51
|
What is the evidence that mycobacteria are associated with the pathogenesis of Sjogren's syndrome? J Transl Autoimmun 2021; 4:100085. [PMID: 33665595 PMCID: PMC7902540 DOI: 10.1016/j.jtauto.2021.100085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Sjogren's syndrome (SS) is a common, systemic autoimmune disorder primarily affecting the exocrine glands resulting in xerostomia and xerophthalmia. SS may also manifest with polyarthralgia, polyarthritis, polymyalgia, cutaneous/other organ vasculitis, interstitial lung disease, and/or various other disorders. The primary autoantibodies associated with SS and used as adjuncts to diagnosis are anti-Ro (SSA) and anti-La (SSB). The pathogenesis of SS is considered to involve genetic susceptibility and environmental triggers. An identified genetic susceptibility for SS lies in variants of the tumor necrosis factor alpha inducible protein 3 (TNFAIP3) gene, the product of which is known as A20. Deficiency or dysfunction of A20 is known to induce macrophage inflammatory response to mycobacteria, potentially increasing the repertoire of mycobacterial antigens available and predisposing to autoimmunity via the paradigm of molecular mimicry; i.e., providing a mechanistic link between genetic susceptibility to SS and exposure to environmental non-tuberculous mycobacteria (NTM). Mycobacterium avium ss. paratuberculosis (MAP) is an NTM that causes Johne's disease, an enteritis of ruminant animals. Humans are broadly exposed to MAP or its antigens in the environment and in food products from infected animals. MAP has also been implicated as an environmental trigger for a number of autoimmune diseases via cross reactivity of its heat shock protein 65 (hsp65) with host-specific proteins. In the context of SS, mycobacterial hsp65 shares epitope homology with the Ro and La proteins. A recent study showed a strong association between SS and antibodies to mycobacterial hsp65. If and when this association is validated, it would be important to determine whether bacillus Calmette-Guerin (BCG) vaccination (known to be protective against NTM likely through epigenetic alteration of innate and adaptive immunity) and anti-mycobacterial drugs (to decrease mycobacterial antigenic load) may have a preventive or therapeutic role against SS. Evidence to support this concept is that BCG has shown benefit in type 1 diabetes mellitus and multiple sclerosis, autoimmune diseases that have been linked to MAP via hsp65 and disease-specific autoantibodies. In conclusion, a number of factors lend credence to the notion of a pathogenic link between environmental mycobacteria and SS, including the presence of antibodies to mycobacterial hsp65 in SS, the homology of hsp65 with SS autoantigens, and the beneficial effects seen with BCG vaccination against certain autoimmune diseases. Furthermore, given that BCG may protect against NTM, has immune modifying effects, and has a strong safety record of billions of doses given, BCG and/or anti-mycobacterial therapeutics should be studied in SS.
Collapse
|
52
|
Alkhawajah NM, Hussain-Alkhateeb L, Alshamlan YA, Almohaini MO, Aleissa GA, Muayqil TA, Aljarallah S. Shared breastfeeding & other early multiple sclerosis risk factors: A case-control study. Mult Scler Relat Disord 2021; 50:102812. [PMID: 33581612 DOI: 10.1016/j.msard.2021.102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease. Etiology is thought to be multifactorial with genetic and environmental factors interplay. Our objective in this study is to evaluate culture specific and other early life risk factors for MS. We examined the association between MS and breastfeeding including shared breastfeeding, parental consanguinity, being born abroad or living abroad during childhood, prematurity, vaccination, tonsillectomy, rank among siblings, number of siblings, number of household members (HHM) at birth, and age first time joining school. METHODS This is an age and sex matched case-control study that was conducted in Riyadh, Kingdom of Saudi Arabia (KSA). We enrolled 300 cases and 601 controls. A structured questionnaire about demographics, consanguinity and potential environmental factors was answered by participants. Data was analyzed using logistic regression adjusting for covariates occurring later in life such as waterpipe smoking and performing Hajj. RESULTS About two thirds of the cases and the controls were females. Mean age was 34.8 (9.2) for the cases and 33.6 (10.6) for the controls. We found that shared breastfeeding (OR=0.58; 95% CI, 0.35-0.96, p = 0.033), and older age first joining school (OR=0.83; 95% CI, 0.73-0.94, p = 0.005) were associated with decrease risk of MS. While longer duration of breastfeeding by biological mother (OR=1.03; 95% CI, 1.01-1.04, p = 0.001), rank among siblings of ≥6 (OR=1.69; 95% CI, 1.11-2.56, p = 0.014), and larger number of HHM at birth (OR=2.32; 95% CI, 1.64-3.28, p = 0.001) were associated with increased risk. Patients with MS were less likely to receive formula with breastfeeding than controls (OR=0.72; 95% CI, 0.51-0.99, p = 0.046). No association was found with breastfeeding by biological mother, number of siblings, prematurity, being born abroad or living abroad during childhood, vaccination, consanguinity, or tonsillectomy. CONCLUSION The findings of this case-control study add to the accumulating evidence that early life factors could modify the risk of developing MS. Among these, novel associations with shared breastfeeding and number of HHM at birth are suggested. Future studies are needed to verify the observed results.
Collapse
Key Words
- Abbreviations Multiple sclerosis (MS), household members (HHM), central nervous system (CNS), Kingdom of Saudi Arabia (KSA), institutional review board (IRB), King Saud University Medical City (KSUMC), Bacillus Calmette-Guerin (BCG), odds ratios (OR), 95% confidence interval (95% CI), standard deviation (SD), Epstein-Barr virus (EBV), infectious mononucleosis (IM)
- Consanguinity
- Multiple sclerosis
- Risk factors
- Shared breastfeeding
- Vaccination
Collapse
Affiliation(s)
- Nuha M Alkhawajah
- College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, KSA; Division of Neurology, Department of Medicine, King Saud University Medical City, P.O. Box 2925, Riyadh 11461, KSA.
| | - Laith Hussain-Alkhateeb
- Global Health, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden.
| | - Yafa A Alshamlan
- Division of Neurology, Department of Medicine, King Saud University Medical City, P.O. Box 2925, Riyadh 11461, KSA.
| | - Mohammad Osama Almohaini
- Division of Neurology, Department of Medicine, King Saud University Medical City, P.O. Box 2925, Riyadh 11461, KSA.
| | - Ghadah A Aleissa
- College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, KSA.
| | - Taim A Muayqil
- College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, KSA; Division of Neurology, Department of Medicine, King Saud University Medical City, P.O. Box 2925, Riyadh 11461, KSA.
| | - Salman Aljarallah
- College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, KSA; Division of Neurology, Department of Medicine, King Saud University Medical City, P.O. Box 2925, Riyadh 11461, KSA.
| |
Collapse
|
53
|
Matsuzaki G, Teruya N, Kiyohara Kohama H, Arai K, Shibuya Y, Chuma Y, Matsuo K. Mycobacterium bovis BCG-mediated suppression of Th17 response in mouse experimental autoimmune encephalomyelitis. Immunopharmacol Immunotoxicol 2021; 43:203-211. [PMID: 33541144 DOI: 10.1080/08923973.2021.1878215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune disease mediated by a pro-inflammatory immune response. Experimental autoimmune encephalomyelitis (EAE) induced by immunization of mice with a myelin oligodendrocyte glycoprotein (MOG) peptide emulsified in killed Mycobacterium tuberculosis-containing complete Freund's adjuvant (CFA-EAE) is used as a model of MS. Mycobacterium bovis BCG has been reported to ameliorate clinical symptoms of CFA-EAE, although the precise mechanism has not yet been documented. Since CFA-EAE uses adjuvant with mycobacterial antigens, mycobacterial antigen-specific T cells induced by CFA may cross-react with BCG and modulate EAE. METHODS To exclude the influence of cross-reactivity, a modified murine EAE model (cell wall skeleton (CWS)-EAE) that does not induce mycobacterial antigen-specific T cells was established and used to reevaluate the therapeutic effects of BCG on EAE. RESULTS Inoculation with BCG 6 d after CWS-EAE induction successfully ameliorated EAE symptoms, suggesting that the therapeutic effects of BCG are independent of the mycobacterial antigen-specific T cells induced by the CFA-EAE protocol. BCG inoculation into the CWS-EAE mice resulted in reduced levels of MOG-specific Th17 in the central nervous system (CNS) with reduced demyelinated lesions of the spinal cord. In the draining lymph nodes of the MOG-immunized sites, BCG inoculation resulted in an increase in MOG-specific Th17 and Th1 cells at an early stage of immune response. CONCLUSION The results suggest that BCG inoculation suppresses the Th17 response in the CNS of EAE mice via a mechanism that may involve the suppression of egress of encephalitogenic T cells from lymphoid organs.
Collapse
Affiliation(s)
- Goro Matsuzaki
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Japan.,Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Naoko Teruya
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Japan
| | | | - Keiko Arai
- Research and Development Department, Japan BCG Laboratory, Kiyose, Japan
| | - Yukihiro Shibuya
- Research and Development Department, Japan BCG Laboratory, Kiyose, Japan
| | - Yasushi Chuma
- Research and Development Department, Japan BCG Laboratory, Kiyose, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Kiyose, Japan
| |
Collapse
|
54
|
BCG Provides Short-Term Protection from Experimental Cerebral Malaria in Mice. Vaccines (Basel) 2020; 8:vaccines8040745. [PMID: 33316929 PMCID: PMC7768457 DOI: 10.3390/vaccines8040745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Clinical and experimental evidence suggests that the tuberculosis vaccine BCG offers protection against unrelated pathogens including the malaria parasite. Cerebral malaria (CM) is the most severe complication associated with Plasmodium falciparum infection in humans and is responsible for most of the fatalities attributed to malaria. We investigated whether BCG protected C57BL/6 mice from P. berghei ANKA (PbA)-induced experimental CM (ECM). The majority of PbA-infected mice that were immunized with BCG showed prolonged survival without developing clinical symptoms of ECM. However, this protective effect waned over time and was associated with the recovery of viable BCG from liver and spleen. Intriguingly, BCG-mediated protection from ECM was not associated with a reduction in parasite burden, indicating that BCG immunization did not improve anti-parasite effector mechanisms. Instead, we found a significant reduction in pro-inflammatory mediators and CD8+ T cells in brains of BCG-vaccinated mice. Together these data suggest that brain recruitment of immune cells involved in the pathogenesis of ECM decreased after BCG vaccination. Understanding the mechanisms underlying the protective effects of BCG on PbA-induced ECM can provide a rationale for developing effective adjunctive therapies to reduce the risk of death and brain damage in CM.
