51
|
Lu W, Feng W, Lai J, Yuan D, Xiao W, Li Y. Role of adipokines in sarcopenia. Chin Med J (Engl) 2023; 136:1794-1804. [PMID: 37442757 PMCID: PMC10406092 DOI: 10.1097/cm9.0000000000002255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Sarcopenia is an age-related disease that mainly involves decreases in muscle mass, muscle strength and muscle function. At the same time, the body fat content increases with aging, especially the visceral fat content. Adipose tissue is an endocrine organ that secretes biologically active factors called adipokines, which act on local and distant tissues. Studies have revealed that some adipokines exert regulatory effects on muscle, such as higher serum leptin levels causing a decrease in muscle function and adiponectin inhibits the transcriptional activity of Forkhead box O3 (FoxO3) by activating peroxisome proliferators-activated receptor-γ coactivator -1α (PGC-1α) and sensitizing cells to insulin, thereby repressing atrophy-related genes (atrogin-1 and muscle RING finger 1 [MuRF1]) to prevent the loss of muscle mass. Here, we describe the effects on muscle of adipokines produced by adipose tissue, such as leptin, adiponectin, resistin, mucin and lipocalin-2, and discuss the importance of these adipokines for understanding the development of sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Dongliang Yuan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
52
|
Isidoro CA, Deniset JF. Pericardial Immune Cells and Their Evolving Role in Cardiovascular Pathophysiology. Can J Cardiol 2023; 39:1078-1089. [PMID: 37270165 DOI: 10.1016/j.cjca.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
The pericardium plays several homeostatic roles to support and maintain everyday cardiac function. Recent advances in techniques and experimental models have allowed for further exploration into the cellular contents of the pericardium itself. Of particular interest are the various immune cell populations present in the space within the pericardial fluid and fat. In contrast to immune cells of the comparable pleura, peritoneum and heart, pericardial immune cells appear to be distinct in their function and phenotype. Specifically, recent work has suggested these cells play critical roles in an array of pathophysiological conditions including myocardial infarction, pericarditis, and post-cardiac surgery complications. In this review, we spotlight the pericardial immune cells currently identified in mice and humans, the pathophysiological role of these cells, and the clinical significance of the immunocardiology axis in cardiovascular health.
Collapse
Affiliation(s)
- Carmina Albertine Isidoro
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada; Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
53
|
Cesaro A, De Michele G, Fimiani F, Acerbo V, Scherillo G, Signore G, Rotolo FP, Scialla F, Raucci G, Panico D, Gragnano F, Moscarella E, Scudiero O, Mennitti C, Calabrò P. Visceral adipose tissue and residual cardiovascular risk: a pathological link and new therapeutic options. Front Cardiovasc Med 2023; 10:1187735. [PMID: 37576108 PMCID: PMC10421666 DOI: 10.3389/fcvm.2023.1187735] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity is a heterogeneous disease that affects almost one-third of the global population. A clear association has been established between obesity and cardiovascular disease (CVD). However, CVD risk is known to be related more to the local distribution of fat than to total body fat. Visceral adipose tissue (VAT) in particular has a high impact on CVD risk. This manuscript reviews the role of VAT in residual CV risk and the available therapeutic strategies for decreasing residual CV risk related to VAT accumulation. Among the many pathways involved in residual CV risk, obesity and particularly VAT accumulation play a major role by generating low-grade systemic inflammation, which in turn has a high prognostic impact on all-cause mortality and myocardial infarction. In recent years, many therapeutic approaches have been developed to reduce body weight. Orlistat was shown to reduce both weight and VAT but has low tolerability and many drug-drug interactions. Naltrexone-bupropion combination lowers body weight but has frequent side effects and is contraindicated in patients with uncontrolled hypertension. Liraglutide and semaglutide, glucagon-like peptide 1 (GLP-1) agonists, are the latest drugs approved for the treatment of obesity, and both have been shown to induce significant body weight loss. Liraglutide, semaglutide and other GLP-1 agonists also showed a positive effect on CV outcomes in diabetic patients. In addition, liraglutide showed to specifically reduce VAT and inflammatory biomarkers in obese patients without diabetes. GLP-1 agonists are promising compounds to limit inflammation in human visceral adipocytes.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Gianantonio De Michele
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli “V. Monaldi”, Naples, Italy
| | - Vincenzo Acerbo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Gianmaria Scherillo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Giovanni Signore
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Francesco Paolo Rotolo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Francesco Scialla
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Giuseppe Raucci
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Domenico Panico
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate Franco Salvatore S. C. a R. L., Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Division of Cardiology, A.O.R.N. “Sant'Anna e San Sebastiano”, Caserta, Italy
| |
Collapse
|
54
|
Song MK, Kim JE, Kim JT, Kang YE, Han SJ, Kim SH, Kim HJ, Ku BJ, Lee JH. GDF10 is related to obesity as an adipokine derived from subcutaneous adipose tissue. Front Endocrinol (Lausanne) 2023; 14:1159515. [PMID: 37529611 PMCID: PMC10390302 DOI: 10.3389/fendo.2023.1159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Adipokines are proteins that are secreted by the adipose tissue. Although they are associated with obesity-related metabolic disorders, most studies have focused on adipokines expressed by visceral adipose tissue (VAT). This study aimed to identify the adipokine potentially derived from subcutaneous adipose tissue (SAT) and its clinical significance. Methods Samples of SAT and VAT were obtained from six adult male patients who underwent laparoscopic surgery for benign gall bladder disease. Differentially expressed genes were analyzed by subjecting the samples to RNA sequencing. The serum concentration of selected proteins according to body mass index (BMI) was analyzed in 58 individuals. Results GDF10 showed significantly higher expression in the SAT, as per RNA sequencing (fold change = 5.8, adjusted P value = 0.009). Genes related to insulin response, glucose homeostasis, lipid homeostasis, and fatty acid metabolism were suppressed when GDF10 expression was high in SAT, as per genotype-tissue expression data. The serum GDF10 concentration was higher in participants with BMI ≥ 25 kg/m2 (n = 35, 2674 ± 441 pg/mL) than in those with BMI < 25 kg/m2 (n = 23, 2339 ± 639 pg/mL; P = 0.022). There was a positive correlation between BMI and serum GDF10 concentration (r = 0.308, P = 0.019). Conclusions GDF10 expression was higher in SAT than in VAT. Serum GDF10 concentration was high in patients with obesity. Therefore, GDF10 could be a SAT-derived protein related to obesity.
Collapse
Affiliation(s)
- Mi Kyung Song
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ji Eun Kim
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sun Jong Han
- Department of General Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Seok Hwan Kim
- Department of General Surgery, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Research Center for Endocrine and Metabolic Disease, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
55
|
Rejeski K, Jain MD, Smith EL. Mechanisms of Resistance and Treatment of Relapse after CAR T-cell Therapy for Large B-cell Lymphoma and Multiple Myeloma. Transplant Cell Ther 2023; 29:418-428. [PMID: 37076102 PMCID: PMC10330792 DOI: 10.1016/j.jtct.2023.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy (CAR-T) has altered the treatment landscape for relapsed/refractory B cell malignancies and multiple myeloma, only a minority of patients attain long-term disease remission. The underlying reasons for CAR-T resistance are multifaceted and can be broadly divided into host-related, tumor-intrinsic, microenvironmental and macroenvironmental, and CAR-T-related factors. Emerging host-related determinants of response to CAR-T relate to gut microbiome composition, intact hematopoietic function, body composition, and physical reserve. Emerging tumor-intrinsic resistance mechanisms include complex genomic alterations and mutations to immunomodulatory genes. Furthermore, the extent of systemic inflammation prior to CAR-T is a potent biomarker of response and reflects a proinflammatory tumor micromilieu characterized by infiltration of myeloid-derived suppressor cells and regulatory T cell populations. The tumor and its surrounding micromilieu also can shape the response of the host to CAR-T infusion and the subsequent expansion and persistence of CAR T cells, a prerequisite for efficient eradication of tumor cells. Here, focusing on both large B cell lymphoma and multiple myeloma, we review resistance mechanisms, explore therapeutic avenues to overcome resistance to CAR-T, and discuss the management of patients who relapse after CAR-T.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | | |
Collapse
|
56
|
Alenezi SA, Khan R, Snell L, Aboeldalyl S, Amer S. The Role of NLRP3 Inflammasome in Obesity and PCOS-A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:10976. [PMID: 37446154 DOI: 10.3390/ijms241310976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasomes have recently been implicated in the pathogenesis of several chronic inflammatory disorders, such as diabetes and obesity. The aim of this meta-analysis was to investigate the possible role of the NLRP3 inflammasome in obesity and polycystic ovarian syndrome (PCOS). A comprehensive search of electronic databases was conducted to identify studies investigating NLRP3 its related components (Caspase 1, ASC and IL-1β) in adipose tissue and/or blood from obese individuals compared to non-obese controls. Another search was conducted for studies investigating NLRP3 in PCOS women and animal models. The ssearched databases included Medline, EMBASE, Cochrane Library, PubMed, Clinicaltrials.gov, the EU Clinical Trials Register and the WHO International Clinical Trials Register. The quality and risk of bias for the included articles were assessed using the modified Newcastle-Ottawa scale. Data were extracted and pooled using RevMan software for the calculation of the standardized mean difference (SMD) and 95% confidence interval (CI). Twelve eligible studies were included in the obesity systematic review and nine in the PCOS review. Of the obesity studies, nine (n = 270) were included in the meta-analysis, which showed a significantly higher adipose tissue NLRP3 gene expression in obese (n = 186) versus non-obese (n = 84) participants (SMD 1.07; 95% CI, 0.27, 1.87). Pooled analysis of adipose tissue IL-1β data from four studies showed significantly higher IL-1β gene expression levels in adipose tissue from 88 obese participants versus 39 non-obese controls (SMD 0.56; 95% CI, 0.13, 0.99). Meta-analysis of adipose tissue ASC data from four studies showed a significantly higher level in obese (n = 109) versus non-obese (n = 42) individuals (SMD 0.91, 95% CI, 0.30, 1.52). Of the nine PCOS articles, three were human (n = 185) and six were animal studies utilizing PCOS rat/mouse models. All studies apart from one article consistently showed upregulated NLRP3 and its components in PCOS women and animal models. In conclusion, obesity and PCOS seem to be associated with upregulated expression of NLRP3 inflammasome components. Further research is required to validate these findings and to elucidate the role of NLRP3 in obesity and PCOS.
Collapse
Affiliation(s)
- Salih Atalah Alenezi
- Division of Translational Medical Sciences, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
- Prince Mohammed Bin Abdulaziz Medical City, Ministry of Health, Riyadh 14214, Saudi Arabia
| | - Raheela Khan
- Division of Translational Medical Sciences, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Lindsay Snell
- University Hospitals of Derby and Burton NHS Foundation Trust, Library & Knowledge Service, Derby DE22 3DT, UK
| | - Shaimaa Aboeldalyl
- University Hospitals of Derby and Burton NHS Foundation Trust, Obstetrics and Gynaecology, Derby DE22 3DT, UK
| | - Saad Amer
- Division of Translational Medical Sciences, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
57
|
Zielinski M, Chwalba A, Jastrzebski D, Ziora D. Adipokines in interstitial lung diseases. Respir Physiol Neurobiol 2023:104109. [PMID: 37393966 DOI: 10.1016/j.resp.2023.104109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Interstitial lung diseases (ILD) are a heterogenic group of respiratory diseases with complex pathogenesis. A growing number of evidence suggests role of adipose tissue and it's hormones (adipokines) in pathogenesis of various disorders, including lung tissue diseases. The aim of this study was to assess the concentrations of selected adipokines and their receptors (apelin, adiponectin, chemerin, chemerin receptor - CMKLR1) in patients with IPF (idiopathic pulmonary fibrosis) and sarcoidosis in comparison to healthy controls. We found changes in adipokines concentrations in ILD. Adiponectin concentrations were higher in all respiratory diseases patients in comparison to healthy controls. Apelin concentration in ILD patients was higher then those in healthy subjects. The trend of chemerin and CMKLR1 concentrations were similar, with highest concentrations seen in sarcoidosis. The study shows a difference of adipokines concentrations between patients with ILD and healthy controls. Adipokines are a potential marker and therapeutic target in patients with IPF and sarcoidosis.
