51
|
Parkinson's disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc Natl Acad Sci U S A 2019; 116:20689-20699. [PMID: 31548400 PMCID: PMC6789907 DOI: 10.1073/pnas.1902958116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of α-synuclein aggregation and subsequent Lewy body formation are a key pathogenesis of Parkinson’s disease (PD). PARK14-linked PD, which is caused by mutations of the iPLA2-VIA/PLA2G6 gene, exhibits a marked Lewy body pathology. iPLA2-VIA, which belongs to the phospholipase A2 family, is another causative gene of neurodegeneration with brain iron accumulation (NBIA). Here, we demonstrate that iPLA2-VIA loss results in acyl-chain shortening in phospholipids, which affects ER homeostasis and neurotransmission and promotes α-synuclein aggregation. The administration of linoleic acid or the overexpression of C19orf12, one of the NBIA-causative genes, also suppresses the acyl-chain shortening by iPLA2-VIA loss. The rescue of iPLA2-VIA phenotypes by C19orf12 provides significant molecular insight into the underlying common pathogenesis of PD and NBIA. Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
Collapse
|
52
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
53
|
Shukla A, Saneto RP, Hebbar M, Mirzaa G, Girisha KM. A neurodegenerative mitochondrial disease phenotype due to biallelic loss-of-function variants in PNPLA8 encoding calcium-independent phospholipase A2γ. Am J Med Genet A 2019; 176:1232-1237. [PMID: 29681094 DOI: 10.1002/ajmg.a.38687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
Animal studies have demonstrated the critical roles of the patatin-like protein family plays in cellular growth, lipid homeostasis, and second messenger signaling the nervous system. Of the nine known calcium-independent phospholipase A2γ, only PNPLA2, PNLPA6, PNPLA9 and most recently a single patient with PNPLA8 are associated with mitochondrial-related neurodegeneration. Using whole exome sequencing, we report two unrelated individuals with variable but similar clinical features of microcephaly, severe global developmental delay, spasticity, lactic acidosis, and progressive cerebellar atrophy with biallelic loss-of-function variants in PNPLA8.
Collapse
Affiliation(s)
- Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Russell P Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle Children's Research Institute, Seattle, Washington, USA.,Division of Pediatric Neurology, Department of Neurology, Neuroscience Institute, Seattle Children's Hospital, Seattle, Washington, USA
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
54
|
Ji Y, Li Y, Shi C, Gao Y, Yang J, Liang D, Yang Z, Xu Y. Identification of a novel mutation in PLA2G6 gene and phenotypic heterogeneity analysis of PLA2G6-related neurodegeneration. Parkinsonism Relat Disord 2019; 65:159-164. [PMID: 31196701 DOI: 10.1016/j.parkreldis.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION This study reports a novel mutation site of the phospholipase A2 group VI (PLA2G6) gene, and analyzes the information of 67 previously published cases to elucidate PLA2G6 phenotype-genotype variations. METHODS We collected clinical data and examined gene mutation sites from one Chinese patient with adult-onset ataxia and her family. Next-generation sequencing (NGS) and Sanger sequencing were used to verify possible mutations. PolyPhen-2, SIFT, and MutationTaster were used to predict their pathogenicity. For analyzing the distribution frequency of the mutation, 597 healthy controls were recruited. We also analyzed the clinical and genetic information of 67 cases from 23 studies in Pubmed database. RESULTS A novel compound heterozygous mutation of the PLA2G6 gene, c.1648delC and c.991G > T, was found in the Chinese patient, and classified as pathogenic. The c.1648delC variation was absent in ExAC, 1000G, dbSNP databases and the 597 healthy controls. Of the 67 cases, 29 presented ataxia. The signs of cerebellar atrophy appeared in the MRIs of most patients, while signs of iron accumulation were absent in older-aged patients with a compound heterozygous mutation. Thirty-eight patients showed no ataxia. A negative or mild extrapyramidal symptom accompanied by a low age, a homogenous mutation, while moderate or severe extrapyramidal symptoms were associated with an old age and a compound heterozygous mutation. CONCLUSION A novel compound heterozygous mutation of the PLA2G6 gene, c.1648delC and c.991G > T, is associated with adult onset ataxia. Phenotype-genotype variations of PLA2G6 are predicted to be caused by the loss of protein or enzyme activity of phospholipase-2.
Collapse
Affiliation(s)
- Yan Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Dongyi Liang
- The Medical College of ZhengZhou University, Zhengzhou, Henan, 450050, China
| | - Zhihua Yang
- The Medical College of ZhengZhou University, Zhengzhou, Henan, 450050, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
55
|
Jain S, Bhasin H, Romani M, Valente EM, Sharma S. Atypical Childhood-onset Neuroaxonal Dystrophy in an Indian Girl. J Pediatr Neurosci 2019; 14:90-93. [PMID: 31516627 PMCID: PMC6712922 DOI: 10.4103/jpn.jpn_91_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A 7-year-old girl presented with progressive walking difficulties, spasticity, and cognitive decline with onset at 3 years of age. No seizures, vision, or hearing impairment were reported. The magnetic resonance imaging of the brain revealed cerebellar atrophy and evidence of iron deposition in the globi pallidi and substantia nigra. The clinico-radiological profile was suggestive of atypical childhood-onset neuroaxonal dystrophy. The patient was found to have compound heterozygous mutations in the PLA2G6 gene confirming the diagnosis.
Collapse
Affiliation(s)
- Sakshi Jain
- Department of Pediatrics, Surya Women and Child Hospital, Jaipur, India
| | - Himani Bhasin
- Department of Pediatrics, Shree Guru Gobind Singh Tricentenary Medical College and hospital, Delhi- NCR, India
| | - Marta Romani
- Eurofins Genoma Group, Molecular Genetics Laboratory, Via di Castel Giubileo Rome, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy, and Neurogenetics Unit IRCCS Santa Lucia Foundation, Rome, Italy
| | - Suvasini Sharma
- Division of Pediatric Neurology, Department of Pediatrics, Lady Harding Medical College, New Delhi, India
| |
Collapse
|
56
|
Fujiwara T, Watanabe Y, Tanaka H, Takahashi H, Nabatame S, Yi W, Tomiyama N. Quantitative susceptibility mapping (QSM) evaluation of infantile neuroaxonal dystrophy. BJR Case Rep 2019; 5:20180078. [PMID: 31501698 PMCID: PMC6726173 DOI: 10.1259/bjrcr.20180078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 02/05/2023] Open
Abstract
We present the first case of twins with infantile neuroaxonal dystrophy evaluating brain iron deposition using quantitative susceptibility mapping (QSM). A 6-year-old boy who was normal at birth had psychomotor regression and hypotonia from 2-years-old. Brain MRI showed low intensity areas in globus pallidus (GP) and substantia nigra (SN) on T 2* weighted imaging. QSM values of GP and SN were 0.19 and 0.29 ppm, respectively. His twin brother showed almost the same imaging findings. Follow-up MRI revealed increase of QSM value in GP and SN.
Collapse
Affiliation(s)
- Takuya Fujiwara
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Watanabe
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hisashi Tanaka
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroto Takahashi
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Wang Yi
- Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Noriyuki Tomiyama
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
57
|
Guo YP, Tang BS, Liu HL, Huang JJ, Xu Q, Sun QY, Yan XX, Guo JF. Impaired iPLA 2β activity affects iron uptake and storage without iron accumulation: An in vitro study excluding decreased iPLA 2β activity as the cause of iron deposition in PLAN. Brain Res 2019; 1712:25-33. [PMID: 30707893 DOI: 10.1016/j.brainres.2019.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/13/2019] [Accepted: 01/27/2019] [Indexed: 01/12/2023]
Abstract
PLA2G6-associated neurodegeneration (PLAN, NBIA2) is the second most common type of neurodegeneration with brain iron accumulation (NBIA), caused by recessive mutations of PLA2G6 gene, which encodes Ca2+-independent phospholipase A2β (iPLA2β). In most PLAN cases, decreased iPLA2β activity and iron deposition was observed meanwhile, and researchers also identified a PLA2G6 mutation family without iron deposition shown by MRI images. This brought us the question of whether decreased iPLA2β activity was the cause of iron deposition in PLAN. In this study, we used S-BEL as the antagonist of iPLA2β to block its activity and used SH-SY5Y cells as the expression system. We incubated SH-SY5Y cells with different concentrations of S-BEL. The results showed that decreased iPLA2β activity led no obvious iron accumulation, while changes of cells state and activation of apoptosis were observed. To further investigate the cause of unchanged iron level, we examined the cellular iron regulatory proteins involved in iron uptake, storage and export. The results were as follows: TfR1 (iron uptake protein) expression was decreased, the expression of ferritin heavy chain and light chain (iron storage protein) was increased. There was no alteration of the expression of DMT1 (iron uptake protein) and FPN1 (iron export protein). Under the condition of decreased iPLA2β activity, there was no obvious iron accumulation but iron uptake activity decreased and iron storage activity increased. Therefore, we speculate that the decreased iPLA2β activity may not be the main reason for iron deposition in PLAN.