Collapse
|
55
|
Faustman DL. Benefits of BCG-induced metabolic switch from oxidative phosphorylation to aerobic glycolysis in autoimmune and nervous system diseases. J Intern Med 2020; 288:641-650. [PMID: 32107806 DOI: 10.1111/joim.13050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
The most commonly used vaccine worldwide, bacillus Calmette-Guerin (BCG), appears to have the ability to restore blood sugar control in humans with early-onset but long-duration type 1 diabetes when a repeat vaccination strategy is used. This is a process that may be driven by a metabolic switch from overactive oxidative phosphorylation to accelerated aerobic glycolysis and a reset of the immune system. BCG is a live, attenuated strain of Mycobacteria bovis, a cousin of M. tuberculosis. Humans and Mycobacteria, which are found in the environment and in warm-blooded hosts, share a long coevolutionary history. In recent times, humans have had fewer exposures to these and other microorganisms that historically helped shape the immune response. By 're-introducing' an attenuated form of Mycobacteria via BCG vaccination, humans might benefit from an immunological perspective, a concept supported by a growing body of data in autoimmunity and robust data on the nonspecific immune effects of BCG related to protection from diverse infections and early mortality. New findings of immune and metabolic defects in type 1 diabetes that can be corrected with repeat BCG vaccination suggest that this therapeutic strategy may be applicable in other diseases with inadequate aerobic glycolysis, including Parkinson's disease, dementia, depression and other disorders affecting the nervous system.
Collapse
Affiliation(s)
- D L Faustman
- From the, Department of Medicine, Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
56
|
Sirbu CA, Florea AA, Ghinescu MC, Docu-Axelerad A, Sirbu AM, Bratu OG, Radu FI. Vaccination in multiple sclerosis - Challenging practices (Review). Exp Ther Med 2020; 20:217. [PMID: 33149781 DOI: 10.3892/etm.2020.9347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Infections are an ever-present problem in the medical community, even more so for patients with multiple sclerosis (MS), for whom these infections have been linked to relapses and neurological disabilities. Even though it was believed that MS can be caused by an infection, research does not support this theory. MS is a chronic inflammatory disease considered to be autoimmune. Vaccination is proven to be one of the most effective means to prevent infections, but still it is surrounded by controversy in the general populations, as well as in the MS group. Vaccines are generally considered safe for MS patients. The exceptions from this, which turn into contraindications, are a medical history of allergic reactions to one of the vaccine components and immunosuppressed patients in the particular case of live vaccines. Given the presumed autoimmunity of the disease, some medication for MS is immunosuppressive and any live vaccine should be administered before starting treatment. Although there is still confusion regarding this subject, the current guidelines have clearer recommendations about vaccinations in MS patients and especially in treated MS patients.
Collapse
Affiliation(s)
- Carmen Adella Sirbu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania.,Department of Neurology, 'Dr Carol Davila' Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Anca Alexandra Florea
- Department of Neurology, 'Dr Carol Davila' Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Minerva Claudia Ghinescu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Any Docu-Axelerad
- Department of Neurology, Faculty of Medicine, 'Ovidius' University of Constanta, 900527 Constanta, Romania
| | - Anca Maria Sirbu
- Department of Endocrinology, National Institute of Endocrinology, CI Parhon, 011863 Bucharest, Romania
| | - Ovidiu Gabriel Bratu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Urology, 'Dr Carol Davila' Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Florentina Ionita Radu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania.,Gastroenterology, 'Dr Carol Davila' Central Military Emergency University Hospital, 010242 Bucharest, Romania
| |
Collapse
|
57
|
Ran Z, Yue-Bei L, Qiu-Ming Z, Huan Y. Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases. Front Immunol 2020; 11:1884. [PMID: 32973780 PMCID: PMC7468432 DOI: 10.3389/fimmu.2020.01884] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Regulatory B (Breg) cells represent a population of suppressor B cells that participate in immunomodulatory processes and inhibition of excessive inflammation. The regulatory function of Breg cells have been demonstrated in mice and human with inflammatory diseases, cancer, after transplantation, and particularly in autoinflammatory disorders. In order to suppress inflammation, Breg cells produce anti-inflammatory mediators, induce death ligand-mediated apoptosis, and regulate many kinds of immune cells such as suppressing the proliferation and differentiation of effector T cell and increasing the number of regulatory T cells. Central nervous system Inflammatory demyelinating diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. With the advent of monoclonal antibodies directed against B cells, breakthroughs have been made in the treatment of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted attention. Meanwhile, increasing number of studies have confirmed that Breg cells play a role in alleviating autoimmune diseases, and treatment with Breg cells has also been proposed as a new therapeutic direction. In this review, we focus on the understanding of the development and function of Breg cells and on the diversification of Breg cells in CNS IDDs.
Collapse
Affiliation(s)
- Zhou Ran
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Luo Yue-Bei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qiu-Ming
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
58
|
Evidence for Anti-Viral Effects of Complete Freund's Adjuvant in the Mouse Model of Enterovirus Infection. Vaccines (Basel) 2020; 8:vaccines8030364. [PMID: 32645845 PMCID: PMC7563290 DOI: 10.3390/vaccines8030364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
Group B coxsackieviruses (CVBs) belonging to the genus, Enterovirus and contain six serotypes that induce various diseases, whose occurrence may involve the mediation of more than one serotype. We recently identified immunogenic epitopes within coxsackieviruses B3 (CVB3) viral protein 1 that induce anti-viral T cell responses in mouse models of CVB infections. In our investigations to determine the protective responses of the viral epitopes, we unexpectedly noted that animals immunized with complete Freund’s adjuvant (CFA) alone and later challenged with CVB3 were completely protected against myocarditis. Similarly, the pancreatitis-inducing ability of CVB3 was remarkably reduced to only 10% in the CFA group as opposed to 73.3% in the control group that received no CFA. Additionally, no mortalities were noted in the CFA group, whereas 40% of control animals died during the course of 21 days post-infection with CVB3. Taken together, our data suggest that the adjuvant effects of CFA may be sufficient for protection against CVB infections. These observations may provide new insights into our understanding of the occurrence of viral infections.
Collapse
|
59
|
Bannister S, Messina NL, Novakovic B, Curtis N. The emerging role of epigenetics in the immune response to vaccination and infection: a systematic review. Epigenetics 2020; 15:555-593. [PMID: 31914857 PMCID: PMC7574386 DOI: 10.1080/15592294.2020.1712814] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Extensive research has highlighted the role of infection-induced epigenetic events in the development of cancer. More recently, attention has focused on the ability of non-carcinogenic infections, as well as vaccines, to modify the human epigenome and modulate the immune response. This review explores this rapidly evolving area of investigation and outlines the many and varied ways in which vaccination and natural infection can influence the human epigenome from modulation of the innate and adaptive immune response, to biological ageing and modification of disease risk. The implications of these epigenetic changes on immune regulation and their potential application to the diagnosis and treatment of chronic infection and vaccine development are also discussed.
Collapse
Affiliation(s)
- Samantha Bannister
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Boris Novakovic
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Epigenetics Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
60
|
Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020; 11:332. [PMID: 32218774 PMCID: PMC7078104 DOI: 10.3389/fmicb.2020.00332] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Division of Newborn Medicine, Boston Children’s Hospital and Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Maria Giulia Conti
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Simon Daniël van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Robert N. Husson
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
61
|
Dow CT. Proposing BCG Vaccination for Mycobacterium avium ss. paratuberculosis (MAP) Associated Autoimmune Diseases. Microorganisms 2020; 8:E212. [PMID: 32033287 PMCID: PMC7074941 DOI: 10.3390/microorganisms8020212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) vaccination is widely practiced around the world to protect against the mycobacterial infection tuberculosis. BCG is also effective against the pathogenic mycobacteria that cause leprosy and Buruli's ulcer. BCG is part of the standard of care for bladder cancer where, when given as an intravesicular irrigant, BCG acts as an immunomodulating agent and lessens the risk of recurrence. Mycobacterium avium ss. paratuberculosis (MAP) causes a fatal enteritis of ruminant animals and is the putative cause of Crohn's disease of humans. MAP has been associated with an increasingly long list of inflammatory/autoimmune diseases: Crohn's, sarcoidosis, Blau syndrome, Hashimoto's thyroiditis, autoimmune diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis, lupus and Parkinson's disease. Epidemiologic evidence points to BCG providing a "heterologous" protective effect on assorted autoimmune diseases; studies using BCG vaccination for T1D and MS have shown benefit in these diseases. This article proposes that the positive response to BCG in T1D and MS is due to a mitigating action of BCG upon MAP. Other autoimmune diseases, having a concomitant genetic risk for mycobacterial infection as well as cross-reacting antibodies against mycobacterial heat shock protein 65 (HSP65), could reasonably be considered to respond to BCG vaccination. The rare autoimmune disease, relapsing polychondritis, is one such disease and is offered as an example. Recent studies suggesting a protective role for BCG in Alzheimer's disease are also explored. BCG-induced energy shift from oxidative phosphorylation to aerobic glycolysis provides the immunomodulating boost to the immune response and also mitigates mycobacterial infection-this cellular mechanism unifies the impact of BCG on the disparate diseases of this article.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin, 9431 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
62
|
Yamazaki-Nakashimada MA, Unzueta A, Berenise Gámez-González L, González-Saldaña N, Sorensen RU. BCG: a vaccine with multiple faces. Hum Vaccin Immunother 2020; 16:1841-1850. [PMID: 31995448 DOI: 10.1080/21645515.2019.1706930] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BCG has been recommended because of its efficacy against disseminated and meningeal tuberculosis. The BCG vaccine has other mechanisms of action besides tuberculosis protection, with immunomodulatory properties that are now being discovered. Reports have shown a significant protective effect against leprosy. Randomized controlled trials suggest that BCG vaccine has beneficial heterologous (nonspecific) effects on mortality in some developing countries. BCG immunotherapy is considered the gold standard adjuvant treatment for non-muscle-invasive bladder cancer. BCG vaccine has also been tested as treatment for diabetes and multiple sclerosis. Erythema of the BCG site is recognized as a clinical clue in Kawasaki disease. BCG administration in the immunodeficient patient is associated with local BCG disease (BCGitis) or disseminated BCG disease (BCGosis) with fatal consequences. BCG administration has been associated with the development of autoimmunity. We present a brief review of the diverse facets of the vaccine, with the discovery of its new modes of action providing new perspectives on this old, multifaceted and controversial vaccine.