Collapse
Affiliation(s)
- M Zielinski
- Department of Lung Diseases and Tuberculosis, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland.
| | - A Chwalba
- Department of Lung Diseases and Tuberculosis, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
| | - D Jastrzebski
- Department of Lung Diseases and Tuberculosis, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
| | - D Ziora
- Department of Lung Diseases and Tuberculosis, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
58
|
Tangjittipokin W, Thanatummatis B, Wardati F, Narkdontri T, Teerawattanapong N, Boriboonhirunsarn D. The genetic polymorphisms and levels of adipokines and adipocytokines that influence the risk of developing gestational diabetes mellitus in Thai pregnant women. Gene 2023; 860:147228. [PMID: 36709877 DOI: 10.1016/j.gene.2023.147228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Aberrant immune and inflammatory response is thought to be involved in the pathogenesis of gestational diabetes mellitus (GDM). OBJECTIVE To investigate the genetic polymorphisms and levels of adipokines/adipocytokines that influence the risk of developing GDM in Thai women. RESEARCH DESIGN & METHODS This case-control recruited 400 pregnant Thai women. A total of 12 gene polymorphisms at ADIPOQ, adipsin, lipocalin-2, PAI-1, resistin, IL-1β, IL-4, IL-17A, TGF-β, IL-10, IL-6, and TNF-α were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay and RNase H2 enzyme-based amplification (rhAmp) SNP assay. Serum levels of adipokines/adipocytokines were evaluated using Luminex assays. RESULTS Mean age, weight before and during pregnancy, body mass index before and during pregnancy, blood pressure, gestational age at blood collection, and median 50 g glucose challenge test were significantly higher in GDM women than control. Significantly lower adiponectin and higher IL-4 levels were found in GDM compared to controls (p = 0.001 and p = 0.03, respectively). The genotype frequencies of IL-17A (rs3819025) were significantly different between GDM and controls (p = 0.01). Using additive models, IL-17A (rs3819025) and. TNF-α (rs1800629) were found to be independently associated with increased risk of GDM (odds ratio [OR]: 2.867; 95 % confidence interval [CI]: 1.171-7.017; p = 0.021; and OR: 12.163; 95 %CI: 1.368-108.153; p = 0.025, respectively). In GDM with IL-17A (rs3819025), there was a significant negative correlation with lipocalin-2 and PAI-1 levels (p = 0.038 and p = 0.004, respectively). CONCLUSION The results of this study highlight the need for genetic testing to predict/prevent GDM, and the importance of evaluating adipokine/adipocytokine levels in Thai GDM women.
Collapse
Affiliation(s)
- Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Benyapa Thanatummatis
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Fauchil Wardati
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tassanee Narkdontri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nipaporn Teerawattanapong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Dittakarn Boriboonhirunsarn
- Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
59
|
Higham SM, Mendham AE, Rosenbaum S, Allen NG, Smith G, Stadnyk A, Duffield R. Effects of concurrent exercise training on body composition, systemic inflammation, and components of metabolic syndrome in inactive academics: a randomised controlled trial. Eur J Appl Physiol 2023; 123:809-820. [PMID: 36471186 DOI: 10.1007/s00421-022-05108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Low physical activity in the academic workplace may increase the risk of cardiometabolic disease. This randomised controlled trial investigated the effect of 14 weeks of concurrent exercise training (CT) on components of metabolic syndrome, body composition, insulin resistance, and markers of systemic inflammation in inactive academics. METHODS 59 inactive academics were randomised into a CT (n = 29) or wait-list control group (n = 30). CT performed supervised training at an onsite facility 3 times per week for 14 weeks and cardiometabolic health was assessed pre- and post-intervention. Aerobic capacity was measured via a metabolic cart. Dual-Energy X-ray Absorptiometry measured fat mass, lean mass, and central adiposity. Fasting blood samples were analysed for interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), glucose, and lipid profile. RESULTS Following the intervention, there was a decrease in fat mass (mean ± SD; - 1.3 ± 1.4%), android fat mass (median (IQR); - 0.06 (0.27) kg), and visceral adipose tissue (median (IQR); - 66 (110) cm3) in CT, but not control. Lean mass (median (IQR); 1.35 (1.86) kg) and aerobic capacity (mean ± SD; 4.0 ± 3.1 mL/kg/min) increased in CT, but not in control. There were no changes in IL-6, TNF-a, HOMA-IR, glucose, or lipid profile in response to the intervention (P > 0.05). Changes in insulin resistance were positively associated with IL-6 in the control group only (coefficients [95%CI]; 5.957 [2.961, 8.953]). CONCLUSION Implementing combined aerobic and resistance exercise training programs in academic institutions may be an appropriate intervention to increase physical activity and reduce risk factors associated with cardiometabolic disease. TRIAL REGISTRATION The study was registered with the Australian New Zealand Clinical Trials Registry on the 23rd of April, 2019 (ACTRN12619000608167).
Collapse
Affiliation(s)
- Samuel M Higham
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia.
| | - Amy E Mendham
- South Africa Medical Research Council/WITS Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Simon Rosenbaum
- School of Psychiatry, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Nicholas G Allen
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia
| | - Greg Smith
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Antony Stadnyk
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia
| | - Rob Duffield
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia
| |
Collapse
|
60
|
Visceral fat: a bad companion for mineralocorticoid receptor overactivation. Hypertens Res 2023; 46:1168-1170. [PMID: 36854727 DOI: 10.1038/s41440-023-01238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
|
61
|
Ali S, Alam R, Ahsan H, Khan S. Role of adipokines (omentin and visfatin) in coronary artery disease. Nutr Metab Cardiovasc Dis 2023; 33:483-493. [PMID: 36653284 DOI: 10.1016/j.numecd.2022.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
AIMS Adipose tissue is considered as an endocrine organ that releases bioactive factors known as adipokines which contribute to the pathogenesis of rotundity-linked metabolic and cardiovascular complications. Rotundity is a major predisposer for the development and progression of coronary artery disease (CAD). DATA SYNTHESIS The literature survey from various databases such as Pubmed/Medline, DOAJ, Scopus, Clarivate analytics/Web of Science and Google Scholar were used to prepare this article. The epidemic of rotundity has gained significant attention to understand the biology of adipocytes and the metabolism of adipose tissue in obese individuals. In CAD, visfatin/NAMPT was primarily indicated as a clinical marker of atherosclerosis, endothelial dysfunction and vascular injury having a prognostic significance. Visfatin/NAMPT is a factor that promotes vascular inflammation and atherosclerosis. Omentin is an anti-inflammatory and anti-atherogenic adipokine regulating cardiovascular functions. CONCLUSIONS This review highlights and summarizes the scientific information pertaining to the role of the adipokines - omentin and visfatin in CAD.
Collapse
Affiliation(s)
- Saif Ali
- Department of Biochemistry, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, India
| | - Roshan Alam
- Department of Biochemistry, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Saba Khan
- Department of Biochemistry, Integral Institute of Medical Sciences and Research, Integral University, Lucknow, India.
| |
Collapse
|
62
|
Sim JH, Kim KW, Ko Y, Kwon HM, Moon YJ, Jun IG, Kim SH, Kim S, Song JG, Hwang GS. Association of sex-specific donor skeletal muscle index with surgical outcomes in living donor liver transplantation recipients. Liver Int 2023; 43:684-694. [PMID: 36377561 DOI: 10.1111/liv.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND A recent study reported a correlation between the muscle mass of male donors and graft failure in living donor liver transplantation (LDLT) recipients. We investigated the association of sex-specific donor skeletal muscle index (SMI) with mortality and graft failure in LDLT recipients. METHODS We retrospectively analysed 2750 sets of donors and recipients between January 2008 and January 2018. The recipient outcomes were analysed by dividing the data according to donor sex. Cox regression analyses were performed to evaluate the association between donor SMI by sex and 1-year mortality and graft failure in recipients. RESULTS In the male donor group, robust donor (increased SMI) was significantly associated with higher risks for mortality (hazard ratio [HR]: 1.03, 95% confidence interval [CI]: 1.00-1.06, p = .023) and graft failure (HR: 1.04, 95% CI: 1.01-1.06, p = .007) at 1 year. In the female donor group, the robust donor was significantly associated with lower risks for mortality (HR: 0.92, 95% CI: 0.87-0.97, p = .003) and graft failure (HR: 0.95, 95% CI: 0.90-1.00, p = .032) at 1 year. CONCLUSIONS Donor SMI was associated with surgical outcomes in recipients. Robust male and female donors were a significant negative and protective factor for grafts respectively.
Collapse
Affiliation(s)
- Ji-Hoon Sim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Won Kim
- Department of Radiology, Asan Image Metrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - YouSun Ko
- Department of Radiology, Asan Image Metrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye-Mee Kwon
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Jin Moon
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In-Gu Jun
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun-Gol Song
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyu-Sam Hwang
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
63
|
Mao L, Li C, Wang X, Sun M, Li Y, Yu Z, Cui B, Guo G, Yang W, Hui Y, Fan X, Zhang J, Jiang K, Sun C. Dissecting the Contributing Role of Divergent Adipose Tissue to Multidimensional Frailty in Cirrhosis. J Clin Transl Hepatol 2023; 11:58-66. [PMID: 36406322 PMCID: PMC9647104 DOI: 10.14218/jcth.2022.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Emerging evidence has demonstrated that abnormal body composition may potentiate the development of frailty, whereas little work focuses on the role of divergent adipose tissue. Therefore, we aimed to determine the potential contribution of adipose tissue distribution to multidimensional frailty in decompensated cirrhosis. METHODS We conducted a retrospective cohort study. Divergent adipose tissues were assessed by computed tomography-derived subcutaneous adipose tissue index (SATI), visceral adipose tissue index (VATI) and total adipose tissue index (TATI), respectively. Frailty was identified by our validated self-reported Frailty Index. Multiple binary logistic models incorporating different covariates were established to assess the relationship between adipose tissue distribution and frailty. RESULTS The study cohort comprised 245 cirrhotic patients with 45.3% being male. The median Frailty Index, body mass index (BMI) and model for end-stage liver disease (MELD) score were 0.11, 24.3 kg/m2 and 8.9 points, respectively. In both men and women, patients who were frail exhibited lower levels of SATI in comparison with nonfrail patients. SATI inversely correlated with Frailty Index in the entire cohort (rs=-0.1361, p=0.0332). Furthermore, SATI or TATI was independently associated with frail phenotype in several multiple logistic regression models adjusting for age, BMI, presence of ascites, sodium, Child-Pugh class or MELD score in isolation. CONCLUSIONS In the context of decompensated cirrhosis, low SATI and concomitant TATI were associated with higher risk of being frail. These findings highlight the importance to further apply tissue-specific tools of body composition in place of crude metric like BMI.
