternal Diabetic Ketoacidosis. J Pediatr 2018; 197:286-291.e2. [PMID: 29555093 PMCID: PMC6091875 DOI: 10.1016/j.jpeds.2018.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/30/2022]
Abstract
A pregnant woman with new-onset type 1 diabetes and ketoacidosis delivered an infant at 28 weeks of gestation who died with multiple organ failure and severe cerebral vasculopathy with extensive hemorrhage, diffuse microgliosis, and edema. This illustrates that antenatal metabolic and inflammatory stressors may be associated with neonatal encephalopathy and cerebral hemorrhage.
Collapse
Affiliation(s)
- David E Mandelbaum
- Alpert Medical School of Brown University, Providence, RI; Department of Neurology, Hasbro Children's Hospital, Providence, RI; Department of Pediatrics, Hasbro Children's Hospital, Providence, RI
| | - Amanda Arsenault
- Alpert Medical School of Brown University, Providence, RI; Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI
| | - Barbara S Stonestreet
- Alpert Medical School of Brown University, Providence, RI; Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI
| | - Stefan Kostadinov
- Alpert Medical School of Brown University, Providence, RI; Department of Pathology at the Women and Infants Hospital of Rhode Island, Providence, RI
| | - Suzanne M de la Monte
- Alpert Medical School of Brown University, Providence, RI; Division of Neuropathology, Rhode Island Hospital, Providence, RI; Department of Pathology, Rhode Island Hospital, Providence, RI; Department of Neurology, Rhode Island Hospital, Providence, RI; Department of Neurosurgery, Rhode Island Hospital, Providence, RI.
| |
Collapse
|
96
|
Maternal body mass index and risk of intraventricular hemorrhage in preterm infants. Pediatr Res 2018; 83:1146-1151. [PMID: 29624572 DOI: 10.1038/pr.2018.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
BackgroundIntraventricular hemorrhage (IVH) and pre-pregnancy obesity and underweight have been linked to inflammatory states. We hypothesize that IVH in preterm infants is associated with pre-pregnancy obesity and underweight due to an inflammatory intrauterine environment.MethodsPopulation-based study of infants born between 22 and 32 weeks' gestation from 2007 to 2011. Data were extracted from vital statistics and the California Perinatal Quality Care Collaborative. Results were examined for all cases (any IVH) and for severe IVH.ResultsAmong 20,927 infants, 4,818 (23%) had any IVH and 1,514 (7%) had severe IVH. After adjustment for confounders, there was an increased risk of IVH associated with pre-pregnancy obesity, relative risk 1.14 (95% confidence interval (CI) 1.06, 1.32) for any IVH, and 1.25 (85% CI 1.10, 1.42) for severe IVH. The direct effect of pre-pregnancy obesity on any IVH was significant (P<0.001) after controlling for antenatal inflammation-related conditions, but was not significant after controlling for gestational age (P=0.56).ConclusionPre-pregnancy obesity was found to be a risk factor for IVH in preterm infants; however, this relationship appeared to be largely mediated through the effect of BMI on gestational age at delivery. The etiology of IVH is complex and it is important to understand the contributing maternal factors.
Collapse
|
97
|
Abel K, Heuvelman H, Wicks S, Rai D, Emsley R, Gardner R, Dalman C. Gestational age at birth and academic performance: population-based cohort study. Int J Epidemiol 2018; 46:324-335. [PMID: 27818373 DOI: 10.1093/ije/dyw284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
Background Numerous studies suggest pre-term birth is associated with cognitive deficit. However, less is known about cognitive outcomes following post-term birth, or the influence of weight variations within term or post-term populations. We examined associations between gestational age (GA) and school performance, by weight-for-GA, focusing on extremely pre- and post-term births. Method Record linkage study of Swedish children born 1973-94 ( n = 2 008 102) with a nested sibling comparison ( n = 439 629). We used restricted cubic regression splines to examine associations between GA and the grade achieved on leaving secondary education, comparing siblings to allow stronger causal inference with regard to associations between GA and school performance. Results Grade averages of both pre- and post-term children were below those of full-term counterparts and lower for those born small-for-GA. The adjusted grades of extremely pre-term children (at 24 completed weeks), while improving in later study periods, were lower by 0.43 standard deviations (95% confidence interval 0.38-0.49), corresponding with a 21-point reduction (19 to 24) on a 240-point scale. Reductions for extremely post-term children (at 45 completed weeks) were lesser [-0.15 standard deviation (-0.17 to -0.13) or -8 points (-9 to -7)]. Among matched siblings, we observed weaker residual effects of pre-term and post-term GA on school performance. Conclusions There may be independent effects of fetal maturation and fetal growth on school performance. Associations among matched siblings, although attenuated, remained consistent with causal effects of pre- and post-term birth on school performance.
