51
|
Senchuk MM, Van Raamsdonk JM, Moore DJ. Multiple genetic pathways regulating lifespan extension are neuroprotective in a G2019S LRRK2 nematode model of Parkinson's disease. Neurobiol Dis 2021; 151:105267. [PMID: 33450392 PMCID: PMC7925424 DOI: 10.1016/j.nbd.2021.105267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of late-onset, familial Parkinson's disease (PD), and LRRK2 variants are associated with increased risk for sporadic PD. While advanced age represents the strongest risk factor for disease development, it remains unclear how different age-related pathways interact to regulate LRRK2-driven late-onset PD. In this study, we employ a C. elegans model expressing PD-linked G2019S LRRK2 to examine the interplay between age-related pathways and LRRK2-induced dopaminergic neurodegeneration. We find that multiple genetic pathways that regulate lifespan extension can provide robust neuroprotection against mutant LRRK2. However, the level of neuroprotection does not strictly correlate with the magnitude of lifespan extension, suggesting that lifespan can be experimentally dissociated from neuroprotection. Using tissue-specific RNAi, we demonstrate that lifespan-regulating pathways, including insulin/insulin-like growth factor-1 (IGF-1) signaling, target of rapamycin (TOR), and mitochondrial respiration, can be directly manipulated in neurons to mediate neuroprotection. We extend this finding for AGE-1/PI3K, where pan-neuronal versus dopaminergic neuronal restoration of AGE-1 reveals both cell-autonomous and non-cell-autonomous neuroprotective mechanisms downstream of insulin signaling. Our data demonstrate the importance of distinct lifespan-regulating pathways in the pathogenesis of LRRK2-linked PD, and suggest that extended longevity is broadly neuroprotective via the actions of these pathways at least in part within neurons. This study further highlights the complex interplay that occurs between cells and tissues during organismal aging and disease manifestation.
Collapse
Affiliation(s)
- Megan M Senchuk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H4A 3J1, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Cambridge, MA 02115, USA.
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
52
|
Ortega RA, Wang C, Raymond D, Bryant N, Scherzer CR, Thaler A, Alcalay RN, West AB, Mirelman A, Kuras Y, Marder KS, Giladi N, Ozelius LJ, Bressman SB, Saunders-Pullman R. Association of Dual LRRK2 G2019S and GBA Variations With Parkinson Disease Progression. JAMA Netw Open 2021; 4:e215845. [PMID: 33881531 PMCID: PMC8060834 DOI: 10.1001/jamanetworkopen.2021.5845] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Importance Despite a hypothesis that harboring a leucine-rich repeat kinase 2(LRRK2) G2019S variation and a glucocerebrosidase (GBA) variant would have a combined deleterious association with disease pathogenesis, milder clinical phenotypes have been reported in dual LRRK2 and GBA variations Parkinson disease (PD) than in GBA variation PD alone. Objective To evaluate the association of LRRK2 G2019S and GBA variants with longitudinal cognitive and motor decline in PD. Design, Setting, and Participants This longitudinal cohort study of continuous measures in LRRK2 PD, GBA PD, LRRK2/GBA PD, and wild-type idiopathic PD used pooled annual visit data ranging from 2004 to 2019 from the Mount Sinai Beth Israel, Parkinson Disease Biomarker Program, Harvard Biomarkers Study, Ashkenazi Jewish-LRRK2-Consortium, Parkinson Progression Marker Initiative, and SPOT-PD studies. Patients who were screened for GBA and LRRK2 variations and completed either a motor or cognitive assessment were included. Data were analyzed from May to July 2020. Main Outcomes and Measures The associations of LRRK2 G2019S and GBA genotypes on the rate of decline in Montreal Cognitive Assessment (MoCA) and Movement Disorders Society-Unified Parkinson Disease Rating Scale-Part III scores were examined using linear mixed effects models with PD duration as the time scale. Results Among 1193 individuals with PD (mean [SD] age, 66.6 [9.9] years; 490 [41.2%] women), 128 (10.7%) had GBA PD, 155 (13.0%) had LRRK2 PD, 21 (1.8%) had LRRK2/GBA PD, and 889 (74.5%) had idiopathic PD. Patients with GBA PD had faster decline in MoCA than those with LRRK2/GBA PD (B [SE], -0.31 [0.09] points/y; P < .001), LRRK2 PD (B [SE], -0.33 [0.09] points/y; P < .001), or idiopathic PD (B [SE], -0.23 [0.08] points/y; P = .005). There was a LRRK2 G2019S × GBA interaction in MoCA decline (B [SE], 0.22 [0.11] points/y; P = .04), but not after excluding severe GBA variations (B [SE], 0.12 [0.11] points/y; P = .28). Patients with GBA PD had significantly worse motor progression compared with those with idiopathic PD (B [SE], 0.49 [0.22] points/y; P = .03) or LRRK2 PD (B [SE], 0.77 [0.26] points/y; P = .004). Conclusions and Relevance These findings suggest that longitudinal cognitive decline in patients with GBA PD was more severe than in those with LRRK2/GBA PD, which more closely resembled LRRK2 PD. This further supports the notion of a dominant association of LRRK2 on GBA in individuals who carry both and raises the possibility of an LRRK2 × GBA interaction. However, the biological basis of a dominant association or interaction is not clear and is apparently contrary to basic investigations. Study of a larger cohort of individuals with severe GBA variation is warranted.
Collapse
Affiliation(s)
- Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, Mount Sinai, New York, New York
| | - Cuiling Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York
- Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, Mount Sinai, New York, New York
| | - Nicole Bryant
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina
| | - Clemens R Scherzer
- Center for Advanced Parkinson Research and Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Avner Thaler
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Medical Center, Sackler School of Medicine, Sagol School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Roy N Alcalay
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Andrew B West
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, North Carolina
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Medical Center, Sackler School of Medicine, Sagol School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuliya Kuras
- Center for Advanced Parkinson Research and Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Karen S Marder
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Nir Giladi
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Medical Center, Sackler School of Medicine, Sagol School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, Mount Sinai, New York, New York
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, and Icahn School of Medicine, Mount Sinai, New York, New York
| |
Collapse
|
53
|
Modelling Parkinson's Disease: iPSCs towards Better Understanding of Human Pathology. Brain Sci 2021; 11:brainsci11030373. [PMID: 33799491 PMCID: PMC8000082 DOI: 10.3390/brainsci11030373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s Disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms, among which are bradykinesia, rigidity, tremor as well as mental symptoms such as dementia. The underlying cause of Parkinson disease is degeneration of dopaminergic neurons. It has been challenging to develop an efficient animal model to accurately represent the complex phenotypes found with PD. However, it has become possible to recapitulate the myriad of phenotypes underlying the PD pathology by using human induced pluripotent stem cell (iPSC) technology. Patient-specific iPSC-derived dopaminergic neurons are available and present an opportunity to study many aspects of the PD phenotypes in a dish. In this review, we report the available data on iPSC-derived neurons derived from PD patients with identified gene mutations. Specifically, we will report on the key phenotypes of the generated iPSC-derived neurons from PD patients with different genetic background. Furthermore, we discuss the relationship these cellular phenotypes have to PD pathology and future challenges and prospects for iPSC modelling and understanding of the pathogenesis of PD.
Collapse
|
54
|
Pirazzini C, Azevedo T, Baldelli L, Bartoletti-Stella A, Calandra-Buonaura G, Dal Molin A, Dimitri GM, Doykov I, Gómez-Garre P, Hägg S, Hällqvist J, Halsband C, Heywood W, Jesús S, Jylhävä J, Kwiatkowska KM, Labrador-Espinosa MA, Licari C, Maturo MG, Mengozzi G, Meoni G, Milazzo M, Periñán-Tocino MT, Ravaioli F, Sala C, Sambati L, Schade S, Schreglmann S, Spasov S, Tenori L, Williams D, Xumerle L, Zago E, Bhatia KP, Capellari S, Cortelli P, Garagnani P, Houlden H, Liò P, Luchinat C, Delledonne M, Mills K, Mir P, Mollenhauer B, Nardini C, Pedersen NL, Provini F, Strom S, Trenkwalder C, Turano P, Bacalini MG, Franceschi C. A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project. Mech Ageing Dev 2021; 194:111426. [PMID: 33385396 DOI: 10.1016/j.mad.2020.111426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project "PROPAG-AGEING", whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development.
Collapse
Affiliation(s)
- Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | | | - Giovanna Calandra-Buonaura
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | | | - Giovanna Maria Dimitri
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Doykov
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom
| | - Pilar Gómez-Garre
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Hällqvist
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom
| | - Claire Halsband
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Department of Gerontopsychiatry, Rhein-Mosel-Fachklinik, Andernach, Germany
| | - Wendy Heywood
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Silvia Jesús
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Miguel A Labrador-Espinosa
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Licari
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giacomo Mengozzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Maddalena Milazzo
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Teresa Periñán-Tocino
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Sebastian Schade
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Schreglmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Simeon Spasov
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Leonardo Tenori
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy
| | - Dylan Williams
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Claudio Luchinat
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | | | - Kevin Mills
- Centre for Inborn Errors of Metabolism, UCL Institute of Child Health, London, United Kingdom; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Pablo Mir
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurología y NeurofisiologíaClínica, Instituto de Biomedicina de Sevilla, Seville, Spain; Centro de Investigación Biomédicaen Red sobreEnfermedades Neurodegenerativas (CIBERNED), Spain
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurology, University Medical Centre Goettingen, Goettingen, Germany
| | - Christine Nardini
- Istituto per le Applicazioni del Calcolo Mauro Picone, CNR, Roma, Italy
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Federica Provini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Stephen Strom
- Department of Laboratory Medicine, Karolinska Institute and Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany; Department of Neurosurgery, University Medical Center Göttingen, Germany
| | - Paola Turano
- CERM, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy
| | | | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
55
|
Nam D, Kim A, Han SJ, Lee SI, Park SH, Seol W, Son I, Ho DH. Analysis of α-synuclein levels related to LRRK2 kinase activity: from substantia nigra to urine of patients with Parkinson's disease. Anim Cells Syst (Seoul) 2021; 25:28-36. [PMID: 33717414 PMCID: PMC7935126 DOI: 10.1080/19768354.2021.1883735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Research on Parkinson’s disease (PD) has been focused on the development of PD diagnostic tools as much as the development of PD therapeutics. Several genetic culprits of PD, including DJ-1, Leucine-rich repeat kinase 2 (LRRK2), and α-synuclein (α-syn), have been investigated as markers of PD in human biofluids. Unfortunately, the approaches to develop PD diagnostic tools are impractical, and there is a considerable demand for an appropriate marker of PD. The measurement of α-syn in biofluids has recently been made more accurate by examining monomers and aggregates separately using enzyme-linked immunosorbent assay (ELISA). Previously, we reported on the development of two types of sandwich ELISA for total α-syn and MJFR-14-6-4-2 antibody-specific α-syn fibrillar oligomers. The pathogenic LRRK2 G2019S mutation is related to increased α-syn secretion in the extracellular space. We tested our established ELISA using differentiated SH-SH5Y cells transfected with LRRK2 G2019S. The secretory levels of fibrillar oligomeric α-syn divided by total α-syn were significantly increased in LRRK2 G2019S-expressing cells. Additionally, substantia nigra lysates or concentrated urine from PD patients and non-PD subjects were analyzed. We observed ambiguous changes in the levels of total or fibrillar oligomeric α-syn and their ratio between PD and non-PD. Despite the insignificant increase in the relative levels of fibrillar oligomeric α-syn to total α-syn in PD, the duration of disease progression after diagnosis significantly corresponded to the relative levels of fibrillar oligomeric α-syn to total α-syn in the urine. These results might provide greater understanding for the next stage of development of α-syn ELISAs.