Collapse
Affiliation(s)
- Lihong Mao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaoqun Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Internal Medicine, Tianjin Hexi Hospital, Tianjin, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingyu Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Binxin Cui
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yangyang Hui
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaofei Fan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
64
|
Marques-Mourlet C, Di Iorio R, Fairfield H, Reagan MR. Obesity and myeloma: Clinical and mechanistic contributions to disease progression. Front Endocrinol (Lausanne) 2023; 14:1118691. [PMID: 36909335 PMCID: PMC9996186 DOI: 10.3389/fendo.2023.1118691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity and obesogenic behaviors are positively associated with both monoclonal gammopathy of unknown significance (MGUS) and multiple myeloma (MM). As the only known modifiable risk factor, this association has emerged as a new potential target for MM prevention, but little is known about the mechanistic relationship of body weight with MM progression. Here we summarize epidemiological correlations between weight, body composition, and the various stages of myeloma disease progression and treatments, as well as the current understanding of the molecular contributions of obesity-induced changes in myeloma cell phenotype and signaling. Finally, we outline groundwork for the future characterization of the relationship between body weight patterns, the bone marrow microenvironment, and MM pathogenesis in animal models, which have the potential to impact our understanding of disease pathogenesis and inform MM prevention messages.
Collapse
Affiliation(s)
- Constance Marques-Mourlet
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Strasbourg, Pharmacology Department, Strasbourg, France
| | - Reagan Di Iorio
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of New England, College of Osteopathic Medicine, Biddeford, ME, United States
| | - Heather Fairfield
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University, School of Medicine, Boston, MA, United States
| | - Michaela R. Reagan
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University, School of Medicine, Boston, MA, United States
| |
Collapse
|
65
|
Haze T, Ozawa M, Kawano R, Haruna A, Ohki Y, Suzuki S, Kobayashi Y, Fujiwara A, Saka S, Tamura K, Hirawa N. Effect of the interaction between the visceral-to-subcutaneous fat ratio and aldosterone on cardiac function in patients with primary aldosteronism. Hypertens Res 2023; 46:1132-1144. [PMID: 36754972 DOI: 10.1038/s41440-023-01170-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023]
Abstract
Primary aldosteronism is the most frequent secondary hypertensive disease and is characterized by an elevated risk for cardiovascular disease. The current standard treatments are adrenalectomy and/or administration of mineralocorticoid receptor blockers, both of which are effective at ameliorating hypertension via intervention for hyperaldosteronism. However, both of these approaches have side effects and contraindications, and mineralocorticoid receptor blockers also have limited preventive efficacy against cardiovascular events. Recently, in vitro experiments have shown that aldosterone regulation is closely related to abdominal fat accumulation and that there is crosstalk between aldosterone and visceral fat tissue accumulation. We previously reported that this interaction was clinically significant in renal dysfunction; however, its effects on the heart remain unclear. Here, we analyzed data from 49 patients with primary aldosteronism and 29 patients with essential hypertension to examine the potential effect of the interaction between the ratio of visceral-to-subcutaneous fat tissue volume and the plasma aldosterone concentration on echocardiographic indices, including the tissue Doppler-derived E/e' ratio. A significant interaction was found in patients with primary aldosteronism (p < 0.05), indicating that patients with the combination of a high plasma aldosterone concentration and high visceral-to-subcutaneous fat ratio show an increased E/e' ratio, which is a well-known risk factor for future cardiovascular events. Our results confirm the clinical importance of the interaction between aldosterone and abdominal fat tissue, suggesting that an improvement in the visceral-to-subcutaneous fat ratio may be synergistically and complementarily effective in reducing the elevated risk of cardiovascular disease in patients with primary aldosteronism when combined with conventional therapies for reducing aldosterone activity. A significant effect of the interaction between plasma aldosterone concentration and the visceral-to-subcutaneous fat ratio on the tissue Doppler-derived E/e' ratio in patients with primary aldosteronism.
Collapse
Affiliation(s)
- Tatsuya Haze
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan. .,YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan.
| | - Moe Ozawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Rina Kawano
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Aiko Haruna
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuki Ohki
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Shota Suzuki
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Yusuke Kobayashi
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
| | - Akira Fujiwara
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Sanae Saka
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhito Hirawa
- Department of Nephrology and Hypertension, Yokohama City University Medical Center, Yokohama, Japan
| |
Collapse
|
66
|
Wang CJ, Noble PB, Elliot JG, Choi YS, James AL, Wang KCW. Distribution, composition, and activity of airway-associated adipose tissue in the porcine lung. Am J Physiol Lung Cell Mol Physiol 2023; 324:L179-L189. [PMID: 36445102 DOI: 10.1152/ajplung.00288.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Patients with comorbid asthma-obesity experience greater disease severity and are less responsive to therapy. We have previously reported adipose tissue within the airway wall that positively correlated with body mass index. Accumulation of biologically active adipose tissue may result in the local release of adipokines and disrupt large and small airway function depending on its anatomical distribution. This study therefore characterized airway-associated adipose tissue distribution, lipid composition, and adipokine activity in a porcine model. Airway segments were systematically dissected from different locations of the bronchial tree in inflation-fixed lungs. Cryosections were stained with hematoxylin and eosin (H&E) for airway morphology, oil red O to distinguish adipose tissue, and Nile blue A for lipid subtype delineation. Excised airway-associated adipose tissue was cultured for 72 h to quantify adipokine release using immunoassays. Results showed that airway-associated adipose tissue extended throughout the bronchial tree and occupied an area proportionally similar to airway smooth muscle within the wall area. Lipid composition consisted of pure neutral lipids (61.7 ± 3.5%), a mixture of neutral and acidic lipids (36.3 ± 3.4%), or pure acidic lipids (2.0 ± 0.8%). Following tissue culture, there was rapid release of IFN-γ, IL-1β, and TNF-α at 12 h. Maximum IL-4 and IL-10 release was at 24 and 48 h, and peak leptin release occurred between 48 and 72 h. These data extend previous findings and demonstrate that airway-associated adipose tissue is prevalent and biologically active within the bronchial tree, providing a local source of adipokines that may be a contributing factor in airway disease.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
67
|
Chen JL, Feng ZL, Zhou F, Lou RH, Peng C, Ye Y, Lin LG. 14-Deoxygarcinol improves insulin sensitivity in high-fat diet-induced obese mice via mitigating NF-κB/Sirtuin 2-NLRP3-mediated adipose tissue remodeling. Acta Pharmacol Sin 2023; 44:434-445. [PMID: 35945312 PMCID: PMC9889782 DOI: 10.1038/s41401-022-00958-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-1β is a culprit of adipose tissue inflammation, which in turn causes systematic inflammation and insulin resistance in obese individuals. IL-1β is mainly produced in monocytes and macrophages and marginally in adipocytes, through cleavage of the inactive pro-IL-1β precursor by caspase-1, which is activated via the NLRP3 inflammasome complex. The nuclear factor-κB (NF-κB) transcription factor is the master regulator of inflammatory responses. Brindle berry (Garcinia cambogia) has been widely used as health products for treating obesity and related metabolic disorders, but its active principles remain unclear. We previously found a series of polyisoprenylated benzophenones from brindle berry with anti-inflammatory activities. In this study we investigated whether 14-deoxygarcinol (DOG), a major polyisoprenylated benzophenone from brindle berry, alleviated adipose tissue inflammation and insulin sensitivity in high-fat diet fed mice. The mice were administered DOG (2.5, 5 mg · kg-1 · d-1, i.p.) for 4 weeks. We showed that DOG injection dose-dependently improved insulin resistance and hyperlipidemia, but not adiposity in high-fat diet-fed mice. We found that DOG injection significantly alleviated adipose tissue inflammation via preventing macrophage infiltration and pro-inflammatory polarization of macrophages, and adipose tissue fibrosis via reducing the abnormal deposition of extracellular matrix. In LPS plus nigericin-stimulated THP-1 macrophages, DOG (1.25, 2.5, 5 μM) dose-dependently suppressed the activation of NLRP3 inflammasome and NF-κB signaling pathway. We demonstrated that DOG bound to and activated the deacetylase Sirtuin 2, which in turn deacetylated and inactivated NLRP3 inflammasome to reduce IL-1β secretion. Moreover, DOG (1.25, 2.5, 5 μM) dose-dependently mitigated inflammatory responses in macrophage conditioned media-treated adipocytes and suppressed macrophage migration toward adipocytes. Taken together, DOG might be a drug candidate to treat metabolic disorders through modulation of adipose tissue remodeling.
Collapse
Affiliation(s)
- Jia-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhe-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruo-Han Lou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
68
|
Wang CJ, Noble PB, Elliot JG, James AL, Wang KCW. From Beneath the Skin to the Airway Wall: Understanding the Pathological Role of Adipose Tissue in Comorbid Asthma-Obesity. Compr Physiol 2023; 13:4321-4353. [PMID: 36715283 DOI: 10.1002/cphy.c220011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article provides a contemporary report on the role of adipose tissue in respiratory dysfunction. Adipose tissue is distributed throughout the body, accumulating beneath the skin (subcutaneous), around organs (visceral), and importantly in the context of respiratory disease, has recently been shown to accumulate within the airway wall: "airway-associated adipose tissue." Excessive adipose tissue deposition compromises respiratory function and increases the severity of diseases such as asthma. The mechanisms of respiratory impairment are inflammatory, structural, and mechanical in nature, vary depending on the anatomical site of deposition and adipose tissue subtype, and likely contribute to different phenotypes of comorbid asthma-obesity. An understanding of adipose tissue-driven pathophysiology provides an opportunity for diagnostic advancement and patient-specific treatment. As an exemplar, the potential impact of airway-associated adipose tissue is highlighted, and how this may change the management of a patient with asthma who is also obese. © 2023 American Physiological Society. Compr Physiol 13:4321-4353, 2023.
Collapse
Affiliation(s)
- Carolyn J Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
69
|
Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023; 13:metabo13010086. [PMID: 36677011 PMCID: PMC9865135 DOI: 10.3390/metabo13010086] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is defined as abnormal and excessive fat accumulation, and it is a risk factor for developing metabolic and neurodegenerative diseases and cognitive deficits. Obesity is caused by an imbalance in energy homeostasis resulting from increased caloric intake associated with a sedentary lifestyle. However, the entire physiopathology linking obesity with neurodegeneration and cognitive decline has not yet been elucidated. During the progression of obesity, adipose tissue undergoes immune, metabolic, and functional changes that induce chronic low-grade inflammation. It has been proposed that inflammatory processes may participate in both the peripheral disorders and brain disorders associated with obesity, including the development of cognitive deficits. In addition, mitochondrial dysfunction is related to inflammation and oxidative stress, causing cellular oxidative damage. Preclinical and clinical studies of obesity and metabolic disorders have demonstrated mitochondrial brain dysfunction. Since neuronal cells have a high energy demand and mitochondria play an important role in maintaining a constant energy supply, impairments in mitochondrial activity lead to neuronal damage and dysfunction and, consequently, to neurotoxicity. In this review, we highlight the effect of obesity and high-fat diet consumption on brain neuroinflammation and mitochondrial changes as a link between metabolic dysfunction and cognitive decline.