Collapse
Affiliation(s)
- Yu-Pei Guo
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing 100069, People's Republic of China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Bei-Sha Tang
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing 100069, People's Republic of China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Center for Medical Genetics, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Hong-Li Liu
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing 100069, People's Republic of China; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Juan-Juan Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China; Center for Medical Genetics, Central South University, Changsha 410008, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
58
|
Abstract
The term NBIA encompasses a heterogeneous group of inherited disorders characterized clinically by progressive extra pyramidal syndrome and pathologically by excessive iron deposition in brain, primarily affecting the basal ganglia (globus pallidus mainly). The hallmark of this syndrome is the age specific phenotypic presentation and intraphenotypic heterogeneity. NBIAs at present include ten subtypes with genes identified in nine subtypes. They form an important differential diagnosis for the phenotype of global developmental delay in infancy/childhood to dystonia-parkinsonism or isolated parkinsonism at all ages and also for the isolated craniocervical dystonia of adult onset. There needs to be a high index of clinical suspicion for this syndrome and the evaluation includes MRI brain T2* weighted imaging which reveal symmetrical iron deposition in bilateral globus pallidi and other basal ganglia. The T2 * imaging pattern of iron deposition varies amongst the different subtypes and the combination of clinical phenotype and MRI signature makes it easier to confidently make a diagnosis of NBIA and to recommend genetic testing. The treatment to date is mostly symptomatic with targeted therapies on the horizon.
Collapse
Affiliation(s)
- Amit Batla
- Honorary Consultant Neurologist, National Hospital for Neurology and Neurosurgery, Queen Square, Luton, United Kingdom.,Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Luton, United Kingdom.,Consultant Neurologist, Luton and Dunstable University Hospital, NHS Foundation Trust, Luton, United Kingdom
| | - Chandana Gaddipati
- Consultant Neurologist, St Joseph's Hospital, Andhra Pradesh, India.,Consultant Neurologist, Vanita Vaidysala, Guntur, Andhra Pradesh, India
| |
Collapse
|
59
|
Paramanandam V, Lizarraga KJ, Soh D, Algarni M, Rohani M, Fasano A. Unusual gait disorders: a phenomenological approach and classification. Expert Rev Neurother 2018; 19:119-132. [DOI: 10.1080/14737175.2019.1562337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Vijayashankar Paramanandam
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Karlo J. Lizarraga
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Derrick Soh
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Musleh Algarni
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, UHN, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| |
Collapse
|
60
|
Guo YP, Tang BS, Guo JF. PLA2G6-Associated Neurodegeneration (PLAN): Review of Clinical Phenotypes and Genotypes. Front Neurol 2018; 9:1100. [PMID: 30619057 PMCID: PMC6305538 DOI: 10.3389/fneur.2018.01100] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN) includes a series of neurodegenerative diseases that result from the mutations in PLA2G6. PLAN has genetic and clinical heterogeneity, with different mutation sites, mutation types and ethnicities and its clinical phenotype is different. The clinical phenotypes and genotypes of PLAN are closely intertwined and vary widely. PLA2G6 encodes a group of VIA calcium-independent phospholipase A2 proteins (iPLA2β), an enzyme involved in lipid metabolism. According to the age of onset and progressive clinical features, PLAN can be classified into the following subtypes: infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (ANAD) and parkinsonian syndrome which contains adult onset dystonia parkinsonism (DP) and autosomal recessive early-onset parkinsonism (AREP). In this review, we present an overview of PLA2G6-associated neurodegeneration in the context of current research.
Collapse
Affiliation(s)
- Yu-Pei Guo
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
61
|
Del Rey NLG, Quiroga-Varela A, Garbayo E, Carballo-Carbajal I, Fernández-Santiago R, Monje MHG, Trigo-Damas I, Blanco-Prieto MJ, Blesa J. Advances in Parkinson's Disease: 200 Years Later. Front Neuroanat 2018; 12:113. [PMID: 30618654 PMCID: PMC6306622 DOI: 10.3389/fnana.2018.00113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
When James Parkinson described the classical symptoms of the disease he could hardly foresee the evolution of our understanding over the next two hundred years. Nowadays, Parkinson’s disease is considered a complex multifactorial disease in which genetic factors, either causative or susceptibility variants, unknown environmental cues, and the potential interaction of both could ultimately trigger the pathology. Noteworthy advances have been made in different fields from the clinical phenotype to the decoding of some potential neuropathological features, among which are the fields of genetics, drug discovery or biomaterials for drug delivery, which, though recent in origin, have evolved swiftly to become the basis of research into the disease today. In this review, we highlight some of the key advances in the field over the past two centuries and discuss the current challenges focusing on exciting new research developments likely to come in the next few years. Also, the importance of pre-motor symptoms and early diagnosis in the search for more effective therapeutic options is discussed.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Quiroga-Varela
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Elisa Garbayo
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Iria Carballo-Carbajal
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Laboratory of Parkinson Disease and other Neurodegenerative Movement Disorders, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mariana H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Department of Anatomy, Histology and Neuroscience, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María J Blanco-Prieto
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
62
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
63
|
Parkinson's Disease and Metal Storage Disorders: A Systematic Review. Brain Sci 2018; 8:brainsci8110194. [PMID: 30384510 PMCID: PMC6267486 DOI: 10.3390/brainsci8110194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022] Open
Abstract
Metal storage disorders (MSDs) are a set of rare inherited conditions with variable clinical pictures including neurological dysfunction. The objective of this study was, through a systematic review, to identify the prevalence of Parkinsonism in patients with MSDs in order to uncover novel pathways implemented in Parkinson’s disease. Human studies describing patients of any age with an MSD diagnosis were analysed. Foreign language publications as well as animal and cellular studies were excluded. Searches were conducted through PubMed and Ovid between April and September 2018. A total of 53 publications were identified including 43 case reports, nine cross-sectional studies, and one cohort study. The publication year ranged from 1981 to 2018. The most frequently identified MSDs were Pantothenate kinase-associated neurodegeneration (PKAN) with 11 papers describing Parkinsonism, Hereditary hemochromatosis (HH) (7 papers), and Wilson’s disease (6 papers). The mean ages of onset of Parkinsonism for these MSDs were 33, 53, and 48 years old, respectively. The Parkinsonian features described in the PKAN and HH patients were invariably atypical while the majority (4/6) of the Wilson’s disease papers had a typical picture. This paper has highlighted a relationship between MSDs and Parkinsonism. However, due to the low-level evidence identified, further research is required to better define what the relationship is.
Collapse
|
64
|
Darling A, Aguilera-Albesa S, Tello CA, Serrano M, Tomás M, Camino-León R, Fernández-Ramos J, Jiménez-Escrig A, Poó P, O'Callaghan M, Ortez C, Nascimento A, Fernández Mesaque RC, Madruga M, Arrabal L, Roldan S, Gómez-Martín H, Garrido C, Temudo T, Jou-Muñoz C, Muchart J, Huisman TAGM, Poretti A, Lupo V, Espinós C, Pérez-Dueñas B. PLA2G6-associated neurodegeneration: New insights into brain abnormalities and disease progression. Parkinsonism Relat Disord 2018; 61:179-186. [PMID: 30340910 DOI: 10.1016/j.parkreldis.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 10/12/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION PLA2G6-associated neurodegeneration (PLAN) comprises a continuum of three phenotypes with overlapping clinical and radiologic features. METHODS Observational clinical study in a cohort of infantile and childhood onset PLAN patients and genetic analysis of the PLA2G6 gene. We analysed chronological evolution in terms of age at onset and disease course through a 66-item questionnaire. We performed qualitative and quantitative assessment of MRI abnormalities and searched for clinical and radiological phenotype and genotype correlations. RESULTS Sixteen PLAN patients (mean age: 10.2 years, range 3-33) were evaluated, with a median onset (years) of signs/symptoms as follows: neurological regression (1.5), oculomotor abnormalities (1.5), hypotonia (1.8), gait loss (2.2), pyramidal signs (3.0), axonal neuropathy (3.0), dysphagia (4.0), optic atrophy (4.0), psychiatric symptoms (4.0), seizures (5.9), joint contractures (6.0), dystonia (8.0), bladder dysfunction (13.0) and parkinsonism (15.0). MRI assessment identified cerebellar atrophy (19/19), brain iron deposition (10/19), clava hypertrophy (8/19) and T2/FLAIR hyperintensity of the cerebellar cortex (6/19). The mid-sagittal vermis relative diameter (MVRD) correlated with age at onset of clinical variants, meaning that the earlier the onset, the more severe the cerebellar atrophy. All patients harboured missense, nonsense and frameshift mutations in PLA2G6, including four novel variants. CONCLUSIONS Cerebellar atrophy was a universal radiological sign in infantile and childhood onset PLAN, and correlated with the severity of the phenotype. Iron accumulation within the globus pallidum and substantia nigra was also a common and strikingly uniform feature regardless of the phenotype.