Collapse
Affiliation(s)
- Daleum Nam
- InAm Neuroscience Research Center, Gunpo, Republic of Korea
| | - Ami Kim
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Sun Jung Han
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Sung-Ik Lee
- Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Sung-Hye Park
- Department of pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Gunpo, Republic of Korea
| | - Ilhong Son
- InAm Neuroscience Research Center, Gunpo, Republic of Korea.,Department of Neurology, Sanbon Medical Center, College of Medicine, Wonkwang University, Gunpo-si, Republic of Korea
| | - Dong Hwan Ho
- InAm Neuroscience Research Center, Gunpo, Republic of Korea
| |
Collapse
|
56
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
57
|
Straniero L, Asselta R, Bonvegna S, Rimoldi V, Melistaccio G, Soldà G, Aureli M, Della Porta M, Lucca U, Di Fonzo A, Zecchinelli A, Pezzoli G, Cilia R, Duga S. The SPID-GBA study: Sex distribution, Penetrance, Incidence, and Dementia in GBA-PD. NEUROLOGY-GENETICS 2020; 6:e523. [PMID: 33209983 PMCID: PMC7670574 DOI: 10.1212/nxg.0000000000000523] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
Objective To provide a variant-specific estimate of incidence, penetrance, sex distribution, and association with dementia of the 4 most common Parkinson disease (PD)-associated GBA variants, we analyzed a large cohort of 4,923 Italian unrelated patients with primary degenerative parkinsonism (including 3,832 PD) enrolled in a single tertiary care center and 7,757 ethnically matched controls. Methods The p.E326K, p.T369M, p.N370S, and p.L444P variants were screened using an allele-specific multiplexed PCR approach. All statistical procedures were performed using R or Plink v1.07. Results Among the 4 analyzed variants, the p.L444P confirmed to be the most strongly associated with disease risk for PD, PD dementia (PDD), and dementia with Lewy bodies (DLB) (odds ratio [OR] for PD 15.63, 95% confidence interval [CI] = 8.04-30.37, p = 4.97*10-16; OR for PDD 29.57, 95% CI = 14.07-62.13, p = 3.86*10-19; OR for DLB 102.7, 95% CI = 31.38-336.1, p = 1.91*10-14). However, an unexpectedly high risk for dementia was conferred by p.E326K (OR for PDD 4.80, 95% CI = 2.87-8.02, p = 2.12*10-9; OR for DLB 12.24, 95% CI = 4.95-30.24, p = 5.71*10-8), which, on the basis of the impact on glucocerebrosidase activity, would be expected to be mild. The 1.5-2:1 male sex bias described in sporadic PD was lost in p.T369M carriers. We also showed that PD penetrance for p.L444P could reach the 15% at age 75 years. Conclusions We report a large monocentric study on GBA-PD assessing mutation-specific data on the sex distribution, penetrance, incidence, and association with dementia of the 4 most frequent deleterious variants in GBA.
Collapse
Affiliation(s)
- Letizia Straniero
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Salvatore Bonvegna
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Giada Melistaccio
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Massimo Aureli
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Matteo Della Porta
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Ugo Lucca
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Alessio Di Fonzo
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Anna Zecchinelli
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Gianni Pezzoli
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Roberto Cilia
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences (L.S., R.A., V.R., G.M., G.S., M.D.P., S.D.), Humanitas University; Humanitas Clinical and Research Center (R.A., V.R., G.S., M.D.P., S.D.), IRCCS, Rozzano; Fondazione Grigioni per il Morbo di Parkinson (S.B., A.Z., G.P.); Parkinson Institute (S.B., A.Z., G.P., R.C.), ASST "Gaetano Pini-CTO"; Department of Medical Biotechnology and Translational Medicine (M.A.), University of Milan; Laboratory of Geriatric Neuropsychiatry (U.L.), Istituto di Ricerche Farmacologiche Mario Negri IRCCS; IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico (A.D.F.), Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan; and Fondazione IRCCS Istituto Neurologico "Carlo Besta" (R.C.), Milan, Italy
| |
Collapse
|
58
|
Feng J. Modeling the pathophysiology of Parkinson's disease in patient-specific neurons. Exp Biol Med (Maywood) 2020; 246:298-304. [PMID: 32972199 DOI: 10.1177/1535370220961788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The 30 trillion cells that self-assemble into a human being originate from the pluripotent stem cells in the inner cell mass of a human blastocyst. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to approximate various aspects of this natural developmental process artificially by generating materials that can be used in invasive mechanistic studies of virtually all human conditions. In Parkinson's disease, instructions computed by the basal ganglia to control voluntary motor functions break down, leading to widespread rhythmic bursting activities in the basal ganglia and beyond. It is thought that these oscillatory neuronal activities, which disrupt aperiodic neurotransmission in a normal brain, may reduce information content in the instructions for motor control. Using midbrain neuronal cultures differentiated from iPSCs of Parkinson's disease patients with parkin mutations, we find that parkin mutations cause oscillatory neuronal activities when dopamine D1-class receptors are activated. This system makes it possible to study the molecular basis of rhythmic bursting activities in Parkinson's disease. Further development of stem cell models of Parkinson's disease will enable better approximation of the situation in the brain of Parkinson's disease patients. In this review, I will discuss what has been found in the past about the pathophysiology of motor dysfunction in Parkinson's disease, especially oscillatory neuronal activities and how stem cell technologies may transform our abilities to understand the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
59
|
Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, Zhou YY, Khan J, Nguyen A, Hake-Volling Q, El-Kodsi D, Li J, Alikashani A, Beauchamp C, Majithia J, Coombs K, Shimshek D, Marcogliese PC, Park DS, Rioux JD, Philpott DJ, Woulfe JM, Hayley S, Sad S, Tomlinson JJ, Brown EG, Schlossmacher MG. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med 2020; 11:11/511/eaas9292. [PMID: 31554740 DOI: 10.1126/scitranslmed.aas9292] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/27/2018] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
Variants in the leucine-rich repeat kinase-2 (LRRK2) gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. First, adult mice were intravenously inoculated with Salmonella typhimurium, resulting in sepsis. Second, newborn mouse pups were intranasally infected with reovirus (serotype 3 Dearing), which induced encephalitis. In both mouse models, wild-type Lrrk2 expression was protective and showed a sex effect, with female Lrrk2-deficient animals not controlling infection as well as males. Mice expressing Lrrk2 carrying the Parkinson's disease-linked p.G2019S mutation controlled infection better, with reduced bacterial growth and longer animal survival during sepsis. This gain-of-function effect conferred by the p.G2019S mutation was mediated by myeloid cells and was abolished in animals expressing a kinase-dead Lrrk2 variant, p.D1994S. Mouse pups with reovirus-induced encephalitis that expressed the p.G2019S Lrrk2 mutation showed increased mortality despite lower viral titers. The p.G2019S mutant Lrrk2 augmented immune cell chemotaxis and generated more reactive oxygen species during virulent infection. Reovirus-infected brains from mice expressing the p.G2019S mutant Lrrk2 contained higher concentrations of α-synuclein. Animals expressing one or two p.D1994S Lrrk2 alleles showed lower mortality from reovirus-induced encephalitis. Thus, Lrrk2 alleles may alter the course of microbial infections by modulating inflammation, and this may be dependent on the sex and genotype of the host as well as the type of pathogen.
Collapse
Affiliation(s)
- Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mansoureh Hakimi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Irene E Harmsen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Lunn
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Juliana Rocha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yi Yuan Zhou
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jasmine Khan
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Angela Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Quinton Hake-Volling
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daniel El-Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Azadeh Alikashani
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine Beauchamp
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jay Majithia
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul C Marcogliese
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
60
|
Tessitore A, Cirillo M, De Micco R. Functional Connectivity Signatures of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:637-652. [PMID: 31450512 PMCID: PMC6839494 DOI: 10.3233/jpd-191592] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resting-state functional magnetic resonance imaging (RS-fMRI) studies have been extensively applied to analyze the pathophysiology of neurodegenerative disorders such as Parkinson’s disease (PD). In the present narrative review, we attempt to summarize the most recent RS-fMRI findings highlighting the role of brain networks re-organization and adaptation in the course of PD. We also discuss limitations and potential definition of early functional connectivity signatures to track and predict future PD progression. Understanding the neural correlates and potential predisposing factors of clinical progression and complication will be crucial to guide novel clinical trials and to foster preventive strategies.
Collapse
Affiliation(s)
- Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
61
|
Toffoli M, Vieira SRL, Schapira AHV. Genetic causes of PD: A pathway to disease modification. Neuropharmacology 2020; 170:108022. [PMID: 32119885 DOI: 10.1016/j.neuropharm.2020.108022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
The underline neuropathology of Parkinson disease is pleiomorphic and its genetic background diverse. Possibly because of this heterogeneity, no effective disease modifying therapy is available. In this paper we give an overview of the genetics of Parkinson disease and explain how this is relevant for the development of new therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- M Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - S R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - A H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
62
|
Mutated ATP10B increases Parkinson's disease risk by compromising lysosomal glucosylceramide export. Acta Neuropathol 2020; 139:1001-1024. [PMID: 32172343 PMCID: PMC7244618 DOI: 10.1007/s00401-020-02145-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative brain disease presenting with a variety of motor and non-motor symptoms, loss of midbrain dopaminergic neurons in the substantia nigra pars compacta and the occurrence of α-synuclein-positive Lewy bodies in surviving neurons. Here, we performed whole exome sequencing in 52 early-onset PD patients and identified 3 carriers of compound heterozygous mutations in the ATP10B P4-type ATPase gene. Genetic screening of a Belgian PD and dementia with Lewy bodies (DLB) cohort identified 4 additional compound heterozygous mutation carriers (6/617 PD patients, 0.97%; 1/226 DLB patients, 0.44%). We established that ATP10B encodes a late endo-lysosomal lipid flippase that translocates the lipids glucosylceramide (GluCer) and phosphatidylcholine (PC) towards the cytosolic membrane leaflet. The PD associated ATP10B mutants are catalytically inactive and fail to provide cellular protection against the environmental PD risk factors rotenone and manganese. In isolated cortical neurons, loss of ATP10B leads to general lysosomal dysfunction and cell death. Impaired lysosomal functionality and integrity is well known to be implicated in PD pathology and linked to multiple causal PD genes and genetic risk factors. Our results indicate that recessive loss of function mutations in ATP10B increase risk for PD by disturbed lysosomal export of GluCer and PC. Both ATP10B and glucocerebrosidase 1, encoded by the PD risk gene GBA1, reduce lysosomal GluCer levels, emerging lysosomal GluCer accumulation as a potential PD driver.
Collapse
|
63
|
Generation of an induced pluripotent stem cell line (DANi-011A) from a Parkinson's disease patient with a LRRK2 p.G2019S mutation. Stem Cell Res 2020; 45:101781. [DOI: 10.1016/j.scr.2020.101781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 11/22/2022] Open
|
64
|
Dwyer Z, Rudyk C, Situt D, Beauchamp S, Abdali J, Dinesh A, Legancher N, Sun H, Schlossmacher M, Hayley S. Microglia depletion prior to lipopolysaccharide and paraquat treatment differentially modulates behavioral and neuronal outcomes in wild type and G2019S LRRK2 knock-in mice. Brain Behav Immun Health 2020; 5:100079. [PMID: 34589856 PMCID: PMC8474533 DOI: 10.1016/j.bbih.2020.100079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Substantial data have implicated microglial-driven neuroinflammation in Parkinson's disease (PD) and environmental toxicants have been long expected as triggers of such inflammatory processes. Of course, these environmental insults act in the context of genetic vulnerability factors and in this regard, leucine rich repeat kinase 2 (LRRK2), may play a prominent role. METHODS We used a double hit, lipopolysaccharide (LPS; endotoxin) followed by paraquat (pesticide toxicant) model of PD in mice with the most common LRRK2 mutation G2019S, knockin mice and wild type littermates. In order to assess the contribution of microglia, we depleted these cells (through 14 days of the CSF-1 antagonist, PLX-3397) prior to LPS and paraquat exposure. RESULTS We found that the G2019S mice displayed the greatest signs of behavioral pathology, but that the PLX-3397 induced microglial depletion at the time of LPS exposure diminished toxicity and weight loss and blunted the reduction in home-cage activity with subsequent paraquat exposure. However, neither the PLX-3397 pre-treatment nor the G2019S mutation affected the LPS + paraquat induced loss of substantia nigra pars compacta (SNc) dopamine neurons or elevation of circulating immune (IL-6) or stress (corticosterone) factors. Intriguingly, microglial morphological ratings were basally enhanced in G2019S mice and the PLX-3397 pre-treatment reversed this effect. Moreover, PLX-3397 pre-treatment selectively elevated soluble a-synuclein and SIRT3 levels, while reducing SNc caspase-1 and 3, along with CX3CR1. Hence, the re-populated "new" microglia following cessation of PLX-3397 clearly had an altered phenotype or were immature at the time of sacrifice (i.e. after 11 days). CONCLUSIONS Collectively, these findings suggest that G2019S knock-in and PLX-3397 microglial depletion at the time of LPS exposure affects behavioral, but not neurodegenerative responses to subsequent environmental toxin exposure.