Collapse
Affiliation(s)
| | - Alberto Unzueta
- Gastroenterology and Transplant Hepatology, Geisinger Medical Center , Danville, PA, USA
| | | | | | - Ricardo U Sorensen
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Primary Immunodeficiency Network , New Orleans, LA, USA.,Faculty of Medicine, University of La Frontera , Temuco, Chile
| |
Collapse
|
63
|
Cavallo S. Immune-mediated genesis of multiple sclerosis. J Transl Autoimmun 2020; 3:100039. [PMID: 32743522 PMCID: PMC7388381 DOI: 10.1016/j.jtauto.2020.100039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is widely acknowledged to be an autoimmune disease affecting the neuronal myelin structure of the CNS. Autoantigens recognized as the target of this autoimmune process are: myelin basal protein, anti-proteolipid protein, antimyelin-associated glycoprotein and antimyelin-based oligodendrocytic basic protein. Ample evidence supports the idea of a dysregulation of immunological tolerance towards self-antigens of neuronal myelin structure triggered by one or more viral or bacterial microbial agents in predisposed HLA gene subjects. Genetic predisposition to MS has been highlighted by numerous studies associating the disease to specific HLA haplotypes. Moreover, a wide range of evidence supports the fact that MS may be consequence of one or more viral or bacterial infections such as measles virus, EBV, HHV6, HZV, Chlamydia pneumoniae, Helicobacter Pylori, and other microbial agents. Microbiota elements also seems to have a role on the determinism of the disease as a pathogenic or protective factor. The autoimmune pathogenetic process could arise when a molecular mimicry between a foreign microbial antigen and an auto-antigen occurs in an HLA gene subject competent for that particular antigen. The antigen-presenting cells in this case would induce the activation of a specific Th clone causing a cross-reaction between a foreign antigen and an autoantigen resulting in an autoimmune response. A multifactorial ethiopathogenetic model based on immunomediation is a reliable hypothesis for multiple sclerosis. Evidence found in the scientific literature makes it possible to reconstruct this etiopathogenetic hypothesis for MS. HLA gene predisposition, correlation with infections, molecular mimicry and other immunological data are reported.
Collapse
Affiliation(s)
- Salvatore Cavallo
- Expert Doctor in Non-Conventional Medicine, Professor and Member of the Board of the MMS, MMS (Medicina di Modulazione Dei Sistemi) Roma, Salvatore Cavallo Via G.B. Pergolesi, 28, 75100, Matera, Italy
| |
Collapse
|
64
|
Jakimovski D, Weinstock-Guttman B, Ramanathan M, Dwyer MG, Zivadinov R. Infections, Vaccines and Autoimmunity: A Multiple Sclerosis Perspective. Vaccines (Basel) 2020; 8:vaccines8010050. [PMID: 32012815 PMCID: PMC7157658 DOI: 10.3390/vaccines8010050] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease that is associated with multiple environmental factors. Among suspected susceptibility events, studies have questioned the potential role of overt viral and bacterial infections, including the Epstein Bar virus (EBV) and human endogenous retroviruses (HERV). Furthermore, the fast development of immunomodulatory therapies further questions the efficacy of the standard immunization policies in MS patients. Topics reviewed: This narrative review will discuss the potential interplay between viral and bacterial infections and their treatment on MS susceptibility and disease progression. In addition, the review specifically discusses the interactions between MS pathophysiology and vaccination for hepatitis B, influenza, human papillomavirus, diphtheria, pertussis, and tetanus (DTP), and Bacillus Calmette-Guerin (BCG). Data regarding potential interaction between MS disease modifying treatment (DMT) and vaccine effectiveness is also reviewed. Moreover, HERV-targeted therapies such as GNbAC1 (temelimab), EBV-based vaccines for treatment of MS, and the current state regarding the development of T-cell and DNA vaccination are discussed. Lastly, a reviewing commentary on the recent 2019 American Academy of Neurology (AAN) practice recommendations regarding immunization and vaccine-preventable infections in the settings of MS is provided. Conclusion: There is currently no sufficient evidence to support associations between standard vaccination policies and increased risk of MS. MS patients treated with immunomodulatory therapies may have a lower benefit from viral and bacterial vaccination. Despite their historical underperformance, new efforts in creating MS-based vaccines are currently ongoing. MS vaccination programs follow the set back and slow recovery which is widely seen in other fields of medicine.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Correspondence:
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Murali Ramanathan
- School of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
65
|
Covián C, Fernández-Fierro A, Retamal-Díaz A, Díaz FE, Vasquez AE, Lay MK, Riedel CA, González PA, Bueno SM, Kalergis AM. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Front Immunol 2019; 10:2806. [PMID: 31849980 PMCID: PMC6896902 DOI: 10.3389/fimmu.2019.02806] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis vaccine that has the ability to induce non-specific cross-protection against pathogens that might be unrelated to the target disease. Vaccination with BCG reduces mortality in newborns and induces an improved innate immune response against microorganisms other than Mycobacterium tuberculosis, such as Candida albicans and Staphylococcus aureus. Innate immune cells, including monocytes and natural killer (NK) cells, contribute to this non-specific immune protection in a way that is independent of memory T or B cells. This phenomenon associated with a memory-like response in innate immune cells is known as "trained immunity." Epigenetic reprogramming through histone modification in the regulatory elements of particular genes has been reported as one of the mechanisms associated with the induction of trained immunity in both, humans and mice. Indeed, it has been shown that BCG vaccination induces changes in the methylation pattern of histones associated with specific genes in circulating monocytes leading to a "trained" state. Importantly, these modifications can lead to the expression and/or repression of genes that are related to increased protection against secondary infections after vaccination, with improved pathogen recognition and faster inflammatory responses. In this review, we discuss BCG-induced cross-protection and acquisition of trained immunity and potential heterologous effects of recombinant BCG vaccines.
Collapse
Affiliation(s)
- Camila Covián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Abel E Vasquez
- Sección de Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
66
|
Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bercovier H. Bacillus Calmette-Guérin (BCG) therapy lowers the incidence of Alzheimer's disease in bladder cancer patients. PLoS One 2019; 14:e0224433. [PMID: 31697701 PMCID: PMC6837488 DOI: 10.1371/journal.pone.0224433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects one in ten people older than 65 years. Thus far, there is no cure or even disease-modifying treatment for this disease. The immune system is a major player in the pathogenesis of AD. Bacillus Calmette-Guérin (BCG), developed as a vaccine against tuberculosis, modulates the immune system and reduces recurrence of non-muscle invasive bladder cancer. Theoretical considerations suggested that treatment with BCG may decrease the risk of AD. We tested this hypothesis on a natural population of bladder cancer patients. METHODS AND FINDINGS After removing all bladder cancer patients presenting with AD or developing AD within one-year following diagnosis of bladder cancer, we collected data on a total of 1371 patients (1134 males and 237 females) who were followed for at least one year after the diagnosis of bladder cancer. The mean age at diagnosis of bladder cancer was 68.1 years (SD 13.0). Adjuvant post-operative intra-vesical treatment with BCG was given to 878 (64%) of these patients. The median period post-operative follow-up was 8 years. During follow-up, 65 patients developed AD at a mean age of 84 years (SD 5.9), including 21 patients (2.4%) who had been treated with BCG and 44 patients (8.9%) who had not received BCG. Patients who had been treated with BCG manifested more than 4-fold less risk for AD than those not treated with BCG. The Cox proportional hazards regression model and the Kaplan-Meier analysis of AD free survival both indicated high significance: patients not treated with BCG had a significantly higher risk of developing AD compared to BCG treated patients (HR 4.778, 95%CI: 2.837-8.046, p = 4.08x10-9 and Log Rank Chi-square 42.438, df = 1, p = 7.30x10-11, respectively). Exposure to BCG did not modify the prevalence of Parkinson's disease, 1.9% in BCG treated patients and 1.6% in untreated (Fisher's Exact Test, p = 1). CONCLUSIONS Bladder cancer patients treated with BCG were significantly less likely to develop AD at any age than patients who were not so treated. This finding of a retrospective study suggests that BCG treatment might also reduce the incidence of AD in the general population. Confirmation of such effects of BCG in other retrospective studies would support prospective studies of BCG in AD.
Collapse
Affiliation(s)
- Ofer N. Gofrit
- Department of Urology, Hadassah- Hebrew University Medical Center, Jerusalem, Israel
- * E-mail: (HB); (ONG)
| | - Benjamin Y. Klein
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Irun R. Cohen
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Tamir Ben-Hur
- Department of Neurology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
| | - Hervé Bercovier
- Department of Microbiology and Molecular Genetics, Hebrew University Jerusalem, Israel
- * E-mail: (HB); (ONG)
| |
Collapse
|
67
|
Farez MF, Correale J, Armstrong MJ, Rae-Grant A, Gloss D, Donley D, Holler-Managan Y, Kachuck NJ, Jeffery D, Beilman M, Gronseth G, Michelson D, Lee E, Cox J, Getchius T, Sejvar J, Narayanaswami P. Practice guideline update summary: Vaccine-preventable infections and immunization in multiple sclerosis. Neurology 2019; 93:584-594. [DOI: 10.1212/wnl.0000000000008157] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
ObjectiveTo update the 2002 American Academy of Neurology (AAN) guideline regarding immunization and multiple sclerosis (MS).MethodsThe panel performed a systematic review and classified articles using the AAN system. Recommendations were based on evidence, related evidence, principles of care, and inferences according to the AAN 2011 process manual, as amended.Major recommendations (Level B except where indicated)Clinicians should discuss the evidence regarding immunizations in MS with their patients and explore patients' opinions, preferences, and questions. Clinicians should recommend that patients with MS follow all local vaccine standards, unless there are specific contraindications and weigh local vaccine-preventable disease risks when counseling patients. Clinicians should recommend that patients with MS receive the influenza vaccination annually. Clinicians should counsel patients with MS about infection risks associated with specific immunosuppressive/immunomodulating (ISIM) medications and treatment-specific vaccination guidance according to prescribing information (PI) and vaccinate patients with MS as needed at least 4–6 weeks before initiating patients' ISIM therapy. Clinicians must screen for infections according to PI before initiating ISIM medications (Level A) and should treat patients testing positive for latent infections. In high-risk populations, clinicians must screen for latent infections before starting ISIM therapy even when not specifically mentioned in PI (Level A) and should consult specialists regarding treating patients who screen positive for latent infection. Clinicians should recommend against using live-attenuated vaccines in people with MS receiving ISIM therapies. Clinicians should delay vaccinating people with MS who are experiencing a relapse.