Collapse
Affiliation(s)
- Alejandra Darling
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, Pamplona, Spain
| | - Cristina Aisha Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, CIBERER, Instituto de Salud Carlos III, Spain
| | - Miguel Tomás
- Pediatric Neurology Department, Hospital Universitario Politécnico La Fe, Valencia, Spain
| | - Rafael Camino-León
- Pediatric Neurology Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | | | - Pilar Poó
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Mar O'Callaghan
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Carlos Ortez
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Andrés Nascimento
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | | | - Marcos Madruga
- Pediatric Neurology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Luisa Arrabal
- Pediatric Neurology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Susana Roldan
- Pediatric Neurology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Hilario Gómez-Martín
- Pediatric Neurology Department, Hospital San Pedro de Alcántara, Complejo Hospitalario Universitario de Cáceres, Spain
| | - Cristina Garrido
- Pediatric Neurology Department, Centro Materno-Infantil, Centro Hospitalario do Porto, Porto, Portugal
| | - Teresa Temudo
- Pediatric Neurology Department, Centro Materno-Infantil, Centro Hospitalario do Porto, Porto, Portugal
| | - Cristina Jou-Muñoz
- Pathology Department, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, CIBERER, Instituto de Salud Carlos III, Spain
| | - Jordi Muchart
- Neuroradiology Department, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
| | - Thierry A G M Huisman
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Poretti
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Belén Pérez-Dueñas
- Pediatric Neurology Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
65
|
A Missense Mutation in the Vacuolar Protein Sorting 11 ( VPS11) Gene Is Associated with Neuroaxonal Dystrophy in Rottweiler Dogs. G3-GENES GENOMES GENETICS 2018; 8:2773-2780. [PMID: 29945969 PMCID: PMC6071611 DOI: 10.1534/g3.118.200376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Canine neuroaxonal dystrophy (NAD) is a recessive, degenerative neurological disease of young adult Rottweiler dogs (Canis lupus familiaris) characterized pathologically by axonal spheroids primarily targeting sensory axon terminals. A genome-wide association study of seven Rottweilers affected with NAD and 42 controls revealed a significantly associated region on canine chromosome 5 (CFA 5). Homozygosity within the associated region narrowed the critical interval to a 4.46 Mb haplotype (CFA5:11.28 Mb – 15.75 Mb; CanFam3.1) that associated with the phenotype. Whole-genome sequencing of two histopathologically confirmed canine NAD cases and 98 dogs unaffected with NAD revealed a homozygous missense mutation within the Vacuolar Protein Sorting 11 (VPS11) gene (g.14777774T > C; p.H835R) that was associated with the phenotype. These findings present the opportunity for an antemortem test for confirming NAD in Rottweilers where the allele frequency was estimated at 2.3%. VPS11 mutations have been associated with a degenerative leukoencephalopathy in humans, and VSP11 should additionally be included as a candidate gene for unexplained cases of human NAD.
Collapse
|
66
|
Elsayed LEO, Mohammed IN, Hamed AAA, Elseed MA, Salih MAM, Yahia A, Siddig RA, Amin M, Koko M, Elbashir MI, Ibrahim ME, Brice A, Ahmed AE, Stevanin G. Case report of a novel homozygous splice site mutation in PLA2G6 gene causing infantile neuroaxonal dystrophy in a Sudanese family. BMC MEDICAL GENETICS 2018; 19:72. [PMID: 29739362 PMCID: PMC5941609 DOI: 10.1186/s12881-018-0592-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022]
Abstract
Background Infantile neuroaxonal dystrophy (INAD) is a rare hereditary neurological disorder caused by mutations in PLA2G6. The disease commonly affects children below 3 years of age and presents with delay in motor skills, optic atrophy and progressive spastic tetraparesis. Studies of INAD in Africa are extremely rare, and genetic studies from Sub Saharan Africa are almost non-existent. Case presentation Two Sudanese siblings presented, at ages 18 and 24 months, with regression in both motor milestones and speech development and hyper-reflexia. Brain MRI showed bilateral and symmetrical T2/FLAIR hyperintense signal changes in periventricular areas and basal ganglia and mild cerebellar atrophy. Whole exome sequencing with confirmatory Sanger sequencing were performed for the two patients and healthy family members. A novel variant (NM_003560.2 c.1427 + 2 T > C) acting on a splice donor site and predicted to lead to skipping of exon 10 was found in PLA2G6. It was found in a homozygous state in the two patients and homozygous reference or heterozygous in five healthy family members. Conclusion This variant has one very strong (loss of function mutation) and three supporting evidences for its pathogenicity (segregation with the disease, multiple computational evidence and specific patients’ phenotype). Therefore this variant can be currently annotated as “pathogenic”. This is the first study to report mutations in PLA2G6 gene in patients from Sudan.
Collapse
Affiliation(s)
- Liena E O Elsayed
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan.
| | - Inaam N Mohammed
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan
| | - Mustafa A M Salih
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Yahia
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan.,Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
| | - Rayan A Siddig
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan
| | - Mutaz Amin
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan
| | - Mahmoud Koko
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.,Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| | - Mustafa I Elbashir
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan
| | - Muntaser E Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, 75013, Paris, France.,Department of genetics, APHP Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Ammar E Ahmed
- Faculty of Medicine, University of Khartoum, Qasr Street, 11111, Khartoum, Sudan.
| | - Giovanni Stevanin
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, UPMC Université Paris VI UMR_S1127, 75013, Paris, France.,Ecole Pratique des Hautes Etudes, EPHE, PSL research university, 75014, Paris, France.,Department of genetics, APHP Pitié-Salpêtrière Hospital, 75013, Paris, France
| |
Collapse
|
67
|
Razmeh S, Habibi AH, Orooji M, Alizadeh E, Moradiankokhdan K, Razmeh B. Pantothenate kinase-associated neurodegeneration: Clinical aspects, diagnosis and treatments. Neurol Int 2018; 10:7516. [PMID: 29844889 PMCID: PMC5937219 DOI: 10.4081/ni.2018.7516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 02/04/2018] [Indexed: 01/06/2023] Open
Abstract
Pantothenate Kinase-Associated Neurodegeneration (PKAN) is an autosomal recessive disorder characterized by a mutation in the PANK2 gene. The clinical presentation may range from only speech disorder to severe generalized dystonia, spasticity, Visual loss, dysphagia and dementia. The hallmark of this disease is eyes of the tiger sign in the medial aspect of bilateral globus pallidus on T2-weighted MRI that is a hyperintense lesion surrounded by hypointensity. Common treatments for PKAN disease include anticholinergics, botulinum toxin, Oral and Intrathecal baclofen, Iron chelation drugs and surgical procedures such as ablative pallidotomy or thalamotomy, Deep brain stimulation. There are many controversies about the pathogenesis and treatment of this disease, and in recent years interesting studies have been done on PKAN disease and other similar diseases. This review summarizes the clinical presentation, etiology, imaging modalities and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Behroz Razmeh
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
68
|
Iliadi KG, Gluscencova OB, Iliadi N, Boulianne GL. Mutations in the Drosophila homolog of human PLA2G6 give rise to age-dependent loss of psychomotor activity and neurodegeneration. Sci Rep 2018; 8:2939. [PMID: 29440694 PMCID: PMC5811537 DOI: 10.1038/s41598-018-21343-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a fatal neurodegenerative disorder that typically begins within the first few years of life and leads to progressive impairment of movement and cognition. Several years ago, it was shown that >80% of patients with INAD have mutations in the phospholipase gene, PLA2G6. Interestingly, mutations in PLA2G6 are also causative in two other related neurodegenerative diseases, atypical neuroaxonal dystrophy and Dystonia-parkinsonism. While all three disorders give rise to similar defects in movement and cognition, some defects are unique to a specific disorder. At present, the cellular mechanisms underlying PLA2G6-associated neuropathology are poorly understood and there is no cure or treatment that can delay disease progression. Here, we show that loss of iPLA2-VIA, the Drosophila homolog of PLA2G6, gives rise to age-dependent defects in climbing and spontaneous locomotion. Moreover, using a newly developed assay, we show that iPLA2-VIA mutants also display impairments in fine-tune motor movements, motor coordination and psychomotor learning, which are distinct features of PLA2G6-associated disease in humans. Finally, we show that iPLA2-VIA mutants exhibit increased sensitivity to oxidative stress, progressive neurodegeneration and a severely reduced lifespan. Altogether, these data demonstrate that Drosophila iPLA2-VIA mutants provide a useful model to study human PLA2G6-associated neurodegeneration.
Collapse
Affiliation(s)
- Konstantin G Iliadi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| | - Oxana B Gluscencova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Natalia Iliadi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Gabrielle L Boulianne
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
69
|
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:293-305. [PMID: 29325618 DOI: 10.1016/b978-0-444-63233-3.00019-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders affecting children and adults. These rare disorders are often first suspected when increased basal ganglia iron is observed on brain magnetic resonance imaging. For the majority of NBIA disorders the genetic basis has been delineated, and clinical testing is available. The four most common NBIA disorders include pantothenate kinase-associated neurodegeneration (PKAN) due to mutations in PANK2, phospholipase A2-associated neurodegeneration caused by mutation in PLA2G6, mitochondrial membrane protein-associated neurodegeneration from mutations in C19orf12, and beta-propeller protein-associated neurodegeneration due to mutations in WDR45. The ultrarare NBIA disorders are caused by mutations in CoASY, ATP13A2, and FA2H (causing CoA synthase protein-associated neurodegeneration, Kufor-Rakeb disease, and fatty acid hydroxylase-associated neurodegeneration, respectively). Together, these genes account for disease in approximately 85% of patients diagnosed with an NBIA disorder. New NBIA genes are being recognized with increasing frequency as a result of whole-exome sequencing, which is also facilitating early ascertainment of patients whose phenotype is often nonspecific.
Collapse
Affiliation(s)
- Susan J Hayflick
- Departments of Molecular and Medical Genetics, Pediatrics and Neurology, Oregon Health and Science University, Portland, OR, United States.