Collapse
|
70
|
|
71
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
72
|
Goodpaster BH, Bergman BC, Brennan AM, Sparks LM. Intermuscular adipose tissue in metabolic disease. Nat Rev Endocrinol 2022; 19:285-298. [PMID: 36564490 DOI: 10.1038/s41574-022-00784-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Intermuscular adipose tissue (IMAT) is a distinct adipose depot described in early reports as a 'fatty replacement' or 'muscle fat infiltration' that was linked to ageing and neuromuscular disease. Later studies quantifying IMAT with modern in vivo imaging methods (computed tomography and magnetic resonance imaging) revealed that IMAT is proportionately higher in men and women with type 2 diabetes mellitus and the metabolic syndrome than in people without these conditions and is associated with insulin resistance and poor physical function with ageing. In parallel, agricultural research has provided extensive insight into the role of IMAT and other muscle lipids in muscle (that is, meat) quality. In addition, studies using rodent models have shown that IMAT is a bona fide white adipose tissue depot capable of robust triglyceride storage and turnover. Insight into the importance of IMAT in human biology has been limited by the dearth of studies on its biological properties, that is, the quality of IMAT. However, in the past few years, investigations have begun to determine that IMAT has molecular and metabolic features that distinguish it from other adipose tissue depots. These studies will be critical to further decipher the role of IMAT in health and disease and to better understand its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea M Brennan
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
73
|
Aragón-Vela J, Alcalá-Bejarano Carrillo J, Moreno-Racero A, Plaza-Diaz J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int J Mol Sci 2022; 23:15413. [PMID: 36499740 PMCID: PMC9737554 DOI: 10.3390/ijms232315413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity and overweight are defined as abnormal fat accumulations. Adipose tissue consists of more than merely adipocytes; each adipocyte is closely coupled with the extracellular matrix. Adipose tissue stores excess energy through expansion. Obesity is caused by the abnormal expansion of adipose tissue as a result of adipocyte hypertrophy and hyperplasia. The process of obesity is controlled by several molecules, such as integrins, kindlins, or matrix metalloproteinases. In children with obesity, metabolomics studies have provided insight into the existence of unique metabolic profiles. As a result of low-grade inflammation in the system, abnormalities were observed in several metabolites associated with lipid, carbohydrate, and amino acid pathways. In addition, obesity and related hormones, such as leptin, play an instrumental role in regulating food intake and contributing to childhood obesity. The World Health Organization states that physical activity benefits the heart, the body, and the mind. Several noncommunicable diseases, such as cardiovascular disease, cancer, and diabetes, can be prevented and managed through physical activity. In this work, we reviewed pediatric studies that examined the molecular and hormonal control of obesity and the influence of physical activity on children with obesity or overweight. The purpose of this review was to examine some orchestrators involved in this disease and how they are related to pediatric populations. A larger number of randomized clinical trials with larger sample sizes and long-term studies could lead to the discovery of new key molecules as well as the detection of significant factors in the coming years. In order to improve the health of the pediatric population, omics analyses and machine learning techniques can be combined in order to improve treatment decisions.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Jesús Alcalá-Bejarano Carrillo
- Department of Health, University of the Valley of Mexico, Robles 600, Tecnologico I, San Luis Potosí 78220, Mexico
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Aurora Moreno-Racero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS, Granada, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
74
|
Tewari S, Vargas R, Reizes O. The impact of obesity and adipokines on breast and gynecologic malignancies. Ann N Y Acad Sci 2022; 1518:131-150. [PMID: 36302117 PMCID: PMC10092047 DOI: 10.1111/nyas.14916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The link between obesity and multiple disease comorbidities is well established. In 2003, Calle and colleagues presented the relationship between obesity and several cancer types, including breast, ovarian, and endometrial malignancies. Nearly, 20% of cancer-related deaths in females can be accounted for by obesity. Identifying obesity as a risk factor for cancer led to a focus on the role of fat-secreted cytokines, known as adipokines, on carcinogenesis and tumor progression. Early studies indicated that the adipokine leptin increases cell proliferation, invasion, and inhibition of apoptosis in multiple cancer types. As a greater appreciation of the obesity-cancer link has amassed, we now know that additional adipokines can impact tumorigenesis. A deeper understanding of the adipokine-activated signaling in cancer may identify new treatment strategies irrespective of obesity. Moreover, adipokines may serve as disease biomarkers, harnessing the potential of obesity-associated factors to serve as indicators of treatment response and disease prognosis. As studies investigating obesity and women's cancers continue to expand, it has become evident that breast, ovarian, and uterine cancers are distinctly impacted by adipokines. While complex, these distinct interactions may provide insight into cancer progression in these organs and new opportunities for targeted therapies. This review aims to organize and present the literature from the last 5 years investigating the mechanisms and implications of adipokine signaling in breast, endometrial, and ovarian cancers with a special focus on leptin and adiponectin.
Collapse
Affiliation(s)
- Surabhi Tewari
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Ofer Reizes
- Department of Gynecologic Oncology, Women's Health Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Cleveland, Ohio, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
75
|
Tremblay EJ, Tchernof A, Pelletier M, Chabot N, Joanisse DR, Mauriège P. Contribution of markers of adiposopathy and adipose cell size in predicting insulin resistance in women of varying age and adiposity. Adipocyte 2022; 11:175-189. [PMID: 35436409 PMCID: PMC9037496 DOI: 10.1080/21623945.2022.2059902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 12/30/2022] Open
Abstract
Adipose tissue (AT) dysfunctions, such as adipocyte hypertrophy, macrophage infiltration and secretory adiposopathy (low plasma adiponectin/leptin, A/L, ratio), associate with metabolic disorders. However, no study has compared the relative contribution of these markers to cardiometabolic risk in women of varying age and adiposity. Body composition, regional AT distribution, lipid-lipoprotein profile, glucose homeostasis and plasma A and L levels were determined in 67 women (age: 40-62 years; BMI: 17-41 kg/m2). Expression of macrophage infiltration marker CD68 and adipocyte size were measured from subcutaneous abdominal (SCABD) and omental (OME) fat. AT dysfunction markers correlated with most lipid-lipoprotein levels. The A/L ratio was negatively associated with fasting insulinemia and HOMA-IR, while SCABD or OME adipocyte size and SCABD CD68 expression were positively related to these variables. Combination of tertiles of largest adipocyte size and lowest A/L ratio showed the highest HOMA-IR. Multiple regression analyses including these markers and TAG levels revealed that the A/L ratio was the only predictor of fasting insulinemia and HOMA-IR. The contribution of the A/L ratio was superseded by adipose cell size in the model where the latter replaced TAGs. Finally, leptinemia was a better predictor of IR than adipocyte size and the A/L ratio in our participants sample.
Collapse
Affiliation(s)
- Eve-Julie Tremblay
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - André Tchernof
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
- École de Nutrition, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - Nicolas Chabot
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - Denis R. Joanisse
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| | - Pascale Mauriège
- Département de kinésiologie, Faculté de médecine, Université Laval, Québec, Canada
- Centre de recherche de l’institut Universitaire de cardiologie et pneumologie de Québec (CRIUCPQ), Université Laval, Québec, Canada
| |
Collapse
|
76
|
Galley JC, Singh S, Awata WMC, Alves JV, Bruder-Nascimento T. Adipokines: Deciphering the cardiovascular signature of adipose tissue. Biochem Pharmacol 2022; 206:115324. [PMID: 36309078 PMCID: PMC10509780 DOI: 10.1016/j.bcp.2022.115324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
Abstract
Obesity and hypertension are intimately linked due to the various ways that the important cell types such as vascular smooth muscle cells (VSMC), endothelial cells (EC), immune cells, and adipocytes, communicate with one another to contribute to these two pathologies. Adipose tissue is a very dynamic organ comprised primarily of adipocytes, which are well known for their role in energy storage. More recently adipose tissue has been recognized as the largest endocrine organ because of its ability to produce a vast number of signaling molecules called adipokines. These signaling molecules stimulate specific types of cells or tissues with many adipokines acting as indicators of adipocyte healthy function, such as adiponectin, omentin, and FGF21, which show anti-inflammatory or cardioprotective effects, acting as regulators of healthy physiological function. Others, like visfatin, chemerin, resistin, and leptin are often altered during pathophysiological circumstances like obesity and lipodystrophy, demonstrating negative cardiovascular outcomes when produced in excess. This review aims to explore the role of adipocytes and their derived products as well as the impacts of these adipokines on blood pressure regulation and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Joseph C. Galley
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Shubhnita Singh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Wanessa M. C. Awata
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliano V. Alves
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM), University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
77
|
Lopes MP, Robinson L, Stubbs B, Dos Santos Alvarenga M, Araújo Martini L, Campbell IC, Schmidt U. Associations between bone mineral density, body composition and amenorrhoea in females with eating disorders: a systematic review and meta-analysis. J Eat Disord 2022; 10:173. [PMID: 36401318 PMCID: PMC9675098 DOI: 10.1186/s40337-022-00694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lower bone mineral density (BMD) increases the risk of osteoporosis in individuals with eating disorders (EDs), particularly women with anorexia nervosa (AN), making them susceptible to pain and fractures throughout adulthood. In AN, low weight, hypothalamic amenorrhoea, and longer illness duration are established risk factors for low BMD, and in people with other EDs a history of AN seems to be an important risk factor for low BMD. PURPOSE To conduct a systematic review and meta-analysis of BMD in individuals with EDs, including AN, bulimia nervosa (BN), binge-eating disorder (BED) and other specified feeding or eating disorders (OSFED) compared to healthy controls (HC). METHODS Following PRISMA guidelines, electronic databases were reviewed and supplemented with a literature search until 2/2022 of publications measuring BMD (dual-energy X-ray absorptiometry or dual photon absorptiometry) in females with any current ED diagnosis and a HC group. Primary outcomes were spine, hip, femur and total body BMD. Explanatory variables were fat mass, lean mass and ED clinical characteristics (age, illness duration, body mass index (BMI), amenorrhoea occurrence and duration, and oral contraceptives use). RESULTS Forty-three studies were identified (N = 4163 women, mean age 23.4 years, min: 14.0, max: 37.4). No study with individuals with BED met the inclusion criteria. BMD in individuals with AN (total body, spine, hip, and femur), with BN (total body and spine) and with OSFED (spine) was lower than in HC. Meta-regression analyses of women with any ED (AN, BN or OSFED) (N = 2058) showed low BMI, low fat mass, low lean mass and being amenorrhoeic significantly associated with lower total body and spine BMD. In AN, only low fat mass was significantly associated with low total body BMD. CONCLUSION Predictors of low BMD were low BMI, low fat mass, low lean mass and amenorrhoea, but not age or illness duration. In people with EDs, body composition measurement and menstrual status, in addition to BMI, are likely to provide a more accurate assessment of individual risk to low BMD and osteoporosis.