Collapse
|
68
|
Hapfelmeier A, Gasperi C, Donnachie E, Hemmer B. A large case-control study on vaccination as risk factor for multiple sclerosis. Neurology 2019; 93:e908-e916. [DOI: 10.1212/wnl.0000000000008012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo investigate the hypothesis that vaccination is a risk factor for multiple sclerosis (MS) by use of German ambulatory claims data in a case-control study.MethodsUsing the ambulatory claims data of the Bavarian Association of Statutory Health Insurance Physicians covering 2005–2017, logistic regression models were used to assess the relation between MS (n = 12,262) and vaccinations in the 5 years before first diagnosis. Participants newly diagnosed with Crohn disease (n = 19,296) or psoriasis (n = 112,292) and participants with no history of these autoimmune diseases (n = 79,185) served as controls.ResultsThe odds of MS were lower in participants with a recorded vaccination (odds ratio [OR] 0.870, p < 0.001 vs participants without autoimmune disease; OR 0.919, p < 0.001 vs participants with Crohn disease; OR 0.973, p = 0.177 vs participants with psoriasis). Lower odds were most pronounced for vaccinations against influenza and tick-borne encephalitis. These effects were consistently observed for different time frames, control cohorts, and definitions of the MS cohort. Effect sizes increased toward the time of first diagnosis.ConclusionsResults of the present study do not reveal vaccination to be a risk factor for MS. On the contrary, they consistently suggest that vaccination is associated with a lower likelihood of being diagnosed with MS within the next 5 years. Whether this is a protective effect needs to be addressed by future studies.
Collapse
|
69
|
Tanner R, Villarreal-Ramos B, Vordermeier HM, McShane H. The Humoral Immune Response to BCG Vaccination. Front Immunol 2019; 10:1317. [PMID: 31244856 PMCID: PMC6579862 DOI: 10.3389/fimmu.2019.01317] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023] Open
Abstract
Bacillus Calmette Guérin (BCG) is the only currently available vaccine against tuberculosis (TB), but it confers incomplete and variable protection against pulmonary TB in humans and bovine TB (bTB) in cattle. Insights into the immune response induced by BCG offer an underexploited opportunity to gain knowledge that may inform the design of a more efficacious vaccine, which is urgently needed to control these major global epidemics. Humoral immunity in TB and bTB has been neglected, but recent studies supporting a role for antibodies in protection against TB has driven a growing interest in determining their relevance to vaccine development. In this manuscript we review what is known about the humoral immune response to BCG vaccination and re-vaccination across species, including evidence for the induction of specific B cells and antibodies; and how these may relate to protection from TB or bTB. We discuss potential explanations for often conflicting findings and consider how factors such as BCG strain, manufacturing methodology and route of administration influence the humoral response. As novel vaccination strategies include BCG prime-boost regimens, the literature regarding off-target immunomodulatory effects of BCG vaccination on non-specific humoral immunity is also reviewed. Overall, reported outcomes to date are inconsistent, but indicate that humoral responses are heterogeneous and may play different roles in different species, populations, or individual hosts. Further study is warranted to determine whether a new TB vaccine could benefit from the targeting of humoral as well as cell-mediated immunity.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - H. Martin Vordermeier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
70
|
Lebrun C, Vukusic S. Immunization and multiple sclerosis: Recommendations from the French multiple sclerosis society. Mult Scler Relat Disord 2019; 31:173-188. [DOI: 10.1016/j.msard.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
|
71
|
Lebrun C, Vukusic S, Abadie V, Achour C, Ader F, Alchaar H, Alkhedr A, Andreux F, Androdias G, Arjmand R, Audoin B, Audry D, Aufauvre D, Autreaux C, Ayrignac X, Bailbe M, Benazet M, Bensa C, Bensmail D, Berger E, Bernady P, Bertagna Y, Biotti D, Blanchard-Dauphin A, Bonenfant J, Bonnan M, Bonnemain B, Borgel F, Botelho-Nevers E, Boucly S, Bourre B, Boutière C, Branger P, Brassat D, Bresch S, Breuil V, Brochet B, Brugeilles H, Bugnon P, Cabre P, Camdessanché JP, Carra-Dalière C, Casez O, Chamouard JM, Chassande B, Chataignier P, Chbicheb M, Chenet A, Ciron J, Clavelou P, Cohen M, Colamarino R, Collongues N, Coman I, Corail PR, Courtois S, Coustans M, Creange A, Creisson E, Daluzeau N, Davenas C, De Seze J, Debouverie M, Depaz R, Derache N, Divio L, Douay X, Dulau C, Durand-Dubief F, Edan G, Elias Z, Fagniez O, Faucher M, Faucheux JM, Fournier M, Gagneux-Brunon A, Gaida P, Galli P, Gallien P, Gaudelus J, Gault D, Gayou A, Genevray M, Gentil A, Gere J, Gignoux L, Giroux M, Givron P, Gout O, Grimaud J, Guennoc AM, Hadhoum N, Hautecoeur P, Heinzlef O, Jaeger M, Jeannin S, Kremer L, Kwiatkowski A, Labauge P, Labeyrie C, et alLebrun C, Vukusic S, Abadie V, Achour C, Ader F, Alchaar H, Alkhedr A, Andreux F, Androdias G, Arjmand R, Audoin B, Audry D, Aufauvre D, Autreaux C, Ayrignac X, Bailbe M, Benazet M, Bensa C, Bensmail D, Berger E, Bernady P, Bertagna Y, Biotti D, Blanchard-Dauphin A, Bonenfant J, Bonnan M, Bonnemain B, Borgel F, Botelho-Nevers E, Boucly S, Bourre B, Boutière C, Branger P, Brassat D, Bresch S, Breuil V, Brochet B, Brugeilles H, Bugnon P, Cabre P, Camdessanché JP, Carra-Dalière C, Casez O, Chamouard JM, Chassande B, Chataignier P, Chbicheb M, Chenet A, Ciron J, Clavelou P, Cohen M, Colamarino R, Collongues N, Coman I, Corail PR, Courtois S, Coustans M, Creange A, Creisson E, Daluzeau N, Davenas C, De Seze J, Debouverie M, Depaz R, Derache N, Divio L, Douay X, Dulau C, Durand-Dubief F, Edan G, Elias Z, Fagniez O, Faucher M, Faucheux JM, Fournier M, Gagneux-Brunon A, Gaida P, Galli P, Gallien P, Gaudelus J, Gault D, Gayou A, Genevray M, Gentil A, Gere J, Gignoux L, Giroux M, Givron P, Gout O, Grimaud J, Guennoc AM, Hadhoum N, Hautecoeur P, Heinzlef O, Jaeger M, Jeannin S, Kremer L, Kwiatkowski A, Labauge P, Labeyrie C, Lachaud S, Laffont I, Lanctin-Garcia C, Lannoy J, Lanotte L, Laplaud D, Latombe D, Lauxerois M, Le Page E, Lebrun-Frenay C, Lejeune P, Lejoyeux P, Lemonnier B, Leray E, Loche CM, Louapre C, Lubetzki C, Maarouf A, Mada B, Magy L, Maillart E, Manchon E, Marignier R, Marque P, Mathey G, Maurousset A, Mekies C, Merienne M, Michel L, Milor AM, Moisset X, Montcuquet A, Moreau T, Morel N, Moussa M, Naudillon JP, Normand M, Olive P, Ouallet JC, Outteryck O, Pacault C, Papeix C, Patry I, Peaureaux D, Pelletier J, Pichon B, Pittion S, Planque E, Pouget MC, Pourcher V, Radot C, Robert I, Rocher F, Ruet A, Ruet A, Saint-Val C, Salle JY, Salmon A, Sartori E, Schaeffer S, Stankhof B, Taithe F, Thouvenot E, Tizon C, Tourbah A, Tourniaire P, Vaillant M, Vermersch P, Vidil S, Wahab A, Warter MH, Wiertlewski S, Wiplosz B, Wittwer B, Zaenker C, Zephir H. Immunization and multiple sclerosis: Recommendations from the French Multiple Sclerosis Society. Rev Neurol (Paris) 2019; 175:341-357. [DOI: 10.1016/j.neurol.2019.04.001] [Show More Authors] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
|
72
|
The influence of neonatal Bacille Calmette-Guérin (BCG) immunisation on heterologous vaccine responses in infants. Vaccine 2019; 37:3735-3744. [PMID: 31153688 DOI: 10.1016/j.vaccine.2019.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Bacillus Calmette-Guérin vaccine (BCG), one of the most widely used vaccines, does not only provide protection against tuberculosis and other mycobacterial infections, but also has non-specific (heterologous) immunomodulatory effects. In participants in a randomised trial, we investigated the effect of neonatal BCG immunisation on antibody responses to routine infant vaccines given in the first year of life. METHODS Antibodies against antigens in the diphtheria, tetanus, pertussis, polio, Haemophilus influenzae type b (Hib), and the 13-valent pneumococcal conjugate vaccines were measured in 91 (45 BCG-vaccinated, 46 BCG-naïve) infants one month after, and in 310 (169 BCG-vaccinated, 141 BCG-naïve) infants seven months after immunisation at 6 weeks, 4 and 6 months of age. In addition, antibodies against meningococcus C, Hib, measles, mumps, and rubella were measured in 147 (78 BCG-vaccinated, 69 BCG-naïve) infants one month after immunisation at 12 months of age. The seroprotection rates for each vaccine and the geometric mean concentrations (GMC) of antibodies were compared in BCG-vaccinated and BCG-naïve infants. RESULTS At 7 months of age, seroprotection rates were high in both BCG-vaccinated and BCG-naïve infants. At 13 months of age, seroprotection rates were lower than at 7 months of age, particularly for pertussis and a number of pneumococcal antigens, with generally higher rates for the latter in BCG-vaccinated infants. Although not statistically significant, antibody responses in BCG-vaccinated infants were consistently higher against diphtheria, tetanus, and pneumococcal antigens at both 7 and 13 months of age, and against measles and mumps at 13 months of age, but were lower against Hib one month after immunisation at both 7 and 13 months of age. CONCLUSION The immunomodulatory effect of BCG on antibody responses to heterologous vaccines adds to the evidence that BCG immunisation at birth has broad heterologous effects on the infant immune system.