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Institute of Child Health, University College London and Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Penelope Hogarth
- Departments of Molecular and Medical Genetics and Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
70
|
Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov Disord 2017; 32:1504-1523. [PMID: 29124790 PMCID: PMC5726430 DOI: 10.1002/mds.27193] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022] Open
Abstract
Clinical-pathological studies remain the gold-standard for the diagnosis of Parkinson's disease (PD). However, mounting data from genetic PD autopsies challenge the diagnosis of PD based on Lewy body pathology. Most of the confirmed genetic risks for PD show heterogenous neuropathology, even within kindreds, which may or may not include Lewy body pathology. We review the literature of genetic PD autopsies from cases with molecularly confirmed PD or parkinsonism and summarize main findings on SNCA (n = 25), Parkin (n = 20, 17 bi-allelic and 3 heterozygotes), PINK1 (n = 5, 1 bi-allelic and 4 heterozygotes), DJ-1 (n = 1), LRRK2 (n = 55), GBA (n = 10 Gaucher disease patients with parkinsonism), DNAJC13, GCH1, ATP13A2, PLA2G6 (n = 8 patients, 2 with PD), MPAN (n = 2), FBXO7, RAB39B, and ATXN2 (SCA2), as well as on 22q deletion syndrome (n = 3). Findings from autopsies of heterozygous mutation carriers of genes that are traditionally considered recessively inherited are also discussed. Lewy bodies may be present in syndromes clinically distinctive from PD (eg, MPAN-related neurodegeneration) and absent in patients with clinical PD syndrome (eg, LRRK2-PD or Parkin-PD). Therefore, the authors can conclude that the presence of Lewy bodies are not specific to the diagnosis of PD and that PD can be diagnosed even in the absence of Lewy body pathology. Interventions that reduce alpha-synuclein load may be more justified in SNCA-PD or GBA-PD than in other genetic forms of PD. The number of reported genetic PD autopsies remains small, and there are limited genotype-clinical-pathological-phenotype studies. Therefore, larger series of autopsies from genetic PD patients are required. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of München, Munich, Germany
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Medical Center, New York, New York
| |
Collapse
|
71
|
Tanaka M, Yamaguchi S, Akiyoshi H, Tsuboi M, Uchida K, Izawa T, Yamate J, Kuwamura M. Ultrastructural features of canine neuroaxonal dystrophy in a Papillon dog. J Vet Med Sci 2017; 79:1927-1930. [PMID: 28993562 PMCID: PMC5745166 DOI: 10.1292/jvms.17-0487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuroaxonal dystrophy (NAD) is a neurodegenerative disease characterized by severe axonal swelling (spheroids) throughout the nervous system. In dogs, NAD has been reported in several breeds and a missense mutation in PLA2G6 gene has recently been identified in the Papillon dog NAD. Here we performed ultrastructural analysis to clarify the detailed ultrastructural features of the Papillon dog NAD. Dystrophic axons consisted of accumulation of filamentous materials, tubulovesicular structures, and swollen edematous mitochondria with degenerated inner membranes were often observed in the central nervous system. At axonal terminals, degeneration of presynaptic membrane was also detected. As reported in Pla2g6 knockout mice, mitochondrial and presynaptic degeneration may be related with the pathogenesis of NAD in Papillon dogs.
Collapse
Affiliation(s)
- Miyuu Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Shinobu Yamaguchi
- Hataeda Animal Hospital, 680 Iwakura Hataedacho, Sakyo-ku, Kyoto 606-0015, Japan
| | - Hideo Akiyoshi
- Laboratory of Veterinary Surgery, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinkuu Ourai Kita 1-58, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
72
|
Iannello G, Graziano C, Cenacchi G, Cordelli DM, Zuntini R, Papa V, Magistà AM, Gagliardi M, Procopio R, Quattrone A, Annesi G. A new PLA2G6 mutation in a family with infantile neuroaxonal dystrophy. J Neurol Sci 2017; 381:209-212. [DOI: 10.1016/j.jns.2017.08.3260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/14/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022]
|
73
|
Tello C, Darling A, Lupo V, Pérez-Dueñas B, Espinós C. On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet 2017; 93:731-740. [PMID: 28542792 DOI: 10.1111/cge.13057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited heterogeneous neurodegenerative rare disorders. These patients present with dystonia, spasticity, parkinsonism and neuropsychiatric disturbances, along with brain magnetic resonance imaging (MRI) evidence of iron accumulation. In sum, they are devastating disorders and to date, there is no specific treatment. Ten NBIA genes are accepted: PANK2, PLA2G6, C19orf12, COASY, FA2H, ATP13A2, WDR45, FTL, CP, and DCAF17; and nonetheless, a relevant percentage of patients remain without genetic diagnosis, suggesting that other novel NBIA genes remain to be discovered. Overlapping complex clinical pictures render an accurate differential diagnosis difficult. Little is known about the pathophysiology of NBIAs. The reported NBIA genes take part in a variety of pathways: CoA synthesis, lipid and iron metabolism, autophagy, and membrane remodeling. The next-generation sequencing revolution has achieved relevant advances in genetics of Mendelian diseases and provide new genes for NBIAs, which are investigated according to 2 main strategies: genes involved in disorders with similar phenotype and genes that play a role in a pathway of interest. To achieve an effective therapy for NBIA patients, a better understanding of the biological process underlying disease is crucial, moving toward a new age of precision medicine.
Collapse
Affiliation(s)
- C Tello
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - A Darling
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - V Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - B Pérez-Dueñas
- Department of Neuropediatrics, Hospital Sant Joan de Déu, Barcelona, Spain.,Unit U703, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
74
|
PARK14 PLA2G6 mutants are defective in preventing rotenone-induced mitochondrial dysfunction, ROS generation and activation of mitochondrial apoptotic pathway. Oncotarget 2017; 8:79046-79060. [PMID: 29108286 PMCID: PMC5668019 DOI: 10.18632/oncotarget.20893] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in the gene encoding Ca2+-independent phospholipase A2 group 6 (PLA2G6) cause the recessive familial type 14 of Parkinson’s disease (PARK14). Mitochondrial dysfunction is involved in the pathogenesis of Parkinson’s disease (PD). PLA2G6 is believed to be required for maintaining mitochondrial function. In the present study, rotenone-induced cellular model of PD was used to investigate possible molecular pathogenic mechanism of PARK14 mutant PLA2G6-induced PD. Overexpression of wild-type (WT) PLA2G6 ameliorated rotenone-induced apoptotic death of SH-SY5Y dopaminergic cells. PARK14 mutant (D331Y), (G517C), (T572I), (R632W), (N659S) or (R741Q) PLA2G6 failed to prevent rotenone-induced activation of mitochondrial apoptotic pathway and exert a neuroprotective effect. WT PLA2G6, but not PARK14 mutant PLA2G6, prevented rotenone-induced mitophagy impairment. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 was ineffective in attenuating rotenone-induced decrease in mitochondrial membrane potential and increase in the level of mitochondrial superoxide. WT PLA2G6, but not PARK14 PLA2G6 mutants, restored enzyme activity of mitochondrial complex I and cellular ATP content in rotenone-treated SH-SY5Y dopaminergic cells. In contrast to WT PLA2G6, PARK14 mutant PLA2G6 failed to prevent rotenone-induced mitochondrial lipid peroxidation and cytochrome c release. These results suggest that PARK14 PLA2G6 mutants lose their ability to maintain mitochondrial function and are defective inpreventing mitochondrial dysfunction, ROS production and activation of mitochondrial apoptotic pathway in rotenone-induced cellular model of PD.
Collapse
|
75
|
Neurons and astrocytes in an infantile neuroaxonal dystrophy (INAD) mouse model show characteristic alterations in glutamate-induced Ca 2+ signaling. Neurochem Int 2017; 108:121-132. [DOI: 10.1016/j.neuint.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
|
76
|
Peall KJ, Lorentzos MS, Heyman I, Tijssen MAJ, Owen MJ, Dale RC, Kurian MA. A review of psychiatric co-morbidity described in genetic and immune mediated movement disorders. Neurosci Biobehav Rev 2017; 80:23-35. [PMID: 28528196 DOI: 10.1016/j.neubiorev.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
Psychiatric symptoms are an increasingly recognised feature of movement disorders. Recent identification of causative genes and autoantibodies has allowed detailed analysis of aetiologically homogenous subgroups, thereby enabling determination of the spectrum of psychiatric symptoms in these disorders. This review evaluates the incidence and type of psychiatric symptoms encountered in patients with movement disorders. A broad spectrum of psychiatric symptoms was identified across all subtypes of movement disorder, with depression, generalised anxiety disorder and obsessive-compulsive disorder being most common. Psychosis, schizophrenia and attention deficit hyperactivity disorder were also identified, with the psychiatric symptoms often predating onset of the motor disorder. The high incidence of psychiatric symptoms across such a wide range of movement disorders suggests a degree of common or overlapping pathogenic mechanisms. Our review demonstrates the need for increased clinical awareness of such co-morbidities, which should facilitate early neuropsychiatric intervention and allied specialist treatment for patients.