Collapse
Affiliation(s)
- Mariana P Lopes
- Nutrition Department, School of Public Health University of São Paulo, Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo, São Paulo, 01246-904, Brazil. .,Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 6 De Crespigny Park, London, SE5 8AF, UK.
| | - Lauren Robinson
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 6 De Crespigny Park, London, SE5 8AF, UK
| | - Brendon Stubbs
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 6 De Crespigny Park, London, SE5 8AF, UK.,Maudsley Hospital, South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| | - Marle Dos Santos Alvarenga
- Nutrition Department, School of Public Health University of São Paulo, Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo, São Paulo, 01246-904, Brazil
| | - Ligia Araújo Martini
- Nutrition Department, School of Public Health University of São Paulo, Av. Dr. Arnaldo, 715 - Cerqueira César, São Paulo, São Paulo, 01246-904, Brazil
| | - Iain C Campbell
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 6 De Crespigny Park, London, SE5 8AF, UK
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 6 De Crespigny Park, London, SE5 8AF, UK.,Maudsley Hospital, South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
| |
Collapse
|
78
|
Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, MacLean P, Gerszten RE, Libby A, Solt C, Schoen J, Bergman BC. Exploring Visceral and Subcutaneous Adipose Tissue Secretomes in Human Obesity: Implications for Metabolic Disease. Endocrinology 2022; 163:bqac140. [PMID: 36036084 PMCID: PMC9761573 DOI: 10.1210/endocr/bqac140] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/19/2022]
Abstract
Adipose tissue secretions are depot-specific and vary based on anatomical location. Considerable attention has been focused on visceral (VAT) and subcutaneous (SAT) adipose tissue with regard to metabolic disease, yet our knowledge of the secretome from these depots is incomplete. We conducted a comprehensive analysis of VAT and SAT secretomes in the context of metabolic function. Conditioned media generated using SAT and VAT explants from individuals with obesity were analyzed using proteomics, mass spectrometry, and multiplex assays. Conditioned media were administered in vitro to rat hepatocytes and myotubes to assess the functional impact of adipose tissue signaling on insulin responsiveness. VAT secreted more cytokines (IL-12p70, IL-13, TNF-α, IL-6, and IL-8), adipokines (matrix metalloproteinase-1, PAI-1), and prostanoids (TBX2, PGE2) compared with SAT. Secretome proteomics revealed differences in immune/inflammatory response and extracellular matrix components. In vitro, VAT-conditioned media decreased hepatocyte and myotube insulin sensitivity, hepatocyte glucose handling, and increased basal activation of inflammatory signaling in myotubes compared with SAT. Depot-specific differences in adipose tissue secretome composition alter paracrine and endocrine signaling. The unique secretome of VAT has distinct and negative impact on hepatocyte and muscle insulin action.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Macias
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert E Gerszten
- The Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Claudia Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Schoen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
79
|
High visceral adipose tissue area is independently associated with early allograft dysfunction in liver transplantation recipients: a propensity score analysis. Insights Imaging 2022; 13:165. [PMID: 36219263 DOI: 10.1186/s13244-022-01302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To evaluate the association between adipose tissue distribution and early allograft dysfunction (EAD) in liver transplantation (LT) recipients. METHODS A total of 175 patients who received LT from April 2015 to September 2020 were enrolled in this retrospective study. The areas of abdominal adipose tissue and skeletal muscle of all patients were measured based on the preoperative CT images. The appropriate statistical methods including the propensity score-matched (PSM) analysis were performed to identify the association between adipose tissue distribution and EAD. RESULTS Of 175 LT recipients, 55 patients (31.4%) finally developed EAD. The multivariate logistic analysis revealed that preoperative serum albumin (odds ratio (OR) 0.34, 95% confidence interval (CI) 0.17-0.70), platelet-lymphocyte ratio (OR 2.35, 95% CI 1.18-4.79), and visceral adipose tissue (VAT) area (OR 3.17, 95% CI 1.56-6.43) were independent associated with EAD. After PSM analysis, VAT area was still significantly associated with EAD (OR 3.95, 95% CI 1.16-13.51). In survival analysis, no significant difference was identified in one-year graft failure (log-rank: p = 0.487), and conversely result was identified in overall survival (OS) (log-rank: p = 0.012; hazard ratio (HR) 4.10, 95% CI 1.27-13.16). CONCLUSIONS LT recipients with high VAT area have higher risk for the occurrence of EAD, and high VAT area might have certain clinical value for predicting the poor OS of patients. For LT candidates with large amount of VAT, the clinicians can take clinical interventions by suggesting physical and nutritional treatments to improve outcomes after LT.
Collapse
|
80
|
Sierawska O, Niedźwiedzka-Rystwej P. Adipokines as potential biomarkers for type 2 diabetes mellitus in cats. Front Immunol 2022; 13:950049. [PMID: 36248900 PMCID: PMC9561307 DOI: 10.3389/fimmu.2022.950049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is no longer only a disease of humans, but also of domestic animals, and it particularly affects cats. It is increasingly thought that because of its unique characteristics, T2DM may belong not only to the group of metabolic diseases but also to the group of autoimmune diseases. This is due to the involvement of the immune system in the inflammation that occurs with T2DM. Various pro- and anti-inflammatory substances are secreted, especially cytokines in patients with T2DM. Cytokines secreted by adipose tissue are called adipokines, and leptin, adiponectin, resistin, omentin, TNF-α, and IL-6 have been implicated in T2DM. In cats, approximately 90% of diabetic cases are T2DM. Risk factors include older age, male sex, Burmese breed, presence of obesity, and insulin resistance. Diagnosis of a cat requires repeated testing and is complicated compared to human diagnosis. Based on similarities in the pathogenesis of T2DM between humans and cats, adipokines previously proposed as biomarkers for human T2DM may also serve in the diagnosis of this disease in cats.
Collapse
Affiliation(s)
- Olga Sierawska
- Doctoral School, University of Szczecin, Szczecin, Poland
- Institute of Biology, University of Szczecin, Szczecin, Poland
- *Correspondence: Olga Sierawska,
| | | |
Collapse
|
81
|
Beckers KF, Schulz CJ, Flanagan JP, Adams DM, Gomes VC, Liu C, Childers GW, Sones JL. Sex-specific effects of maternal weight loss on offspring cardiometabolic outcomes in the obese preeclamptic-like mouse model, BPH/5. Physiol Rep 2022; 10:e15444. [PMID: 36065848 PMCID: PMC9446412 DOI: 10.14814/phy2.15444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 05/28/2023] Open
Abstract
AbstractPreeclampsia (PE) is a hypertensive disorder that impacts 2-8% of pregnant women worldwide. It is characterized by new onset hypertension during the second half of gestation and is a leading cause of maternal and fetal morbidity/mortality. Maternal obesity increases the risk of PE and is a key predictor of childhood obesity and potentially offspring cardiometabolic complications in a sex-dependent manner. The influence of the maternal obesogenic environment, with superimposed PE, on offspring development into adulthood is unknown. Obese BPH/5 mice spontaneously exhibit late-gestational hypertension, fetal demise and growth restriction, and excessive gestational weight gain. BPH/5 females have improved pregnancy outcomes when maternal weight loss via pair-feeding is imposed beginning at conception. We hypothesized that phenotypic differences between female and male BPH/5 offspring can be influenced by pair feeding BPH/5 dams during pregnancy. BPH/5 pair-fed dams have improved litter sizes and increased fetal body weights. BPH/5 offspring born to ad libitum dams have similar sex ratios, body weights, and fecal microbiome as well as increased blood pressure that is reduced in the dam pair-fed offspring. Both BPH/5 male and female offspring born to pair-fed dams have a reduction in adiposity and an altered gut microbiome, while only female offspring born to pair-fed dams have decreased circulating leptin and white adipose tissue inflammatory cytokines. These sexually dimorphic results suggest that reduction in the maternal obesogenic environment in early pregnancy may play a greater role in female BPH/5 sex-dependent cardiometabolic outcomes than males. Reprograming females may mitigate the transgenerational progression of cardiometabolic disease.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Christopher J. Schulz
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Juliet P. Flanagan
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Daniella M. Adams
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Viviane C.L. Gomes
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Chin‐Chi Liu
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Gary W. Childers
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Jenny L. Sones
- Veterinary Clinical Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
82
|
Li H, Konja D, Wang L, Wang Y. Sex Differences in Adiposity and Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169338. [PMID: 36012601 PMCID: PMC9409326 DOI: 10.3390/ijms23169338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Body fat distribution is a well-established predictor of adverse medical outcomes, independent of overall adiposity. Studying body fat distribution sheds insights into the causes of obesity and provides valuable information about the development of various comorbidities. Compared to total adiposity, body fat distribution is more closely associated with risks of cardiovascular diseases. The present review specifically focuses on the sexual dimorphism in body fat distribution, the biological clues, as well as the genetic traits that are distinct from overall obesity. Understanding the sex determinations on body fat distribution and adiposity will aid in the improvement of the prevention and treatment of cardiovascular diseases (CVD).
Collapse
|
83
|
Ibrahim AS, El-Shinawi M, Sabet S, Ibrahim SA, Mohamed MM. Role of adipose tissue-derived cytokines in the progression of inflammatory breast cancer in patients with obesity. Lipids Health Dis 2022; 21:67. [PMID: 35927653 PMCID: PMC9351154 DOI: 10.1186/s12944-022-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) represents a deadly aggressive phenotype of breast cancer (BC) with a unique clinicopathological presentation and low survival rate. In fact, obesity represents an important risk factor for BC. Although several studies have identified different cellular-derived and molecular factors involved in IBC progression, the role of adipocytes remains unclear. Cancer-associated adipose tissue (CAAT) expresses a variety of adipokines, which contribute to tumorigenesis and the regulation of cancer stem cell (CSC). This research investigated the potential effect of the secretome of CAAT explants from patients with BC on the progression and metastasis of the disease. METHODS This study established an ex-vivo culture of CAAT excised from IBC (n = 13) vs. non-IBC (n = 31) patients with obesity and profiled their secretome using a cytokine antibody array. Furthermore, the quantitative PCR (qPCR) methodology was used to validate the levels of predominant cytokines at the transcript level after culture in a medium conditioned by CAAT. Moreover, the impact of the CAAT secretome on the expression of epithelial-mesenchymal transition (EMT) and cells with stem cell (CSC) markers was studied in the non-IBC MDA-MB-231 and the IBC SUM-149 cell lines. The statistical differences between variables were evaluated using the chi-squared test and unpaired a Student's t-test. RESULTS The results of cytokine array profiling revealed an overall significantly higher level of a panel of 28 cytokines secreted by the CAAT ex-vivo culture from IBC patients with obesity compared to those with non-IBC. Of note, interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemo-attractant protein 1 (MCP-1) were the major adipokines secreted by the CAAT IBC patients with obesity. Moreover, the qPCR results indicated a significant upregulation of the IL-6, IL-8, and MCP-1 mRNAs in CAAT ex-vivo culture of patients with IBC vs. those with non-IBC. Intriguingly, a qPCR data analysis showed that the CAAT secretome secretions from patients with non-IBC downregulated the mRNA levels of the CD24 CSC marker and of the epithelial marker E-cadherin in the non-IBC cell line. By contrast, E-cadherin was upregulated in the SUM-149 cell. CONCLUSIONS This study identified the overexpression of IL-6, IL-8, and MCP-1 as prognostic markers of CAAT from patients with IBC but not from those with non-IBC ; moreover, their upregulation might be associated with IBC aggressiveness via the regulation of CSC and EMT markers. This study proposed that targeting IL-6, IL-8, and MCP-1 may represent a therapeutic option that should be considered in the treatment of patients with IBC.