Collapse
|
73
|
Kühtreiber WM, Faustman DL. BCG Therapy for Type 1 Diabetes: Restoration of Balanced Immunity and Metabolism. Trends Endocrinol Metab 2019; 30:80-92. [PMID: 30600132 DOI: 10.1016/j.tem.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/10/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
The bacillus Calmette-Guerin (BCG) vaccine is a microorganism developed as a vaccine for tuberculosis 100 years ago and used as therapy for bladder cancer 40 years ago. More recently, BCG has shown therapeutic promise for type 1 diabetes (T1D) and several other autoimmune diseases. In T1D, BCG restored blood sugars to near normal, even in patients with advanced disease of >20 years duration. This clinically important effect may be driven by resetting of the immune system and the shifting of glucose metabolism from overactive oxidative phosphorylation, a state of minimal sugar utilization, to aerobic glycolysis, a state of high glucose utilization, for energy production. The mechanistic findings support the Hygiene Hypothesis and reveal the immune and metabolic synergy of mycobacterial reintroduction in modern humans.
Collapse
Affiliation(s)
- Willem M Kühtreiber
- Department of Medicine, Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Denise L Faustman
- Department of Medicine, Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
74
|
Cossu D, Yokoyama K, Hattori N. Bacteria-Host Interactions in Multiple Sclerosis. Front Microbiol 2018; 9:2966. [PMID: 30564215 PMCID: PMC6288311 DOI: 10.3389/fmicb.2018.02966] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is caused by a complex interaction of genetic and environmental factors. Numerous causative factors have been identified that play a role in MS, including exposure to bacteria. Mycobacteria, Chlamydia pneumoniae, Helicobacter pylori, and other bacteria have been proposed as risk factors for MS with different mechanisms of action. Conversely, some pathogens may have a protective effect on its etiology. In terms of acquired immunity, molecular mimicry has been hypothesized as the mechanism by which bacterial structures such as DNA, the cell wall, and intracytoplasmic components can activate autoreactive T cells or produce autoantibodies in certain host genetic backgrounds of susceptible individuals. In innate immunity, Toll-like receptors play an essential role in combating invading bacteria, and their activation leads to the release of cytokines or chemokines that mediate effective adaptive immune responses. These receptors may also be involved in central nervous system autoimmunity, and their contribution depends on the infection site and on the pathogen. We have reviewed the current knowledge of the influence of bacteria on MS development, emphasizing the potential mechanisms of action by which bacteria affect MS initiation and/or progression.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo, Japan.,Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
75
|
Stienstra R, Netea MG. Firing Up Glycolysis: BCG Vaccination Effects on Type 1 Diabetes Mellitus. Trends Endocrinol Metab 2018; 29:813-814. [PMID: 30327169 DOI: 10.1016/j.tem.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 11/29/2022]
Abstract
In addition to the impact of Bacillus Calmette-Guerin (BCG) vaccination on antimicrobial host defence, a novel study reveals beneficial effects on glycaemic control in patients with long-standing type 1 diabetes mellitus (T1DM). These effects are ascribed to an accelerated glucose consumption in immune cells due to increased glycolysis and reduced oxidative phosphorylation.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
76
|
Lippens C, Garnier L, Guyonvarc'h PM, Santiago-Raber ML, Hugues S. Extended Freeze-Dried BCG Instructed pDCs Induce Suppressive Tregs and Dampen EAE. Front Immunol 2018; 9:2777. [PMID: 30555468 PMCID: PMC6281986 DOI: 10.3389/fimmu.2018.02777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
Several clinical observations have shown that Bacillus Calmette-Guérin (BCG) vaccine has beneficial impact on patients suffering from different chronic inflammatory diseases. Here we evaluated whether BCG inactivated by Extended Freeze-Drying (EFD) which circumvents all the side effects linked to the live bacteria, could influence the development of experimental autoimmune encephalomyelitis (EAE), a mouse model for Multiple Sclerosis. EFD BCG strongly attenuates inflammation, both systemically and at the central nervous system (CNS) level, alleviating EAE. Mechanistically, EFD BCG directly impacts the phenotype of plasmacytoid dendritic cells (pDCs), and promotes their ability to induce suppressive IL-10 secreting regulatory T cells (Tregs) that inhibit encephalitogenic CD4+ T cells. When co-cultured with human allogenic naive CD4+ T cells, EFD BCG exposed human pDCs similarly induce the differentiation of IL-10 producing Tregs. Our study provides evidence that EFD BCG could be used as an immunomodulator of encephalitogenic T cells in multiple sclerosis patients.
Collapse
Affiliation(s)
- Carla Lippens
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Stéphanie Hugues
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
77
|
Bridging the gap between vaccination with Bacille Calmette-Guérin (BCG) and immunological tolerance: the cases of type 1 diabetes and multiple sclerosis. Curr Opin Immunol 2018; 55:89-96. [PMID: 30447407 DOI: 10.1016/j.coi.2018.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
At the end of past century, when the prevailing view was that treatment of autoimmunity required immune suppression, experimental evidence suggested an approach of immune-stimulation such as with the BCG vaccine in type 1 diabetes (T1D) and multiple sclerosis (MS). Translating these basic studies into clinical trials, we showed the following: BCG harnessed the immune system to 'permanently' lower blood sugar, even in advanced T1D; BCG appeared to delay the disease progression in early MS; the effects were long-lasting (years after vaccination) in both diseases. The recently demonstrated capacity of BCG to boost glycolysis may explain both the improvement of metabolic indexes in T1D, and the more efficient generation of inducible regulatory T cells, which counteract the autoimmune attack and foster repair mechanisms.
Collapse
|
78
|
Moorlag SJCFM, Röring RJ, Joosten LAB, Netea MG. The role of the interleukin-1 family in trained immunity. Immunol Rev 2018; 281:28-39. [PMID: 29248003 DOI: 10.1111/imr.12617] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunological memory was long considered a trait exclusive to cells of the adaptive immune system. However, recent studies have shown that after activation of the innate immune system, innate immune cells may undergo long-term functional reprogramming characterized by the ability to mount either a stronger or attenuated inflammatory response upon reactivation. This phenomenon, which has been termed trained immunity and is a de facto innate immune memory, is regulated by a network of integrated metabolic and epigenetic rewiring. The endogenous mediators that modulate trained immunity in the host are only partially understood, but increasing evidence supports the concept that the interleukin (IL)-1 family of cytokines plays an important role. In this review, we will highlight key findings from studies that provide insight into the multifaceted roles of members of the IL-1 family for trained immunity. Finally, we will discuss how the recent advances of our understanding on the role of IL-1 cytokines in this field may lead to new therapeutic strategies for treatment of common conditions, such as IL-1-driven autoinflammatory diseases.
Collapse
Affiliation(s)
- Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rutger Jan Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
79
|
Zimmermann P, Curtis N. The influence of BCG on vaccine responses – a systematic review. Expert Rev Vaccines 2018; 17:547-554. [DOI: 10.1080/14760584.2018.1483727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Petra Zimmermann
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
- Infectious Diseases & Microbiology Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, University of Basel Children’s Hospital, Basel, Switzerland
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
- Infectious Diseases & Microbiology Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| |
Collapse
|
80
|
Kühtreiber WM, Tran L, Kim T, Dybala M, Nguyen B, Plager S, Huang D, Janes S, Defusco A, Baum D, Zheng H, Faustman DL. Long-term reduction in hyperglycemia in advanced type 1 diabetes: the value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines 2018; 3:23. [PMID: 29951281 PMCID: PMC6013479 DOI: 10.1038/s41541-018-0062-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium are among the oldest co-evolutionary partners of humans. The attenuated Mycobacterium bovis Bacillus Calmette Guérin (BCG) strain has been administered globally for 100 years as a vaccine against tuberculosis. BCG also shows promise as treatment for numerous inflammatory and autoimmune diseases. Here, we report on a randomized 8-year long prospective examination of type 1 diabetic subjects with long-term disease who received two doses of the BCG vaccine. After year 3, BCG lowered hemoglobin A1c to near normal levels for the next 5 years. The BCG impact on blood sugars appeared to be driven by a novel systemic and blood sugar lowering mechanism in diabetes. We observe a systemic shift in glucose metabolism from oxidative phosphorylation to aerobic glycolysis, a state of high glucose utilization. Confirmation is gained by metabolomics, mRNAseq, and functional assays of cellular glucose uptake after BCG vaccinations. To prove BCG could induce a systemic change to promote accelerated glucose utilization and impact blood sugars, murine data demonstrated reduced blood sugars and aerobic induction in non-autoimmune mice made chemically diabetic. BCG via epigenetics also resets six central T-regulatory genes for genetic re-programming of tolerance. These findings set the stage for further testing of a known safe vaccine therapy for improved blood sugar control through changes in metabolism and durability with epigenetic changes even in advanced Type 1 diabetes. In patients with long-term type 1 diabetes, the tuberculosis vaccine BCG lowers blood sugar levels to near-normal after three years. Denise Faustman and her team from Massachusetts General Hospital and Harvard Medical School investigated a cohort of type 1 diabetics that received two doses of BCG before being monitored over eight years. After three years, vaccine-treated patients lowered their HbA1c levels—a diabetes biomarker reflecting average blood sugar over 8–12 weeks—by over 10%. This reduction increased to 18% in the fourth year, after which HbA1c levels remained low up to the final year of monitoring. The researchers report that the BCG vaccine appeared to reset diabetes-implicated parts of the immune system and, through a novel mechanism, shift glucose metabolism to lower blood sugar to healthy levels. Future studies will further classify BCG’s benefits in diabetes.