Collapse
Affiliation(s)
- Zach Dwyer
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Chris Rudyk
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Divya Situt
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Sheryl Beauchamp
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Jawaria Abdali
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Anu Dinesh
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | | | - Hongyu Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | | | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - CLINT (Canadian LRRK2 in inflammation team)
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- University of Ottawa, Canada
- Ottawa Hospital Research Institute, Canada
| |
Collapse
|
65
|
Cabezudo D, Baekelandt V, Lobbestael E. Multiple-Hit Hypothesis in Parkinson's Disease: LRRK2 and Inflammation. Front Neurosci 2020; 14:376. [PMID: 32410948 PMCID: PMC7199384 DOI: 10.3389/fnins.2020.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
The multiple hit hypothesis for Parkinson’s disease (PD) suggests that an interaction between multiple (genetic and/or environmental) risk factors is needed to trigger the pathology. Leucine-Rich Repeat Kinase 2 (LRRK2) is an interesting protein to study in this context and is the focus of this review. More than 15 years of intensive research have identified several cellular pathways in which LRRK2 is involved, yet its exact physiological role or contribution to PD is not completely understood. Pathogenic mutations in LRRK2 are the most common genetic cause of PD but most likely require additional triggers to develop PD, as suggested by the reduced penetrance of the LRRK2 G2019S mutation. LRRK2 expression is high in immune cells such as monocytes, neutrophils, or dendritic cells, compared to neurons or glial cells and evidence for a role of LRRK2 in the immune system is emerging. This has led to the hypothesis that an inflammatory trigger is needed for pathogenic LRRK2 mutations to induce a PD phenotype. In this review, we will discuss the link between LRRK2 and inflammation and how this could play an active role in PD etiology.
Collapse
Affiliation(s)
- Diego Cabezudo
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
66
|
Gersel Stokholm M, Garrido A, Tolosa E, Serradell M, Iranzo A, Østergaard K, Borghammer P, Møller A, Parbo P, Stær K, Brooks DJ, Martí MJ, Pavese N. Imaging dopamine function and microglia in asymptomatic LRRK2 mutation carriers. J Neurol 2020; 267:2296-2300. [PMID: 32318850 PMCID: PMC7359140 DOI: 10.1007/s00415-020-09830-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
Abstract
Neuroinflammation (microglial activation) and subclinical nigrostriatal dysfunction have been reported in subjects at risk of Parkinsonism. Eight non-manifesting carriers (NMCs) of LRRK2 G2019S mutation had 11C-PK11195 and 18F-DOPA PET to assess microglial activation and striatal dopamine system integrity, respectively. Comparisons were made with healthy controls. Five LRRK2-NMCs had subclinical reductions of putaminal 18F-DOPA uptake. Three of them had significantly raised nigral 11C-PK11195 binding bilaterally. These findings indicate that nigrostriatal dysfunction and neuroinflammation occur in LRRK2-NMCs. Studies in larger cohorts with appropriate follow-up are needed to elucidate the significance of neuroinflammation in the premotor phase of LRRK2-PD.
Collapse
Affiliation(s)
- Morten Gersel Stokholm
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bldg. 10G, 8000, Aarhus C, Denmark
| | - Alicia Garrido
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Tolosa
- Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mónica Serradell
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Alex Iranzo
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Karen Østergaard
- Department of Neurology, Aarhus University Hospital, Aarhus C, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bldg. 10G, 8000, Aarhus C, Denmark
| | - Arne Møller
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bldg. 10G, 8000, Aarhus C, Denmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bldg. 10G, 8000, Aarhus C, Denmark
| | - Kristian Stær
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bldg. 10G, 8000, Aarhus C, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bldg. 10G, 8000, Aarhus C, Denmark.,Division of Neuroscience, Newcastle University, Newcastle upon Tyne, England
| | - Maria José Martí
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Department of Neurology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nicola Pavese
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Noerrebrogade 44, bldg. 10G, 8000, Aarhus C, Denmark. .,Division of Neuroscience, Newcastle University, Newcastle upon Tyne, England.
| |
Collapse
|
67
|
Altered reward-related neural responses in non-manifesting carriers of the Parkinson disease related LRRK2 mutation. Brain Imaging Behav 2020; 13:1009-1020. [PMID: 29971685 DOI: 10.1007/s11682-018-9920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disturbances in reward processing occur in Parkinson's disease (PD) however it is unclear whether these are solely drug-related. We applied an event-related fMRI gambling task to a group of non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene, in order to assess the reward network in an "at risk" population for future development of PD. Sixty-eight non-manifesting participants, 32 of which were non-manifesting non-carriers (NMNC), performed a gambling task which included defined intervals of anticipation and response to both reward and punishment in an fMRI setup. Behavior and cerebral activations were measured using both hypothesis driven and whole brain analysis. NMC demonstrated higher trait anxiety scores (p = 0.04) compared to NMNC. Lower activations were detected among NMC during risky anticipation in the left nucleus accumbens (NAcc) (p = 0.05) and during response to punishment in the right insula (p = 0.02), with higher activations among NMC during safe anticipation in the right insula (p = 0.02). Psycho-Physiological Interaction (PPI) analysis from the NAcc and insula revealed differential connectivity patterns. Whole brain analysis demonstrated divergent between-group activations in distributed cortical regions, bilateral caudate, left midbrain, when participants were required to press the response button upon making their next chosen move. Abnormal neural activity in both the reward and motor networks were detected in NMC indicating involvement of the ventral striatum regardless of medication use in "at risk" individuals for future development of PD.
Collapse
|
68
|
Correia Guedes L, Mestre T, Outeiro TF, Ferreira JJ. Are genetic and idiopathic forms of Parkinson's disease the same disease? J Neurochem 2019; 152:515-522. [PMID: 31643079 DOI: 10.1111/jnc.14902] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
Genetic forms represent a small fraction of Parkinson's disease (PD) but their discovery has revolutionized research in the field, putting α-synuclein in the spotlight, and uncovering other key neuropathological mechanisms of the disease. The question of whether genetic and idiopathic PD (iPD) correspond to a same disease entity is not simply philosophical, has implications for the discovery of the biological background of PD and for the development of novel therapeutic strategies that may also be applicable to the larger iPD group. Here, we review the current landscape of what has been labeled genetic PD and critically discuss the rational for merging or separating genetic and idiopathic forms of PD as the same or different disease entities. We conclude by addressing the potential implications for future research.
Collapse
Affiliation(s)
- Leonor Correia Guedes
- Department of Neuroscience and Mental Health, Neurology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Mestre
- Parkinson's disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa Brain and Research Institute, Ottawa, Canada
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,CNS-Campus Neurológico Sénior, Torres Vedras, Portugal
| |
Collapse
|
69
|
Simonet C, Schrag A, Lees AJ, Noyce AJ. The motor prodromes of parkinson's disease: from bedside observation to large-scale application. J Neurol 2019; 268:2099-2108. [PMID: 31802219 PMCID: PMC8179909 DOI: 10.1007/s00415-019-09642-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
There is sufficient evidence that the pathological process that causes Parkinson's disease begins years before the clinical diagnosis is made. Over the last 15 years, there has been much interest in the existence of a prodrome in some patients, with a particular focus on non-motor symptoms such as reduced sense of smell, REM-sleep disorder, depression, and constipation. Given that the diagnostic criteria for Parkinson's disease depends on the presence of bradykinesia, it is somewhat surprising that there has been much less research into the possibility of subtle motor dysfunction as a pre-diagnostic pointer. This review will focus on early motor features and provide some advice on how to detect and measure them.
Collapse
Affiliation(s)
- C Simonet
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - A Schrag
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - A J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, London, UK
| | - A J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK. .,Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
70
|
Modeling Parkinson’s Disease Heterogeneity to Accelerate Precision Medicine. Trends Mol Med 2019; 25:1052-1055. [DOI: 10.1016/j.molmed.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023]
|
71
|
Chen W, Yan X, Lv H, Liu Y, He Z, Luo X. Gender differences in prevalence of LRRK2-associated Parkinson disease: A meta-analysis of observational studies. Neurosci Lett 2019; 715:134609. [PMID: 31698024 DOI: 10.1016/j.neulet.2019.134609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The gender effect in the prevalence of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson disease (PD) remains controversial. Herein, we conducted a meta-analysis to investigate the gender effect among these patients. METHODS PubMed and EMBASE databases were searched to identify the potential related studies published before December 2017. Case-control studies with separated data of sex and mutation status were included in further analyses. We pooled relative risk (RR) using fixed-effect model. The publication bias and sensitivity analyses were also performed. RESULTS Sixty-four studies with 32452 patients diagnosed with PD were included. Higher prevalence of female patients with LRRK2-associated PD was observed with a pooled RR of 1.22 (95% CI 1.14-1.30, P<0.001). Further subgroup analyses showed that higher prevalence of female patients was only obtained in G2019S mutation patients (RR = 1.32, 95% CI 1.23-1.43, P<0.001), but not in G2385R variant patients (RR = 1.03, 95% CI 0.91-1.17, P = 0.651). No significant heterogeneity and publication bias were observed in additional analyses. CONCLUSIONS Higher female prevalence of LRRK2 mutation suggests roles of gender-related risk factors in PD patients, especially who carried G2019S mutation. Contrary to idiopathic PD, no sex difference was observed in prevalence of patients carried G2385R variant.
Collapse
Affiliation(s)
- Weiyao Chen
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xuejing Yan
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Hong Lv
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| | - Xiaoguang Luo
- Shen Zhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, People's Republic of China.
| |
Collapse
|
72
|
Li H, Jiang H, Zhang B, Feng J. Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells. JOURNAL OF PARKINSONS DISEASE 2019; 8:479-493. [PMID: 30149462 PMCID: PMC6218140 DOI: 10.3233/jpd-181353] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by the degeneration of nigral dopaminergic (DA) neurons. While over 90% of cases are idiopathic, without a clear etiology, mutations in many genes have been linked to rare, familial forms of PD. It has been quite challenging to develop effective animal models of PD that capture salient features of PD. The discovery of induced pluripotent stem cells (iPSCs) makes it possible to generate patient-specific DA neurons to study PD. Here, we review the methods for the generation of iPSCs and discuss previous studies using iPSC-derived neurons from monogenic forms of PD. These investigations have revealed several converging pathways that intersect with the unique vulnerabilities of human nigral DA neurons. With the rapid development in stem cell biology, it is possible to generate patient-specific neurons that will be increasingly similar to those in the brain of the patient. Combined with the ability to edit the genome to generate isogenic iPSCs, the generation and analysis of patient-specific midbrain DA neurons will transform PD research by providing a valuable tool for mechanistic study and drug discovery.