Collapse
Affiliation(s)
- K J Peall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Heath Park, Cardiff, CF24 4HQ, UK.
| | - M S Lorentzos
- Movement Disorders Clinic, The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - I Heyman
- Department of Psychological Medicine, Great Ormond Street Hospital, London, UK; Developmental Neurosciences Programme, UCL-Institute of Child Health, London, UK
| | - M A J Tijssen
- Department of Neurology, University of Groningen, Groningen, The Netherlands
| | - M J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Heath Park, Cardiff, CF24 4HQ, UK
| | - R C Dale
- Movement Disorders Clinic, The Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - M A Kurian
- Developmental Neurosciences Programme, UCL-Institute of Child Health, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
77
|
Novel mutations in PANK2 and PLA2G6 genes in patients with neurodegenerative disorders: two case reports. BMC MEDICAL GENETICS 2017; 18:87. [PMID: 28821231 PMCID: PMC5562981 DOI: 10.1186/s12881-017-0439-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous group of disorders associated with progressive impairment of movement, vision, and cognition. The disease is initially diagnosed on the basis of changes in brain magnetic resonance imaging which indicate an abnormal brain iron accumulation in the basal ganglia. However, the diagnosis of specific types should be based on both clinical findings and molecular genetic testing for genes associated with different types of NBIA, including PANK2, PLA2G6, C19orf12, FA2H, ATP13A2, WDR45, COASY, FTL, CP, and DCAF17. The purpose of this study was to investigate disease-causing mutations in two patients with distinct NBIA disorders. CASE PRESENTATION Whole Exome sequencing using Next Generation Illumina Sequencing was used to enrich all exons of protein-coding genes as well as some other important genomic regions in these two affected patients. A deleterious homozygous four-nucleotide deletion causing frameshift deletion in PANK2 gene (c.1426_1429delATGA, p.M476 fs) was identified in an 8 years old girl with dystonia, bone fracture, muscle rigidity, abnormal movement, lack of coordination and chorea. In addition, our study revealed a novel missense mutation in PLA2G6 gene (c.3G > T:p.M1I) in one and half-year-old boy with muscle weakness and neurodevelopmental regression (speech, motor and cognition). The novel mutations were also confirmed by Sanger sequencing in the proband and their parents. CONCLUSIONS Current study uncovered two rare novel mutations in PANK2 and PLA2G6 genes in patients with NBIA disorder and such studies may help to conduct genetic counseling and prenatal diagnosis more accurately for individuals at the high risk of these types of disorders.
Collapse
|
78
|
Palavicini JP, Wang C, Chen L, Hosang K, Wang J, Tomiyama T, Mori H, Han X. Oligomeric amyloid-beta induces MAPK-mediated activation of brain cytosolic and calcium-independent phospholipase A 2 in a spatial-specific manner. Acta Neuropathol Commun 2017; 5:56. [PMID: 28750656 PMCID: PMC5530945 DOI: 10.1186/s40478-017-0460-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is histopathologically characterized by the build-up of fibrillar amyloid beta (Aβ) in the form of amyloid plaques and the development of intraneuronal neurofibrillary tangles consisting of aggregated hyperphosphorylated Tau. Although amyloid fibrils were originally considered responsible for AD pathogenesis, recent convincing evidence strongly implicates soluble oligomeric Aβ as the primary neurotoxic species driving disease progression. A third largely ignored pathological hallmark, originally described by Alois Alzheimer, is the presence of "adipose inclusions", suggestive of aberrant lipid metabolism. The molecular mechanisms underlying these "lipoid granules", as well as their potential link to soluble and/or fibrillar Aβ remain largely unknown. Seeking to better-understand these conundrums, we took advantage of the powerful technology of multidimensional mass spectrometry-based shotgun lipidomics and an AD transgenic mouse model overexpressing mutant amyloid precursor protein (APP E693Δ-Osaka-), where AD-like pathology and neurodegeneration occur as a consequence of oligomeric Aβ accumulation in the absence of amyloid plaques. Our results revealed for the first time that APP overexpression and oligomeric Aβ accumulation lead to an additive global accumulation of nonesterified polyunsaturated fatty acids (PUFAs) independently of amyloid plaques. Furthermore, we revealed that this accumulation is mediated by an increase in phospholipase A2 (PLA2) activity, evidenced by an accumulation of sn-1 lysophosphatidylcholine and by MAPK-mediated phosphorylation/activation of group IV Ca2+-dependent cytosolic (cPLA2) and the group VI Ca2+-independent PLA2 (iPLA2) independently of PKC. We further revealed that Aβ-induced oxidative stress also disrupts lipid metabolism via reactive oxygen species-mediated phospholipid cleavage leading to increased sn-2 lysophosphatidylcholine as well as lipid peroxidation and the subsequent accumulation of 4-hydroxynonenal. Brain histological studies implicated cPLA2 activity with arachidonic acid accumulation within myelin-rich regions, and iPLA2 activity with docosahexaenoic acid accumulation within pyramidal neuron-rich regions. Taken together, our results suggest that PLA2-mediated accumulation of free PUFAs drives AD-related disruption of brain lipid metabolism.
Collapse
|
79
|
Ozes B, Karagoz N, Schüle R, Rebelo A, Sobrido MJ, Harmuth F, Synofzik M, Pascual SIP, Colak M, Ciftci-Kavaklioglu B, Kara B, Ordóñez-Ugalde A, Quintáns B, Gonzalez MA, Soysal A, Zuchner S, Battaloglu E. PLA2G6 mutations associated with a continuous clinical spectrum from neuroaxonal dystrophy to hereditary spastic paraplegia. Clin Genet 2017; 92:534-539. [PMID: 28295203 DOI: 10.1111/cge.13008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/28/2022]
Abstract
PLA2G6-associated neurodegeneration (PLAN) and hereditary spastic paraplegia (HSP) are 2 groups of heterogeneous neurodegenerative diseases. In this study, we report PLA2G6 gene mutations in 3 families from Turkey, Morocco, and Romania. Two affected Turkish siblings presenting HSP adds the disease to PLAN phenotypes. They were homozygous for the PLA2G6 missense c.2239C>T, p.Arg747Trp variant and the ages of onset were 9 and 21. Parkinsonism, dystonia or cognitive decline were not the clinical elements in these patients contrary to the cases that has been previously reported with the same variant, however, iron accumulation was evident in their cranial magnetic resonance imaging. The Moroccan patient was homozygous for a novel missense c.1786C>T, p.Leu596Phe variant and the Romanian patient had 2 novel mutations; c.1898C>T, p.Ala633Val and c.1765_1768del, p.Ser589ThrfsTer76. Both of these patients conformed better to childhood onset PLAN with the age of onset at 4 and 7 years, respectively. Interestingly, all identified mutations were affecting the highly conserved patatin-like phospholipase domain of the PLA2G6 protein.
Collapse
Affiliation(s)
- B Ozes
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - N Karagoz
- Department of Neurology, Bakirkoy Training and Research Hospital for Psychiatry and Neurological Diseases, Istanbul, Turkey
| | - R Schüle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tuebingen, Germany.,University of Tuebingen, German Research Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - A Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - M-J Sobrido
- Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - F Harmuth
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - M Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tuebingen, Germany.,University of Tuebingen, German Research Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| | - S I P Pascual
- Servicio de Neurologia Pediátrica, Hospital Universitario La Paz, Prof. Asociado Departamento de Pediatria, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Colak
- Department of Neurology, Bakirkoy Training and Research Hospital for Psychiatry and Neurological Diseases, Istanbul, Turkey
| | - B Ciftci-Kavaklioglu
- Department of Neurology, Bakirkoy Training and Research Hospital for Psychiatry and Neurological Diseases, Istanbul, Turkey
| | - B Kara
- Department of Radiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | | | - B Quintáns
- Neurogenetics Group, FPGMX-IDIS, Santiago de Compostela, Spain
| | - M A Gonzalez
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - A Soysal
- Department of Neurology, Bakirkoy Training and Research Hospital for Psychiatry and Neurological Diseases, Istanbul, Turkey
| | - S Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - E Battaloglu
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| |
Collapse
|
80
|
Miki Y, Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K. PLA2G6 accumulates in Lewy bodies in PARK14 and idiopathic Parkinson's disease. Neurosci Lett 2017; 645:40-45. [DOI: 10.1016/j.neulet.2017.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
|
81
|
Beaudin M, Klein CJ, Rouleau GA, Dupré N. Systematic review of autosomal recessive ataxias and proposal for a classification. CEREBELLUM & ATAXIAS 2017; 4:3. [PMID: 28250961 PMCID: PMC5324265 DOI: 10.1186/s40673-017-0061-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
Abstract
Background The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. Methods We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. Results After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. Conclusion We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications. Electronic supplementary material The online version of this article (doi:10.1186/s40673-017-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Beaudin
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada
| | | | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4 Canada
| | - Nicolas Dupré
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada.,Department of Neurological Sciences, CHU de Quebec - Université Laval, 1401 18th street, Québec City, QC G1J 1Z4 Canada
| |
Collapse
|
82
|
Miki Y, Yoshizawa T, Morohashi S, Seino Y, Kijima H, Shoji M, Mori A, Yamashita C, Hatano T, Hattori N, Wakabayashi K. Neuropathology of PARK14 is identical to idiopathic Parkinson's disease. Mov Disord 2017; 32:799-800. [DOI: 10.1002/mds.26952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Tadashi Yoshizawa
- Department of Pathology and Bioscience; Hirosaki University Graduate School of Medicine; Hirosaki Japan
- Department of Pathology; Hirosaki Municipal Hospital; Hirosaki Japan
| | - Satoko Morohashi
- Department of Pathology and Bioscience; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Yusuke Seino
- Department of Neurology; Hirosaki Municipal Hospital; Hirosaki Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Mikio Shoji
- Department of Neurology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Akio Mori
- Department of Neurology; Juntendo University School of Medicine; Bunkyo-ku Tokyo Japan
| | - Chikara Yamashita
- Department of Neurology; Juntendo University School of Medicine; Bunkyo-ku Tokyo Japan
| | - Taku Hatano
- Department of Neurology; Juntendo University School of Medicine; Bunkyo-ku Tokyo Japan
| | - Nobutaka Hattori
- Department of Neurology; Juntendo University School of Medicine; Bunkyo-ku Tokyo Japan
| | - Koichi Wakabayashi
- Department of Neuropathology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| |
Collapse
|
83
|
Iodice A, Spagnoli C, Salerno GG, Frattini D, Bertani G, Bergonzini P, Pisani F, Fusco C. Infantile neuroaxonal dystrophy and PLA2G6-associated neurodegeneration: An update for the diagnosis. Brain Dev 2017; 39:93-100. [PMID: 27884548 DOI: 10.1016/j.braindev.2016.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022]
Abstract
Infantile neuroaxonal dystrophy is a rare neurodegenerative disorder characterized by infantile onset of rapid motor and cognitive regression and hypotonia evolving into spasticity. Recessively inherited mutations of the PLA2G6 gene are causative of infantile neuroaxonal dystrophy and other PLA2G6-associated neurodegeneration, which includes conditions known as atypical neuroaxonal dystrophy, Karak syndrome and early-onset dystonia-parkinsonism with cognitive impairment. Phenotypic spectrum continues to evolve and genotype-phenotype correlations are currently limited. Due to the overlapping phenotypes and heterogeneity of clinical findings characterization of the syndrome is not always achievable. We reviewed the most recent clinical and neuroradiological information in the way to make easier differential diagnosis with other degenerative disorders in the paediatric age. Recognizing subtle signs and symptoms is a fascinating challenge to drive towards better diagnostic and genetic investigations.