Collapse
Affiliation(s)
- Kathryn Abel
- Centre for Women's Mental Health, Manchester Academic Health Sciences Centre, Institute of Brain Behaviour and Mental Health, University of Manchester, Manchester, UK.,Manchester Mental Health & Social Care Trust, Manchester, UK
| | - Hein Heuvelman
- Centre for Women's Mental Health, Manchester Academic Health Sciences Centre, Institute of Brain Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Susanne Wicks
- Public Health Epidemiology Research Group, Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden.,Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Dheeraj Rai
- Centre for Academic Mental Health, School of Social and Community Medicine, University of Bristol, Bristol, UK.,Avon & Wiltshire Mental Health Partnership NHS Trust, Chippenham, UK
| | - Richard Emsley
- Centre for Biostatistics, Institute of Population Health, University of Manchester, Manchester, UK
| | - Renee Gardner
- Public Health Epidemiology Research Group, Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| | - Christina Dalman
- Public Health Epidemiology Research Group, Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden.,Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
98
|
Hester MS, Tulina N, Brown A, Barila G, Elovitz MA. Intrauterine inflammation reduces postnatal neurogenesis in the hippocampal subgranular zone and leads to accumulation of hilar ectopic granule cells. Brain Res 2018; 1685:51-59. [PMID: 29448014 PMCID: PMC5880291 DOI: 10.1016/j.brainres.2018.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 01/09/2023]
Abstract
Prenatal inflammation is associated with poor neurobehavioral outcomes in exposed offspring. A common route of exposure for the fetus is intrauterine infection, which is often associated with preterm birth. Hippocampal development may be particularly vulnerable to an inflammatory insult during pregnancy as this region remains highly neurogenic both prenatally and postnatally. These studies sought to determine if intrauterine inflammation specifically altered hippocampal neurogenesis and migration of newly produced granule neurons during the early postnatal period. Microglial and astroglial cell populations known to play a role in the regulation of postnatal neurogenesis were also examined. We show that intrauterine inflammation significantly reduced hippocampal neurogenesis between postnatal days 7 (P7) and P14 as well as decreased granule cell density at P28. Ectopic migration of granule cells was observed in LPS-exposed mice at P14, but not at P28. Intrauterine inflammation had no effect on hippocampal astrocyte or microglia density or on apoptosis rate at the postnatal time points examined. Thus, exposure to intrauterine inflammation disrupts early postnatal neurogenesis and leads to aberrant migration of newly born granule cells.
Collapse
Affiliation(s)
- Michael S Hester
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Tulina
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Amy Brown
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guillermo Barila
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
99
|
Bennet L, Dhillon S, Lear CA, van den Heuij L, King V, Dean JM, Wassink G, Davidson JO, Gunn AJ. Chronic inflammation and impaired development of the preterm brain. J Reprod Immunol 2018; 125:45-55. [DOI: 10.1016/j.jri.2017.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
|
100
|
Horinouchi T, Yoshizato T, Kozuma Y, Shinagawa T, Muto M, Yamasaki T, Hori D, Ushijima K. Prediction of histological chorioamnionitis and neonatal and infantile outcomes using procalcitonin in the umbilical cord blood and amniotic fluid at birth. J Obstet Gynaecol Res 2018; 44:630-636. [PMID: 29315994 PMCID: PMC6618277 DOI: 10.1111/jog.13573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Abstract
Aim We aimed to clarify the usefulness of procalcitonin (PCT) in the evaluation of histological chorioamnionitis (CAM) and in the prediction of neonatal and infantile outcomes as a reference of interleukin‐6 (IL‐6). Methods Subjects were 36 singleton pregnant women delivered at 22–37 weeks’ gestation due to threatened premature delivery and/or preterm premature rupture of membranes. Cases were classified into the CAM and non‐CAM groups, according to Blanc's criteria. Comparisons were made on umbilical venous and amniotic fluid PCT levels among the groups. The relations between umbilical venous PCT and IL‐6 levels and neonatal and infantile outcomes were also analyzed. Results The umbilical venous PCT level in the CAM group (240.2 pg/mL, 125.4–350.3 pg/mL: median, first quartile–third quartile) was higher than that in the non‐CAM group (105.1, 50.2–137.5 pg/mL; P = 0.0006). There were no differences in the amniotic fluid PCT levels between the groups. There was a strong correlation between umbilical venous PCT and IL‐6 levels (correlation coefficient: 0.793). Among 10 cases with an umbilical venous PCT level of ≥170.0 pg/mL and six cases with IL‐6 ≥ 11.0 pg/mL, six (60.0%) and five cases (83.3%), respectively, had adverse neonatal and infantile outcomes. Among seven cases with adverse neonatal and infantile outcomes, six (85.7%) and five (71.4%) cases showed umbilical venous PCT levels of ≥170.0 pg/mL and IL‐6 levels of ≥11.0 pg/mL, respectively. Conclusion Similar to IL‐6, the umbilical venous PCT level is a promising parameter for predicting histological CAM and adverse neonatal and infantile outcomes related to in utero inflammatory status.
Collapse
Affiliation(s)
- Takashi Horinouchi
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| | - Toshiyuki Yoshizato
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| | - Yutaka Kozuma
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| | - Takaaki Shinagawa
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| | - Megumi Muto
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| | - Tsuyoshi Yamasaki
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| | - Daizo Hori
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| | - Kimio Ushijima
- Department of Obstetrics and Gynecology, School of Medicine, Kurume University, Kurume, Japan
| |
Collapse
|