Collapse
Affiliation(s)
- Hong Li
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Houbo Jiang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Boyang Zhang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
73
|
Podlesniy P, Puigròs M, Serra N, Fernández-Santiago R, Ezquerra M, Tolosa E, Trullas R. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease. EBioMedicine 2019; 48:554-567. [PMID: 31631040 PMCID: PMC6838390 DOI: 10.1016/j.ebiom.2019.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Both idiopathic and familial Parkinson's disease are associated with mitochondrial dysfunction. Mitochondria have their own mitochondrial DNA (mtDNA) and previous studies have reported that the release of mtDNA is a biomarker of Parkinson's disease. METHODS We have now investigated the relationship between mtDNA replication, transcription and release in fibroblasts from patients with idiopathic (iPD) and Leucine-rich repeat kinase 2G2019S -associated Parkinson's disease (LRRK2-PD), using Selfie-digital PCR, a method that allows absolute quantification of mtDNA genomes and transcripts. FINDINGS In comparison with healthy controls, we found that fibroblasts from patients with iPD or LRRK2-PD had a high amount of mitochondrial 7S DNA along with a low mtDNA replication rate that was associated with a reduction of cf-mtDNA release. Accumulation of 7S DNA in iPD and LRRK2-PD fibroblasts was related with an increase in H-strand mtDNA transcription. INTERPRETATION These results show that 7S DNA accumulation, low mtDNA replication, high H-strand transcription, and low mtDNA release compose a pattern of mtDNA dysfunction shared by both iPD and LRRK2-PD fibroblasts. Moreover, these results suggest that the deregulation of the genetic switch formed by 7SDNA that alternates between mtDNA replication and transcription is a fundamental pathophysiological mechanism in both idiopathic and monogenic Parkinson's disease.
Collapse
Affiliation(s)
- Petar Podlesniy
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Núria Serra
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rubén Fernández-Santiago
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Mario Ezquerra
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Eduardo Tolosa
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
74
|
Abstract
Kinase activating missense mutations in leucine-rich repeat kinase 2 (LRRK2) are pathogenically linked to neurodegenerative Parkinson's disease (PD). Over the past decade, substantial effort has been devoted to the development of potent and selective small molecule inhibitors of LRRK2, as well as their preclinical testing across different Parkinson's disease models. This review outlines the genetic and biochemical evidence that pathogenic missense mutations increase LRRK2 kinase activity, which in turn provides the rationale for the development of small molecule inhibitors as potential PD therapeutics. An overview of progress in the development of LRRK2 inhibitors is provided, which in particular indicates that highly selective and potent compounds capable of clinical utility have been developed. We outline evidence from rodent- and human-induced pluripotent stem cell models that support a pathogenic role for LRRK2 kinase activity, and review the substantial experiments aimed at evaluating the safety of LRRK2 inhibitors. We address challenges still to overcome in the translational therapeutic pipeline, including biomarker development and clinical trial strategies, and finally outline the potential utility of LRRK2 inhibitors for other genetic forms of PD and ultimately sporadic PD. Collective evidence supports the ongoing clinical translation of LRRK2 inhibitors as a therapeutic intervention for PD is greatly needed.
Collapse
|
75
|
Qian E, Huang Y. Subtyping of Parkinson's Disease - Where Are We Up To? Aging Dis 2019; 10:1130-1139. [PMID: 31595207 PMCID: PMC6764738 DOI: 10.14336/ad.2019.0112] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/12/2019] [Indexed: 01/22/2023] Open
Abstract
Heterogenous clinical presentations of Parkinson's disease have aroused several attempts in its subtyping for the purpose of strategic implementation of treatment in order to maximise therapeutic effects. Apart from a priori classifications based purely on motor features, cluster analysis studies have achieved little success in receiving widespread adoption. A priori classifications demonstrate that their chosen factors, whether it be age or certain motor symptoms, do have an influence on subtypes. However, the cluster analysis approach is able to integrate these factors and other clinical features to produce subtypes. Differences in inclusion criteria from datasets, in variable selection and in methodology between cluster analysis studies have made it difficult to compare the subtypes. This has impeded such subtypes from clinical applications. This review analysed existing subtypes of Parkinson's disease, and suggested that future research should aim to discover subtypes that are robustly replicable across multiple datasets rather than focussing on one dataset at a time. Hopefully, through clinical applicable subtyping of Parkinson's disease would lead to translation of these subtypes into research and clinical use.
Collapse
Affiliation(s)
- Elizabeth Qian
- School of Medical Science, Faculty of Medicine, UNSW Sydney, 2032, Australia.
| | - Yue Huang
- School of Medical Science, Faculty of Medicine, UNSW Sydney, 2032, Australia.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
76
|
Saunders-Pullman R, Mirelman A, Alcalay RN, Wang C, Ortega RA, Raymond D, Mejia-Santana H, Orbe-Reilly M, Johannes BA, Thaler A, Ozelius L, Orr-Urtreger A, Marder KS, Giladi N, Bressman SB. Progression in the LRRK2-Asssociated Parkinson Disease Population. JAMA Neurol 2019; 75:312-319. [PMID: 29309488 DOI: 10.1001/jamaneurol.2017.4019] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Few prospective longitudinal studies have evaluated the progression of Parkinson disease (PD) in patients with the leucine-rich repeat kinase 2 (LRRK2 [OMIM 609007]) mutation. Knowledge about such progression will aid clinical trials. Objective To determine whether the longitudinal course of PD in patients with the LRRK2 mutation differs from the longitudinal course of PD in patients without the mutation. Design, Setting, and Participants A prospective comprehensive assessment of a large cohort of patients from 3 sites with LRRK2 PD or with nonmutation PD was conducted from July 21, 2009, to September 30, 2016. All patients of Ashkenazi Jewish ancestry with PD were approached at each site; approximately 80% agreed to an initial visit. A total of 545 patients of Ashkenazi Jewish descent with PD who had 1 to 4 study visits were evaluated. A total of 144 patients (26.4%) had the LRRK2 G2019S mutation. Patients with GBA (OMIM 606463) mutations were excluded from the analysis. Main Outcomes and Measures Linear mixed-effects models for longitudinal motor scores were used to examine the association of LRRK2 mutation status with the rate of change in Unified Parkinson's Disease Rating Scale III scores using disease duration as the time scale, adjusting for sex, site, age, disease duration, cognitive score, and levodopa-equivalent dose at baseline. Mixed-effects models were used to assess change in cognition, as measured by Montreal Cognitive Assessment scores. Results Among the 545 participants, 233 were women, 312 were men, and the mean (SD) age was 68.2 (9.1) years for participants with the LRRK2 mutation and 67.8 (10.7) years for those without it. Seventy-two of 144 participants with the LRRK2 mutation and 161 of 401 participants with no mutation were women. The estimate (SE) of the rate of change in the Unified Parkinson's Disease Rating Scale III motor score per year among those with the LRRK2 mutation (0.689 [0.192] points per year) was less than among those without the mutation (1.056 [0.187] points per year; difference, -0.367 [0.149] points per year; P = .02). The estimate (SE) of the difference in the rate of change of the Montreal Cognitive Assessment score between those with the LRRK2 mutation (-0.096 [0.090] points per year) and those without the mutation (-0.192 [0.102] points per year) did not reach statistical significance (difference, 0.097 [0.055] points per year; P = .08). Conclusions and Relevance Prospective longitudinal follow-up of patients with PD with or without the LRRK2 G2019S mutation supports data from a cross-sectional study and demonstrates a slower decline in motor Unified Parkinson's Disease Rating Scale scores among those with LRRK2 G2019S-associated PD.
Collapse
Affiliation(s)
- Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Physical Therapy, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, New York, New York
| | - Cuiling Wang
- Department of Neurology, College of Physicians and Surgeons, New York, New York.,Department of Epidemiology and Family Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York
| | - Roberto A Ortega
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deborah Raymond
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Brooke A Johannes
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Laurie Ozelius
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Avi Orr-Urtreger
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Karen S Marder
- Department of Neurology, College of Physicians and Surgeons, New York, New York.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Susan B Bressman
- Department of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
77
|
Pang SYY, Ho PWL, Liu HF, Leung CT, Li L, Chang EES, Ramsden DB, Ho SL. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson's disease. Transl Neurodegener 2019; 8:23. [PMID: 31428316 PMCID: PMC6696688 DOI: 10.1186/s40035-019-0165-9] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta and intracellular inclusions called Lewy bodies (LB). During the course of disease, misfolded α-synuclein, the major constituent of LB, spreads to different regions of the brain in a prion-like fashion, giving rise to successive non-motor and motor symptoms. Etiology is likely multifactorial, and involves interplay among aging, genetic susceptibility and environmental factors. MAIN BODY The prevalence of PD rises exponentially with age, and aging is associated with impairment of cellular pathways which increases susceptibility of dopaminergic neurons to cell death. However, the majority of those over the age of 80 do not have PD, thus other factors in addition to aging are needed to cause disease. Discovery of neurotoxins which can result in parkinsonism led to efforts in identifying environmental factors which may influence PD risk. Nevertheless, the causality of most environmental factors is not conclusively established, and alternative explanations such as reverse causality and recall bias cannot be excluded. The lack of geographic clusters and conjugal cases also go against environmental toxins as a major cause of PD. Rare mutations as well as common variants in genes such as SNCA, LRRK2 and GBA are associated with risk of PD, but Mendelian causes collectively only account for 5% of PD and common polymorphisms are associated with small increase in PD risk. Heritability of PD has been estimated to be around 30%. Thus, aging, genetics and environmental factors each alone is rarely sufficient to cause PD for most patients. CONCLUSION PD is a multifactorial disorder involving interplay of aging, genetics and environmental factors. This has implications on the development of appropriate animal models of PD which take all these factors into account. Common converging pathways likely include mitochondrial dysfunction, impaired autophagy, oxidative stress and neuroinflammation, which are associated with the accumulation and spread of misfolded α-synuclein and neurodegeneration. Understanding the mechanisms involved in the initiation and progression of PD may lead to potential therapeutic targets to prevent PD or modify its course.
Collapse
Affiliation(s)
- Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Lingfei Li
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|
78
|
Puschmann A, Jiménez-Ferrer I, Lundblad-Andersson E, Mårtensson E, Hansson O, Odin P, Widner H, Brolin K, Mzezewa R, Kristensen J, Soller M, Rödström EY, Ross OA, Toft M, Breedveld GJ, Bonifati V, Brodin L, Zettergren A, Sydow O, Linder J, Wirdefeldt K, Svenningsson P, Nissbrandt H, Belin AC, Forsgren L, Swanberg M. Low prevalence of known pathogenic mutations in dominant PD genes: A Swedish multicenter study. Parkinsonism Relat Disord 2019; 66:158-165. [PMID: 31422003 DOI: 10.1016/j.parkreldis.2019.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To determine the frequency of mutations known to cause autosomal dominant Parkinson disease (PD) in a series with more than 10% of Sweden's estimated number of PD patients. METHODS The Swedish Parkinson Disease Genetics Network was formed as a national multicenter consortium of clinical researchers who together have access to DNA from a total of 2,206 PD patients; 85.4% were from population-based studies. Samples were analyzed centrally for known pathogenic mutations in SNCA (duplications/triplications, p.Ala30Pro, p.Ala53Thr) and LRRK2 (p.Asn1437His, p.Arg1441His, p.Tyr1699Cys, p.Gly2019Ser, p.Ile2020Thr). We compared the frequency of these mutations in Swedish patients with published PD series and the gnomAD database. RESULTS A family history of PD in first- and/or second-degree relatives was reported by 21.6% of participants. Twelve patients (0.54%) carried LRRK2 p.(Gly2019Ser) mutations, one patient (0.045%) an SNCA duplication. The frequency of LRRK2 p.(Gly2019Ser) carriers was 0.11% in a matched Swedish control cohort and a similar 0.098% in total gnomAD, but there was a marked difference between ethnicities in gnomAD, with 42-fold higher frequency among Ashkenazi Jews than all others combined. CONCLUSIONS In relative terms, the LRRK2 p.(Gly2019Ser) variant is the most frequent mutation among Swedish or international PD patients, and in gnomAD. SNCA duplications were the second most common of the mutations examined. In absolute terms, however, these known pathogenic variants in dominant PD genes are generally very rare and can only explain a minute fraction of familial aggregation of PD. Additional genetic and environmental mechanisms may explain the frequent co-occurrence of PD in close relatives.