Collapse
Affiliation(s)
- Willem M Kühtreiber
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Lisa Tran
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Taesoo Kim
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Michael Dybala
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Brian Nguyen
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Sara Plager
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Daniel Huang
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Sophie Janes
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Audrey Defusco
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Danielle Baum
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| | - Hui Zheng
- 2Department of Biostatistics, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Denise L Faustman
- 1Immunobiology Laboratories, Massachusetts General Hospital and Harvard Medical School, Bldg 149, 13th Street, Boston, MA 02116 USA
| |
Collapse
|
81
|
A New Venue of TNF Targeting. Int J Mol Sci 2018; 19:ijms19051442. [PMID: 29751683 PMCID: PMC5983675 DOI: 10.3390/ijms19051442] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn’s disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.
Collapse
|
82
|
Faustman DL. TNF, TNF inducers, and TNFR2 agonists: A new path to type 1 diabetes treatment. Diabetes Metab Res Rev 2018; 34. [PMID: 28843039 DOI: 10.1002/dmrr.2941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
Abstract
In the past decade, interest in the century-old tuberculosis vaccine, bacillus Calmette-Guerin (BCG), has been revived for potential new therapeutic uses in type 1 diabetes and other forms of autoimmunity. Diverse clinical trials are now proving the value of BCG in prevention and treatment of type 1 diabetes, in the treatment of new onset multiple sclerosis and other immune conditions. BCG contains the avirulent tuberculosis strain Mycobacterium bovis, a vaccine originally developed for tuberculosis prevention. BCG induces a host response that is driven in part by tumour necrosis factor (TNF). Induction of TNF through BCG vaccination or through selective agonism of TNF receptor 2 (TNFR2) has 2 desired cellular immune effects: (1) selective death of autoreactive T cells and (2) expansion of beneficial regulatory T cells (Tregs). In human clinical trials in both type 1 diabetes and multiple sclerosis, administration of the BCG vaccine to diseased adults has shown great promise. In a Phase I trial in advanced type 1 diabetes (mean duration of diabetes 15 years), 2 BCG vaccinations spaced 4 weeks apart selectively eliminated autoreactive T cells, induced beneficial Tregs, and allowed for a transient and small restoration of insulin production. The advancing global clinical trials using BCG combined with mechanistic data on BCGs induction of Tregs suggest value in this generic agent and possible immune reversal of the type 1 diabetic autoimmune process.
Collapse
Affiliation(s)
- Denise L Faustman
- Director of Immunobiology, Massachusetts General Hospital, Boston, MA, USA
- Associate Professor of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
83
|
Vujicic M, Saksida T, Mostarica Stojkovic M, Djedovic N, Stojanovic I, Stosic-Grujicic S. Protective effects of carbonyl iron against multiple low-dose streptozotocin-induced diabetes in rodents. J Cell Physiol 2017; 233:4990-5001. [PMID: 29215791 DOI: 10.1002/jcp.26338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 11/11/2022]
Abstract
Particulate adjuvants have shown increasing promise as effective, safe, and durable agents for the stimulation of immunity, or alternatively, the suppression of autoimmunity. Here we examined the potential of the adjuvant carbonyl iron (CI) for the modulation of organ-specific autoimmune disease-type 1 diabetes (T1D). T1D was induced by multiple low doses of streptozotocin (MLDS) that initiates beta cell death and triggers immune cell infiltration into the pancreatic islets. The results of this study indicate that the single in vivo application of CI to MLDS-treated DA rats, CBA/H mice, or C57BL/6 mice successfully counteracted the development of insulitis and hyperglycemia. The protective action was obtained either when CI was applied 7 days before, simultaneously with the first dose of streptozotocin, or 1 day after MLDS treatment. Ex vivo cell analysis of C57BL/6 mice showed that CI treatment reduced the proportion of proinflammatory F4/80+ CD40+ M1 macrophages and activated T lymphocytes in the spleen. Moreover, the treatment down-regulated the number of inflammatory CD4+ IFN-γ+ cells in pancreatic lymph nodes, Peyer's patches, and pancreas-infiltrating mononuclear cells, while simultaneously potentiating proportion of CD4+ IL17+ cells. The regulatory arm of the immune system represented by CD3+ NK1.1+ (NKT) and CD4+ CD25+ FoxP3+ regulatory T cells was potentiated after CI treatment. In vitro analysis showed that CI down-regulated CD40 and CD80 expression on dendritic cells thus probably interfering with their antigen-presenting ability. In conclusion, particulate adjuvant CI seems to suppress the activation of the innate immune response, which further affects the adaptive immune response directed toward pancreatic beta cells.
Collapse
Affiliation(s)
- Milica Vujicic
- Department of Immunology, Institute for Biological Research, "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research, "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | | | - Neda Djedovic
- Department of Immunology, Institute for Biological Research, "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanovic
- Department of Immunology, Institute for Biological Research, "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Stanislava Stosic-Grujicic
- Department of Immunology, Institute for Biological Research, "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
84
|
Signaling via toll-like receptor 4 and CD40 in B cells plays a regulatory role in the pathogenesis of multiple sclerosis through interleukin-10 production. J Autoimmun 2017; 88:103-113. [PMID: 29146546 DOI: 10.1016/j.jaut.2017.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND B cells play an important role in the development of multiple sclerosis (MS), but can also exhibit regulatory functions through IL-10 production. Toll-like receptors (TLR) and CD40 signaling are likely to be involved in this process. OBJECTIVE To investigate the ability of MS B cells to produce IL-10 in response to TLR stimulation in the presence or absence of CD40 co-stimulation. METHODS Peripheral blood mononuclear cells obtained from 34 MS patients and 24 matched healthy participants (HS) were stimulated through either TLR4 or TLR9 alone, or together with CD40. Intracellular cytokine production was analyzed by flow cytometry. RESULTS The frequency of IL-10-producing cells in total B cells after either TLR9 or CD40 stimulation was significantly lower in MS than HS, regardless of disease phase. The frequency of IL-10 producing B cells after TLR4 stimulation did not differ significantly between HS and MS, regardless of disease phase. TLR4 and CD40 co-stimulation synergistically increased the frequency of IL-10-producing but not pro-inflammatory cytokine-producing B cells at MS relapse. This effect was observed in both CD27- naïve and CD27+ memory B cells. The frequency of IL-10-producing B cells following CD40 stimulation was significantly higher in interferon-β responders than non-treated MS patients. Finally, we confirmed that the frequency of IL-10-producing B cells positively correlated with IL-10 production quantity by B cells using magnetic-isolated B cells. CONCLUSIONS Cross-talk between TLR4 and CD40 signaling plays a crucial role in regulating IL-10 production by B cells during MS relapses, which may promote recovery from relapse. CD40 signaling in B cells is involved in the response to interferon-β in MS. Collectively, TLR4 and CD40 signaling in B cells may provide a promising target for MS therapy.
Collapse
|
85
|
Frederiksen JL, Topsøe Mailand M. Vaccines and multiple sclerosis. Acta Neurol Scand 2017; 136 Suppl 201:49-51. [PMID: 29068486 DOI: 10.1111/ane.12837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
Abstract
An association between certain vaccinations and onset or relapse of multiple sclerosis (MS) has been debated. Based on PubMed, we made a thorough literature review and included all relevant studies, 51 on MS and 15 on optic neuritis (ON). Case studies were excluded. With the exception of a live vaccine against yellow fever, vaccinations appear safe in untreated patients with MS and ON. However, most studies were underpowered, and small risks cannot be excluded. One study of BCG vaccination after the first demyelinating event showed even a reduced risk of developing MS. Further studies are needed to fully exclude a causal association.
Collapse
Affiliation(s)
- J. L. Frederiksen
- Department of Neurology; Clinic of Optic Neuritis and Clinic of Multiple Sclerosis; Rigshospitalet Glostrup; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - M. Topsøe Mailand
- Department of Neurology; Clinic of Optic Neuritis and Clinic of Multiple Sclerosis; Rigshospitalet Glostrup; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
86
|
Cossu D, Yokoyama K, Tomizawa Y, Momotani E, Hattori N. Altered humoral immunity to mycobacterial antigens in Japanese patients affected by inflammatory demyelinating diseases of the central nervous system. Sci Rep 2017; 7:3179. [PMID: 28600575 PMCID: PMC5466620 DOI: 10.1038/s41598-017-03370-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium bovis (BCG) have been associated to several human autoimmune diseases such as multiple sclerosis (MS), but there are conflicting evidence on the issue. The objective of this study is to evaluate their role in Japanese patients affected by inflammatory demyelinating disorders of the central nervous system (IDDs). A total of 97 IDDs subjects including 51 MS and 46 neuromyelitis optica spectrum disorder (NMOSD) patients, and 34 healthy controls (HCs) were tested for the detection of IgG, IgM and IgA against mycobacterial antigens by indirect ELISA. The levels of anti-MAP IgG were higher in MS patients compared to NMOSD patients (AUC = 0.59, p = 0.02) and HCs (AUC = 0.67, p = 0.01), and the anti-MAP antibodies were more prevalent in MS patients treated with interferon-beta (OR = 11.9; p = 0.004). Anti-BCG IgG antibodies were detected in 8% of MS, 32% of NMOSD and 18% of HCs, the difference between MS and NMOSD groups was statistically significant (AUC = 0.66, p = 0.005). Competition experiments showed that nonspecific IgM were elicited by common mycobacterial antigens. Our study provided further evidence for a possible association between MAP and MS, while BCG vaccination seemed to be inversely related to the risk of developing MS.