Collapse
Affiliation(s)
- Alessandro Iodice
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy.
| | - Carlotta Spagnoli
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | | | - Daniele Frattini
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | - Gianna Bertani
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| | - Patrizia Bergonzini
- Pediatric Neurology Unit, Department of Mother & Child, University Hospital of Modena, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Neuroscience Department, University of Parma, Italy
| | - Carlo Fusco
- Child Neurology Unit, Arcispedale Santa Maria Nuova Hospital - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
84
|
Tsuboi M, Watanabe M, Nibe K, Yoshimi N, Kato A, Sakaguchi M, Yamato O, Tanaka M, Kuwamura M, Kushida K, Ishikura T, Harada T, Chambers JK, Sugano S, Uchida K, Nakayama H. Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis. PLoS One 2017; 12:e0169002. [PMID: 28107443 PMCID: PMC5249094 DOI: 10.1371/journal.pone.0169002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
Whole exome sequencing (WES) has become a common tool for identifying genetic causes of human inherited disorders, and it has also recently been applied to canine genome research. We conducted WES analysis of neuroaxonal dystrophy (NAD), a neurodegenerative disease that sporadically occurs worldwide in Papillon dogs. The disease is considered an autosomal recessive monogenic disease, which is histopathologically characterized by severe axonal swelling, known as “spheroids,” throughout the nervous system. By sequencing all eleven DNA samples from one NAD-affected Papillon dog and her parents, two unrelated NAD-affected Papillon dogs, and six unaffected control Papillon dogs, we identified 10 candidate mutations. Among them, three candidates were determined to be “deleterious” by in silico pathogenesis evaluation. By subsequent massive screening by TaqMan genotyping analysis, only the PLA2G6 c.1579G>A mutation had an association with the presence or absence of the disease, suggesting that it may be a causal mutation of canine NAD. As a human homologue of this gene is a causative gene for infantile neuroaxonal dystrophy, this canine phenotype may serve as a good animal model for human disease. The results of this study also indicate that WES analysis is a powerful tool for exploring canine hereditary diseases, especially in rare monogenic hereditary diseases.
Collapse
Affiliation(s)
- Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Manabu Watanabe
- Laboratory of Functional Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Nibe
- Japan Animal Referral Medical Center, Kanagawa, Japan
| | | | | | - Masahiro Sakaguchi
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Osamu Yamato
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kazuya Kushida
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takashi Ishikura
- Thermo Fisher Scientific, Life Technologies Japan Ltd., Tokyo, Japan
| | - Tomoyuki Harada
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James Kenn Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Laboratory of Functional Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
85
|
Michelis JP, Hattingen E, Gaertner FC, Minnerop M, Träber F, Biskup S, Klockgether T, Paus S. Expanded phenotype and hippocampal involvement in a novel compound heterozygosity of adult PLA2G6 associated neurodegeneration (PARK14). Parkinsonism Relat Disord 2017; 37:111-113. [PMID: 28094106 DOI: 10.1016/j.parkreldis.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Joan Philipp Michelis
- Department of Neurology, University of Bonn, and German Center for Neurodegenerative Diseases, Sigmund-Freud-Straße 25, 53127 Bonn, Germany.
| | - Elke Hattingen
- Neuroradiology, Department of Radiology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Florian C Gaertner
- Department of Nuclear Medicine, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Martina Minnerop
- Research Centre Juelich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany; Department of Neurology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Frank Träber
- Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Saskia Biskup
- CeGaT GmbH, Center for Genomics and Transcriptomics Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, and German Center for Neurodegenerative Diseases, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Sebastian Paus
- Department of Neurology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| |
Collapse
|
86
|
Abstract
Neurodegeneration with brain iron accumulation (NBIA) describes a heterogeneous group of inherited rare clinical and genetic entities. Clinical core symptoms comprise a combination of early-onset dystonia, pyramidal and extrapyramidal signs with ataxia, cognitive decline, behavioral abnormalities, and retinal and axonal neuropathy variably accompanying these core features. Increased nonphysiologic, nonaging-associated brain iron, most pronounced in the basal ganglia, is often termed the unifying characteristic of these clinically variable disorders, though occurrence and extent can be fluctuating or even absent. Neuropathologically, NBIA disorders usually are associated with widespread axonal spheroids and local iron accumulation in the basal ganglia. Postmortem, Lewy body, TDP-43, or tau pathology has been observed. Genetics have fostered ongoing progress in elucidating underlying pathophysiologic mechanisms of NBIA disorders. Ten associated genes have been established, with many more being suggested as new technologies and data emerge. Clinically, certain symptom combinations can suggest a specific genetic defect. Genetic tests, combined with postmortem neuropathology, usually make for the final disease confirmation. Despite these advances, treatment to date remains mainly symptomatic. This chapter reviews the established genetic defects leading to different NBIA subtypes, highlights phenotypic presentations to direct genetic testing, and briefly discusses the scarce available treatment options and upcoming challenges and future hopes of the field.
Collapse
Affiliation(s)
- Sarah Wiethoff
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany.
| | - Henry Houlden
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
87
|
Falik Zaccai TC, Savitzki D, Zivony-Elboum Y, Vilboux T, Fitts EC, Shoval Y, Kalfon L, Samra N, Keren Z, Gross B, Chasnyk N, Straussberg R, Mullikin JC, Teer JK, Geiger D, Kornitzer D, Bitterman-Deutsch O, Samson AO, Wakamiya M, Peterson JW, Kirtley ML, Pinchuk IV, Baze WB, Gahl WA, Kleta R, Anikster Y, Chopra AK. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. Brain 2016; 140:370-386. [PMID: 28007986 DOI: 10.1093/brain/aww295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.
Collapse
Affiliation(s)
- Tzipora C Falik Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - David Savitzki
- Pediatric Neurology Unit, Galilee Medical Center, Nahariya, Israel
| | | | - Thierry Vilboux
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Medical Genomics, Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Zohar Keren
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Bella Gross
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Neurology, Galilee Medical Center, Nahariya, Israel
| | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Rachel Straussberg
- Pediatric Neurology Unit, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James C Mullikin
- Comparative Genomics Analysis Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Dan Geiger
- Computer Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel Kornitzer
- Faculty of Medicine, Technion - I.I.T. and Rappaport Institute for Biomedical Research, Haifa, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Maki Wakamiya
- Transgenic Mouse Core Facility, Institute for Translational Sciences and Animal Resource Center, University of Texas Medical Branch, Galveston, TX, USA
| | - Johnny W Peterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Iryna V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Wallace B Baze
- Department of Veterinary Sciences, MD Anderson Cancer Center, Bastrop, TX, USA
| | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Kleta
- University College, Royal Free Hospital / UCL Medical School, London, UK
| | - Yair Anikster
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
88
|
Yamashita C, Funayama M, Li Y, Yoshino H, Yamada H, Seino Y, Tomiyama H, Hattori N. Mutation screening of PLA2G6 in Japanese patients with early onset dystonia-parkinsonism. J Neural Transm (Vienna) 2016; 124:431-435. [DOI: 10.1007/s00702-016-1658-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/21/2016] [Indexed: 11/21/2022]
|
89
|
A new missense mutation in PLA2G6 gene among a family with infantile neuroaxonal dystrophy INAD. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2016. [DOI: 10.1016/j.epag.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
90
|
Klein C, Löchte T, Delamonte SM, Braenne I, Hicks AA, Zschiedrich-Jansen K, Simon DK, Friedman JH, Lohmann K. PLA2G6mutations and Parkinsonism: Long-term follow-up of clinical features and neuropathology. Mov Disord 2016; 31:1927-1929. [DOI: 10.1002/mds.26814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/22/2016] [Accepted: 09/01/2016] [Indexed: 01/11/2023] Open
Affiliation(s)
- Christine Klein
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Tobias Löchte
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Suzanne M. Delamonte
- Core Research Laboratories, Lifespan Academic Institutions, Warren Alpert Medical School of Brown University; Providence Rhode Island USA
| | - Ingrid Braenne
- Institute of Integrative and Experimental Genomics; University of Lübeck; Lübeck Germany
| | - Andrew A. Hicks
- Center for Biomedicine, European Academy of Bolzano/Bozen (EURAC), Bolzano/Bozen, Italy - Affiliated Institute of the University of Lübeck; Lübeck Germany
| | | | - David K. Simon
- Department of Neurology; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston Massachusetts USA
| | - Joseph H. Friedman
- Department of Neurology, Butler Hospital; Warren Alpert Medical School of Brown University; Providence, Rhode Island USA
| | - Katja Lohmann
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| |
Collapse
|
91
|
Mitochondria from a mouse model of the human infantile neuroaxonal dystrophy (INAD) with genetic defects in VIA iPLA 2 have disturbed Ca 2+ regulation with reduction in Ca 2+ capacity. Neurochem Int 2016; 99:187-193. [DOI: 10.1016/j.neuint.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/21/2022]
|
92
|
Gore E, Appleby BS, Cohen ML, DeBrosse SD, Leverenz JB, Miller BL, Siedlak SL, Zhu X, Lerner AJ. Clinical and imaging characteristics of late onset mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurocase 2016; 22:476-483. [PMID: 27801611 PMCID: PMC5568540 DOI: 10.1080/13554794.2016.1247458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022]
Abstract
Young onset dementias present significant diagnostic challenges. We present the case of a 35-year-old Kuwaiti man with social withdrawal, drowsiness, irritability, anxiety, aphasia, memory loss, hypereflexia, and Parkinsonism. Brain MRI showed bilateral symmetric gradient echo hypointensities in the globi pallidi and substantiae nigrae. Left cortical hypometabolism was seen on brain fluorodeoxyglucose positron emission tomography. A cortical brain biopsy revealed a high Lewy body burden. Genetic testing revealed a homozygous p.T11M mutation in the C19orf12 gene consistent with mitochondrial membrane protein-associated neurodegeneration. This is the oldest onset age of MPAN reported.