Collapse
Affiliation(s)
- Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden.
| | | | - Elin Lundblad-Andersson
- Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Emma Mårtensson
- Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Per Odin
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Håkan Widner
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Kajsa Brolin
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Ropafadzo Mzezewa
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | - Jonas Kristensen
- Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Maria Soller
- Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Emil Ygland Rödström
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Guido J Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Lovisa Brodin
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olof Sydow
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Linder
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Karin Wirdefeldt
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Hans Nissbrandt
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Lars Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Maria Swanberg
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| |
Collapse
|
79
|
Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, von Coelln R, Pihlstrøm L, Simón-Sánchez J, Schulte C, Sharma M, Krohn L, Siitonen A, Iwaki H, Leonard H, Noyce AJ, Tan M, Gibbs JR, Hernandez DG, Scholz SW, Jankovic J, Shulman LM, Lesage S, Corvol JC, Brice A, van Hilten JJ, Marinus J, Tienari P, Majamaa K, Toft M, Grosset DG, Gasser T, Heutink P, Shulman JM, Wood N, Hardy J, Morris HR, Hinds DA, Gratten J, Visscher PM, Gan-Or Z, Nalls MA, Singleton AB. Parkinson's disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms. Mov Disord 2019; 34:866-875. [PMID: 30957308 PMCID: PMC6579628 DOI: 10.1002/mds.27659] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. OBJECTIVES To identify the genetic determinants of PD age at onset. METHODS Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. RESULTS We estimated that the heritability of PD age at onset attributed to common genetic variation was ∼0.11, lower than the overall heritability of risk for PD (∼0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in α-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. CONCLUSIONS Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- 23andMe, Inc., 899 W Evelyn Avenue, Mountain View, CA, USA
| | - Costanza L. Vallerga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Javier Simón-Sánchez
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- The Michael J Fox Foundation for Parkinson’s Research, NY, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Manuela Tan
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Jankovic
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa M. Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Suzanne Lesage
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Christophe Corvol
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alexis Brice
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | | | - Johan Marinus
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Pentti Tienari
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Kari Majamaa
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Donald G. Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Peter Heutink
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Joshua M Shulman
- Departments of Molecular & Human Genetics and Neuroscience, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, USA
| | - Nicolas Wood
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - John Hardy
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London UK
- UCL Movement Disorders Centre, UCL Institute of Neurology, London, UK
| | - David A. Hinds
- 23andMe, Inc., 899 W Evelyn Avenue, Mountain View, CA, USA
| | - Jacob Gratten
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
80
|
Kozlovski T, Mitelpunkt A, Thaler A, Gurevich T, Orr-Urtreger A, Gana-Weisz M, Shachar N, Galili T, Marcus-Kalish M, Bressman S, Marder K, Giladi N, Benjamini Y, Mirelman A. Hierarchical Data-Driven Analysis of Clinical Symptoms Among Patients With Parkinson's Disease. Front Neurol 2019; 10:531. [PMID: 31164863 PMCID: PMC6536639 DOI: 10.3389/fneur.2019.00531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in the LRRK2 and GBA genes are the most common inherited causes of Parkinson's disease (PD). Studies exploring phenotypic differences based on genetic status used hypothesis-driven data-gathering and statistical-analyses focusing on specific symptoms, which may influence the validity of the results. We aimed to explore phenotypic expression in idiopathic PD (iPD) patients, G2019S-LRRK2-PD, and GBA-PD using a data-driven approach, allowing screening of large numbers of features while controlling selection bias. Data was collected from 1525 Ashkenazi Jews diagnosed with PD from the Tel-Aviv Medical center; 161 G2019S-LRRK2-PD, 222 GBA-PD, and 1142 iPD (no G2019S-LRRK2 or any of the 7 AJ GBA mutations tested). Data included 771 measures: demographics, cognitive, physical and neurological functions, performance-based measures, and non-motor symptoms. The association of the genotypes with each of the measures was tested while accounting for age at motor symptoms onset, gender, and disease duration; p-values were reported and corrected in a hierarchical approach for an average over the selected measures false discovery rate control, resulting in 32 measures. GBA-PD presented with more severe symptoms expression while LRRK2-PD had more benign symptoms compared to iPD. GBA-PD presented greater cognitive and autonomic involvement, more frequent hyposmia and REM sleep behavior symptoms while these were less frequent among LRRK2-PD compared to iPD. Using a data-driven analytical approach strengthens earlier studies and extends them to portray a possible unique disease phenotype based on genotype among AJ PD. Such findings could help direct a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Tal Kozlovski
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Alexis Mitelpunkt
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Neurology Unit, Dana Children Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Tel Aviv Medical Center, Neurological Institute, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Tel Aviv Medical Center, Neurological Institute, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Netta Shachar
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Tal Galili
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Mira Marcus-Kalish
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Susan Bressman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel Medical Center, New York, NY, United States
| | - Karen Marder
- Department of Neurology, Taub Institute for Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Nir Giladi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Tel Aviv Medical Center, Neurological Institute, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Benjamini
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Movement Disorders Unit, Tel Aviv Medical Center, Neurological Institute, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Tel Aviv Medical Center, Neurological Institute, Tel Aviv, Israel
| |
Collapse
|
81
|
Puschmann A, Fiesel FC, Caulfield TR, Hudec R, Ando M, Truban D, Hou X, Ogaki K, Heckman MG, James ED, Swanberg M, Jimenez-Ferrer I, Hansson O, Opala G, Siuda J, Boczarska-Jedynak M, Friedman A, Koziorowski D, Rudzinska-Bar M, Aasly JO, Lynch T, Mellick GD, Mohan M, Silburn PA, Sanotsky Y, Vilariño-Güell C, Farrer MJ, Chen L, Dawson VL, Dawson TM, Wszolek ZK, Ross OA, Springer W. Reply: Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. Brain 2019; 140:e33. [PMID: 28379295 DOI: 10.1093/brain/awx077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Andreas Puschmann
- Lund University, Department of Clinical Sciences Lund, Neurology, Sweden.,Department of Neurology, Skåne University Hospital, Sweden
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Roman Hudec
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Maya Ando
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dominika Truban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kotaro Ogaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Elle D James
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Maria Swanberg
- Lund University, Department of Experimental Medical Science, Lund, Sweden
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Grzegorz Opala
- Department of Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Siuda
- Department of Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | | | | | - Monika Rudzinska-Bar
- Department of Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jan O Aasly
- Department of Neurology, St. Olav's Hospital, and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Timothy Lynch
- Dublin Neurological Institute at the Mater Misericordiae University Hospital, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - George D Mellick
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Megha Mohan
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Peter A Silburn
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,University of Queensland, Asia-Pacific Centre for Neuromodulation, Centre for Clinical Research, Brisbane, Queensland, Australia
| | | | - Carles Vilariño-Güell
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Matthew J Farrer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.,Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
82
|
Kluss JH, Mamais A, Cookson MR. LRRK2 links genetic and sporadic Parkinson's disease. Biochem Soc Trans 2019; 47:651-661. [PMID: 30837320 PMCID: PMC6563926 DOI: 10.1042/bst20180462] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
The past two decades in research has revealed the importance of leucine-rich repeat kinase 2 (LRRK2) in both monogenic and sporadic forms of Parkinson's disease (PD). In families, mutations in LRRK2 can cause PD with age-dependent but variable penetrance and genome-wide association studies have found variants of the gene that are risk factors for sporadic PD. Functional studies have suggested that the common mechanism that links all disease-associated variants is that they increase LRRK2 kinase activity, albeit in different ways. Here, we will discuss the roles of LRRK2 in areas of inflammation and vesicular trafficking in the context of monogenic and sporadic PD. We will also provide a hypothetical model that links inflammation and vesicular trafficking together in an effort to outline how these pathways might interact and eventually lead to neuronal cell death. We will also highlight the translational potential of LRRK2-specific kinase inhibitors for the treatment of PD.
Collapse
Affiliation(s)
- Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707, U.S.A
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707, U.S.A
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bldg. 35, 35 Convent Drive, Bethesda, MD 20892-3707, U.S.A.
| |
Collapse
|
83
|
Yang ZH, Li YS, Shi MM, Yang J, Liu YT, Mao CY, Fan Y, Hu XC, Shi CH, Xu YM. SNCA but not DNM3 and GAK modifies age at onset of LRRK2-related Parkinson's disease in Chinese population. J Neurol 2019; 266:1796-1800. [PMID: 31041581 DOI: 10.1007/s00415-019-09336-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recently, rs2421947 in DNM3 (dynamin 3) was reported as a genetic modifier of age at onset (AAO) of LRRK2 G2019S-related Parkinson's disease (PD) in a genome-wide association study in Arab-Berber population. Rs356219 in SNCA (α-synuclein) was also reported to regulate the AAO of LRRK2-related PD in European populations, and GAK (Cyclin G-associated kinase) rs1524282 was reported to be associated with an increased PD risk with an interaction with SNCA rs356219. G2019S variant is rare in Asian populations, whereas two other Asian-specific LRRK2 variants, G2385R and R1628P, are more frequent with a twofold increased risk of PD. METHODS In this study, we investigated whether rs2421947, rs356219 and rs1524282 modified AAO in LRRK2-related PD patients in Han Chinese population. We screened LRRK2 G2385R and R1628P variants in 732 PD patients and 1992 healthy controls, and genotyped DNM3 rs2421947, SNCA rs356219 and GAK rs1524282 among the LRRK2 carriers. RESULTS The SNCA rs356219-G allele was found to increase the risk of PD in LRRK2 carriers (OR 1.50, 95%CI 1.08-2.01, P = 0.016), and the AAO of AG + GG genotypes was 4 years earlier than AA genotype (P = 0.006). Nonetheless, no similar association was found in DNM3 rs2421947 and GAK rs1524282. CONCLUSIONS Our results show that SNCA but not DNM3 or GAK is associated with AAO of LRRK2-PD patients in Chinese population.
Collapse
Affiliation(s)
- Zhi-Hua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Meng-Meng Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Yu-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Xin-Chao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she east road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
84
|
Bakshi R, Macklin EA, Logan R, Zorlu MM, Xia N, Crotty GF, Zhang E, Chen X, Ascherio A, Schwarzschild MA. Higher urate in
LRRK2
mutation carriers resistant to Parkinson disease. Ann Neurol 2019; 85:593-599. [DOI: 10.1002/ana.25436] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Rachit Bakshi
- Department of NeurologyMassachusetts General Hospital
- Harvard Medical School
| | - Eric A. Macklin
- Harvard Medical School
- Biostatistics Center, Department of MedicineMassachusetts General Hospital
| | - Robert Logan
- Department of NeurologyMassachusetts General Hospital
| | | | - Ning Xia
- Department of NeurologyMassachusetts General Hospital
| | | | - Ellen Zhang
- Department of NeurologyMassachusetts General Hospital
| | - Xiqun Chen
- Department of NeurologyMassachusetts General Hospital
- Harvard Medical School
| | - Alberto Ascherio
- Departments of Epidemiology and Nutrition, T. H. Chan School of Public HealthHarvard University Boston MA
| | | |
Collapse
|
85
|
Del Rey NLG, Quiroga-Varela A, Garbayo E, Carballo-Carbajal I, Fernández-Santiago R, Monje MHG, Trigo-Damas I, Blanco-Prieto MJ, Blesa J. Advances in Parkinson's Disease: 200 Years Later. Front Neuroanat 2018; 12:113. [PMID: 30618654 PMCID: PMC6306622 DOI: 10.3389/fnana.2018.00113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
When James Parkinson described the classical symptoms of the disease he could hardly foresee the evolution of our understanding over the next two hundred years. Nowadays, Parkinson’s disease is considered a complex multifactorial disease in which genetic factors, either causative or susceptibility variants, unknown environmental cues, and the potential interaction of both could ultimately trigger the pathology. Noteworthy advances have been made in different fields from the clinical phenotype to the decoding of some potential neuropathological features, among which are the fields of genetics, drug discovery or biomaterials for drug delivery, which, though recent in origin, have evolved swiftly to become the basis of research into the disease today. In this review, we highlight some of the key advances in the field over the past two centuries and discuss the current challenges focusing on exciting new research developments likely to come in the next few years. Also, the importance of pre-motor symptoms and early diagnosis in the search for more effective therapeutic options is discussed.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Quiroga-Varela
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Neuroscience, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Elisa Garbayo
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Iria Carballo-Carbajal
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Laboratory of Parkinson Disease and other Neurodegenerative Movement Disorders, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mariana H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Department of Anatomy, Histology and Neuroscience, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María J Blanco-Prieto
- Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Madrid, Spain.,Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
86
|
Rees RN, Noyce AJ, Schrag A. The prodromes of Parkinson's disease. Eur J Neurosci 2018; 49:320-327. [PMID: 30447019 PMCID: PMC6492156 DOI: 10.1111/ejn.14269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Whilst the diagnosis of Parkinson's disease (PD) relies on the motor triad of bradykinesia, rigidity and tremor, the underlying pathological process starts many years before these signs are overt. In this prodromal phase of PD, a diverse range of non‐motor and motor features can occur. Individually they do not allow a diagnosis of PD, but when considered together, they reflect the gradual development of the clinical syndrome. Different subgroups within the prodromal phase may exist and reflect different underlying pathology. Here, we summarise the evidence on the prodromal phase of PD in patient groups at increased risk of PD with well described prodromal features: patients with idiopathic rapid eye movement sleep behaviour disorder, patients with idiopathic anosmia and families with monogenic mutations that are closely linked to PD pathology. In addition, we discuss the information on prodromal features from ongoing studies aimed at detecting prodromal PD in the general population. It is likely that better delineation of the clinical prodromes of PD and their progression in these high‐risk groups will improve understanding of the underlying pathophysiology.