Collapse
Affiliation(s)
- Davide Cossu
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| | - Kazumasa Yokoyama
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan.
| | - Yuji Tomizawa
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| | - Eiichi Momotani
- Tohto College of Health Sciences, Department of Human-care, Saitama, 366-0052, Japan
| | - Nobutaka Hattori
- Juntendo University School of Medicine, Department of Neurology, Tokyo, 113-8421, Japan
| |
Collapse
|
87
|
Kowalewicz-Kulbat M, Locht C. BCG and protection against inflammatory and auto-immune diseases. Expert Rev Vaccines 2017; 16:1-10. [PMID: 28532186 DOI: 10.1080/14760584.2017.1333906] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bacillus Calmette-Guérin (BCG) is the only available vaccine against tuberculosis. Although its protective efficacy against pulmonary tuberculosis is still under debate, it provides protection against other mycobacterial diseases. BCG is also an effective therapy against superficial bladder cancer and potentially decreases overall childhood mortality. Areas covered: The purpose of this paper is to provide a state-of-the-art summary of the beneficial effects of BCG in inflammatory and auto-immune diseases. As a strong inducer of Th1 type immunity, BCG has been reported to protect against atopic conditions, such as allergic asthma, a Th2-driven disorder. Its protective effect has been well documented in mice, but still awaits definitive evidence in humans. Similarly, murine studies have shown a protective effect of BCG against auto-immune diseases, such as multiple sclerosis and insulin-dependent diabetes, but studies in humans have come to conflicting conclusions. Expert commentary: Studies in mice have shown a beneficial effect of the BCG vaccine against allergic asthma, multiple sclerosis and diabetes. However, the understanding of its mechanism is still fragmentary and requires further in depth research. Some observational or intervention studies in humans have also suggested a beneficial effect, but definitive evidence for this requires confirmation in carefully conducted prospective studies.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- a Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology , University of Lodz , Lodz , Poland
| | - Camille Locht
- a Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology , University of Lodz , Lodz , Poland.,b Center for Infection and Immunity of Lille , Institut Pasteur de Lille , Lille , France.,c Center for Infection and Immunity of Lille , Inserm U1019 , Lille , France.,d Center for Infection and Immunity of Lille , CNRS UMR 8204 , Lille , France.,e Center for Infection and Immunity of Lille , Université Lille Nord de France , Lille , France
| |
Collapse
|
88
|
Cossu D, Yokoyama K, Hattori N. Conflicting Role of Mycobacterium Species in Multiple Sclerosis. Front Neurol 2017; 8:216. [PMID: 28579973 PMCID: PMC5437105 DOI: 10.3389/fneur.2017.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium is a genus of aerobic and acid-fast bacteria, which include several pathogenic organisms that cause serious diseases in mammals. Previous studies have associated the immune response against mycobacteria with multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system with unknown etiology. The role of mycobacteria in the pathological process has been controversial and often conflicting. We provide a detailed review of the mycobacteria that have been linked to MS over the last three decades, with a focus on Mycobacterium bovis bacille Calmette-Guérin vaccine for human and oral exposure to Mycobacterium avium subsp. paratuberculosis. We will also discuss the exposure and genetic susceptibility to mycobacterial infection, the protective role of vaccination, as well as the possible mechanisms involved in initiating or worsening MS symptoms, with particular emphasis on the molecular mimicry between mycobacterial and human proteins. Finally, we will introduce topics such as heat shock proteins and recognition by innate immunity, and toll-like receptor signaling-mediated responses to Mycobacterium exposure.
Collapse
|
89
|
Eleuteri C, Olla S, Veroni C, Umeton R, Mechelli R, Romano S, Buscarinu MC, Ferrari F, Calò G, Ristori G, Salvetti M, Agresti C. A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials. Sci Rep 2017; 7:45780. [PMID: 28387380 PMCID: PMC5384285 DOI: 10.1038/srep45780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds' activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan.
Collapse
Affiliation(s)
- C. Eleuteri
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - S. Olla
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - C. Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - R. Umeton
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - R. Mechelli
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - S. Romano
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - MC. Buscarinu
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - F. Ferrari
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - G. Calò
- Department of Medical Science, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - G. Ristori
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - M. Salvetti
- Center for Experimental Neurological Therapies, Sant’Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - C. Agresti
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
90
|
Zuo Z, Qi F, Yang J, Wang X, Wu Y, Wen Y, Yuan Q, Zou J, Guo K, Yao ZB. Immunization with Bacillus Calmette-Guérin (BCG) alleviates neuroinflammation and cognitive deficits in APP/PS1 mice via the recruitment of inflammation-resolving monocytes to the brain. Neurobiol Dis 2017; 101:27-39. [PMID: 28189498 DOI: 10.1016/j.nbd.2017.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
The immune system plays a crucial role in the progression of Alzheimer's disease (AD). Recently, immune-dependent cascade induced by systemic immune activation has been verified to play a beneficial role in AD mouse models. Here, we tested whether Bacillus Calmette-Guérin (BCG) immunization alters AD pathology and cognitive dysfunction in APP/PS1 AD mouse model, and with 4Aβ1-15 vaccination as positive control. It was found that BCG treatment reversed the cognitive decline to the extent observed in 4Aβ1-15 group, but did not reduce the β-amyloid (Aβ) burden in the brain. Then, we demonstrated the enhanced recruitment of inflammation-resolving monocytes across the choroid plexus and perivascular spaces to cerebral sites of plaque pathology in APP/PS1 mice immunized with BCG. Furthermore, elevated splenocyte Foxp3+ regulatory T cell levels in the control APP/PS1 mice were down-regulated back to the wild-type (WT) levels by BCG treatment but not 4Aβ1-15 vaccination. In addition, BCG treatment induced the production of more circulating interferon (IFN)-γ than the controls and 4Aβ1-15 vaccination. Though the similar reductions in brain levels of pro-inflammatory cytokines were observed in the BCG and 4Aβ1-15 groups compared to the controls, only BCG had the great effect in upregulating cerebral anti-inflammatory cytokine levels as well as elevating the expression of neurotrophic factors in the brain of APP/PS1 mice. Thus, it is suggested that BCG exerts a beneficial immunomodulatory effect in APP/PS1 mice through mitigation of systemic immune suppression, induction of IFN-γ response and alleviation of the neuroinflammatory response.
Collapse
Affiliation(s)
- Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Junhua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Yingying Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Yaru Wen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Qunfang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China
| | - Zhi Bin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, Guangzhou 510080, China.
| |
Collapse
|
91
|
Valentini D, Rao M, Rane L, Rahman S, Axelsson-Robertson R, Heuchel R, Löhr M, Hoft D, Brighenti S, Zumla A, Maeurer M. Peptide microarray-based characterization of antibody responses to host proteins after bacille Calmette-Guérin vaccination. Int J Infect Dis 2017; 56:140-154. [PMID: 28161459 DOI: 10.1016/j.ijid.2017.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Bacille Calmette-Guérin (BCG) is the world's most widely distributed vaccine, used against tuberculosis (TB), in cancer immunotherapy, and in autoimmune diseases due to its immunomodulatory properties. To date, the effect of BCG vaccination on antibody responses to host proteins has not been reported. High-content peptide microarrays (HCPM) offer a unique opportunity to gauge specific humoral immune responses. METHODS The sera of BCG-vaccinated healthy adults were tested on a human HCPM platform (4953 randomly selected epitopes of human proteins) to detect specific immunoglobulin gamma (IgG) responses. Samples were obtained at 56, 112, and 252 days after vaccination. Immunohistology was performed on lymph node tissue from patients with TB lymphadenitis. Results were analysed with a combination of existing and novel statistical methods. RESULTS IgG recognition of host peptides exhibited a peak at day 56 post BCG vaccination in all study subjects tested, which diminished over time. Primarily, IgG responses exhibited increased reactivity to ion transporters (sodium, calcium channels), cytokine receptors (interleukin 2 receptor β (IL2Rβ), fibroblast growth factor receptor 1 (FGFR1)), other cell surface receptors (inositol, somatostatin, angiopoeitin), ribonucleoprotein, and enzymes (tyrosine kinases, phospholipase) on day 56. There was decreased IgG reactivity to transforming growth factor-beta type 1 receptor (TGFβR1) and, in agreement with the peptide microarray findings, immunohistochemical analysis of TB-infected lymph node samples revealed an overexpression of TGFβR in granulomatous lesions. Moreover, the vesicular monoamine transporter (VMAT2) showed increased reactivity on days 112 and 252, but not on day 56 post-vaccination. IgG to interleukin 4 receptor (IL4R) showed increased reactivity at 112 days post-vaccination, while IgG to IL2Rβ and FGFR1 showed decreased reactivity on days 112 and 252 as compared to day 56 post BCG vaccination. CONCLUSIONS BCG vaccination modifies the host's immune landscape after 56 days, but this imprint changes over time. This may influence the establishment of immunological memory in BCG-vaccinated individuals.
Collapse
Affiliation(s)
- Davide Valentini
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden; Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Lalit Rane
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Sayma Rahman
- Center for Infectious Medicine (CIM), Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Axelsson-Robertson
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden; Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Rainer Heuchel
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Matthias Löhr
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Daniel Hoft
- Division of Immunobiology, Departments of Internal Medicine and Molecular Microbiology, Saint Louis University Medical Centre, Saint Louis, Missouri, USA
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden; Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
92
|
Amato MP, Derfuss T, Hemmer B, Liblau R, Montalban X, Soelberg Sørensen P, Miller DH, Alfredsson L, Aloisi F, Amato MP, Ascherio A, Baldin E, Bjørnevik K, Comabella M, Correale J, Cortese M, Derfuss T, D’Hooghe M, Ghezzi A, Gold J, Hellwig K, Hemmer B, Koch-Henricksen N, Langer Gould A, Liblau R, Linker R, Lolli F, Lucas R, Lünemann J, Magyari M, Massacesi L, Miller A, Miller DH, Montalban X, Monteyne P, Mowry E, Münz C, Nielsen NM, Olsson T, Oreja-Guevara C, Otero S, Pugliatti M, Reingold S, Riise T, Robertson N, Salvetti M, Sidhom Y, Smolders J, Soelberg Sørensen P, Sollid L, Steiner I, Stenager E, Sundstrom P, Taylor BV, Tremlett H, Trojano M, Uccelli A, Waubant E, Wekerle H. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult Scler 2017; 24:590-603. [DOI: 10.1177/1352458516686847] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative demyelinating disease of the central nervous system (CNS), most likely autoimmune in origin, usually beginning in early adulthood. The aetiology of the disease is not well understood; it is viewed currently as a multifactorial disease which results from complex interactions between genetic predisposition and environmental factors, of which a few are potentially modifiable. Improving our understanding of these factors can lead to new and more effective approaches to patient counselling and, possibly, prevention and management of the disease. The 2016 focused workshop of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) addressed the topic of environmental, modifiable risk factors for MS, gathering experts from around the world, to collate experimental and clinical research into environmental factors that have been associated with the disease onset and, in a few cases, disease activity and progression. A number of factors, including infections, vitamin D deficiency, diet and lifestyle factors, stress and comorbidities, were discussed. The meeting provided a forum to analyse available evidence, to identify inconsistencies and gaps in current knowledge and to suggest avenues for future research.