Collapse
Affiliation(s)
- Ethan Gore
- Department of Neurology, University Hospitals Case Medical Center, Beachwood, OH, USA
| | - Brian S. Appleby
- Departments of Neurology and Psychiatry, University Hospitals Case Medical Center, 3619 Park East Drive, Beachwood, OH, USA
| | - Mark L. Cohen
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Suzanne D. DeBrosse
- Departments of Genetics and Genome Sciences, Pediatrics, and Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - James B. Leverenz
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | - Bruce L. Miller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Alan J. Lerner
- Department of Neurology, University Hospitals Case Medical Center, Beachwood, OH, USA
| |
Collapse
|
93
|
Li H, Zou Y, Bao X, Wang H, Wang J, Jin H, Che Y, Tang X. Monozygotic twins with infantile neuroaxonal dystrophy: A case report and literature review. Exp Ther Med 2016; 12:3387-3389. [PMID: 27882168 DOI: 10.3892/etm.2016.3761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/11/2016] [Indexed: 01/03/2023] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disease with early onset. PLA2G6 gene mutations have been identified in the majority individuals with INAD. In future, molecular diagnosis of INAD will replace the invasive biopsies used previously. In the present report, monozygotic male twins with INAD were referred The Children's Hospital (Zhejiang University School of Medicine, Zhejiang, China) at fifteen months old for delayed development. The older brother was found to have developmental stagnation when he was 6 months old. The patient could not stand securely without support, and had poor eye tracking and listening ability. Magnetic resonance imaging (MRI) of the patient's brain revealed cerebellar atrophy and electromyography identified signs of peripheral neuropathy. The younger brother displayed similar clinical features and findings. Two different phospholipase A2 group VI (PLA2G6; 22q13.1) gene mutations were detected in the twins by DNA sequencing. The results of the present study indicate that neurogenetic disease should be considered when child patients present with idiopathic developmental stagnation, particularly when similar cases have appeared in the same family. In addition, INAD should be considered as a possible diagnosis when the patient has developmental delay of the central and peripheral nerves. In the future, molecular genetic testing will be the primary method of INAD diagnosis, enabling better prevention of this genetic disease.
Collapse
Affiliation(s)
- Haifeng Li
- Rehabilitation Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310051, P.R. China
| | - Yan Zou
- Nutrition and Food Safety Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, P.R. China
| | - Xinhua Bao
- Pediatric Department, Peking University First Hospital, Beijing 100034, P.R. China
| | - Hui Wang
- Rehabilitation Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310051, P.R. China
| | - Jiangping Wang
- Rehabilitation Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310051, P.R. China
| | - Huiying Jin
- Rehabilitation Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310051, P.R. China
| | - Yuping Che
- Rehabilitation Department, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310051, P.R. China
| | - Xiaoyan Tang
- Clinical Laboratory of Zhongke, Beijing 100034, P.R. China
| |
Collapse
|
94
|
Al-Maawali A, Yoon G, Feigenbaum AS, Halliday WC, Clarke JTR, Branson HM, Banwell BL, Chitayat D, Blaser SI. Validation of the finding of hypertrophy of the clava in infantile neuroaxonal dystrophy/PLA2G6 by biometric analysis. Neuroradiology 2016; 58:1035-1042. [PMID: 27516098 DOI: 10.1007/s00234-016-1726-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/07/2016] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Infantile neuroaxonal dystrophy (INAD), an autosomal recessive neurodegenerative disorder due to PLA2G6 mutation, is classified both as a PLA2G6-associated neurodegeneration (PLAN) disorder and as one of the neurodegeneration with brain iron accumulation (NBIA) disorders. Age of onset and clinical presentation in INAD is variable. Typically described imaging features of cerebellar atrophy, cerebellar cortex bright FLAIR signal, and globus pallidus iron deposition are variable or late findings. We characterize clinical and neuroimaging phenotypes in nine children with confirmed PLA2G6 mutations and show a useful imaging feature, clava hypertrophy, which may aid in earlier identification of patients. Measurements of the clava confirm actual enlargement, rather than apparent enlargement due to volume loss of the other brain stem structures. METHODS A retrospective clinical and MRI review was performed. Brain stem measurements were performed and compared with age-matched controls. RESULTS We identified nine patients, all with novel PLA2G6 gene mutations. MRI, available in eight, showed clava hypertrophy, regardless of age or the absence of other more typically described neuroimaging findings. Brain autopsy in our cohort confirmed prominent spheroid bodies in the clava nuclei. CONCLUSION Clava hypertrophy is an important early imaging feature which may aid in indentification of children who would benefit from specific testing for PLA2G6 mutations.
Collapse
Affiliation(s)
- A Al-Maawali
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Genetics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman
| | - G Yoon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - A S Feigenbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - W C Halliday
- Division of Pathology, DPLM, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - J T R Clarke
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - H M Branson
- Division of Paediatric Neuroradiology, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, M5G 1X8, Ontario, Canada
| | - B L Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - D Chitayat
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Susan I Blaser
- Division of Paediatric Neuroradiology, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, M5G 1X8, Ontario, Canada.
| |
Collapse
|
95
|
Gao L, Li L, Ye J, Zhu X, Shen N, Zhang X, Wang D, Gao Y, Lin H, Wang Y, Liu Y. Identification of a novel mutation in PLA2G6 gene in a Chinese pedigree with familial cortical myoclonic tremor with epilepsy. Seizure 2016; 41:81-5. [PMID: 27513994 DOI: 10.1016/j.seizure.2016.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Familial cortical myoclonic tremor with epilepsy (FCMTE) is an epileptic syndrome with autosomal dominant inheritance, of which four genetic subtypes (FCMTE1-4) have been reported. In the present study, we described the clinical and neurophysiologic features of a newly diagnosed Chinese FCMTE family, and investigated the genetic cause for this disease. METHODS Clinical information was obtained from affected and normal individuals of an FCMTE family comprising 41 members. Electroencephalographies were analyzed in five of six affected members (including the proband). Brain magnetic resonance imaging, somatosensory evoked potential with C-reflex analysis and magnetoencephalography was performed in the proband. Genomic DNA of three affected and two unaffected individuals was analyzed to detect the genetic mutations by using whole-exome sequencing. RESULTS The inheritance pattern of the pedigree was autosomal dominant. A novel missense mutation c.475C>T (p.Ala159Thr) of PLA2G6 were identified in this family. The mutated locus is highly conserved among other species. The mutation is predicted to have a functional impact, and completely co-segregated with the phenotype. CONCLUSION This study identifies a novel PLA2G6 mutation that is the possible genetic cause of FCMTE in this family. This mutation and associated clinical features expand the spectrum and phenotypes of PLA2G6-related disorders including neurodegenerative diseases.
Collapse
Affiliation(s)
- Lehong Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Liping Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Jing Ye
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Xilin Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100101, China
| | - Ning Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100101, China
| | - Xiating Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Dequan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Yu Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, The Beijing Key Laboratory of Neuromodulation, Beijing 100053, China.