Collapse
Affiliation(s)
- Richard Nathaniel Rees
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Alastair John Noyce
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.,Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| |
Collapse
|
87
|
Ben Romdhan S, Farhat N, Nasri A, Lesage S, Hdiji O, Ben Djebara M, Landoulsi Z, Stevanin G, Brice A, Damak M, Gouider R, Mhiri C. LRRK2 G2019S Parkinson's disease with more benign phenotype than idiopathic. Acta Neurol Scand 2018; 138:425-431. [PMID: 29989150 DOI: 10.1111/ane.12996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The LRRK2-G2019S mutation is the most common cause of Parkinson's disease (PD) in North Africa. G2019S-PD has been described as similar to idiopathic with minor clinical differences. The aim of this study was to determine the G2019S-related phenotype and to investigate gender and gene dosage effects on clinical features of G2019S carriers. PATIENTS AND METHODS The G2019S mutation was screened in 250 Tunisian patients with PD. Twenty-four patients carrying mutations in other PD genes were excluded. Logistic regression models were used to compare clinical features between the studied groups. RESULTS G2019S carriers (107 cases) and non-carriers (119 cases) were similar in disease duration, levodopa doses, and gender and phenotype distributions. However, carriers had a younger age at examination, higher level of education, and were more likely to report family history of PD and to develop PD at earlier age (P = 0.017). Adjusted for age, sex, disease duration, levodopa-equivalent dose and educational level, MMSE scores remained significantly higher (adjust P = 0.019) and UPDRS-III scores were lower (adjust P = 0.012) in the G2019S carriers than non-carriers. Demographic characteristics of men and women with G2019S mutation were similar, but men had higher level of education, better cognition (adjust P-value for educational level = 0.042) and less tendency towards depression than females (adjust P = 0.046). Furthermore, PD phenotype did not differ between the homozygous and heterozygous G2019S carriers. CONCLUSION In this study, G2019S carriers had a more benign phenotype than non-carriers. Cognitive impairment and depression were less common in G2019S male carriers compared with females. In addition, we found that LRRK2 gene dosage does not influence the severity of PD.
Collapse
Affiliation(s)
- Sawssan Ben Romdhan
- Laboratory of Neurogenetics; Parkinson's Disease and Cerebrovascular Disease; University Hospital Habib Bourguiba; Sfax Tunisia
- Institut du Cerveau et de la Moelle épinière; INSERM U1127; Sorbonne Université; UPMC Paris VI Univ. UMR_S1127; CNRS UMR 7225; Paris France
- École Pratique des Hautes Études EPHE; PSL Research University; Paris France
| | - Nouha Farhat
- Laboratory of Neurogenetics; Parkinson's Disease and Cerebrovascular Disease; University Hospital Habib Bourguiba; Sfax Tunisia
| | - Amina Nasri
- Department of Neurology; University Hospital Razi; Tunis; Mannouba Tunisia
| | - Suzanne Lesage
- Institut du Cerveau et de la Moelle épinière; INSERM U1127; Sorbonne Université; UPMC Paris VI Univ. UMR_S1127; CNRS UMR 7225; Paris France
| | - Olfa Hdiji
- Laboratory of Neurogenetics; Parkinson's Disease and Cerebrovascular Disease; University Hospital Habib Bourguiba; Sfax Tunisia
| | - Mouna Ben Djebara
- Department of Neurology; University Hospital Razi; Tunis; Mannouba Tunisia
| | - Zied Landoulsi
- Department of Neurology; University Hospital Razi; Tunis; Mannouba Tunisia
| | - Giovanni Stevanin
- Institut du Cerveau et de la Moelle épinière; INSERM U1127; Sorbonne Université; UPMC Paris VI Univ. UMR_S1127; CNRS UMR 7225; Paris France
- École Pratique des Hautes Études EPHE; PSL Research University; Paris France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière; INSERM U1127; Sorbonne Université; UPMC Paris VI Univ. UMR_S1127; CNRS UMR 7225; Paris France
| | - Mariem Damak
- Laboratory of Neurogenetics; Parkinson's Disease and Cerebrovascular Disease; University Hospital Habib Bourguiba; Sfax Tunisia
| | - Riadh Gouider
- Department of Neurology; University Hospital Razi; Tunis; Mannouba Tunisia
| | - Chokri Mhiri
- Laboratory of Neurogenetics; Parkinson's Disease and Cerebrovascular Disease; University Hospital Habib Bourguiba; Sfax Tunisia
| |
Collapse
|
88
|
Shu L, Zhang Y, Pan H, Xu Q, Guo J, Tang B, Sun Q. Clinical Heterogeneity Among LRRK2 Variants in Parkinson's Disease: A Meta-Analysis. Front Aging Neurosci 2018; 10:283. [PMID: 30283330 PMCID: PMC6156433 DOI: 10.3389/fnagi.2018.00283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Variants in the LRRK2 gene have been shown to be associated with PD. However, the clinical characteristics of LRRK2-related PD are heterogeneous. In our study, we performed a comprehensive pooled analysis of the association between specific LRRK2 variants and clinical features of PD. Methods: Articles from the Medline, Embase, and Cochrane databases were included in the meta-analysis. Strict inclusion criteria were applied, and detailed information was extracted from the final original articles included. Revman 5.3 software was used for publication biases and pooled and sensitivity analyses. Results: In all, 66 studies having the clinical manifestations of PD patients with G2019S, G2385R, R1628P, and R1441G were included for the final analysis. The prominent clinical features of LRRK2-G2019S-related PD patients were female sex, higher rates of early-onset PD (EOPD), and family history (OR: 0.77 [male], 1.37, 2.62; p < 0.00001, 0.02, < 0.00001). PD patients with G2019S were more likely to have high scores of Schwab & England (MD: 1.49; p < 0.00001), low GDS scores, high UPSIT scores (MD: 0.43, 4.70; p = 0.01, < 0.00001), and good response to L-dopa (OR: 2.33; p < 0.0001). Further, G2019S carriers had higher LEDD (MD: 115.20; p < 0.00001) and were more likely to develop motor complications, such as dyskinesia and motor fluctuations (OR: 2.18, 2.02; p < 0.00001, 0.04) than non-carriers. G2385R carriers were more likely to have family history (OR: 2.10; p = 0.007) than non-G2385R carriers and lower H-Y and higher MMSE scores (MD: −0.13, 1.02; p = 0.02, 0.0007). G2385R carriers had higher LEDD and tended to develop motor complications, such as motor fluctuations (MD: 53.22, OR: 3.17; p = 0.01, < 0.00001) than non-carriers. Other clinical presentations did not feature G2019S or G2385R. We observed no distinct clinical features for R1628P or R1441G. Our subgroup analyses in different ethnic group for specific variant also presented with relevant clinical characteristics of PD patients. Conclusions: Clinical heterogeneity was observed among LRRK2-associated PD in different variants in total and in different ethnic groups, especially for G2019S and G2385R.
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Qiying Sun
- National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
89
|
Chahine LM, Urbe L, Caspell-Garcia C, Aarsland D, Alcalay R, Barone P, Burn D, Espay AJ, Hamilton JL, Hawkins KA, Lasch S, Leverenz JB, Litvan I, Richard I, Siderowf A, Coffey CS, Simuni T, Weintraub D. Cognition among individuals along a spectrum of increased risk for Parkinson's disease. PLoS One 2018; 13:e0201964. [PMID: 30125297 PMCID: PMC6101368 DOI: 10.1371/journal.pone.0201964] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Several characteristics associated with increased risk for Parkinson's disease (PD) have been identified, including specific genotypes and various non-motor symptoms. Characterizing non-motor features, such as cognitive abilities, among individuals considered at-risk for PD is essential to improving prediction of future neurodegeneration. METHODS Participants belonging to the following cohorts of the Parkinson Progression Markers Initiative (PPMI) study were included: de novo PD with dopamine transporter binding deficit (n = 423), idiopathic REM sleep behavior disorder (RBD, n = 39), hyposmia (n = 26) and non-PD mutation carrier (NMC; Leucine-rich repeat kinase 2 (LRRK2) G2019S (n = 88) and glucocerebrosidase (GBA) gene (n = 38) mutations)). Inclusion criteria enriched the RBD and hyposmia cohorts, but not the NMC cohort, with individuals with dopamine transporter binding deficit. Baseline neuropsychological performance was compared, and analyses were adjusted for age, sex, education, and depression. RESULTS The RBD cohort performed significantly worse than the hyposmia and NMC cohorts on Symbol Digit Modality Test (mean (SD) 32.4 (9.16) vs. 41.8 (9.98), p = 0.002 and vs. 45.2 (10.9), p<0.001) and Judgment of Line Orientation (11.3 (2.36) vs.12.9 (1.87), p = 0.004 and vs. 12.9 (1.87), p<0.001). The RBD cohort also performed worse than the hyposmia cohort on the Montreal Cognitive Assessment (25.5 (4.13) vs. 27.3 (1.71), p = 0.02). Hyposmics did not differ from PD or NMC cohorts on any cognitive test score. CONCLUSION Among individuals across a spectrum of risk for PD, cognitive function is worse among those with the characteristic most strongly associated with future risk of PD or dementia with Lewy bodies, namely RBD.