Collapse
Affiliation(s)
- Aya Saber Ibrahim
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
- International Affairs, Galala University, Suez, Egypt
| | - Salwa Sabet
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
84
|
Correlation of weight and body composition with disease progression rate in patients with amyotrophic lateral sclerosis. Sci Rep 2022; 12:13292. [PMID: 35918363 PMCID: PMC9345931 DOI: 10.1038/s41598-022-16229-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
This study aims to observe the nutritional status of Chinese patients with amyotrophic lateral sclerosis (ALS), further investigating its effect on disease progression. One hundred consecutive newly diagnosed ALS patients and fifty controls were included. Weight and body composition were measured by bioelectrical impedance analysis at baseline and follow-ups. The revised ALS functional rating scale (ALSFRS-R) was used to calculate the rate of disease progression. Patients with ALS had a significantly lower BMI than controls, while no significant difference was found in body composition. Weight loss occurred in 66 (66%) and 52 (67.5%) patients at diagnosis and follow-up, respectively. Patients with significant weight loss (≥ 5%) at diagnosis had significantly lower BMI, fat mass (FM), and FM in limbs and trunk than those without. Fat-free mass (FFM), FM, and FM in limbs were significantly decreased along with weight loss at follow-up (p < 0.01). Patients with lower visceral fat index, lower proportion of FM, and higher proportion of muscle mass at baseline progressed rapidly during follow-ups (p < 0.05). Multivariate linear regression showed that FFM and weight at follow-up were independently correlated with disease progression rate at follow-up (p < 0.05). Weight loss is a common feature in ALS patients, along with muscle and fat wasting during the disease course. Body composition may serve as a prognostic factor and provide guidance for nutritional management in ALS patients.
Collapse
|
85
|
Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, Gerszten R, Schoen J, Cree‐Green M, Bergman BC. Quantifying the inflammatory secretome of human intermuscular adipose tissue. Physiol Rep 2022; 10:e15424. [PMID: 35980018 PMCID: PMC9387112 DOI: 10.14814/phy2.15424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue secretes an abundance of lipid and protein mediators, and this secretome is depot-specific, with local and systemic effects on metabolic regulation. Intermuscular adipose tissue (IMAT) accumulates within the skeletal muscle compartment in obesity, and is associated with insulin resistance and metabolic disease. While the human IMAT secretome decreases insulin sensitivity in vitro, its composition is entirely unknown. The current study was conducted to investigate the composition of the human IMAT secretome, compared to that of the subcutaneous (SAT) and visceral adipose tissue (VAT) depots. IMAT, SAT, and VAT explants from individuals with obesity were used to generate conditioned media. Proteomics analysis of conditioned media was performed using multiplex proximity extension assays, and eicosanoid analysis using liquid chromatography-tandem mass spectrometry. Compared to SAT and/or VAT, IMAT secreted significantly more cytokines (IL2, IL5, IL10, IL13, IL27, FGF23, IFNγ and CSF1) and chemokines (MCP1, IL8, CCL11, CCL20, CCL25 and CCL27). Adipokines hepatocyte growth factor and resistin were secreted significantly more by IMAT than SAT or VAT. IMAT secreted significantly more eicosanoids (PGE2, TXB2 , 5-HETE, and 12-HETE) compared to SAT and/or VAT. In the context of obesity, IMAT is a distinct adipose tissue with a highly immunogenic and inflammatory secretome, and given its proximity to skeletal muscle, may be critical to glucose regulation and insulin resistance.
Collapse
Affiliation(s)
- Darcy Kahn
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Emily Macias
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Simona Zarini
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Amanda Garfield
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Karin Zemski Berry
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Robert Gerszten
- The Cardiovascular Research Center and Cardiology DivisionMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
| | - Jonathan Schoen
- Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Melanie Cree‐Green
- Division of Pediatric EndocrinologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Bryan C. Bergman
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
86
|
Humińska-Lisowska K, Mieszkowski J, Kochanowicz A, Bojarczuk A, Niespodziński B, Brzezińska P, Stankiewicz B, Michałowska-Sawczyn M, Grzywacz A, Petr M, Cięszczyk P. Implications of Adipose Tissue Content for Changes in Serum Levels of Exercise-Induced Adipokines: A Quasi-Experimental Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148782. [PMID: 35886639 PMCID: PMC9316284 DOI: 10.3390/ijerph19148782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/10/2022]
Abstract
Human adipocytes release multiple adipokines into the bloodstream during physical activity. This affects many organs and might contribute to the induction of inflammation. In this study, we aimed to assess changes in circulating adipokine levels induced by intense aerobic and anaerobic exercise in individuals with different adipose tissue content. In the quasi-experimental study, 48 male volunteers (aged 21.78 ± 1.98 years) were assigned to groups depending on their body fat content (BF): LBF, low body fat (<8% BF, n = 16); MBF, moderate body fat (8−14% BF, n = 19); and HBF, high body fat (>14% BF, n = 13). The volunteers performed maximal aerobic effort (MAE) and maximal anaerobic effort (MAnE) exercises. Blood samples were collected at five timepoints: before exercise, immediately after, 2 h, 6 h, and 24 h after each exercise. The selected cytokines were analyzed: adiponectin, follistatin-like 1, interleukin 6, leptin, oncostatin M, and resistin. While the participants’ MAnE and MAE performance were similar regardless of BF, the cytokine response of the HBF group was different from that of the others. Six hours after exercise, leptin levels in the HBF group increased by 35%. Further, immediately after MAnE, resistin levels in the HBF group also increased, by approximately 55%. The effect of different BF was not apparent for other cytokines. We conclude that the adipokine exercise response is associated with the amount of adipose tissue and is related to exercise type.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (A.K.); (A.B.); (P.B.); (M.M.-S.); (P.C.)
- Correspondence: (K.H.-L.); (J.M.); Tel.: +48-510362693 (K.H.-L.); +48-501619669 (J.M.)
| | - Jan Mieszkowski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (A.K.); (A.B.); (P.B.); (M.M.-S.); (P.C.)
- Faculty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic;
- Correspondence: (K.H.-L.); (J.M.); Tel.: +48-510362693 (K.H.-L.); +48-501619669 (J.M.)
| | - Andrzej Kochanowicz
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (A.K.); (A.B.); (P.B.); (M.M.-S.); (P.C.)
| | - Aleksandra Bojarczuk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (A.K.); (A.B.); (P.B.); (M.M.-S.); (P.C.)
| | - Bartłomiej Niespodziński
- Institute of Physical Education, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (B.N.); (B.S.)
| | - Paulina Brzezińska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (A.K.); (A.B.); (P.B.); (M.M.-S.); (P.C.)
| | - Błażej Stankiewicz
- Institute of Physical Education, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (B.N.); (B.S.)
| | - Monika Michałowska-Sawczyn
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (A.K.); (A.B.); (P.B.); (M.M.-S.); (P.C.)
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Miroslav Petr
- Faculty of Physical Education and Sport, Charles University, 162-52 Prague, Czech Republic;
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (A.K.); (A.B.); (P.B.); (M.M.-S.); (P.C.)
| |
Collapse
|
87
|
Epicardial Adipose Tissue: A Novel Potential Imaging Marker of Comorbidities Caused by Chronic Inflammation. Nutrients 2022; 14:nu14142926. [PMID: 35889883 PMCID: PMC9316118 DOI: 10.3390/nu14142926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/09/2022] [Indexed: 12/11/2022] Open
Abstract
The observation of correlations between obesity and chronic metabolic and cardiovascular diseases has led to the emergence of strong interests in “adipocyte biology”, in particular in relation to a specific visceral adipose tissue that is the epicardial adipose tissue (EAT) and its pro-inflammatory role. In recent years, different imaging techniques frequently used in daily clinical practice have tried to obtain an EAT quantification. We provide a useful update on comorbidities related to chronic inflammation typical of cardiac adiposity, analyzing how the EAT assessment could impact and provide data on the patient prognosis. We assessed for eligibility 50 papers, with a total of 10,458 patients focusing the review on the evaluation of EAT in two main contexts: cardiovascular and metabolic diseases. Given its peculiar properties and rapid responsiveness, EAT could act as a marker to investigate the basal risk factor and follow-up conditions. In the future, EAT could represent a therapeutic target for new medications. The assessment of EAT should become part of clinical practice to help clinicians to identify patients at greater risk of developing cardiovascular and/or metabolic diseases and to provide information on their clinical and therapeutic outcomes.
Collapse
|
88
|
Ha NB, Cho S, Mohamad Y, Kent D, Jun G, Wong R, Swarnakar V, Lin S, Maher JJ, Lai JC. Visceral Adipose Tissue Inflammation and Radiographic Visceral-to-Subcutaneous Adipose Tissue Ratio in Patients with Cirrhosis. Dig Dis Sci 2022; 67:3436-3444. [PMID: 34136974 PMCID: PMC8815298 DOI: 10.1007/s10620-021-07099-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Accumulation of visceral adipose tissue is associated with hepatic inflammation and fibrosis, suggestive of its metabolic and inflammatory properties. We aimed to examine the histologic findings of visceral and subcutaneous adipose tissue and to associate these findings with clinical and radiologic characteristics in patients with cirrhosis. METHODS Included were 55 adults with cirrhosis who underwent liver transplantation from 3/2017-12/2018 and had an abdominal computed tomography (CT) scan within 6 months prior to transplant. Visceral-to-subcutaneous adipose tissue ratio (VSR) was calculated using visceral (VATI) and subcutaneous adipose tissue index (SATI) quantified by CT at the L3-vertebral level and normalized for height (cm2/m2). VAT (greater omentum), SAT (abdominal wall), and skeletal muscle (rectus abdominis) biopsies were collected at transplant. RESULTS Majority of patients had VAT inflammation (71%); only one patient (2%) had SAT inflammation. Patients with VAT inflammation had similar median VATI (42 vs 41 cm2/m2), lower median SATI (64 vs 97 cm2/m2), and higher median VSR (0.63 vs 0.37, p = 0.002) than patients without inflammation. In univariable logistic regression, VSR was associated with VAT inflammation (OR 1.47, 95%CI 1.11-1.96); this association remained significant even after adjusting for age, sex, BMI, HCC, or MELD-Na on bivariable analyses. CONCLUSION In patients with cirrhosis undergoing liver transplantation, histologic VAT inflammation was common, but SAT inflammation was not. Increased VSR was independently associated with VAT inflammation. Given the emerging data demonstrating the prognostic value of VSR, our findings support the value of CT-quantified VSR as a prognostic marker for adverse outcomes in the liver transplant setting.
Collapse
Affiliation(s)
- Nghiem B. Ha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0538, San Francisco, CA 94143, USA
| | - Soo‑Jin Cho
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Yara Mohamad
- 3D Lab, Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Dorothea Kent
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0538, San Francisco, CA 94143, USA
| | - Grace Jun
- 3D Lab, Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Randi Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0538, San Francisco, CA 94143, USA
| | - Vivek Swarnakar
- 3D Lab, Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Shezhang Lin
- 3D Lab, Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jacquelyn J. Maher
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0538, San Francisco, CA 94143, USA,Liver Center, University of California, San Francisco, CA, USA
| | - Jennifer C. Lai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0538, San Francisco, CA 94143, USA,Liver Center, University of California, San Francisco, CA, USA
| |
Collapse
|
89
|
Poman DS, Motwani L, Asif N, Patel A, Vedantam D. Pancreatic Cancer and the Obesity Epidemic: A Narrative Review. Cureus 2022; 14:e26654. [PMID: 35959181 PMCID: PMC9360631 DOI: 10.7759/cureus.26654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most frequent causes of death. It usually affects older individuals with incidence closely approaching mortality due to its early asymptomatic feature and highly metastatic nature. Multiple risk factors such as family history, smoking, and germline mutations are associated with PC development, with obesity being one of the controllable factors. This review article focuses on the compilation of various studies to help establish a correlation between obesity or an increased body mass index and PC development. Hence, in this review, we have summarised multiple biological mechanisms of PC development induced by obesity, including insulin resistance, inflammation, beta-cell dysfunction, and oxidative stress, to prove that their correlation when combined with other factors, such as smoking, alcohol and chronic pancreatitis, may increase its risk. We have also reviewed potential diagnostic and screening techniques, such as evaluating precancerous lesions in high-risk patients and management plans discussing upcoming advances in treatment tactics such as neoadjuvant therapy, to reduce post-operative complications.