Collapse
Affiliation(s)
- Maria Pia Amato
- Department of NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | - Roland Liblau
- Faculte de Medecine Purpan, Universite Toulouse III – Paul Sabatier, Toulouse, France
| | | | | | - David H Miller
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK*
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Mailand MT, Frederiksen JL. Vaccines and multiple sclerosis: a systematic review. J Neurol 2016; 264:1035-1050. [PMID: 27604618 DOI: 10.1007/s00415-016-8263-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Vaccinations are often the most effective tool against some disease known to mankind. This study offers a literature review on the role of vaccines regarding the risk of developing multiple sclerosis (MS) and MS relapse. The method used in this study is a systematic literature review on the database PubMed. The study found no change in risk of developing multiple sclerosis (MS) after vaccination against hepatitis B virus, human papillomavirus, seasonal influenza, measles-mumps-rubella, variola, tetanus, Bacillus Calmette-Guérin (BCG), polio, or diphtheria. No change in risk of relapse was found for influenza. Further research is needed for the potential therapeutic use of the BCG vaccine in patients in risk of developing MS and for the preventive potential of the tetanus and diphtheria vaccine.
Collapse
Affiliation(s)
| | - Jette Lautrup Frederiksen
- Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Nordre Ringvej 57, 2600, Glostrup, Denmark.
| |
Collapse
|
94
|
Flanagan KL, Plebanski M. Sex-differential heterologous (non-specific) effects of vaccines: an emerging public health issue that needs to be understood and exploited. Expert Rev Vaccines 2016; 16:5-13. [DOI: 10.1080/14760584.2016.1203260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katie L. Flanagan
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
| | - Magdalena Plebanski
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
- Monash Institute of Medical Engineering, Monash University, Prahran, Australia
| |
Collapse
|
95
|
Neonatal Bacillus Calmette-Guérin vaccination alleviates lipopolysaccharide-induced neurobehavioral impairments and neuroinflammation in adult mice. Mol Med Rep 2016; 14:1574-86. [PMID: 27357155 PMCID: PMC4940080 DOI: 10.3892/mmr.2016.5425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 04/29/2016] [Indexed: 12/23/2022] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine is routinely administered to human neonates worldwide. BCG has recently been identified as a neuroprotective immune mediator in several neuropathological conditions, exerting neuroprotection in a mouse model of Parkinson's disease and slowing the progression of clinically isolated syndrome in patients with multiple sclerosis. The immune system is significantly involved in brain development, and several types of neonatal immune activations exert influences on the brain and behavior following a secondary immune challenge in adulthood. However, whether the neonatal BCG vaccination affects the brain in adulthood remains to be elucidated. In the present study, newborn C57BL/6 mice were injected subcutaneously with BCG (105 colony forming units) or phosphate-buffered saline (PBS). A total of 12 weeks later, the mice were injected intraperitoneally with 330 µg/kg lipopolysaccharide (LPS) or PBS. The present study reported that the neonatal BCG vaccination alleviated sickness, anxiety and depression-like behavior, lessened the impairments in hippocampal cell proliferation and downregulated the proinflammatory responses in the serum and brain that were induced by the adult LPS challenge. However, BCG vaccination alone had no evident influence on the brain and behavior in adulthood. In conclusion, the neonatal BCG vaccination alleviated the neurobehavioral impairments and neuroinflammation induced by LPS exposure in adult mice, suggesting a potential neuroprotective role of the neonatal BCG vaccination in adulthood.
Collapse
|
96
|
Piermattei A, Migliara G, Di Sante G, Foti M, Hayrabedyan SB, Papagna A, Geloso MC, Corbi M, Valentini M, Sgambato A, Delogu G, Constantin G, Ria F. Toll-Like Receptor 2 Mediates In Vivo Pro- and Anti-inflammatory Effects of Mycobacterium Tuberculosis and Modulates Autoimmune Encephalomyelitis. Front Immunol 2016; 7:191. [PMID: 27252700 PMCID: PMC4878199 DOI: 10.3389/fimmu.2016.00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022] Open
Abstract
Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll-like receptor 2 (Tlr2), by exploiting a previously characterized Tlr2 variant (Met82Ile). Tlr2 82ile promoted self-specific proinflammatory polarization as well as expansion of ag-specific FoxP3(+) Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 proinflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participated directly to a putative binding pocket for sugars and cadherins. The distinct pro- and anti-inflammatory actions impacted severity, extent of remission, and distribution of the lesions within the central nervous system of experimental autoimmune encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- Alessia Piermattei
- Laboratory of Immunology, Institute of General Pathology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giuseppe Migliara
- Laboratory of Immunology, Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Public Health and Infectious Diseases, University "La Sapienza", Rome, Italy
| | - Gabriele Di Sante
- Laboratory of Immunology, Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy; Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Foti
- Molecular Medicine and Immunology Laboratory, Genopolis Consortium, University of "Milano Bicocca" , Milan , Italy
| | - Soren Bohos Hayrabedyan
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Angela Papagna
- Molecular Medicine and Immunology Laboratory, Genopolis Consortium, University of "Milano Bicocca" , Milan , Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Maddalena Corbi
- Institute of General Pathology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Mariagrazia Valentini
- Laboratory of Immunology, Institute of General Pathology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona , Verona , Italy
| | - Francesco Ria
- Laboratory of Immunology, Institute of General Pathology, Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
97
|
Kjærgaard J, Stensballe LG, Birk NM, Nissen TN, Foss KT, Thøstesen LM, Pihl GT, Andersen A, Kofoed PE, Pryds O, Greisen G. Lack of a Negative Effect of BCG-Vaccination on Child Psychomotor Development: Results from the Danish Calmette Study - A Randomised Clinical Trial. PLoS One 2016; 11:e0154541. [PMID: 27123570 PMCID: PMC4849633 DOI: 10.1371/journal.pone.0154541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives To assess the non-specific effect of Bacillus Calmette-Guérin (BCG) vaccination at birth on psychomotor development. Design This is a pre-specified secondary outcome from a randomised, clinical trial. Setting Maternity units and paediatric wards at three university hospitals in Denmark. Participants Children born at gestational age (GA) 32 weeks and above. All women planning to give birth at the three sites were invited during the recruitment period. Out of 4262 randomised children, 144 were premature (GA < 37 weeks). There were 2129 children (71 premature) randomised to BCG and 2133 randomised (73 premature) to the control group. Interventions BCG vaccination 0.05 ml was given intradermally in the upper left arm at the hospital within seven days of birth. Children in the control group did not receive any intervention. Parents were not blinded to allocation. Main outcome measures Psychomotor development measured using Ages and Stages Questionnaire (ASQ) completed by the parents at 12 months. Additionally, parents of premature children (gestational age < 37 weeks) completed an ASQ at 6 and 22 months. Developmental assessment was available for 3453/4262 (81%). Results The mean difference in ASQ score at 12 months adjusted for age and prematurity was -0.7 points (BCG vs. control, 95% confidence interval; -3.7 to 2.4), p = 0.67, corresponding to an effect size of Cohen’s d = -0.015 (-0.082 to 0.052). The mean difference in ASQ score for premature children at 22 months was -7.8 points (-20.6 to 5.0, p = 0.23), d = -0.23 (-0.62 to 0.15). Conclusions A negative non-specific effect of BCG vaccination at birth on psychomotor development was excluded in term children. Trial Registration ClinicalTrials.gov NCT01694108
Collapse
Affiliation(s)
- Jesper Kjærgaard
- The Department of Paediatrics and Adolescent Medicine, Juliane Marie Centret, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Neonatal Department, Juliane Marie Centret, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- * E-mail:
| | - Lone Graff Stensballe
- The Department of Paediatrics and Adolescent Medicine, Juliane Marie Centret, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nina Marie Birk
- Department of Paediatrics 460, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Kim Thestrup Foss
- Department of Neurology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | | - Gitte Thybo Pihl
- Department of Paediatrics, Kolding Hospital, University of Southern Denmark, Kolding, Denmark
| | - Andreas Andersen
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark
| | - Poul-Erik Kofoed
- Department of Paediatrics, Kolding Hospital, University of Southern Denmark, Kolding, Denmark
| | - Ole Pryds
- Department of Paediatrics 460, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Gorm Greisen
- The Neonatal Department, Juliane Marie Centret, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
98
|
|
99
|
Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Res 2015; 1617:47-62. [DOI: 10.1016/j.brainres.2014.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 04/05/2014] [Indexed: 02/08/2023]
|
100
|
Ricigliano VAG, Handel AE, Sandve GK, Annibali V, Ristori G, Mechelli R, Cader MZ, Salvetti M. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS One 2015; 10:e0119605. [PMID: 25853421 PMCID: PMC4390304 DOI: 10.1371/journal.pone.0119605] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/14/2015] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is a non-heritable factor that associates with multiple sclerosis (MS). However its causal relationship with the disease is still unclear. The virus establishes a complex co-existence with the host that includes regulatory influences on gene expression. Hence, if EBV contributes to the pathogenesis of MS it may do so by interacting with disease predisposing genes. To verify this hypothesis we evaluated EBV nuclear antigen 2 (EBNA2, a protein that recent works by our and other groups have implicated in disease development) binding inside MS associated genomic intervals. We found that EBNA2 binding occurs within MS susceptibility sites more than expected by chance (factor of observed vs expected overlap [O/E] = 5.392-fold, p < 2.0e-05). This remains significant after controlling for multiple genomic confounders. We then asked whether this observation is significant per se or should also be viewed in the context of other disease relevant gene-environment interactions, such as those attributable to vitamin D. We therefore verified the overlap between EBNA2 genomic occupancy and vitamin D receptor (VDR) binding sites. EBNA2 shows a striking overlap with VDR binding sites (O/E = 96.16-fold, p < 2.0e-05), even after controlling for the chromatin accessibility state of shared regions (p <0.001). Furthermore, MS susceptibility regions are preferentially targeted by both EBNA2 and VDR than by EBNA2 alone (enrichment difference = 1.722-fold, p = 0.0267). Taken together, these findings demonstrate that EBV participates in the gene-environment interactions that predispose to MS.
Collapse
Affiliation(s)
- Vito A. G. Ricigliano
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Neuroimmunology Unit, Fondazione Santa Lucia (I.R.C.C.S.), Rome, Italy
| | - Adam E. Handel
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, Blindern, Norway
| | - Viviana Annibali
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
| | - Rosella Mechelli
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
- * E-mail:
| | - M. Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies (CENTERS), Neurology and Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|