Collapse
Affiliation(s)
- Lana M. Chahine
- University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Liz Urbe
- The University of Iowa, Iowa City, Iowa, United States of America
| | | | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, England
| | - Roy Alcalay
- Columbia University Medical Center, Department of Neurology, New York, NY, United States of America
| | - Paolo Barone
- Department of Medicine and Surgery, Center for Neurodegenerative Diseases, University of Salerno, Fisciano, Italy
| | - David Burn
- Institute for Ageing and Health, Newcastle University, Newcastle, United Kingdom
| | - Alberto J. Espay
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, OH, United States of America
| | - Jamie L. Hamilton
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, United States of America
| | - Keith A. Hawkins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States of America
| | - Shirley Lasch
- Institute for Neurodegenerative Disorders, New Haven, CT, United States of America
| | | | - Irene Litvan
- UCSD Movement Disorder Center, Department of Neurosciences, University of California San Diego, San Diego, CA, United States of America
| | - Irene Richard
- Departments of Neurology and Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | | | - Tanya Simuni
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Daniel Weintraub
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- Parkinson’s Disease and Mental Illness Research, Education and Clinical Centers (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States of America
| | | |
Collapse
|
90
|
Genetic Modifiers of Neurodegeneration in a Drosophila Model of Parkinson's Disease. Genetics 2018; 209:1345-1356. [PMID: 29907646 DOI: 10.1534/genetics.118.301119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 11/18/2022] Open
Abstract
Disease phenotypes can be highly variable among individuals with the same pathogenic mutation. There is increasing evidence that background genetic variation is a strong driver of disease variability in addition to the influence of environment. To understand the genotype-phenotype relationship that determines the expressivity of a pathogenic mutation, a large number of backgrounds must be studied. This can be efficiently achieved using model organism collections such as the Drosophila Genetic Reference Panel (DGRP). Here, we used the DGRP to assess the variability of locomotor dysfunction in a LRRK2 G2019S Drosophila melanogaster model of Parkinson's disease (PD). We find substantial variability in the LRRK2 G2019S locomotor phenotype in different DGRP backgrounds. A genome-wide association study for candidate genetic modifiers reveals 177 genes that drive wide phenotypic variation, including 19 top association genes. Genes involved in the outgrowth and regulation of neuronal projections are enriched in these candidate modifiers. RNAi functional testing of the top association and neuronal projection-related genes reveals that pros, pbl, ct, and CG33506 significantly modify age-related dopamine neuron loss and associated locomotor dysfunction in the Drosophila LRRK2 G2019S model. These results demonstrate how natural genetic variation can be used as a powerful tool to identify genes that modify disease-related phenotypes. We report novel candidate modifier genes for LRRK2 G2019S that may be used to interrogate the link between LRRK2, neurite regulation and neuronal degeneration in PD.
Collapse
|
91
|
Kritzinger A, Ferger B, Gillardon F, Stierstorfer B, Birk G, Kochanek S, Ciossek T. Age-related pathology after adenoviral overexpression of the leucine-rich repeat kinase 2 in the mouse striatum. Neurobiol Aging 2018; 66:97-111. [DOI: 10.1016/j.neurobiolaging.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/04/2018] [Accepted: 02/10/2018] [Indexed: 02/07/2023]
|
92
|
Fu JF, Klyuzhin I, Liu S, Shahinfard E, Vafai N, McKenzie J, Neilson N, Mabrouk R, Sacheli MA, Wile D, McKeown MJ, Stoessl AJ, Sossi V. Investigation of serotonergic Parkinson's disease-related covariance pattern using [ 11C]-DASB/PET. Neuroimage Clin 2018; 19:652-660. [PMID: 29946508 PMCID: PMC6014591 DOI: 10.1016/j.nicl.2018.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022]
Abstract
We used positron emission tomography imaging with [11C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)- benzonitrile (DASB) and principal component analysis to investigate whether a specific Parkinson's disease (PD)-related spatial covariance pattern could be identified for the serotonergic system. We also explored if non-manifesting leucine-rich repeat kinase 2 (LRRK2) mutation carriers, with normal striatal dopaminergic innervation as measured with [11C]-dihydrotetrabenazine (DTBZ), exhibit a distinct spatial covariance pattern compared to healthy controls and subjects with manifest PD. 15 subjects with sporadic PD, eight subjects with LRRK2 mutation-associated PD, nine LRRK2 non-manifesting mutation carriers, and nine healthy controls participated in the study. The analysis was applied to the DASB non-displaceable binding potential values evaluated in 42 pre-defined regions of interest. PD was found to be associated with a specific spatial covariance pattern, comprising relatively decreased DASB binding in the caudate, putamen and substantia nigra and relatively preserved binding in the hypothalamus and hippocampus; the expression of this pattern in PD subjects was significantly higher than in healthy controls (P < 0.001) and correlated significantly with disease duration (P < 0.01) and with DTBZ binding in the more affected putamen (P < 0.01). The LRRK2 non-manifesting mutation carriers expressed a different pattern, also significantly different from healthy controls (P < 0.001), comprising relatively decreased DASB binding in the pons, pedunculopontine nucleus, thalamus and rostral raphe nucleus, and with relatively preserved binding in the hypothalamus, amygdala, hippocampus and substantia nigra. This pattern was not present in either sporadic or LRRK2 mutation-associated PD subjects. These findings, although obtained with a relatively limited number of subjects, suggest that specific and overall distinct spatial serotonergic patterns may be associated with PD and LRRK2 mutations. Alterations in regions where relative upregulation is observed in both patterns may be indicative of compensatory mechanisms preceding or protecting from disease manifestation.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| | - Ivan Klyuzhin
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shuying Liu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Elham Shahinfard
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nasim Vafai
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Nicole Neilson
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Rostom Mabrouk
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Matthew A Sacheli
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Daryl Wile
- University of British Columbia, Okanagan Southern Medical Program, Kelowna, BC, Canada
| | - Martin J McKeown
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
93
|
Mirelman A, Saunders-Pullman R, Alcalay RN, Shustak S, Thaler A, Gurevich T, Raymond D, Mejia-Santana H, Orbe Reilly M, Ozelius L, Clark L, Gana-Weisz M, Bar-Shira A, Orr-Utreger A, Bressman SB, Marder K, Giladi N. Application of the Movement Disorder Society prodromal criteria in healthy G2019S-LRRK2 carriers. Mov Disord 2018; 33:966-973. [PMID: 29603409 DOI: 10.1002/mds.27342] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In 2015, the International Parkinson and Movement Disorder Society Task Force recommended research criteria for the estimation of prodromal PD. OBJECTIVES We aimed to evaluate, for the first time, the criteria in first-degree relatives of Ashkenazi Jewish G2019S-LRRK2 PD patients, who are considered a population at risk for developing PD, and assess the sensitivity and specificity of the criteria in identifying phenoconverters. METHODS Participants were evaluated longitudinally over a period of 5 years (average follow-up: 49.2 ± 12.3 months). Likelihood ratios and probability estimations were calculated based on the International Parkinson and Movement Disorder Society Research Criteria for Prodromal Parkinson's Disease markers and examined for each assessment point. RESULTS One hundred twenty healthy carriers (49.53 ± 13.4 years; 54% female) and 111 healthy noncarriers (48.43 ± 15.79 years; 49% female) participated in this study. Probability scores were significantly higher in healthy carriers than healthy noncarriers (P < 0.0001). Of the 20 participants (8.6%) who met criteria for probable prodromal PD at baseline, 17 were healthy carriers. Participants who reached the threshold were older (P < 0.0001), had higher UPDRS-III (P < 0.001), lower cognitive function (P = 0.001), and more nonmotor symptoms (P < 0.0001), compared to those who did not. Ten participants were diagnosed with incident PD within 5 years from baseline resulting in a specificity of 91.82% (95% confidence interval: 86.69-96.94), sensitivity of 80% (95% confidence interval: 55.21-100), positive predictive value of 47.06% (95% confidence interval: 23.33-70.79), and negative predictive value of 98.06% (95% confidence interval: 95.39-100). All 10 phenoconvertors were G2019S-LRRK2 carriers. CONCLUSIONS The results showed the utility of using the criteria and high sensitivity and specificity in identifying prodromal PD in this high-risk unique cohort. These results may be valuable for future disease modification clinical trials. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Rachel Saunders-Pullman
- Departments of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Shiran Shustak
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel-Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Deborah Raymond
- Departments of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA
| | - Helen Mejia-Santana
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Martha Orbe Reilly
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Laurie Ozelius
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lorraine Clark
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Mali Gana-Weisz
- Genetics Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- Genetics Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Avi Orr-Utreger
- Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel-Aviv, Israel.,Genetics Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Susan B Bressman
- Departments of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karen Marder
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Sagol School for Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
94
|
Fernández-Santiago R, Garrido A, Infante J, González-Aramburu I, Sierra M, Fernández M, Valldeoriola F, Muñoz E, Compta Y, Martí MJ, Ríos J, Tolosa E, Ezquerra M. α-synuclein (SNCA) but not dynamin 3 (DNM3) influences age at onset of leucine-rich repeat kinase 2 (LRRK2) Parkinson's disease in Spain. Mov Disord 2018; 33:637-641. [PMID: 29473656 DOI: 10.1002/mds.27295] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES A recent study showed that Arab-Berbers GG homozygous at rs2421947(C/G) in the dynamin 3 gene (DNM3) had 12.5 years earlier age at onset of leucine-rich repeat kinase 2 (LRRK2)-associated Parkinson's disease (PD) (L2PD). We explored whether this variant modulates the L2PD age at onset in Spain. METHODS We genotyped rs2421947 in 329 participants (210 L2PD patients, 119 L2PD nonmanifesting p.G2019S carriers), and marker rs356219 (A/G) in the α-synuclein gene (SNCA). RESULTS By Kaplan Meier and Cox regression analyses, we did not find an association of the DNM3 polymorphism with L2PD age at onset. However, we found an association of the SNCA marker with up to an 11 years difference in the L2PD median age at onset (58 years for GG carriers vs 69 years for AA). CONCLUSION Our results indicate that SNCA rs356219 but not dynamin 3 DNM3 rs2421947 modifies the penetrance of the mutation G2019S in the Spanish population by influencing the L2PD age at onset. These findings suggest that different genetic modifiers may influence the L2PD age at onset in different populations. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rubén Fernández-Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alicia Garrido
- Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jon Infante
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - Isabel González-Aramburu
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - María Sierra
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - Manel Fernández
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Francesc Valldeoriola
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Esteban Muñoz
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - María-José Martí
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - José Ríos
- Medical Statistics Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer and Hospital Clinic, Barcelona, Spain.,Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduardo Tolosa
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Clinical and Experimental Research, Department of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | | |
Collapse
|
95
|
Zhao Y, Perera G, Takahashi-Fujigasaki J, Mash DC, Vonsattel JPG, Uchino A, Hasegawa K, Jeremy Nichols R, Holton JL, Murayama S, Dzamko N, Halliday GM. Reduced LRRK2 in association with retromer dysfunction in post-mortem brain tissue from LRRK2 mutation carriers. Brain 2018; 141:486-495. [PMID: 29253086 PMCID: PMC5837795 DOI: 10.1093/brain/awx344] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in leucine-rich repeat kinase 2 (LRRK2) are pathogenic for familial Parkinson's disease. However, it is unknown whether levels of LRRK2 protein in the brain are altered in patients with LRRK2-associated Parkinson's disease. Because LRRK2 mutations are relatively rare, accounting for approximately 1% of all Parkinson's disease, we accessioned cases from five international brain banks to investigate levels of the LRRK2 protein, and other genetically associated Parkinson's disease proteins. Brain tissue was obtained from 17 LRRK2 mutation carriers (12 with the G2019S mutation and five with the I2020T mutation) and assayed by immunoblot. Compared to matched controls and idiopathic Parkinson's disease cases, we found levels of LRRK2 protein were reduced in the LRRK2 mutation cases. We also measured a decrease in two other proteins genetically implicated in Parkinson's disease, the core retromer component, vacuolar protein sorting associated protein 35 (VPS35), and the lysosomal hydrolase, glucocerebrosidase (GBA). Moreover, the classical retromer cargo protein, cation-independent mannose-6-phosphate receptor (MPR300, encoded by IGF2R), was also reduced in the LRRK2 mutation cohort and protein levels of the receptor were correlated to levels of LRRK2. These results provide new data on LRRK2 protein expression in brain tissue from LRRK2 mutation carriers and support a relationship between LRRK2 and retromer dysfunction in LRRK2-associated Parkinson's disease brain.