Collapse
Affiliation(s)
| | - Lakshya Motwani
- Research and Development, Smt. Nathiba Hargovandas Lakhmichand (NHL) Municipal Medical College, Ahmedabad, IND
| | - Nailah Asif
- Research, Ras Al Khaimah (RAK) College of Medical Sciences, Ras Al Khaimah, ARE
| | - Apurva Patel
- Research, Gujarat Medical Education & Research Society (GMERS) Medical College, Gotri, Vadodara, IND
| | - Deepanjali Vedantam
- Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad, IND
| |
Collapse
|
90
|
Zhu X, Ory MG, Xu M, Towne SD, Lu Z, Hammond T, Sang H, Lightfoot JT, McKyer ELJ, Lee H, Sherman LD, Lee C. Physical Activity Impacts of an Activity-Friendly Community: A Natural Experiment Study Protocol. Front Public Health 2022; 10:929331. [PMID: 35784244 PMCID: PMC9240399 DOI: 10.3389/fpubh.2022.929331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Background Stakeholders from multiple sectors are increasingly aware of the critical need for identifying sustainable interventions that promote healthy lifestyle behaviors. Activity-friendly communities (AFCs) have been known to provide opportunities for engaging in physical activity (PA) across the life course, which is a key to healthy living and healthy aging. Purpose Our purpose is to describe the study protocol developed for a research project that examines: (a) the short- and long-term changes in total levels and spatial and temporal patterns of PA after individuals move from non-AFCs to an AFC; and (b) what built and natural environmental factors lead to changes in PA resulting from such a move, either directly or indirectly (e.g., by affecting psychosocial factors related to PA). Methods This protocol is for a longitudinal, case-comparison study utilizing a unique natural experiment opportunity in Austin, Texas, USA. Case participants were those adults who moved from non-AFCs to an AFC. Matching comparison participants were residents from similar non-AFCs who did not move during the study period. Recruitment venues included local businesses, social and print media, community events, and individual referrals. Objectively measured moderate-to-vigorous PA and associated spatial and temporal patterns served as the key outcomes of interest. Independent (e.g., physical environments), confounding (e.g., demographic factors), and mediating variables (e.g., psychosocial factors) were captured using a combination of objective (e.g., GIS, GPS, Tanita scale) and subjective measures (e.g., survey, travel diary). Statistical analyses will be conducted using multiple methods, including difference-in-differences models, repeated-measures linear mixed models, hierarchical marked space-time Poisson point pattern analysis, and hierarchical linear mixed models. Conclusion Natural experiment studies help investigate causal relationships between health and place. However, multiple challenges associated with participant recruitment, extensive and extended data collection activities, and unpredictable intervention schedules have discouraged many researchers from implementing such studies in community-based populations. This detailed study protocol will inform the execution of future studies to explore how AFCs impact population health across the life course.
Collapse
Affiliation(s)
- Xuemei Zhu
- Department of Architecture, Texas A&M University, College Station, TX, United States,Center for Health Systems & Design, Texas A&M University, College Station, TX, United States
| | - Marcia G. Ory
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, United States,Center for Population Health and Aging, Texas A&M University, College Station, TX, United States,*Correspondence: Marcia G. Ory
| | - Minjie Xu
- Center for Health Systems & Design, Texas A&M University, College Station, TX, United States,Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, United States
| | - Samuel D. Towne
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, United States,Center for Population Health and Aging, Texas A&M University, College Station, TX, United States,School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, United States,Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, FL, United States,Southwest Rural Health Research Center, Texas A&M University, College Station, TX, United States
| | - Zhipeng Lu
- Department of Architecture, Texas A&M University, College Station, TX, United States,Center for Health Systems & Design, Texas A&M University, College Station, TX, United States
| | - Tracy Hammond
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX, United States
| | - Huiyan Sang
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - J. Timothy Lightfoot
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - E. Lisako J. McKyer
- Center for Community Health Development, Texas A&M University, College Station, TX, United States
| | - Hanwool Lee
- Center for Health Systems & Design, Texas A&M University, College Station, TX, United States,Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, United States
| | - Ledric D. Sherman
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Chanam Lee
- Center for Health Systems & Design, Texas A&M University, College Station, TX, United States,Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, United States
| |
Collapse
|
91
|
Adipose and serum zinc alpha-2-glycoprotein (ZAG) expressions predict longitudinal change of adiposity, wasting and predict survival in dialysis patients. Sci Rep 2022; 12:9087. [PMID: 35641588 PMCID: PMC9158927 DOI: 10.1038/s41598-022-13149-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
There were limited data on adipose and serum zinc alpha-2-glycoprotein (ZAG) expression and its association with body composition in patients with advanced chronic kidney disease (CKD). This study aimed to quantify adipose and serum ZAG expression and evaluate their association with body composition and its longitudinal change, together with mortality in incident dialysis patients. We performed a single-center prospective cohort study. Patients who were planned for peritoneal dialysis were recruited. ZAG levels were measured from serum sample, subcutaneous and pre-peritoneal fat tissue obtained during peritoneal dialysis catheter insertion. Body composition and functional state were evaluated by bioimpedance spectroscopy and Clinical Frailty Scale respectively at baseline and were repeated 1 year later. Primary outcome was 2-year survival. Secondary outcomes were longitudinal changes of body composition. At baseline, the average adipose and serum ZAG expression was 13.4 ± 130.0-fold and 74.7 ± 20.9 µg/ml respectively. Both adipose and serum ZAG expressions independently predicted adipose tissue mass (ATM) (p = 0.001, p = 0.008, respectively). At 1 year, ATM increased by 3.3 ± 7.4 kg (p < 0.001) while lean tissue mass (LTM) remained similar (p = 0.5). Adipose but not serum ZAG level predicted change in ATM (p = 0.007) and LTM (p = 0.01). Serum ZAG level predicted overall survival (p = 0.005) and risk of infection-related death (p = 0.045) after adjusting for confounders. In conclusion, adipose and serum ZAG levels negatively correlated with adiposity and predicted its longitudinal change of fat and lean tissue mass, whilst serum ZAG predicted survival independent of body mass in advanced CKD patient.
Collapse
|
92
|
Ou MY, Zhang H, Tan PC, Zhou SB, Li QF. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis 2022; 13:300. [PMID: 35379822 PMCID: PMC8980023 DOI: 10.1038/s41419-022-04752-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.
Collapse
Affiliation(s)
- Min-Yi Ou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hao Zhang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qing-Feng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
93
|
Bell KE, Paris MT, Avrutin E, Mourtzakis M. Altered features of body composition in older adults with type 2 diabetes and prediabetes compared with matched controls. J Cachexia Sarcopenia Muscle 2022; 13:1087-1099. [PMID: 35174664 PMCID: PMC8978006 DOI: 10.1002/jcsm.12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ageing is accompanied by muscle loss and fat gain, which may elevate the risk of type 2 diabetes (T2D). However, there is a paucity of data on the distribution of regional lean and fat tissue in older adults with T2D or prediabetes compared with healthy controls. The objective of this study was to compare regional body composition [by dual-energy x-ray absorptiometry (DXA)], muscle and subcutaneous adipose tissue (SAT) thicknesses (by ultrasound), and ultrasound-based muscle texture features in older adults with T2D or prediabetes compared with normoglycaemic controls. METHODS Eighteen adults > 60 years with T2D or prediabetes (T2D group) were individually matched to normoglycaemic participants [healthy matched (HM) group] for age (±5 years), sex, and body fat (±2.5%). In a single study visit, all participants received a whole-body DXA scan and ultrasound assessment of the abdomen and anterior thigh. At these two landmarks, we used ultrasound to measure muscle and SAT thickness, as well as texture features of the rectus femoris and rectus abdominis. We also conducted an exploratory subanalysis on a subset of participants (n = 14/18 in the T2D group and n = 10/18 in the HM group) who underwent additional assessments including strength testing of the knee extensors (using a Biodex dynamometer), and a fasting blood sample for the measurement of circulating markers of glucose metabolism [glucose, insulin, c-peptide, and the homoeostatic model assessment of insulin resistance (HOMA-IR)]. RESULTS The T2D group was 72 ± 8 years old (mean ± SD), predominantly male (n = 15/18; 83%), and overweight (BMI: 27.8 ± 4.2 kg/m2 , 33.2 ± 5.3% body fat). DXA-derived upper arm lean mass was 0.4 kg greater (P = 0.034), and leg fat mass was 1.4 kg lower (P = 0.048), in the T2D vs. HM group. Ultrasound-based texture features were distinct between the groups [rectus abdominis blob size: 0.07 ± 0.06 vs. 0.30 ± 0.43 cm2 , P = 0.045; rectus femoris local binary pattern (LBP) entropy: 4.65 ± 0.05 vs. 4.59 ± 0.08 A.U., P = 0.007]. When all participants who underwent additional assessments were pooled (n = 24), we observed that certain ultrasound-based muscle texture features correlated significantly with muscle strength (rectus abdominis histogram skew vs. power during an isokinetic contraction at 60°/s: r = 0.601, P = 0.003) and insulin resistance (rectus femoris LBP entropy vs. HOMA-IR: r = 0.419, P = 0.042). CONCLUSIONS Our findings suggest a novel body composition phenotype specific to older adults with T2D or prediabetes. We are also the first to report that ultrasound-based texture features correspond with functional outcomes. Future larger scale studies are needed to uncover the mechanisms underpinning these regional body composition differences.
Collapse
Affiliation(s)
- Kirsten E Bell
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Michael T Paris
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Egor Avrutin
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Marina Mourtzakis
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
94
|
Kahn DE, Bergman BC. Keeping It Local in Metabolic Disease: Adipose Tissue Paracrine Signaling and Insulin Resistance. Diabetes 2022; 71:599-609. [PMID: 35316835 PMCID: PMC8965661 DOI: 10.2337/dbi21-0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/03/2022] [Indexed: 01/04/2023]
Abstract
Alterations in adipose tissue composition and function are associated with obesity and contribute to the development of type 2 diabetes. While the significance of this relationship has been cemented, our understanding of the multifaceted role of adipose tissue in metabolic heath and disease continues to evolve and expand. Heterogenous populations of cells that make up adipose tissue throughout the body generate diverse secretomes containing a mosaic of bioactive compounds with vast structural and signaling capabilities. While there are many reports highlighting the important role of adipose tissue endocrine signaling in insulin resistance and type 2 diabetes, the direct, local, paracrine effect of adipose tissue has received less attention. Recent studies have begun to underscore the importance of considering anatomically discrete adipose depots for their specific impact on local microenvironments and metabolic function in neighboring tissues as well as regulation of whole-body physiology. This article highlights the important role of adipose tissue paracrine signaling on metabolic function and insulin sensitivity in nearby tissues and organs, specifically focusing on visceral, pancreatic, subcutaneous, intermuscular, and perivascular adipose tissue depots.