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100101, China.
| |
Collapse
|
96
|
Kapoor S, Shah MH, Singh N, Rather MI, Bhat V, Gopinath S, Bindu PS, Taly AB, Sinha S, Nagappa M, Bharath RD, Mahadevan A, Narayanappa G, Chickabasaviah YT, Kumar A. Genetic Analysis of PLA2G6 in 22 Indian Families with Infantile Neuroaxonal Dystrophy, Atypical Late-Onset Neuroaxonal Dystrophy and Dystonia Parkinsonism Complex. PLoS One 2016; 11:e0155605. [PMID: 27196560 PMCID: PMC4873246 DOI: 10.1371/journal.pone.0155605] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/02/2016] [Indexed: 12/02/2022] Open
Abstract
Mutations in PLA2G6 were identified in patients with a spectrum of neurodegenerative conditions, such as infantile neuroaxonal dystrophy (INAD), atypical late-onset neuroaxonal dystrophy (ANAD) and dystonia parkinsonism complex (DPC). However, there is no report on the genetic analysis of families with members affected with INAD, ANAD and DPC from India. Therefore, the main aim of this study was to perform genetic analysis of 22 Indian families with INAD, ANAD and DPC. DNA sequence analysis of the entire coding region of PLA2G6 identified 13 different mutations, including five novel ones (p.Leu224Pro, p.Asp283Asn, p.Arg329Cys, p.Leu491Phe, and p.Arg649His), in 12/22 (54.55%) families with INAD and ANAD. Interestingly, one patient with INAD was homozygous for two different mutations, p.Leu491Phe and p.Ala516Val, and thus harboured four mutant alleles. With these mutations, the total number of mutations in this gene reaches 129. The absence of mutations in 10/22 (45.45%) families suggests that the mutations could be in deep intronic or promoter regions of this gene or these families could have mutations in a yet to be identified gene. The present study increases the mutation landscape of PLA2G6. The present finding will be useful for genetic diagnosis, carrier detection and genetic counselling to families included in this study and other families with similar disease condition.
Collapse
Affiliation(s)
- Saketh Kapoor
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Mohd Hussain Shah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Nivedita Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Iqbal Rather
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Vishwanath Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Sindhura Gopinath
- Department of Biotechnology, R.V. College of Engineering, Bangalore, 560059, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
- * E-mail: (AK); (PSB)
| | - Arun B. Taly
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Yasha T. Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
- * E-mail: (AK); (PSB)
| |
Collapse
|
97
|
Megahed H, Nicouleau M, Barcia G, Medina-Cano D, Siquier-Pernet K, Bole-Feysot C, Parisot M, Masson C, Nitschké P, Rio M, Bahi-Buisson N, Desguerre I, Munnich A, Boddaert N, Colleaux L, Cantagrel V. Utility of whole exome sequencing for the early diagnosis of pediatric-onset cerebellar atrophy associated with developmental delay in an inbred population. Orphanet J Rare Dis 2016; 11:57. [PMID: 27146152 PMCID: PMC4855324 DOI: 10.1186/s13023-016-0436-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/21/2016] [Indexed: 11/26/2022] Open
Abstract
Background Cerebellar atrophy and developmental delay are commonly associated features in large numbers of genetic diseases that frequently also include epilepsy. These defects are highly heterogeneous on both the genetic and clinical levels. Patients with these signs also typically present with non-specific neuroimaging results that can help prioritize further investigation but don’t suggest a specific molecular diagnosis. Methods To genetically explore a cohort of 18 Egyptian families with undiagnosed cerebellar atrophy identified on MRI, we sequenced probands and some non-affected family members via high-coverage whole exome sequencing (WES; >97 % of the exome covered at least by 30x). Patients were mostly from consanguineous families, either sporadic or multiplex. We analyzed WES data and filtered variants according to dominant and recessive inheritance models. Results We successfully identified disease-causing mutations in half of the families screened (9/18). These mutations are located in seven different genes, PLA2G6 being the gene most frequently mutated (n = 3). We also identified a recurrent de novo mutation in the KIF1A gene and a molybdenum cofactor deficiency caused by the loss of the start codon in the MOCS2A open-reading frame in a mildly affected subject. Conclusions This study illustrates the necessity of screening for dominant mutations in WES data from consanguineous families. Our identification of a patient with a mild and improving phenotype carrying a previously characterized severe loss of function mutation also broadens the clinical spectrum associated with molybdenum cofactor deficiency. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0436-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hisham Megahed
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo, 12311, Egypt
| | - Michaël Nicouleau
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Giulia Barcia
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Genetics, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Daniel Medina-Cano
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Karine Siquier-Pernet
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Mélanie Parisot
- Genomic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Cécile Masson
- Bioinformatic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Paris Descartes - Sorbonne Paris Citée University, Imagine Institute, 75015, Paris, France
| | - Marlène Rio
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Imagine Institute, INSERM UMR 1163, Genetics of mitochondrial diseases, 75015, Paris, France.,Department of Genetics, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Nadia Bahi-Buisson
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Imagine Institute, INSERM UMR 1163, Embryology and genetics of human malformation, 75015, Paris, France
| | - Isabelle Desguerre
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Arnold Munnich
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Genetics, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Nathalie Boddaert
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Pediatric Radiology, Necker Enfants Malades University Hospital, APHP, 75015, Paris, France
| | - Laurence Colleaux
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France.,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Vincent Cantagrel
- INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris, France. .,Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
98
|
Arber CE, Li A, Houlden H, Wray S. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 2016; 42:220-41. [PMID: 25870938 PMCID: PMC4832581 DOI: 10.1111/nan.12242] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/18/2015] [Indexed: 12/14/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterized by dystonia, parkinsonism and spasticity. Iron accumulates in the basal ganglia and may be accompanied by Lewy bodies, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. Mutations in 10 genes have been associated with NBIA that include Ceruloplasmin (Cp) and ferritin light chain (FTL), both directly involved in iron homeostasis, as well as Pantothenate Kinase 2 (PANK2), Phospholipase A2 group 6 (PLA2G6), Fatty acid hydroxylase 2 (FA2H), Coenzyme A synthase (COASY), C19orf12, WDR45 and DCAF17 (C2orf37). These genes are involved in seemingly unrelated cellular pathways, such as lipid metabolism, Coenzyme A synthesis and autophagy. A greater understanding of the cellular pathways that link these genes and the disease mechanisms leading to iron dyshomeostasis is needed. Additionally, the major overlap seen between NBIA and more common neurodegenerative diseases may highlight conserved disease processes. In this review, we will discuss clinical and pathological findings for each NBIA-related gene, discuss proposed disease mechanisms such as mitochondrial health, oxidative damage, autophagy/mitophagy and iron homeostasis, and speculate the potential overlap between NBIA subtypes.
Collapse
Affiliation(s)
- C E Arber
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - A Li
- Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - H Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - S Wray
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|
99
|
Sumi-Akamaru H, Beck G, Shinzawa K, Kato S, Riku Y, Yoshida M, Fujimura H, Tsujimoto Y, Sakoda S, Mochizuki H. High expression of α-synuclein in damaged mitochondria with PLA2G6 dysfunction. Acta Neuropathol Commun 2016; 4:27. [PMID: 27030050 PMCID: PMC4815115 DOI: 10.1186/s40478-016-0298-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/10/2016] [Indexed: 01/03/2023] Open
Abstract
To clarify the role of α-synuclein (αSyn) in neuronal membrane remodeling, we analyzed the expression of αSyn in neurons with a dysfunction of PLA2G6, which is indispensable for membrane remodeling. αSyn/phosphorylated-αSyn (PαSyn) distribution and neurodegeneration were quantitatively estimated in PLA2G6-knockout (KO) mice, which demonstrate marked mitochondrial membrane degeneration. We also assessed the relationship between αSyn deposits and mitochondria in brain tissue from patients with PLA2G6-associated neurodegeneration (PLAN) and Parkinson’s disease (PD), and quantitatively examined Lewy bodies (LBs) and neurons. The expression level of αSyn was elevated in PLA2G6-knockdown cells and KO mouse neurons. Strong PαSyn expression was observed in neuronal granules in KO mice before onset of motor symptoms. The granules were mitochondrial outer membrane protein (TOM20)-positive. Ultramicroscopy revealed that PαSyn-positive granules were localized to mitochondria with degenerated inner membranes. After symptom onset, TOM20-positive granules were frequently found in ubiquitinated spheroids, where PαSyn expression was low. Axons were atrophic, but the neuronal loss was not evident in KO mice. In PLAN neurons, small PαSyn-positive inclusions with a TOM20-positive edge were frequently observed and clustered into LBs. The surfaces of most LBs were TOM20-positive in PLAN and TOM20-negative in PD brains. The high proportion of LB-bearing neurons and the preserved neuronal number in PLAN suggested long-term survival of LB-bearing neurons. Elevated expression of αSyn/PαSyn in mitochondria appears to be the early response to PLA2G6-deficiency in neurons. The strong affinity of αSyn for damaged mitochondrial membranes may promote membrane stabilization of mitochondria and neuronal survival in neurons.
Collapse
|
100
|
Kulkarni SD, Garg M, Sayed R, Patil VA. Two unusual cases of PLA2G6-associated neurodegeneration from India. Ann Indian Acad Neurol 2016; 19:115-8. [PMID: 27011642 PMCID: PMC4782527 DOI: 10.4103/0972-2327.168641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phospholipase A2-associated neurodegeneration (PLAN) comprises of three disorders with overlapping presentations. The most common of these is classical or infantile-onset phospholipase A2-associated neurodegeneration, also known as infantile neuroaxonal dystrophy (INAD). Only 1 case of INAD has been reported from India till now. We report two genetically confirmed patients seen at a tertiary care pediatric hospital. Both these patients presented with infantile onset of neuroregression. We believe that INAD is underrecognized and underreported from India.
Collapse
Affiliation(s)
- Shilpa D Kulkarni
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Meenal Garg
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Rafat Sayed
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Varsha A Patil
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| |
Collapse
|