Collapse
Affiliation(s)
- Ye Zhao
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Camperdown, 2050, Australia
- School of Medical Sciences, University of NSW, Kensington, 2033, Australia
- Neuroscience Research Australia, Randwick, 2031, Australia
| | - Gayathri Perera
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Camperdown, 2050, Australia
- Neuroscience Research Australia, Randwick, 2031, Australia
| | - Junko Takahashi-Fujigasaki
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Geriatric0 Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Deborah C Mash
- University of Miami Brain Endowment Bank™, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Jean Paul G Vonsattel
- New York Brain Bank, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, 10032, USA
| | - Akiko Uchino
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Geriatric0 Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Kazuko Hasegawa
- Department of Neurology, Sagamihara National Hospital, Kangawa, 252-0315, Japan
| | - R Jeremy Nichols
- Parkinson’s Institute and Clinical Center, Sunnyvale, California, 94085, USA
| | - Janice L Holton
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, WC1N 1PJ, UK
| | - Shigeo Murayama
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Geriatric0 Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Nicolas Dzamko
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Camperdown, 2050, Australia
- School of Medical Sciences, University of NSW, Kensington, 2033, Australia
- Neuroscience Research Australia, Randwick, 2031, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Camperdown, 2050, Australia
- School of Medical Sciences, University of NSW, Kensington, 2033, Australia
- Neuroscience Research Australia, Randwick, 2031, Australia
| |
Collapse
|
96
|
Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol 2018; 29:727-734. [PMID: 27749396 DOI: 10.1097/wco.0000000000000384] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Recent studies on clinical, genetic and pathological heterogeneity of Parkinson disease have renewed the old debate whether we should think of Parkinson disease as one disease with variations, or as a group of independent diseases that happen to present with similar phenotypes. Here, we provide an overview of where the debate is coming from, and how recent findings in clinical subtyping, genetics and clinico-pathological correlation have shaped this controversy over the last few years. RECENT FINDINGS New and innovative clinical diagnostic criteria for Parkinson disease have been proposed and await validation. Studies using functional imaging or wearable biosensors, as well as biomarker studies, provide new support for the validity of the traditional clinical subtypes of Parkinson disease (tremor-dominant versus akinetic-rigid or postural instability/gait difficulty). A recent cluster analysis (as unbiased data-driven approach to subtyping) included a wide spectrum of nonmotor variables, and showed correlation of the proposed subtypes with disease progression in a longitudinal analysis. New genetic factors contributing to Parkinson disease susceptibility continue to be identified, including rare mutations causing monogenetic disease, common variants with small effect size and risk factors (like mutations in the gene for glucocerebrosidase) that fall in between the two other categories. Recent studies show some limited correlation between genetic factors and clinical heterogeneity. Despite some variations in patterns of pathology, Lewy bodies are still the hallmark of Parkinson disease, including the vast majority of genetic subgroups. SUMMARY Evidence of clinical, genetic and pathological heterogeneity of Parkinson disease continues to emerge, but clearly defined subtypes that hold up in more than one of these domains remain elusive. For research to identify such subtypes, splitting is likely the way forward; until then, for clinical practice, lumping remains the more pragmatic approach.
Collapse
|
97
|
Brockmann K, Schulte C, Schneiderhan-Marra N, Apel A, Pont-Sunyer C, Vilas D, Ruiz-Martinez J, Langkamp M, Corvol JC, Cormier F, Knorpp T, Joos TO, Bernard A, Gasser T, Marras C, Schüle B, Aasly JO, Foroud T, Marti-Masso JF, Brice A, Tolosa E, Berg D, Maetzler W. Inflammatory profile discriminates clinical subtypes in LRRK2-associated Parkinson's disease. Eur J Neurol 2018; 24:427-e6. [PMID: 28102045 DOI: 10.1111/ene.13223] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE The presentation of Parkinson's disease patients with mutations in the LRRK2 gene (PDLRRK2 ) is highly variable, suggesting a strong influence of modifying factors. In this context, inflammation is a potential candidate inducing clinical subtypes. METHODS An extensive battery of peripheral inflammatory markers was measured in human serum in a multicentre cohort of 142 PDLRRK2 patients from the MJFF LRRK2 Consortium, stratified by three different subtypes as recently proposed for idiopathic Parkinson's disease: diffuse/malignant, intermediate and mainly pure motor. RESULTS Patients classified as diffuse/malignant presented with the highest levels of the pro-inflammatory proteins interleukin 8 (IL-8), monocyte chemotactic protein 1 (MCP-1) and macrophage inflammatory protein 1-β (MIP-1-β) paralleled by high levels of the neurotrophic protein brain-derived neurotrophic factor (BDNF). It was also possible to distinguish the clinical subtypes based on their inflammatory profile by using discriminant and area under the receiver operating characteristic curve analysis. CONCLUSIONS Inflammation seems to be associated with the presence of a specific clinical subtype in PDLRRK2 that is characterized by a broad and more severely affected spectrum of motor and non-motor symptoms. The pro-inflammatory metabolites IL-8, MCP-1 and MIP-1-β as well as BDNF are interesting candidates to be included in biomarker panels that aim to differentiate subtypes in PDLRRK2 and predict progression.
Collapse
Affiliation(s)
- K Brockmann
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - C Schulte
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - N Schneiderhan-Marra
- Natural and Medical Sciences Institute at the University of Tübingen (NMI), Reutlingen, Germany
| | - A Apel
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - C Pont-Sunyer
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - D Vilas
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - J Ruiz-Martinez
- Hospital Universitario Donostia, Biodonostia Institut, San Sebastián, Guipuzcoa, Spain
| | | | - J-C Corvol
- Département de Génétique et Cytogénétique, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, INSERM, Paris, France
| | - F Cormier
- Département de Génétique et Cytogénétique, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, INSERM, Paris, France
| | - T Knorpp
- Natural and Medical Sciences Institute at the University of Tübingen (NMI), Reutlingen, Germany
| | - T O Joos
- Natural and Medical Sciences Institute at the University of Tübingen (NMI), Reutlingen, Germany
| | - A Bernard
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - T Gasser
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - C Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - B Schüle
- Parkinson Institute and Clinical Center, Sunnyvale, CA, USA
| | - J O Aasly
- Department of Neurology, St Olavs Hospital, Trondheim, Norway
| | - T Foroud
- Department of Medical and Molecular Genetics, Indiana University, Bloomington, IN, USA
| | - J F Marti-Masso
- Hospital Universitario Donostia, Biodonostia Institut, San Sebastián, Guipuzcoa, Spain
| | - A Brice
- Département de Génétique et Cytogénétique, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, INSERM, Paris, France
| | - E Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - D Berg
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - W Maetzler
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
98
|
Mirelman A, Bernad-Elazari H, Thaler A, Giladi-Yacobi E, Gurevich T, Gana-Weisz M, Saunders-Pullman R, Raymond D, Doan N, Bressman SB, Marder KS, Alcalay RN, Rao AK, Berg D, Brockmann K, Aasly J, Waro BJ, Tolosa E, Vilas D, Pont-Sunyer C, Orr-Urtreger A, Hausdorff JM, Giladi N. Arm swing as a potential new prodromal marker of Parkinson's disease. Mov Disord 2017; 31:1527-1534. [PMID: 27430880 DOI: 10.1002/mds.26720] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Reduced arm swing is a well-known clinical feature of Parkinson's disease (PD), often observed early in the course of the disease. We hypothesized that subtle changes in arm swing and axial rotation may also be detectable in the prodromal phase. OBJECTIVE The purpose of this study was to evaluate the relationship between the LRRK2-G2019S mutation, arm swing, and axial rotation in healthy nonmanifesting carriers and noncarriers of the G2019S mutation and in patients with PD. METHODS A total of 380 participants (186 healthy nonmanifesting controls and 194 PD patients) from 6 clinical sites underwent gait analysis while wearing synchronized 3-axis body-fixed sensors on the lower back and bilateral wrists. Participants walked for 1 minute under the following 2 conditions: (1) usual walking and (2) dual-task walking. Arm swing amplitudes, asymmetry, variability, and smoothness were calculated for both arms along with measures of axial rotation. RESULTS A total of 122 nonmanifesting participants and 67 PD patients were carriers of the G2019S mutation. Nonmanifesting mutation carriers walked with greater arm swing asymmetry and variability and lower axial rotation smoothness under the dual task condition when compared with noncarriers (P < .04). In the nonmanifesting mutation carriers, arm swing asymmetry was associated with gait variability under dual task (P = .003). PD carriers showed greater asymmetry and variability of movement than PD noncarriers, even after controlling for disease severity (P < .009). CONCLUSIONS The G2019S mutation is associated with increased asymmetry and variability among nonmanifesting participants and patients with PD. Prospective studies should determine if arm swing asymmetry and axial rotation smoothness may be used as motor markers of prodromal PD. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration, Tel Aviv Medical Center, Tel Aviv, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Neurology Institute, Tel Aviv Medical Center, Tel Aviv, Israel. .,Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel.
| | - Hagar Bernad-Elazari
- Laboratory for Early Markers of Neurodegeneration, Tel Aviv Medical Center, Tel Aviv, Israel.,Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neurology Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Tanya Gurevich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neurology Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Rachel Saunders-Pullman
- Departments of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Deborah Raymond
- Departments of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nancy Doan
- Departments of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan B Bressman
- Departments of Neurology, Mount Sinai Beth Israel Medical Center, New York, New York, USA.,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karen S Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,G. H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Ashwini K Rao
- G. H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Rehabilitation & Regenerative Medicine (Physical Therapy), New York, New York, USA
| | - Daniela Berg
- Hertie-Institut für klinische Hirnforschung, Tubingen, Germany
| | | | - Jan Aasly
- Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Eduardo Tolosa
- Institut de Neurociències Hospital Clìnic, Barcelona, Spain
| | - Dolores Vilas
- Institut de Neurociències Hospital Clìnic, Barcelona, Spain
| | | | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Genetic Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neurology Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Physical Therapy, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neurology Institute, Tel Aviv Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
99
|
Robak LA, Jansen IE, van Rooij J, Uitterlinden AG, Kraaij R, Jankovic J, Heutink P, Shulman JM. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain 2017; 140:3191-3203. [PMID: 29140481 PMCID: PMC5841393 DOI: 10.1093/brain/awx285] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/15/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022] Open
Abstract
Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher disease, are also potent risk factors for Parkinson's disease. We examined whether a genetic burden of variants in other lysosomal storage disorder genes is more broadly associated with Parkinson's disease susceptibility. The sequence kernel association test was used to interrogate variant burden among 54 lysosomal storage disorder genes, leveraging whole exome sequencing data from 1156 Parkinson's disease cases and 1679 control subjects. We discovered a significant burden of rare, likely damaging lysosomal storage disorder gene variants in association with Parkinson's disease risk. The association signal was robust to the exclusion of GBA, and consistent results were obtained in two independent replication cohorts, including 436 cases and 169 controls with whole exome sequencing and an additional 6713 cases and 5964 controls with exome-wide genotyping. In secondary analyses designed to highlight the specific genes driving the aggregate signal, we confirmed associations at the GBA and SMPD1 loci and newly implicate CTSD, SLC17A5, and ASAH1 as candidate Parkinson's disease susceptibility genes. In our discovery cohort, the majority of Parkinson's disease cases (56%) have at least one putative damaging variant in a lysosomal storage disorder gene, and 21% carry multiple alleles. Our results highlight several promising new susceptibility loci and reinforce the importance of lysosomal mechanisms in Parkinson's disease pathogenesis. We suggest that multiple genetic hits may act in combination to degrade lysosomal function, enhancing Parkinson's disease susceptibility.
Collapse
Affiliation(s)
- Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston TX USA
| | - Iris E Jansen
- German Center for Neurodegenerative Diseases (DZNE) and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Clinical Genetics, VU University Medical Center, Amsterdam 1081HZ, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing (NCHA), Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE) and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX USA
- Jan and Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston TX USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
100
|
West AB. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp Neurol 2017; 298:236-245. [PMID: 28764903 PMCID: PMC5693612 DOI: 10.1016/j.expneurol.2017.07.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 01/10/2023]
Abstract
In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD.
Collapse
Affiliation(s)
- Andrew B West
- Center for Neurodegeneration and Experimental Therapeutics, 1719 6th Ave. South, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|