Collapse
Affiliation(s)
- Darcy E. Kahn
- University of Colorado Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
95
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
96
|
Koethe JR, Moser C, Brown TT, Stein JH, Kelesidis T, Dube M, Currier J, McComsey GA. Adipokines, Weight Gain and Metabolic and Inflammatory Markers After Antiretroviral Therapy Initiation: AIDS Clinical Trials Group (ACTG) A5260s. Clin Infect Dis 2022; 74:857-864. [PMID: 34117756 PMCID: PMC8906713 DOI: 10.1093/cid/ciab542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The adipokines leptin and adiponectin, produced primarily by adipose tissue, have diverse endocrine and immunologic effects, and circulating levels reflect adipocyte lipid content, local inflammation, and tissue composition. We assessed relationships between changes in regional fat depots, leptin and adiponectin levels, and metabolic and inflammatory markers over 96 weeks in the AIDS Clinical Trials Group (ACTG) A5260s metabolic substudy of the A5257 randomized trial of tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir among treatment-naive persons with human immunodeficiency virus (PWH). METHODS Fat depots were measured using dual-energy absorptiometry and abdominal computed tomographic imaging at treatment initiation and 96 weeks later. Serum leptin and adiponectin, homeostatic model assessment of insulin resistance (HOMA-IR), and high-sensitivity C-reactive protein (hsCRP) were measured at the same timepoints. Multivariable regression models assessed relationships between fat depots, adipokines, HOMA-IR, and hsCRP at week 96. RESULTS Two hundred thirty-four participants maintained viral suppression through 96 weeks (90% male, 29% black, median age 36 years). Serum leptin increased over 96 weeks (mean change 22%) while adiponectin did not (mean change 1%), which did not differ by study arm. Greater trunk, limb, and abdominal subcutaneous and visceral fat were associated with higher HOMA-IR and hsCRP at 96 weeks, but serum leptin level was a stronger determinant of these endpoints using a mediation model approach. A similar mediating effect was not observed for adiponectin. CONCLUSIONS Higher circulating leptin is associated with greater HOMA-IR and hsCRP independent of fat depot size, suggesting that greater adipocyte lipid content may contribute to impaired glucose tolerance and systemic inflammation among PWH starting antiretroviral therapy.
Collapse
Affiliation(s)
- John R Koethe
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carlee Moser
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Todd T Brown
- Johns Hopkins University, Baltimore, Maryland, USA
| | - James H Stein
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Michael Dube
- University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Judith Currier
- University of California, Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
97
|
Khanna D, Khanna S, Khanna P, Kahar P, Patel BM. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022; 14:e22711. [PMID: 35386146 PMCID: PMC8967417 DOI: 10.7759/cureus.22711] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
As the prevalence of obesity continues to rise, the world is facing a major public health concern. Obesity is a complex disease associated with an increase in several inflammatory markers, leading to chronic low-grade inflammation. Of multifactorial etiology, it is often used as a measurement of morbidity and mortality. There remains much unknown regarding the association between obesity and inflammation. This review seeks to compile scientific literature on obesity and its associated inflammatory markers in chronic disease and further discusses the role of adipose tissue, macrophages, B-cells, T-cells, fatty acids, amino acids, adipokines, and hormones in obesity. Data were obtained using PubMed and Google Scholar. Obesity, inflammation, immune cells, hormones, fatty acids, and others were search words used to acquire relevant articles. Studies suggest brown adipose tissue is negatively associated with body mass index (BMI) and body fat percentage. Researchers also found the adipose tissue of lean individuals predominantly secretes anti-inflammatory markers, while in obese individuals more pro-inflammatory markers are secreted. Many studies found that adipose tissue in obese individuals showed a shift in immune cells from anti-inflammatory M2 macrophages to pro-inflammatory M1 macrophages, which was also correlated with insulin resistance. Obese individuals generally present with higher levels of hormones such as leptin, visfatin, and resistin. With obesity on the rise globally, it is predicted that severe obesity will become most common amongst low-income adults, black individuals, and women by 2030, making the need for intervention urgent. Further investigation into the association between obesity and inflammation is required to understand the mechanism behind this disease.
Collapse
Affiliation(s)
- Deepesh Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Siya Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Pragya Khanna
- Pediatrics, Gujarat Medical Education and Research Society (GMERS) Medical College, Vadnagar, IND
| | - Payal Kahar
- Department of Health Sciences, Florida Gulf Coast University, Fort Myers, USA
| | - Bhavesh M Patel
- Pediatrics, Gujarat Medical Education and Research Society (GMERS) Medical College, Vadnagar, IND
| |
Collapse
|
98
|
Dehydroepiandrosterone (DHEA) Improves the Metabolic and Haemostatic Disturbances in Rats with Male Hypogonadism. Sci Pharm 2022. [DOI: 10.3390/scipharm90010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objectives: The current work was designed to study the effect of dehydroepiandrosterone (DHEA) on glucose homeostasis, liver functions and hemostatic disturbances in a rat model of bilateral orchidectomy (ORCH). Methods: 32 male rats (n = 8) were randomly assigned into 4 groups; (i) control (sham operated) group; were normal rats in which all surgical procedures were done without ORCH, (ii) Control + DHEA group: as control group but rats were treated with DHEA for 12 weeks, (iii) orchiectomized (ORCH) group: rats had bilateral orchidectomy and (iv) ORCH + DHEA group: orchiectomized rats treated with DHEA for 12 weeks. Four weeks after ORCH, DHEA treatment began and lasted for twelve weeks. By the end of the experiment, the parameters of glucose homeostasis, lipid profile, liver enzymes, bleeding and clotting times (B.T. and C.T.), prothrombin time (P.T.), activated partial thromboplastin time (aPTT), platelet count and aggregation, von-Willebrand factor (vWF), fibrinogen, plasminogen activator inhibitor (PAI-1), fibrin degradation products (FDP), intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelin-1 were measured. Results: ORCH caused significant deteriorations in the parameters of glucose homeostasis, lipid profile, and liver functions (p < 0.05). In addition, lower androgenicity-induced by ORCH caused a significant rise in PAI-1, fibrinogen, FDPs, ET-1 (p < 0.01) with significant shortening of bleeding and clotting times. DHEA replacement therapy significantly decreased glucose, insulin, PAI-1, fibrinogen, ICAM-1, and VCAM-1 when compared to ORCH rats. Conclusion: DHEA ameliorated the metabolic, hepatic, hypercoagulable, and hypofibrinolysis disturbances induced by ORCH.
Collapse
|
99
|
Clément AA, Lacaille M, Lounis MA, Biertho LD, Richard D, Lemieux I, Bergeron J, Mounier C, Joanisse DR, Mauriège P. Intra-abdominal adipose depot variation in adipogenesis, lipogenesis, angiogenesis, and fibrosis gene expression and relationships with insulin resistance and inflammation in premenopausal women with severe obesity. J Physiol Biochem 2022; 78:527-542. [PMID: 35000091 DOI: 10.1007/s13105-021-00855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Although severe obesity is associated with insulin resistance (IR) and inflammation, secretory function of intra-abdominal adipose tissues and their relationships with IR and inflammation markers remain poorly understood. Aims were to measure gene expression of adipogenic (C/EBPα/β, PPARγ-1/2, SREBP-1c, LXRα), lipogenic (SCD1, DGAT-1/2), angiogenic (VEGFα, leptin), and fibrotic (LOX, COL6A3) factors in the round ligament (RL), omental (OM), and mesenteric (ME) fat depots and to evaluate their relationships with IR and inflammation markers in 48 women with severe obesity undergoing bariatric surgery. Gene expression was assessed by RT-qPCR, and plasma glucose and insulin (HOMA-IR calculated), PAI-1, IL-6, TNFα, adiponectin, and leptin levels were determined. C/EBPβ and PPARγ-1/2 mRNA levels were more expressed in the OM (0.001<p<0.05). ME showed the highest expression of C/EBPα, SREBP-1c, DGAT-2, and leptin and the lowest of SCD1, LXRα, VEGFα, and LOX (0.001<p<0.05). COL6A3 expression was higher in the ME and RL (p<0.001). COL6A3 expression was negatively associated with IR indices in the RL (0.01<p<0.05) and with fasting glycemia and HOMA-IR in the OM (0.001<p<0.05). VEGFα expression was positively related to TNFα and PAI-1 in the RL (0.001<p<0.05) and to PAI-1 in the OM (p<0.05) and negatively to PAI-1 in the ME (p<0.001). Fibrosis gene expression correlated negatively with inflammation in RL and OM (0.001<p<0.05) and positively with PAI-1 in the ME (0.001<p<0.05). The varying relationships of gene expression profiles with selected IR indices and inflammation biomarkers further suggest these fat depots have distinct contributions to overall health in premenopausal women with severe obesity.
Collapse
Affiliation(s)
- Andrée-Anne Clément
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada.,Département de Biochimie et Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Michel Lacaille
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada
| | - Mohamed Amine Lounis
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Institut du Cancer de Montréal (ICM), Montreal, Quebec, Canada
| | - Laurent D Biertho
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada.,Département de Physiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | - Isabelle Lemieux
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada
| | - Jean Bergeron
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CHUL), Québec, Canada
| | - Catherine Mounier
- Département des Sciences Biologiques et Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec À Montréal, Montreal, Canada
| | - Denis R Joanisse
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada.,Département de Kinésiologie, Faculté de médecine, Université Laval, Quebec, Canada
| | - Pascale Mauriège
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Quebec, Canada. .,Département de Kinésiologie, Faculté de médecine, Université Laval, Quebec, Canada.
| |
Collapse
|
100
|
Abstract
PURPOSE OF REVIEW The obesity epidemic is on the rise, and while it is well known that obesity is associated with an increase in cardiovascular risk factors such as type 2 diabetes mellitus, hypertension, and obstructive sleep apnea, recent data has highlighted that the degree and type of fat distribution may play a bigger role in the pathogenesis of cardiovascular disease (CVD) than body mass index (BMI) alone. We aim to review updated data on adipose tissue inflammation and distribution and CVD. RECENT FINDINGS We review the pathophysiology of inflammation secondary to adipose tissue, the association of obesity-related adipokines and CVD, and the differences and significance of brown versus white adipose tissue. We delve into the clinical manifestations of obesity-related inflammation in CVD. We discuss the available data on heterogeneity of adipose tissue-related inflammation with a focus on subcutaneous versus visceral adipose tissue, the differential pathophysiology, and clinical CVD manifestations of adipose tissue across sex, race, and ethnicity. Finally, we present the available data on lifestyle modification, medical, and surgical therapeutics on reduction of obesity-related inflammation. Obesity leads to a state of chronic inflammation which significantly increases the risk for CVD. More research is needed to develop non-invasive VAT quantification indices such as risk calculators which include variables such as sex, age, race, ethnicity, and VAT concentration, along with other well-known CVD risk factors in order to comprehensively determine risk of CVD in obese patients. Finally, pre-clinical biomarkers such as pro-inflammatory adipokines should be validated to estimate risk of CVD in obese patients.
Collapse
Affiliation(s)
- Mariam N Rana
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Ian J Neeland
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Harrington Heart and Vascular Institute, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|